Coloring Mixed and Directional Interval Graphs

GD 2022, Tokyo

Grzegorz Gutowski
Florian Mittelstädt
Ignaz Rutter
Joachim Spoerhase
Alexander Wolff
Johannes Zink

Uniwersytet Jagielloński Kraków
Julius-Maximilians-Universität Würzburg
Universität Passau
Motivation

Motivation

Input: directed graph G
Output: layered drawing of G
Motivation

Input: directed graph G
Output: layered drawing of G

Consists of five phases:
Motivation

Input: directed graph G

Output: layered drawing of G

Consists of five phases:

1. cycle elimination
2. layer assignment
3. crossing minimization
4. node placement
5. edge routing
Motivation

Input: directed graph G

Output: layered drawing of G

Consists of five phases:

1. cycle elimination
2. layer assignment
3. crossing minimization
4. node placement
5. edge routing

we want orthogonal edges!
Motivation

Input: directed graph G

Consists of five phases:

1. cycle elimination
2. layer assignment
3. crossing minimization
4. node placement
5. edge routing

we want orthogonal edges!

[Walter, Z., Baumeister, Wolff; GD’20, CGTA’22]
Motivation – Layered Orthogonal Edge Routing

- it suffices to consider each pair of consecutive layers individually
Motivation – Layered Orthogonal Edge Routing

- it suffices to consider each pair of consecutive layers individually
Motivation – Layered Orthogonal Edge Routing

- It suffices to consider each pair of consecutive layers individually.
- Positions of vertices are fixed.
Motivation – Layered Orthogonal Edge Routing

- it suffices to consider each pair of consecutive layers individually
- positions of vertices are fixed
- no two edges share a common end point (vertices have distinct ports)
Motivation – Layered Orthogonal Edge Routing

- draw each edge with at most two vertical and one horizontal line segments
Motivation – Layered Orthogonal Edge Routing

- draw each edge with at most two vertical and one horizontal line segments
Motivation – Layered Orthogonal Edge Routing

- draw each edge with at most two vertical and one horizontal line segments
- avoid overlaps and double crossings between the same pair of edges
Motivation – Layered Orthogonal Edge Routing

- draw each edge with at most two vertical and one horizontal line segments
- avoid overlaps and double crossings between the same pair of edges
Motivation – Layered Orthogonal Edge Routing

- draw each edge with at most two vertical and one horizontal line segments
- avoid overlaps and double crossings between the same pair of edges
Motivation – Layered Orthogonal Edge Routing

- draw each edge with at most two vertical and one horizontal line segments
- avoid overlaps and double crossings between the same pair of edges
Motivation – Layered Orthogonal Edge Routing

- Draw each edge with at most two vertical and one horizontal line segments.
- Avoid overlaps and double crossings between the same pair of edges.
Motivation – Layered Orthogonal Edge Routing

- draw each edge with at most two vertical and one horizontal line segments
- avoid overlaps and double crossings between the same pair of edges
- use as few horizontal intermediate layers (tracks) as possible
Motivation – Layered Orthogonal Edge Routing

- draw each edge with at most two vertical and one horizontal line segments
- avoid overlaps and double crossings between the same pair of edges
- use as few horizontal intermediate layers (tracks) as possible
Motivation – Layered Orthogonal Edge Routing

- draw each edge with at most two vertical and one horizontal line segments
- avoid overlaps and double crossings between the same pair of edges
- use as few horizontal intermediate layers (tracks) as possible
Motivation – Layered Orthogonal Edge Routing

- distinguish between *left-going* and *right-going* edges
Motivation – Layered Orthogonal Edge Routing

- distinguish between *left-going* and *right-going* edges
- only edges going in the same direction and overlapping partially in x-dimension can cross twice
Motivation – Layered Orthogonal Edge Routing

- distinguish between *left-going* and *right-going* edges

- only edges going in the same direction and overlapping partially in x-dimension can cross twice

 ⇒ induce a vertical order for the horizontal middle segments
Definition – Directional Interval Graphs

Interval representation: set of intervals

\[\text{Diagram: } a \quad \overline{b \quad c} \]
Definition – Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:
Definition – Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

- vertex for each interval
Definition – Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

- vertex for each interval
- undirected edge if one interval contains another
Definition – Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

- vertex for each interval
- undirected edge if one interval contains another
- directed edge (towards the right interval) if the intervals overlap partially
Definition – Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

- vertex for each interval
- undirected edge if one interval contains another
- directed edge (towards the right interval) if the intervals overlap partially

Mixed interval graph:
Definition – Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

