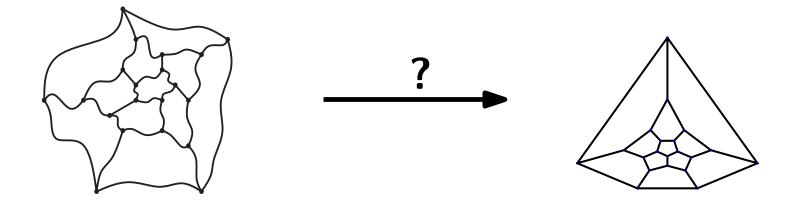
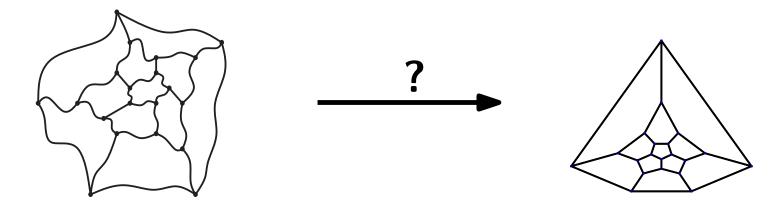


Survey on graph and hypergraph drawing

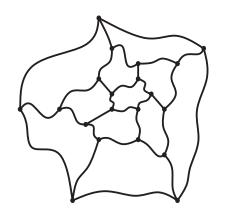
Dagstuhl Seminar on **Low-Dimensional Topology** André Schulz and Alexander Wolff August 2019

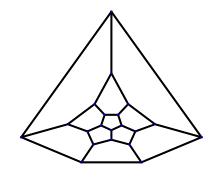




abstract (combinatorial) graph

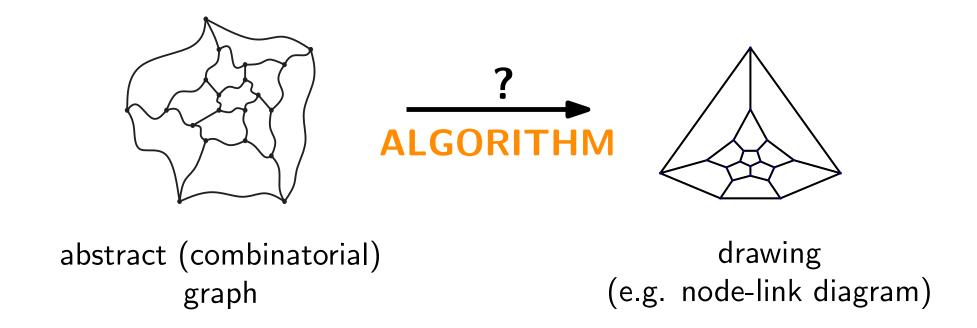
drawing (e.g. node-link diagram)



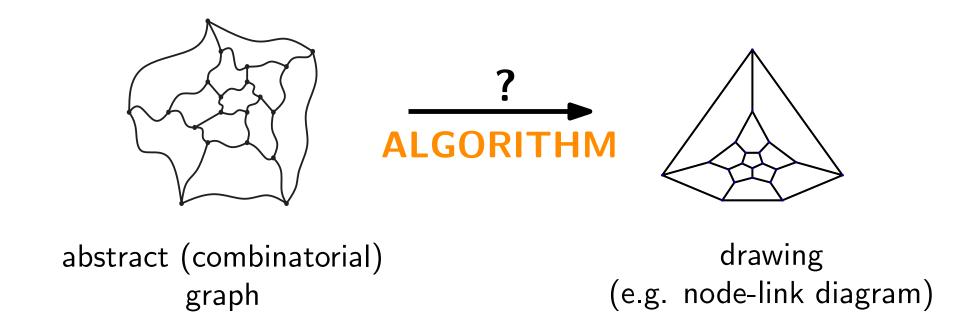


abstract (combinatorial) graph

drawing (e.g. node-link diagram)

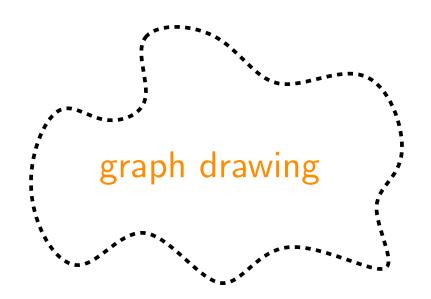


Goal: Algorithm guarantees a (provable) geometric quality measure in the worst case.

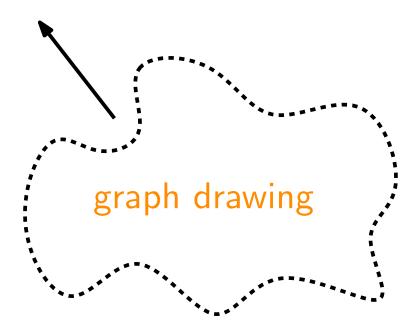


Goal: Algorithm guarantees a (provable) geometric quality measure in the worst case.

