

Morphing Graph Drawings in the Presence of Point Obstacles

SOFSEM 2024

Oksana Firman Tim Hegemann Boris Klemz Felix Klesen Marie Diana Sieper Alexander Wolff **Johannes Zink**

Let G be a graph with ...

Let G be a graph with ... vertex set V and

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

- Let *G* be a graph with . . . vertex set *V* and
 - edge set *E*, containing pairs of vertices.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

- Let G be a graph with ... vertex set V and
 - \blacksquare edge set *E*, containing pairs of vertices.

A drawing Γ of G assigns ...

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

- Let G be a graph with ... vertex set V and
 - \blacksquare edge set *E*, containing pairs of vertices.

A drawing Γ of G assigns ... each vertex $v \in V$ to a point in \mathbb{R}^2 and

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

- Let G be a graph with ... vertex set V and
 - \blacksquare edge set *E*, containing pairs of vertices.

A drawing Γ of G assigns ...

- each vertex $v \in V$ to a point in \mathbb{R}^2 and
- each edge $\{u, v\} \in E$ to a curve in \mathbb{R}^2 ending at the points assigned to u and v.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

- Let G be a graph with ... vertex set V and
 - \blacksquare edge set *E*, containing pairs of vertices.

A drawing Γ of G assigns ...

- each vertex $v \in V$ to a point in \mathbb{R}^2 and
- each edge $\{u, v\} \in E$ to a curve in \mathbb{R}^2 ending at the points assigned to u and v.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

- Let G be a graph with ... vertex set V and
 - \blacksquare edge set *E*, containing pairs of vertices.

A planar drawing Γ of G assigns ... each vertex $v \in V$ to a point in \mathbb{R}^2 and

■ each edge $\{u, v\} \in E$ to a curve in \mathbb{R}^2 ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

- Let G be a graph with ... vertex set V and
 - \blacksquare edge set *E*, containing pairs of vertices.
- A planar straight-line drawing Γ of G assigns ... each vertex $v \in V$ to a point in \mathbb{R}^2 and
 - each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^2 ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

- Let G be a graph with ... vertex set V and
 - \blacksquare edge set *E*, containing pairs of vertices.
- A planar straight-line drawing Γ of G assigns ... each vertex $v \in V$ to a point in \mathbb{R}^2 and
 - each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^2 ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

- Let G be a graph with ... vertex set V and
 - \blacksquare edge set *E*, containing pairs of vertices.
- A planar straight-line drawing Γ of G assigns ... each vertex $v \in V$ to a point in \mathbb{R}^2 and
 - each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^2 ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

- Let G be a graph with . . .
 vertex set V and
 - \blacksquare edge set *E*, containing pairs of vertices.
- A planar straight-line drawing Γ of G assigns ... each vertex $v \in V$ to a point in \mathbb{R}^2 and
 - each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^2 ending at the points assigned to *u* and *v*, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Two planar drawings Γ and Γ' have the same planar embedding if ...

- Let G be a graph with . . .
 vertex set V and
 - \blacksquare edge set *E*, containing pairs of vertices.
- A planar straight-line drawing Γ of G assigns ... each vertex $v \in V$ to a point in \mathbb{R}^2 and
 - each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^2 ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Two planar drawings *Γ* and *Γ'* have the same planar embedding if ... ■ they have the same rotation system and

- Let G be a graph with . . .
 vertex set V and
 - \blacksquare edge set *E*, containing pairs of vertices.
- A planar straight-line drawing Γ of G assigns ... each vertex $v \in V$ to a point in \mathbb{R}^2 and
 - each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^2 ending at the points assigned to *u* and *v*, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Two planar drawings *Γ* and *Γ'* have the same planar embedding if ... ■ they have the same rotation system and

the same sequence of vertices when walking clockwise along the outer face.

- Let G be a graph with . . .
 vertex set V and
 - \blacksquare edge set *E*, containing pairs of vertices.
- A planar straight-line drawing Γ of G assigns ... each vertex $v \in V$ to a point in \mathbb{R}^2 and
 - each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^2 ending at the points assigned to *u* and *v*, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Two planar drawings *Γ* and *Γ'* have the same planar embedding if . . . ■ they have the same rotation system and

the same sequence of vertices when walking clockwise along the outer face.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Given: two planar straight-line drawings Γ and Γ' of the same graph G. **Task:** find a continuous deformation that transforms Γ into Γ'

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G. **Task:** find a continuous deformation that transforms Γ into Γ'

while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G. **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G. **Task:** find a continuous deformation that transforms Γ into Γ'

while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ' have the same planar embedding.

Theorem: It is sufficient that Γ and Γ' have the same planar embedding. [Cairns 1944, Thomassen 1984]

Given: two planar straight-line drawings Γ and Γ' of the same graph G. **Task:** find a continuous deformation that transforms Γ into Γ'

while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ' have the same planar embedding.

Theorem: It is sufficient that Γ and Γ' have the same planar embedding. [Cairns 1944, Thomassen 1984]

Note: Checking if two planar drawings have the same planar embedding is in P.