- vertex for each interval
- undirected edge if one interval contains another
- directed edge (towards the right interval) if the intervals overlap partially

Mixed interval graph:

- vertex for each interval
Definition – Directional Interval Graphs

Interval representation: set of intervals

Directional interval graph:

- vertex for each interval
- undirected edge if one interval contains another
- directed edge (towards the right interval) if the intervals overlap partially

Mixed interval graph:

- vertex for each interval
- for each two overlapping intervals: undirected or arbitrarily directed edge
Coloring Mixed Graphs

Find a graph coloring $c : V \rightarrow \mathbb{N}$ such that:

[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

- undirected edge uv: $c(u) \neq c(v)$,
- directed edge uv: $c(u) < c(v)$,
- $\max_{v \in V} c(v)$ is minimized.
Coloring Mixed Graphs

Find a graph coloring $c : V \rightarrow \mathbb{N}$ such that:

[Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97]

Interval graphs (no directed edges):

- undirected edge uv: $c(u) \neq c(v)$,
- directed edge uv: $c(u) < c(v)$,
- $\max_{v \in V} c(v)$ is minimized.
Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that:

[Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97]

Interval graphs (no directed edges):
- coloring in linear time by a greedy algorithm

★ undirected edge uv: $c(u) \neq c(v)$,
★ directed edge uv: $c(u) < c(v)$,
★ $\max_{v \in V} c(v)$ is minimized.
Find a graph coloring \(c: V \to \mathbb{N} \) such that:

- [Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
- coloring in linear time by a greedy algorithm

- undirected edge \(uv \): \(c(u) \neq c(v) \),
- directed edge \(uv \): \(c(u) < c(v) \),
- \(\max_{v \in V} c(v) \) is minimized.

Directed graphs (only directed edges):
Coloring Mixed Graphs

Find a graph coloring $c : V \to \mathbb{N}$ such that:

[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
- coloring in linear time by a greedy algorithm

Directed graphs (only directed edges):
- coloring in linear time using topological sorting
Coloring Mixed Graphs

Find a graph coloring $c : V \rightarrow \mathbb{N}$ such that:

[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):

- coloring in linear time by a greedy algorithm

Directional interval graphs:

- undirected edge uv: $c(u) \neq c(v)$,
- directed edge uv: $c(u) < c(v)$,
- $\max_{v \in V} c(v)$ is minimized.

Directed graphs (only directed edges):

- coloring in linear time using topological sorting
Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that:

[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):

- coloring in linear time by a greedy algorithm

Directional interval graphs:

- recognition in $O(n^2)$ time

Directed graphs (only directed edges):

- coloring in linear time using topological sorting

$n := \# \text{ intervals}$
Coloring Mixed Graphs

Find a graph coloring $c : V \rightarrow \mathbb{N}$ such that:

[Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97]

Interval graphs (no directed edges):
- coloring in linear time by a greedy algorithm

Directional interval graphs:
- recognition in $O(n^2)$ time
- coloring in $O(n \log n)$ time by a greedy algorithm

Directed graphs (only directed edges):
- coloring in linear time using topological sorting

\star undirected edge uv: $c(u) \neq c(v)$,
\star directed edge uv: $c(u) < c(v)$,
\star $\max_{v \in V} c(v)$ is minimized.

$n := \# \text{ intervals}$
Coloring Mixed Graphs

Find a graph coloring \(c : V \rightarrow \mathbb{N} \) such that:

[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

- undirected edge \(uv \): \(c(u) \neq c(v) \),
- directed edge \(uv \): \(c(u) < c(v) \),
- \(\max_{v \in V} c(v) \) is minimized.

Interval graphs (no directed edges):
- coloring in linear time by a greedy algorithm

Directional interval graphs:
- recognition in \(O(n^2) \) time
- coloring in \(O(n \log n) \) time by a greedy algorithm

Directed graphs (only directed edges):
- coloring in linear time using topological sorting

\(n := \# \text{ intervals} \)
Coloring Mixed Graphs

Find a graph coloring \(c : V \rightarrow \mathbb{N} \) such that:

[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
- coloring in linear time by a greedy algorithm

Directional interval graphs:
- recognition in \(O(n^2) \) time
- coloring in \(O(n \log n) \) time by a greedy algorithm

Mixed interval graphs:

Directed graphs (only directed edges):
- coloring in linear time using topological sorting

\(\star \) undirected edge \(uv : c(u) \neq c(v) \),
\(\star \) directed edge \(uv : c(u) < c(v) \),
\(\star \) \(\max_{v \in V} c(v) \) is minimized.