Evaluation is (usually) not task-driven.

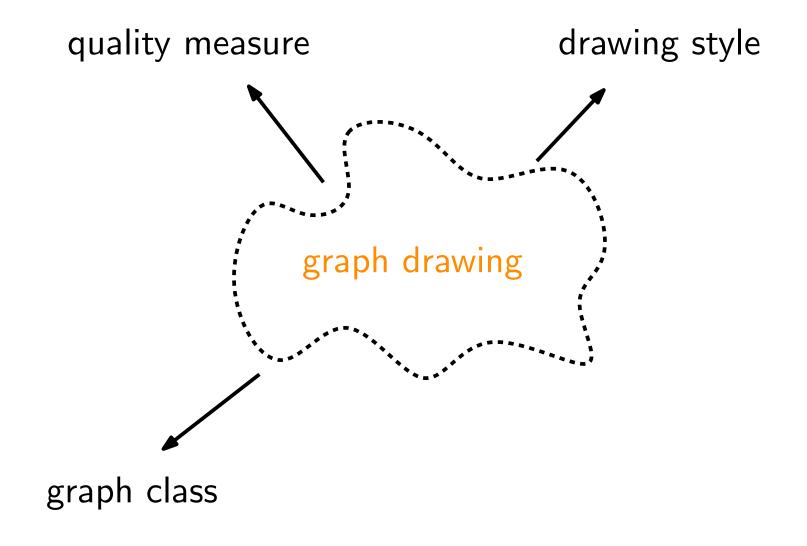


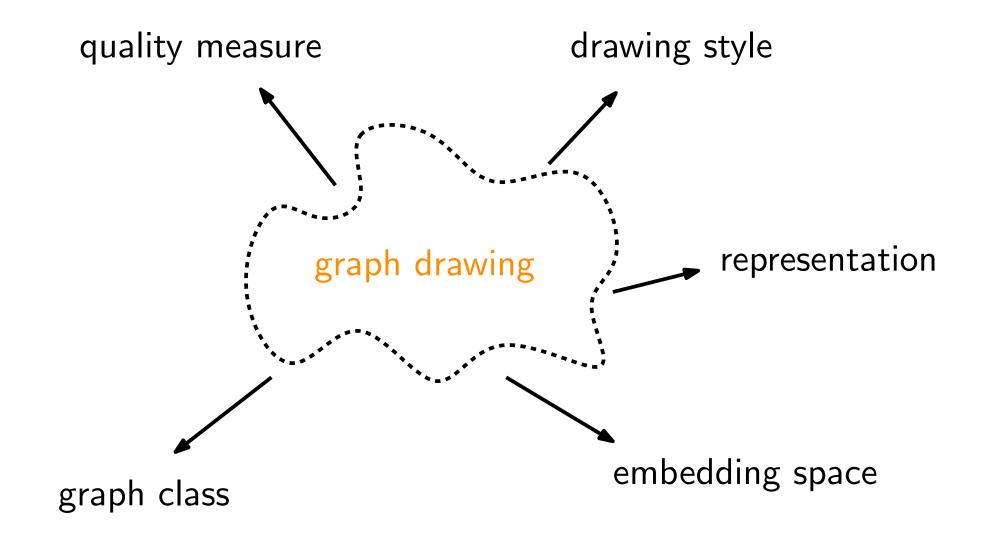
quality measure

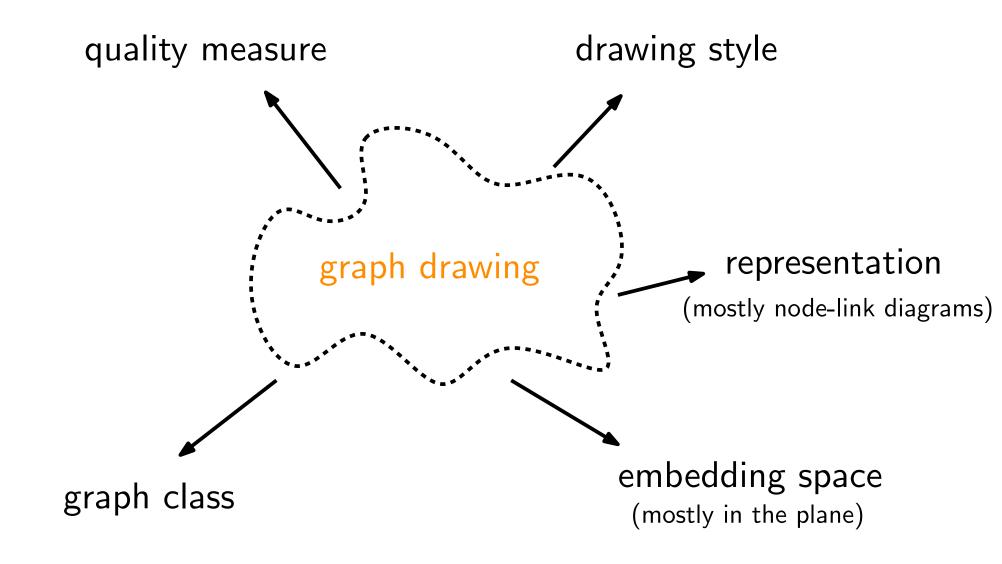


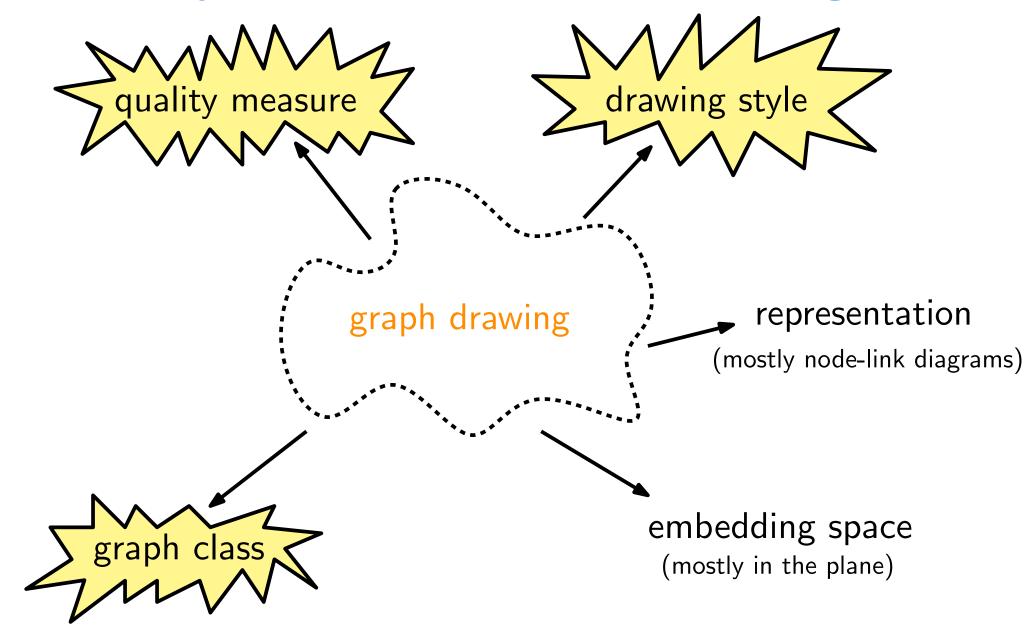
quality measure drawing style

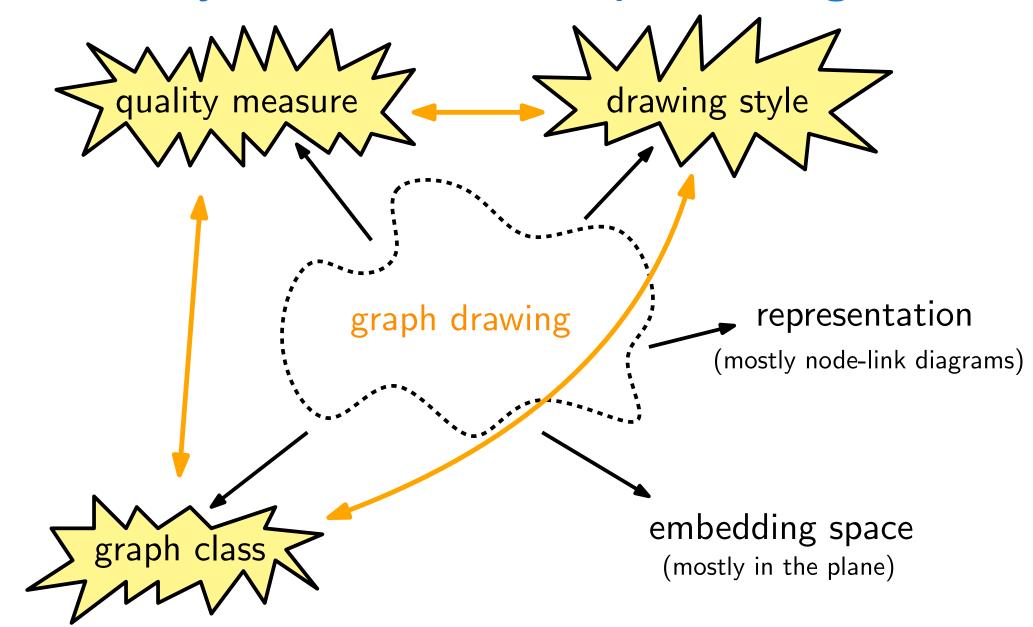
graph drawing

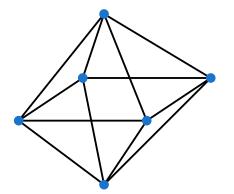


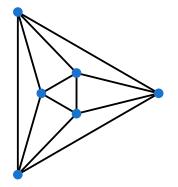


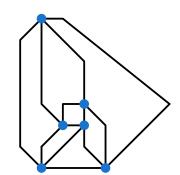


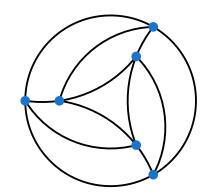


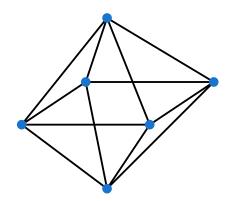


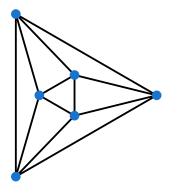


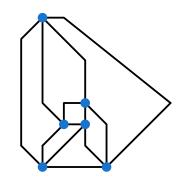


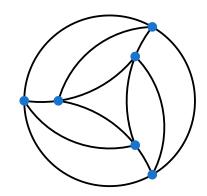




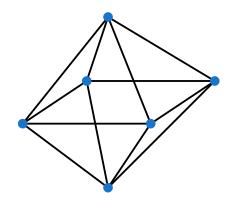