Computing Morphs between Graph Drawings
In a linear morph between two planar drawings, each vertex moves along a straight-line segment at a constant speed.

- In a linear morph between two planar drawings, each vertex moves along a straight-line segment at a constant speed.
- A **piecewise linear morph** is a sequence of linear morphs.

- In a linear morph between two planar drawings, each vertex moves along a straight-line segment at a constant speed.
- A **piecewise linear morph** is a sequence of linear morphs.

Theorem: A piecewise linear morph from Γ to Γ' that is planar at all times has $\mathcal{O}(n)$ steps (which is tight) and can be computed in $\mathcal{O}(n^2 \log n)$ time. [Alamdari et al. 2017, Klemz 2021]

- In a linear morph between two planar drawings, each vertex moves along a straight-line segment at a constant speed.
- A **piecewise linear morph** is a sequence of linear morphs.

Theorem: A piecewise linear morph from Γ to Γ' that is planar at all times has $\mathcal{O}(n)$ steps (which is tight) and can be computed in $\mathcal{O}(n^2 \log n)$ time. [Alamdari et al. 2017, Klemz 2021]

In 2D–3D–2D morphing, intermediate drawings are allowed to lie in \mathbb{R}^3 .

- In a linear morph between two planar drawings, each vertex moves along a straight-line segment at a constant speed.
- A **piecewise linear morph** is a sequence of linear morphs.

Theorem: A piecewise linear morph from Γ to Γ' that is planar at all times has $\mathcal{O}(n)$ steps (which is tight) and can be computed in $\mathcal{O}(n^2 \log n)$ time. [Alamdari et al. 2017, Klemz 2021]

In 2D–3D–2D morphing, intermediate drawings are allowed to lie in \mathbb{R}^3 .

Theorem: A 2D–3D–2D morph is always possible (using $O(n^2)$ steps) even if Γ and Γ' have distinct planar embeddings. [Buchin et al. 2023]

In a linear morph between two planar drawings, each vertex moves along a straight-line segment at a constant speed.

A **piecewise linear morph** is a sequence of linear morphs.

Theorem: A piecewise linear morph from Γ to Γ' that is planar at all times has $\mathcal{O}(n)$ steps (which is tight) and can be computed in $\mathcal{O}(n^2 \log n)$ time. [Alamdari et al. 2017, Klemz 2021]

In 2D–3D–2D morphing, intermediate drawings are allowed to lie in \mathbb{R}^3 .

Theorem: A 2D–3D–2D morph is always possible (using $\mathcal{O}(n^2)$ steps) even if Γ and Γ' have distinct planar embeddings. [Buchin et al. 2023]

Theorem: For trees, 2D–3D–2D morphs require asymptotically fewer morphing steps than 2D morphs in the worst case. [Arseneva et al. 2019]

Theorem: For trees, 2D–3D–2D morphs require asymptotically fewer morphing steps than 2D morphs in the worst case. [Arseneva et al. 2019]

Theorem: For trees, 2D–3D–2D morphs require asymptotically fewer morphingsteps than 2D morphs in the worst case.[Arseneva et al. 2019]

Theorem: For trees, 2D–3D–2D morphs require asymptotically fewer morphingsteps than 2D morphs in the worst case.[Arseneva et al. 2019]

Theorem: For trees, 2D–3D–2D morphs require asymptotically fewer morphingsteps than 2D morphs in the worst case.[Arseneva et al. 2019]

steps than 2D morphs in the worst case. [Arseneva et al. 2019]

steps than 2D morphs in the worst case. [Arseneva et al. 2019]

4 - 13

steps than 2D morphs in the worst case. [Arseneva et al. 2019]

4 - 14

Theorem: For trees, 2D–3D–2D morphs require asymptotically fewer morphing steps than 2D morphs in the worst case. [Arseneva et al. 2019]

Given:

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

a finite set of points (**obstacles**) in \mathbb{R}^2 .

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and \square a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and \square a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Motivation: 2D–3D–2D Morphings

Motivation: 2D–3D–2D Morphings

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and \square a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

- **a** finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

Two planar straight-line drawings Γ and Γ' of the same graph G, and

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

Two planar straight-line drawings Γ and Γ' of the same graph G, and

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

Two planar straight-line drawings Γ and Γ' of the same graph G, and

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

Two planar straight-line drawings Γ and Γ' of the same graph G, and

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

Two planar straight-line drawings Γ and Γ' of the same graph G, and

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

Two planar straight-line drawings Γ and Γ' of the same graph G, and

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

Two planar straight-line drawings Γ and Γ' of the same graph G, and

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

Two planar straight-line drawings Γ and Γ' of the same graph G, and

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

Two planar straight-line drawings Γ and Γ' of the same graph G, and

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given:

Two planar straight-line drawings Γ and Γ' of the same graph G, and

- a finite set of points (**obstacles**) in \mathbb{R}^2 .
- **Task:** find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary that every obstacle is in the same face in Γ and Γ' . **Observation:** It is necessary that there is a continuous deformation from Γ to Γ' .