\(n := \# \text{ intervals} \)
Find a graph coloring \(c: V \rightarrow \mathbb{N} \) such that:

\[\text{Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97} \]

Interval graphs (no directed edges):
- coloring in linear time by a greedy algorithm

Directional interval graphs:
- recognition in \(O(n^2) \) time
- coloring in \(O(n \log n) \) time by a greedy algorithm

Mixed interval graphs:
- coloring is NP-complete

Directed graphs (only directed edges):
- coloring in linear time using topological sorting

\(n := \# \text{ intervals} \)
Coloring Mixed Graphs

Find a graph coloring \(c : V \rightarrow \mathbb{N} \) such that:

[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

- Interval graphs (no directed edges):
 - coloring in linear time by a greedy algorithm

Directions interval graphs:

- recognition in \(O(n^2) \) time
- coloring in \(O(n \log n) \) time by a greedy algorithm

Mixed interval graphs:

- coloring is NP-complete

Directed graphs (only directed edges):

- coloring in linear time using topological sorting

\(n := \# \text{ intervals} \)
Coloring Mixed Graphs

Find a graph coloring \(c : V \rightarrow \mathbb{N} \) such that:

[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

- undirected edge \(uv \): \(c(u) \neq c(v) \),
- directed edge \(uv \): \(c(u) < c(v) \),
- \(\max_{v \in V} c(v) \) is minimized.

Interval graphs (no directed edges):
- coloring in linear time by a greedy algorithm

Directional interval graphs:
- recognition in \(O(n^2) \) time
- coloring in \(O(n \log n) \) time by a greedy algorithm

Mixed interval graphs:
- coloring is NP-complete

Directed graphs (only directed edges):
- coloring in linear time using topological sorting

\(n := \# \text{ intervals} \)
Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G
Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:
1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges
Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:
1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges
Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges
Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:
1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges
Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:
1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges
Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges
Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:
1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges
Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:
1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges
Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:
1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges
Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges
Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:
1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges
Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

GreedyColoring:
1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.
Coloring Directional Interval Graphs

Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:
Coloring Directional Interval Graphs

Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let G^+ be the transitive closure of G
 (the graph obtained by exhaustively adding transitive directed edges to G).
Coloring Directional Interval Graphs

Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let G^+ be the *transitive closure* of G (the graph obtained by exhaustively adding transitive directed edges to G).

- Show: the size of a largest clique in G^+ equals the maximum color m in c.
Coloring Directional Interval Graphs

Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let G^+ be the transitive closure of G (the graph obtained by exhaustively adding transitive directed edges to G).
- Show: the size of a largest clique in G^+ equals the maximum color m in c.
 \[\Rightarrow \text{ the coloring } c \text{ uses the minimum number of colors} \]
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let v_0 be an interval of maximum color, i.e., $c(v_0) = m$.
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let v_0 be an interval of maximum color, i.e., $c(v_0) = m$.

![Diagram](image)
Coloring Directional Interval Graphs

Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let v_0 be an interval of maximum color, i.e., $c(v_0) = m$.
- Among all intervals having a directed edge to v_0, let v_1 be the one with the largest color.
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let v_0 be an interval of maximum color, i.e., $c(v_0) = m$.

- Among all intervals having a directed edge to v_0, let v_1 be the one with the largest color.
Coloring Directional Interval Graphs

Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let v_0 be an interval of maximum color, i.e., $c(v_0) = m$.
- Among all intervals having a directed edge to v_0, let v_1 be the one with the largest color.
- Similarly, define v_2 w.r.t. v_1 and so on.
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let v_0 be an interval of maximum color, i.e., $c(v_0) = m$.
- Among all intervals having a directed edge to v_0, let v_1 be the one with the largest color.
- Similarly, define v_2 w.r.t. v_1 and so on.
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let v_0 be an interval of maximum color, i.e., $c(v_0) = m$.
- Among all intervals having a directed edge to v_0, let v_1 be the one with the largest color.
- Similarly, define v_2 w.r.t. v_1 and so on.
Coloring Directional Interval Graphs

Theorem 1: A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let v_0 be an interval of maximum color, i.e., $c(v_0) = m$.
- Among all intervals having a directed edge to v_0, let v_1 be the one with the largest color.
- Similarly, define v_2 w.r.t. v_1 and so on.
- By the greedy strategy, the colors between $c(v_i)$ and $c(v_{i+1})$ are occupied with intervals containing the left endpoint of v_i.
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let v_0 be an interval of maximum color, i.e., $c(v_0) = m$.