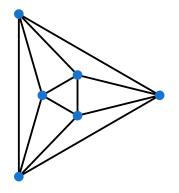


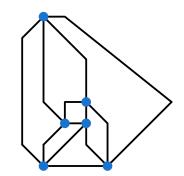


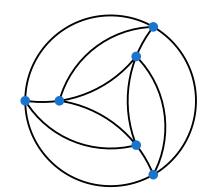


straight-line vs. curved

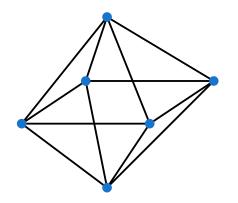


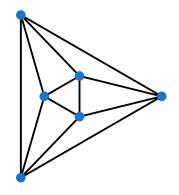


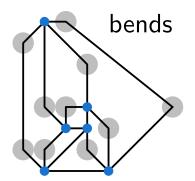


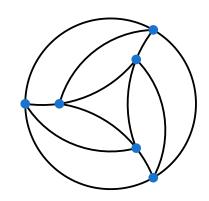


- straight-line vs. curved
- straight-line vs. polyline

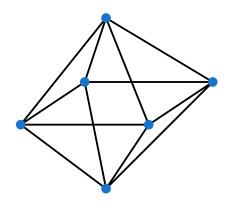


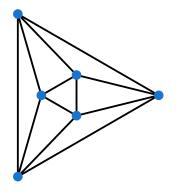


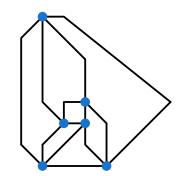


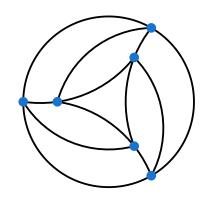


- straight-line vs. curved
- straight-line vs. polyline

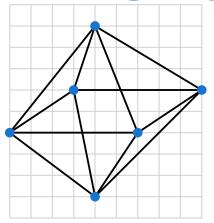


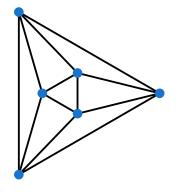


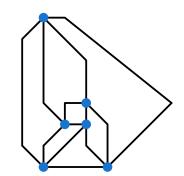


