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while preserving some planar straight-line drawing of G at all times
and never intersecting any of the obstacles.

?

Observation: It is necessary that every obstacle is in the same face in Γ and Γ ′.

Observation: It is necessary that there is a continuous deformation from Γ to Γ ′.

not sufficient!

Γ ′:Γ :

v1 v2

v3

v4 v1

v2

v4 v3



7 - 13

New: Morphing Graph Drawings with Point Obstacles

Given: ■ Two planar straight-line drawings Γ and Γ ′ of the same graph G , and

■ a finite set of points (obstacles) in R2.

Task: find a continuous deformation that transforms Γ into Γ ′

while preserving some planar straight-line drawing of G at all times
and never intersecting any of the obstacles.

?

Observation: It is necessary that every obstacle is in the same face in Γ and Γ ′.
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Given: ■ Two planar straight-line drawings Γ and Γ ′ of the same graph G , and

■ a finite set of points (obstacles) in R2.

Task: find a continuous deformation that transforms Γ into Γ ′

while preserving some planar straight-line drawing of G at all times
and never intersecting any of the obstacles.

?

Observation: It is necessary that every obstacle is in the same face in Γ and Γ ′.
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New: Morphing Graph Drawings with Point Obstacles

Given: ■ Two planar straight-line drawings Γ and Γ ′ of the same graph G , and

■ a finite set of points (obstacles) in R2.

Task: find a continuous deformation that transforms Γ into Γ ′

while preserving some planar straight-line drawing of G at all times
and never intersecting any of the obstacles.
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■ a finite set of points (obstacles) in R2.

Task: find a continuous deformation that transforms Γ into Γ ′

while preserving some planar straight-line drawing of G at all times
and never intersecting any of the obstacles.
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Given: ■ Two planar straight-line drawings Γ and Γ ′ of the same graph G , and

■ a finite set of points (obstacles) in R2.

Task: find a continuous deformation that transforms Γ into Γ ′

while preserving some planar straight-line drawing of G at all times
and never intersecting any of the obstacles.

?

Observation: It is necessary that every obstacle is in the same face in Γ and Γ ′.

Observation: It is necessary that there is a continuous deformation from Γ to Γ ′.
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New: Morphing Graph Drawings with Point Obstacles

Given: ■ Two planar straight-line drawings Γ and Γ ′ of the same graph G , and

■ a finite set of points (obstacles) in R2.

Task: find a continuous deformation that transforms Γ into Γ ′

while preserving some planar straight-line drawing of G at all times
and never intersecting any of the obstacles.

?

Observation: It is necessary that every obstacle is in the same face in Γ and Γ ′.

Observation: It is necessary that there is a continuous deformation from Γ to Γ ′.
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New: Morphing Graph Drawings with Point Obstacles

Given: ■ Two planar straight-line drawings Γ and Γ ′ of the same graph G , and

■ a finite set of points (obstacles) in R2.

Task: find a continuous deformation that transforms Γ into Γ ′

while preserving some planar straight-line drawing of G at all times
and never intersecting any of the obstacles.

?

Observation: It is necessary that every obstacle is in the same face in Γ and Γ ′.

Observation: It is necessary that there is a continuous deformation from Γ to Γ ′.
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New: Morphing Graph Drawings with Point Obstacles

Given: ■ Two planar straight-line drawings Γ and Γ ′ of the same graph G , and

■ a finite set of points (obstacles) in R2.

Task: find a continuous deformation that transforms Γ into Γ ′

while preserving some planar straight-line drawing of G at all times
and never intersecting any of the obstacles.

Observation: It is necessary that every obstacle is in the same face in Γ and Γ ′.

Observation: It is necessary that there is a continuous deformation from Γ to Γ ′.

not sufficient!
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Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding
planar straight-line morph in R2 between Γ and Γ ′.
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Complexity of Morphing with Point Obstacles

What a “typical” NP-hardness reduction in graph drawing looks like:
■ Let I be an instance of an NP-hard problem.

■ Construct a graph G based on I .

■ G is drawable with some desired properties if and only if I is a yes-instance.

The difficulty in this case:
■ We need to construct two drawings Γ and Γ ′ based on I .

■ Γ and Γ ′ need to exist regardless of whether I is a yes-instance or not.

■ There is always an obstacle-avoiding continuous deformation from Γ to Γ ′.

■ There is an obstacle-avoiding planar straight-line morph iff I is a yes-instance.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding
planar straight-line morph in R2 between Γ and Γ ′.
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Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding
planar straight-line morph in R2 between Γ and Γ ′.



8 - 13

Complexity of Morphing with Point Obstacles

Proof idea.

■ Reduction from 3-SAT.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding
planar straight-line morph in R2 between Γ and Γ ′.



8 - 14

Complexity of Morphing with Point Obstacles

Proof idea.

■ Reduction from 3-SAT.

■ We construct Γ and Γ ′ based on a given Boolean formula in CNF.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding
planar straight-line morph in R2 between Γ and Γ ′.



8 - 15

Complexity of Morphing with Point Obstacles

Proof idea.

■ Reduction from 3-SAT.

■ We construct Γ and Γ ′ based on a given Boolean formula in CNF.
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Complexity of Morphing with Point Obstacles

Proof idea.

■ Reduction from 3-SAT.

■ We construct Γ and Γ ′ based on a given Boolean formula in CNF.

■ Γ and Γ ′ are identical except for the positions of four vertices.

■ The obstacles are arranged to form a grid-like tunnel structure.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding
planar straight-line morph in R2 between Γ and Γ ′.
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Proof idea.

■ Two rows for each variable (one per literal).

x1
x1
x2
x2
x3
x3

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding
planar straight-line morph in R2 between Γ and Γ ′.
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Proof idea.

■ Two rows for each variable (one per literal).

x1
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x3

■ Three columns for each clause (one per literal).
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Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding
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Proof idea.
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Proof idea.

■ Two rows for each variable (one per literal).
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Proof idea.

■ Two rows for each variable (one per literal).
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■ Free vertices can be passed from variable gad-
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Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding
planar straight-line morph in R2 between Γ and Γ ′.
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Proof idea.

■ Two rows for each variable (one per literal).

x1
x1
x2
x2
x3
x3

■ Three columns for each clause (one per literal).
x1 ∨ x2 ∨ x3x1 ∨ x2 ∨ x3x1 ∨ x2 ∨ x3

■ Split gadget if same literal in row & column;
crossing gadget otherwise. S

S

S

S

S

S

S
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C

C C

C

C

C C C

C C C C C C

C
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C

C C C C C C
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C C C C

C C
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C C
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■ Free vertices can be passed from variable gad-
gets along rows and columns to literal gadgets.

L L L L L L L L L

sync

■ Synchronization gadget assures consistent
assignment of variables.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding
planar straight-line morph in R2 between Γ and Γ ′.



9 - 1

Γ ′:

x1
unset

v1 v2

v3v4

x1

x1

x2

x2

x3

x3

sync

x2
unset

x3
unset



9 - 2

Γ ′:
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■ Does the problem lie in NP? Is it ∃R-hard?

■ What if we restrict the number of piecewise linear morphs?

■ Given two drawings of the same graph, how many obstacles are necessary and
sufficient to block them? Can this be computed efficiently?
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