- Among all intervals having a directed edge to v_0, let v_1 be the one with the largest color.

- Similarly, define v_2 w.r.t. v_1 and so on.

- By the greedy strategy, the colors between $c(v_i)$ and $c(v_{i+1})$ are occupied with intervals containing the left endpoint of v_i.

Diagram:
- v_0, v_1, v_2, v_3, v_4, v_i, etc., with coloring c. The intervals are ordered along a line, with v_0 at one end and v_i at another. The colors are assigned from left to right, with m being the maximum color.
Coloring Directional Interval Graphs

Theorem 1: A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let v_0 be an interval of maximum color, i.e., $c(v_0) = m$.

- Among all intervals having a directed edge to v_0, let v_1 be the one with the largest color.

- Similarly, define v_2 w.r.t. v_1 and so on.

- By the greedy strategy, the colors between $c(v_i)$ and $c(v_{i+1})$ are occupied with intervals containing the left endpoint of v_i.
Coloring Directional Interval Graphs

Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let v_0 be an interval of maximum color, i.e., $c(v_0) = m$.

- Among all intervals having a directed edge to v_0, let v_1 be the one with the largest color.

- Similarly, define v_2 w.r.t. v_1 and so on.

- By the greedy strategy, the colors between $c(v_i)$ and $c(v_{i+1})$ are occupied with intervals containing the left endpoint of v_i.

\[\text{coloring } c \]

\[m \]

\[S_0 \]

\[\vdots \]

\[S_4 \]
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Clearly, for each $S_i \setminus \{v_i\}$, all intervals contain v_i.
 (otherwise they would have a directed edge to v_i)
Coloring Directional Interval Graphs

Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Clearly, for each $S_i \setminus \{v_i\}$, all intervals contain v_i. (otherwise they would have a directed edge to v_i)

- We can show that for any two steps S_i and S_j, every pair of intervals is adjacent in the transitive closure G^+.
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Clearly, for each $S_i \setminus \{v_i\}$, all intervals contain v_i. (otherwise they would have a directed edge to v_i)

- We can show that for any two steps S_i and S_j, every pair of intervals is adjacent in the transitive closure G^+.

 $\Rightarrow S = \bigcup S_i$ is a clique in G^+
Coloring Directional Interval Graphs

Theorem 1:
A coloring \(c \) computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Clearly, for each \(S_i \setminus \{v_i\} \), all intervals contain \(v_i \).
 (otherwise they would have a directed edge to \(v_i \))

- We can show that for any two steps \(S_i \) and \(S_j \), every pair of intervals is adjacent in the transitive closure \(G^+ \).

\[
S = \bigcup S_i \text{ is a clique in } G^+
\]

\[
S \text{ alone requires } m \text{ colors in } G\]

\[
\Rightarrow S = \bigcup S_i \text{ is a clique in } G^+\]

\[
\Rightarrow S \text{ alone requires } m \text{ colors in } G\]
Theorem 2: Deciding whether a mixed interval graph admits a k-coloring is NP-complete.
Coloring Mixed Interval Graphs

Theorem 2: Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:
Theorem 2: Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:
We model an instance Φ of 3-SAT as a mixed interval graph G_Φ.
Theorem 2:
Deciding whether a mixed interval graph admits a \(k \)-coloring is NP-complete.

Proof sketch:
We model an instance \(\Phi \) of 3-SAT as a mixed interval graph \(G_\Phi \).

variable gadget for each variable \(v_i \):
Coloring Mixed Interval Graphs

Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:
We model an instance Φ of 3-SAT as a mixed interval graph G_Φ.

variable gadget for each variable v_i:

\[v_i \text{ is true} \]
Theorem 2: Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:
We model an instance Φ of 3-SAT as a mixed interval graph G_Φ.

variable gadget for each variable v_i: v_i is false
Coloring Mixed Interval Graphs

Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:
We model an instance Φ of 3-SAT as a mixed interval graph G_Φ.

clause c_j containing literal v_i:

- v_i is false
- v_i is true
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:
We model an instance Φ of 3-SAT as a mixed interval graph G_Φ.

clause c_j containing literal v_i: clause c_k containing literal $\neg v_i$: v_i is false
v_i is true
Theorem 2: Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph G_Φ.

clause c_j containing literal v_i: clause c_k containing literal $\neg v_i$:
Coloring Mixed Interval Graphs

Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:
We model an instance Φ of 3-SAT as a mixed interval graph G_{Φ}.

fix positions by adding "frame" intervals
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:
We model an instance Φ of 3-SAT as a mixed interval graph G_{Φ}.

fix positions by adding “frame” intervals
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:
clause gadget:

![Diagram](visualization of the proof sketch)

- Coloring
- v_i is false
- s_j
- o_i^j
- s_k
- b_i^j
- b_i^k
- o_i^k
- v_i^{true}
- v_i^{false}
- upper free strip
- lower free strip
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:
clause gadget:
Coloring Mixed Interval Graphs

Theorem 2:
Deciding whether a mixed interval graph admits a \(k \)-coloring is NP-complete.