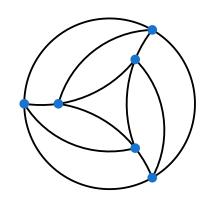


- straight-line vs. curved
- straight-line vs. polyline
- restricted slopes

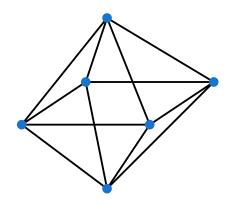


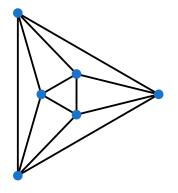


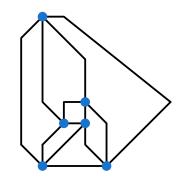


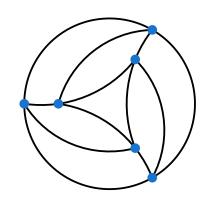


- straight-line vs. curved
- straight-line vs. polyline
- restricted slopes
- restricted to grid points

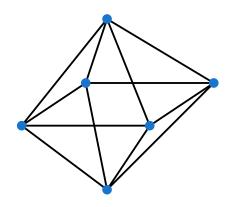


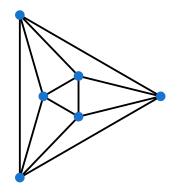


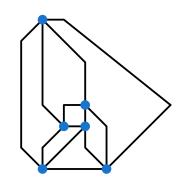


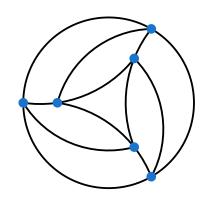


- straight-line vs. curved
- straight-line vs. polyline
- restricted slopes
- restricted to grid points
- directed drawings