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like:

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like: Let *I* be an instance of an NP-hard problem.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like: Let *I* be an instance of an NP-hard problem.

■ Construct a graph *G* based on *I*.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like: Let *I* be an instance of an NP-hard problem.

- Construct a graph *G* based on *I*.
- \blacksquare G is drawable with some desired properties if and only if I is a yes-instance.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like: Let *I* be an instance of an NP-hard problem.

- Construct a graph *G* based on *I*.
- *G* is drawable with some desired properties if and only if *I* is a yes-instance.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like: Let *I* be an instance of an NP-hard problem.

- Construct a graph *G* based on *I*.
- *G* is drawable with some desired properties if and only if *I* is a yes-instance.

The difficulty in this case:

• We need to construct two drawings Γ and Γ' based on I.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like: Let *I* be an instance of an NP-hard problem.

- Construct a graph *G* based on *I*.
- *G* is drawable with some desired properties if and only if *I* is a yes-instance.

- We need to construct two drawings Γ and Γ' based on I.
- \square Γ and Γ' need to exist regardless of whether I is a yes-instance or not.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like: Let *I* be an instance of an NP-hard problem.

- Construct a graph *G* based on *I*.
- \blacksquare G is drawable with some desired properties if and only if I is a yes-instance.

- We need to construct two drawings Γ and Γ' based on I.
- \square Γ and Γ' need to exist regardless of whether I is a yes-instance or not.
- There is always an obstacle-avoiding continuous deformation from Γ to Γ' .

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like: Let *I* be an instance of an NP-hard problem.

- Construct a graph *G* based on *I*.
- \blacksquare G is drawable with some desired properties if and only if I is a yes-instance.

- We need to construct two drawings Γ and Γ' based on I.
- \square Γ and Γ' need to exist regardless of whether I is a yes-instance or not.
- There is always an obstacle-avoiding continuous deformation from Γ to Γ' .
- There is an obstacle-avoiding planar straight-line morph iff *I* is a yes-instance.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

Proof idea.

Reduction from 3-SAT.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Reduction from 3-SAT.
- We construct Γ and Γ' based on a given Boolean formula in CNF.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Reduction from 3-SAT.
- We construct Γ and Γ' based on a given Boolean formula in CNF.
- \square Γ and Γ' are identical except for the positions of four vertices.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Reduction from 3-SAT.
- We construct Γ and Γ' based on a given Boolean formula in CNF.
- \square Γ and Γ' are identical except for the positions of four vertices.
- The obstacles are arranged to form a grid-like tunnel structure.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

Proof idea.

Two rows for each variable (one per literal).

<i>x</i> ₁
$\overline{x_1}$
<i>x</i> ₂
$\overline{x_2}$
<i>x</i> ₃
$\overline{X_3}$

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Two rows for each variable (one per literal).
- Three columns for each clause (one per literal).

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Two rows for each variable (one per literal).
- Three columns for each clause (one per literal).
- Split gadget if same literal in row & column;

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Two rows for each variable (one per literal).
- Three columns for each clause (one per literal).
- Split gadget if same literal in row & column; crossing gadget otherwise.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Two rows for each variable (one per literal).
- Three columns for each clause (one per literal).
- Split gadget if same literal in row & column; crossing gadget otherwise.
- Free vertices can be passed from variable gadgets along rows and columns to literal gadgets.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Two rows for each variable (one per literal).
- Three columns for each clause (one per literal).
- Split gadget if same literal in row & column; crossing gadget otherwise.
- Free vertices can be passed from variable gadgets along rows and columns to literal gadgets.
- Synchronization gadget assures consistent assignment of variables.

9 - 35

9 - 38

9 - 40

We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.

- contribution We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
 - While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.

- contribution We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
 - While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
 - While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
 - Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
 - While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
 - Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?
 - Does the problem lie in NP? Is it $\exists \mathbb{R}$ -hard?

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
 - While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
 - Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?
 - Does the problem lie in NP? Is it ∃ℝ-hard?
 - Does it become easier if there are only constantly many obstacles?

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
 - While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
 - Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?
 - **Does the problem lie in NP? Is it** $\exists \mathbb{R}$ -hard?
 - Does it become easier if there are only constantly many obstacles?
 - What if fewer than four vertices change positions?

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
 - While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
 - Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?
 - **Does the problem lie in NP? Is it** $\exists \mathbb{R}$ -hard?
 - Does it become easier if there are only constantly many obstacles?
 - What if fewer than four vertices change positions?
 - What if we restrict the number of piecewise linear morphs?

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
 - While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
 - Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?
 - **Does the problem lie in NP? Is it** $\exists \mathbb{R}$ -hard?
 - Does it become easier if there are only constantly many obstacles?
 - What if fewer than four vertices change positions?
 - What if we restrict the number of piecewise linear morphs?
 - Given two drawings of the same graph, how many obstacles are necessary and sufficient to block them? Can this be computed efficiently?

contribut