Proof sketch:

clause gadget:
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:
clause gadget:

6n colors
($n := \# \text{variables}$)
Theorem 2: Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:

6n colors ($n := \# \text{variables}$)
Theorem 2: Deciding whether a mixed interval graph admits a \(k \)-coloring is NP-complete.

Proof sketch:

clause gadget:

6\(n \) + 1 colors
\((n := \# \text{ variables})\)
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:
clause gadget:

Φ is satisfiable $\iff G_\Phi$ admits a coloring with $6n$ colors

$6n + 1$ colors
($n := \# \text{variables}$)
We have introduced the natural concept of directional interval graphs.
We have introduced the natural concept of directional interval graphs.

A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.

$n := \# \text{ vertices}$
We have introduced the natural concept of directional interval graphs.

A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.

In layered graph drawing, this corresponds to routing “left-going” edges orthogonally to the fewest horizontal tracks. (Symmetrically “right-going”.)
We have introduced the natural concept of directional interval graphs.

A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.

In layered graph drawing, this corresponds to routing “left-going” edges orthogonally to the fewest horizontal tracks. (Symmetrically “right-going”.)

Combining the drawings of left-going and right-going edges yields a 2-approximation for the number of tracks. (bidirectional interval graphs)
Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.

- A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.

- In layered graph drawing, this corresponds to routing “left-going” edges orthogonally to the fewest horizontal tracks. (Symmetrically “right-going”.)

\Rightarrow Combining the drawings of left-going and right-going edges yields a 2-approximation for the number of tracks. (bidirectional interval graphs)

- In our paper, we present a constructive $O(n^2)$-time algorithm for recognizing directional interval graphs, which is based on PQ-trees.
Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.

- A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.

- In layered graph drawing, this corresponds to routing "left-going" edges orthogonally to the fewest horizontal tracks. (Symmetrically "right-going".)

\[\Rightarrow\] Combining the drawings of left-going and right-going edges yields a 2-approximation for the number of tracks. (bidirectional interval graphs)

- In our paper, we present a constructive $O(n^2)$-time algorithm for recognizing directional interval graphs, which is based on PQ-trees.

- For the more general case of mixed interval graphs, coloring is NP-hard. (Remark: NP-hardness requires both directed and undirected edges.)
Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.

- A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.

- In layered graph drawing, this corresponds to routing “left-going” edges orthogonally to the fewest horizontal tracks. (Symmetrically “right-going”.)

\Rightarrow Combining the drawings of left-going and right-going edges yields a 2-approximation for the number of tracks. (bidirectional interval graphs)

- In our paper, we present a constructive $O(n^2)$-time algorithm for recognizing directional interval graphs, which is based on PQ-trees.

- For the more general case of mixed interval graphs, coloring is NP-hard. (Remark: NP-hardness requires both directed and undirected edges.)
Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.
- A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.
- In layered graph drawing, this corresponds to routing “left-going” edges orthogonally to the fewest horizontal tracks. (Symmetrically “right-going”.)

\Rightarrow Combining the drawings of left-going and right-going edges yields a 2-approximation for the number of tracks. (Bidirectional interval graphs)

- In our paper, we present a constructive $O(n^2)$-time algorithm for recognizing directional interval graphs, which is based on PQ-trees.
- For the more general case of mixed interval graphs, coloring is NP-hard.
 (Remark: NP-hardness requires both directed and undirected edges.)

Can we do better?
Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.
- A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.
- In layered graph drawing, this corresponds to routing “left-going” edges orthogonally to the fewest horizontal tracks. (Symmetrically “right-going”.

\Rightarrow Combining the drawings of left-going and right-going edges yields a 2-approximation for the number of tracks. (bidirectional interval graphs)

- In our paper, we present a constructive $O(n^2)$-time algorithm for recognizing directional interval graphs, which is based on PQ-trees.
- For the more general case of mixed interval graphs, coloring is NP-hard. (Remark: NP-hardness requires both directed and undirected edges.)

can we do better?