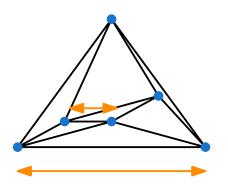




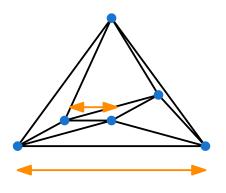
- straight-line vs. curved
- straight-line vs. polyline
- restricted slopes
- restricted to grid points
- directed drawings
- monotone drawings, confluent drawings, partial edge drawing, radial drawings, thick drawings, Lombardi drawings,

vertex resolution

 ${ullet}$ vertex resolution $= \frac{\text{maximal distance between two vertices}}{\text{minimal distance between two vertices}}$



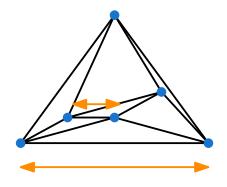
maximal distance between two vertices vertex resolution $=\frac{1}{\text{minimal distance between two vertices}}$



goal: small vertex resolution

vertex resolution =

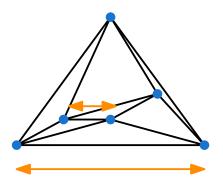
 $= \frac{\text{maximal distance between two vertices}}{\text{minimal distance between two vertices}}$



goal: small vertex resolution

angular resolution

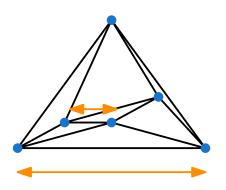
vertex resolution = $\frac{\text{maximal distance between two vertices}}{\text{minimal distance between two vertices}}$



goal: small vertex resolution

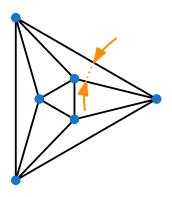
angular resolution = size of the smallest angle

vertex resolution $=\frac{\text{maximal distance between two vertices}}{\text{minimal distance between two vertices}}$

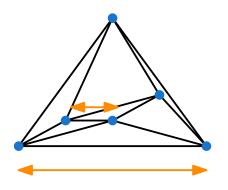


goal: small vertex resolution

angular resolution = size of the smallest angle

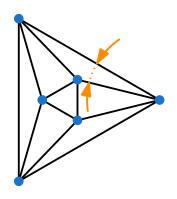


vertex resolution = $\frac{\text{maximal distance between two vertices}}{\text{minimal distance between two vertices}}$



goal: small vertex resolution

angular resolution = size of the smallest angle

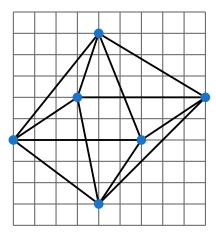


goal: large angular resolution

grid size

grid size = area of the drawing using integer grid points

grid size = area of the drawing using integer grid points



goal: small grid size

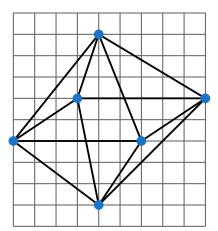
grid size = area of the drawing using integer grid points



goal: small grid size

→ implies good vertex and angular resolution

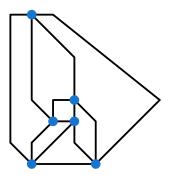
grid size = area of the drawing using integer grid points



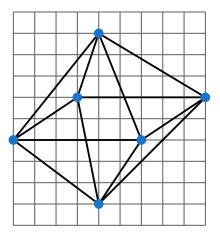
goal: small grid size

→ implies good vertex and angular resolution

number of bends



grid size = area of the drawing using integer grid points



goal: small grid size

→ implies good vertex and angular resolution

number of bends

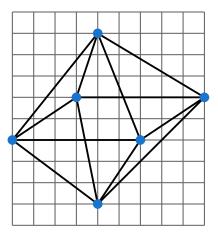


goal: minimize the number of total bends

goal: minimize the maximum number of

bends per edge

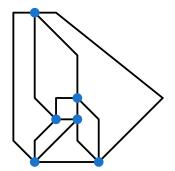
grid size = area of the drawing using integer grid points



goal: small grid size

→ implies good vertex and angular resolution

number of bends



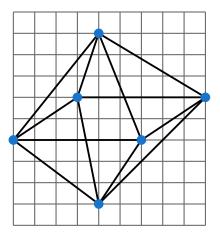
goal: minimize the number of total bends

goal: minimize the maximum number of

bends per edge

number of edge crossings

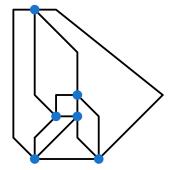
grid size = area of the drawing using integer grid points



goal: small grid size

→ implies good vertex and angular resolution

number of bends



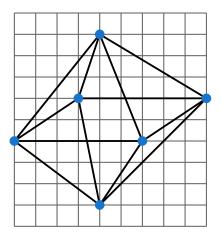
goal: minimize the number of total bends

goal: minimize the maximum number of

bends per edge

- number of edge crossings
- and many more

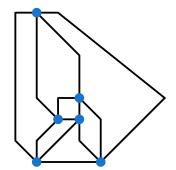
grid size = area of the drawing using integer grid points



goal: small grid size

→ implies good vertex and angular resolution

number of bends



goal: minimize the number of total bends

goal: minimize the maximum number of

bends per edge

- number of edge crossings
- and many more

Improving on one measure often decreases another measure!

Many problems become feasible or meaningful only when the graph class is restricted:

Many problems become feasible or meaningful only when the graph class is restricted:

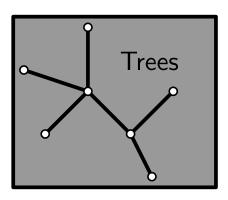
planar graphs (can be drawn without crossings)

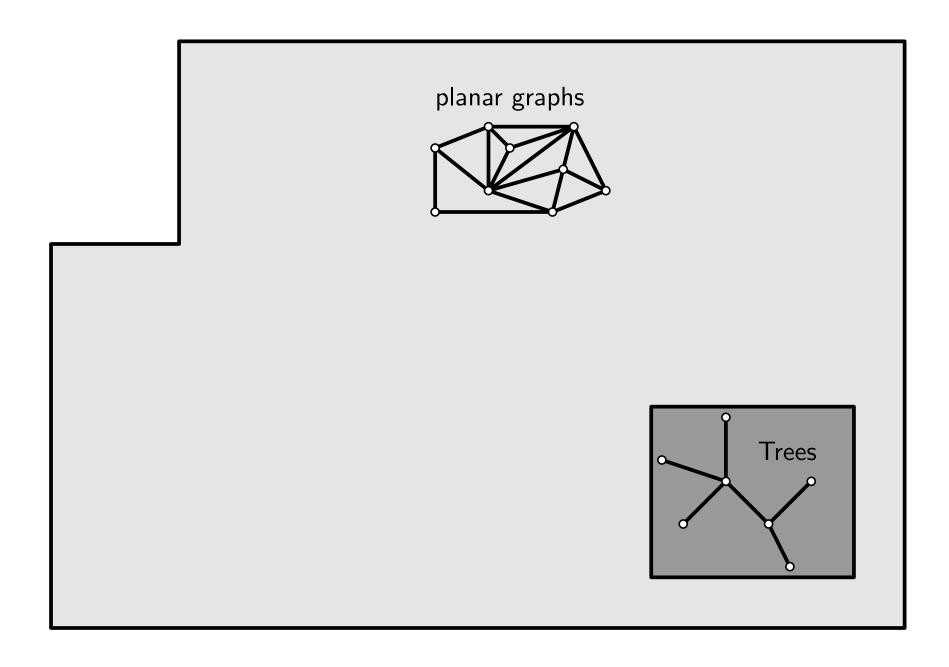
Many problems become feasible or meaningful only when the graph class is restricted:

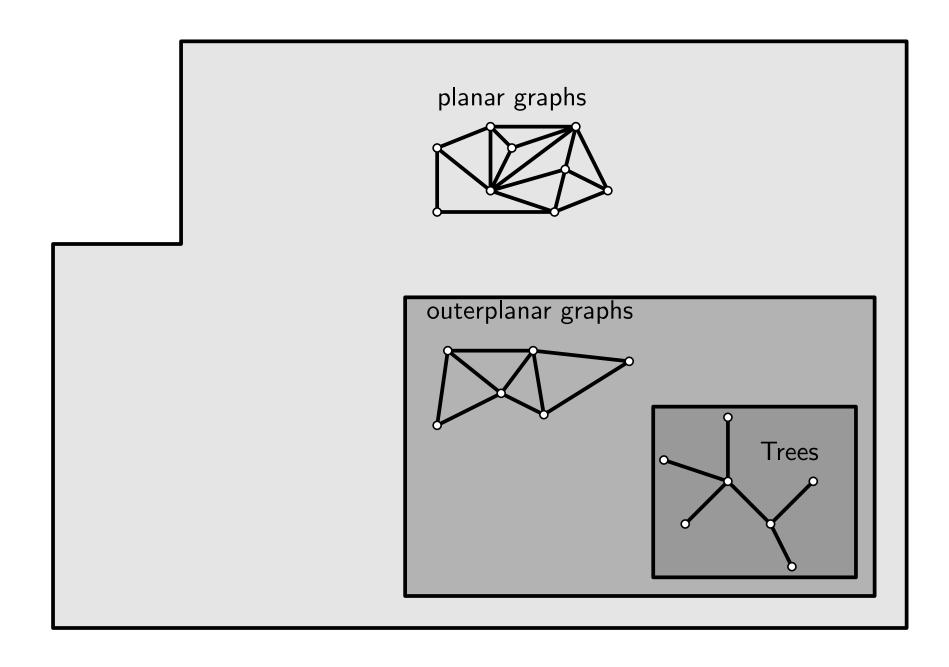
- planar graphs (can be drawn without crossings)
- trees (connected, no cycles)

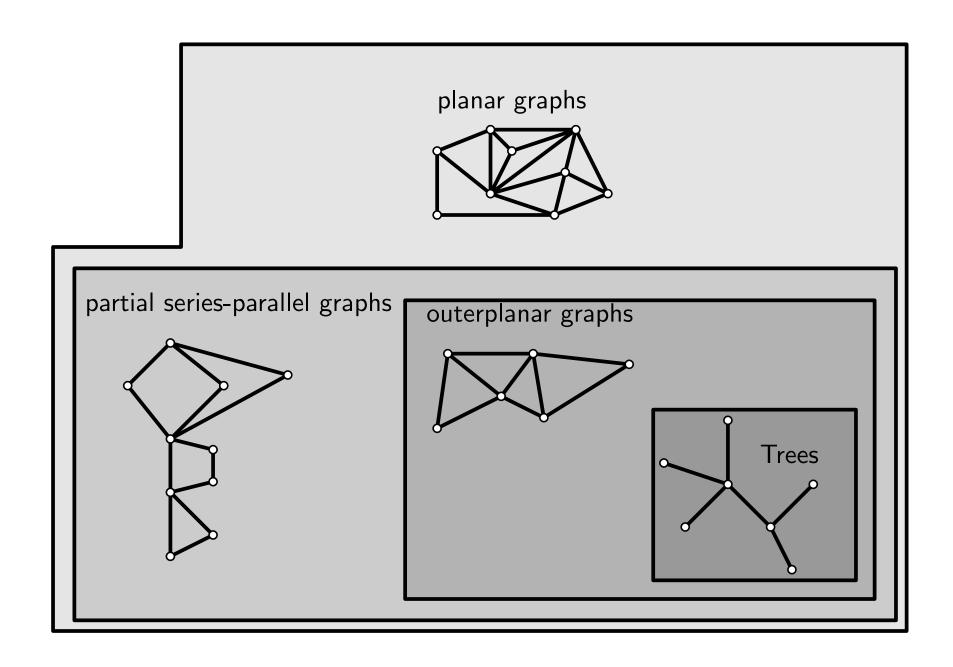
Many problems become feasible or meaningful only when the graph class is restricted:

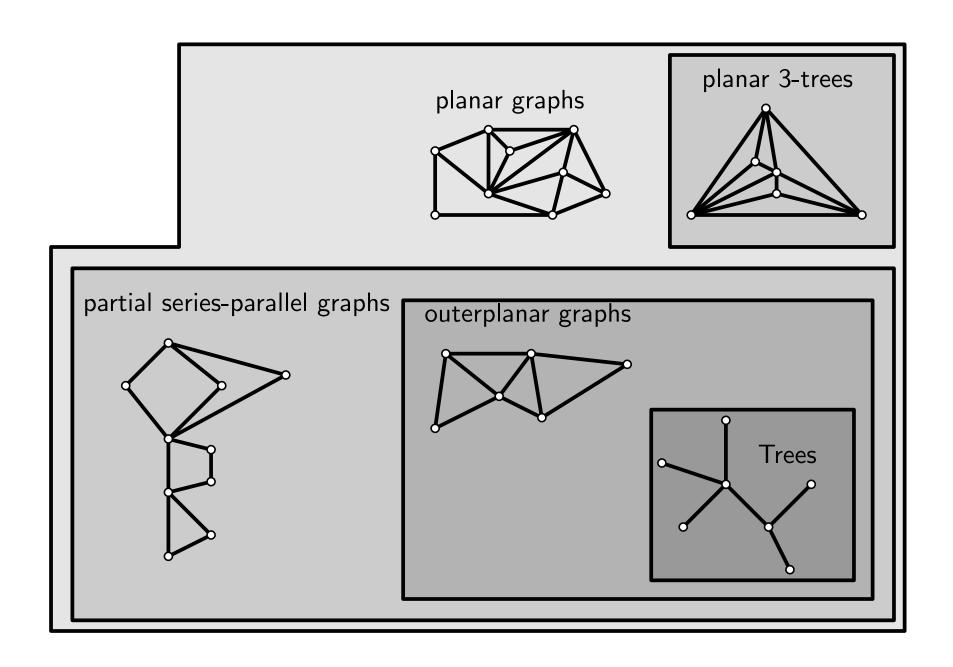
- planar graphs (can be drawn without crossings)
- trees (connected, no cycles)
- triangulations (maximal planar)
- planar 3-trees
- outerplanar graphs
- serial-parallel graphs
- k-connected graphs
- ...

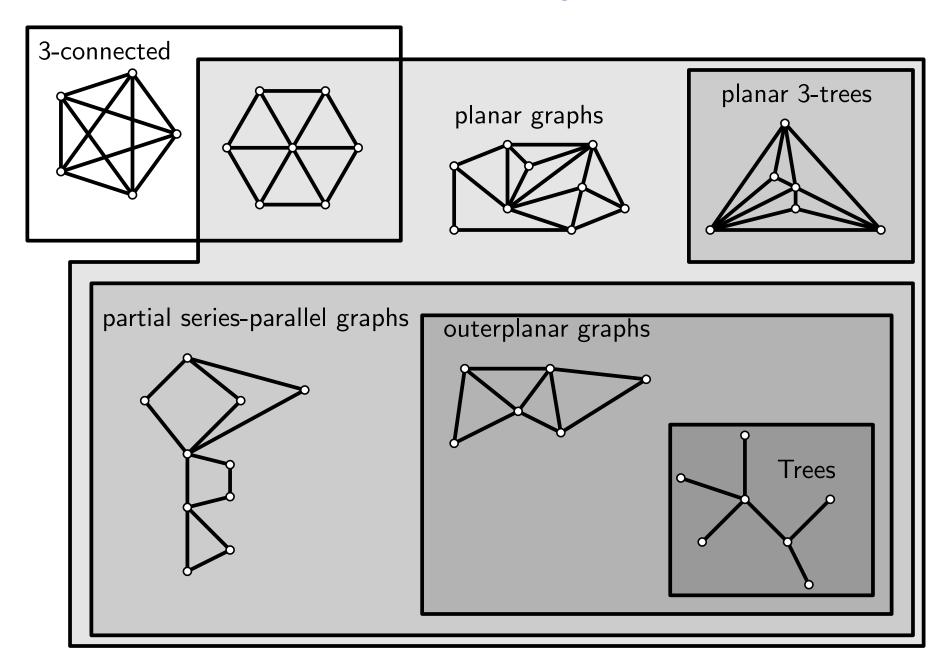






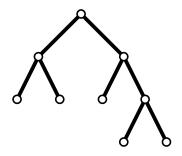




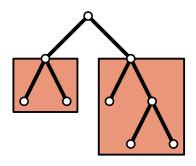


If your graph class has a recursive description, construct the graph drawing recursively.

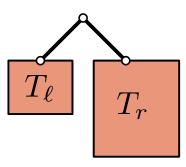
If your graph class has a recursive description, construct the graph drawing recursively.



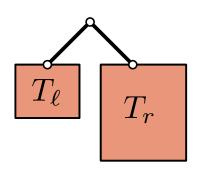
If your graph class has a recursive description, construct the graph drawing recursively.

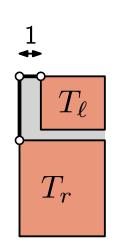


If your graph class has a recursive description, construct the graph drawing recursively.



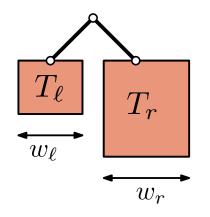
If your graph class has a recursive description, construct the graph drawing recursively.

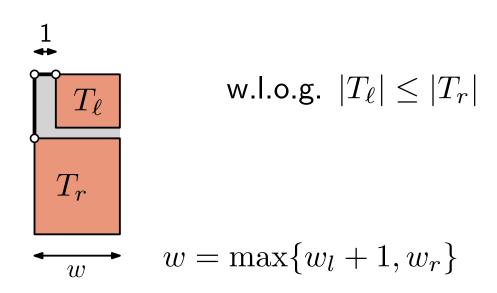




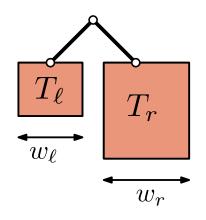
w.l.o.g.
$$|T_\ell| \leq |T_r|$$

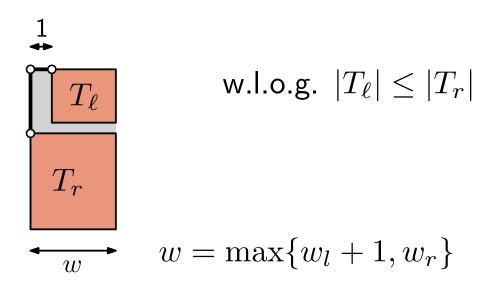
If your graph class has a recursive description, construct the graph drawing recursively.



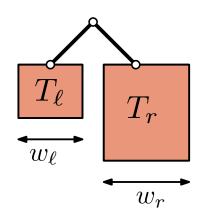


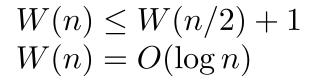
If your graph class has a recursive description, construct the graph drawing recursively.

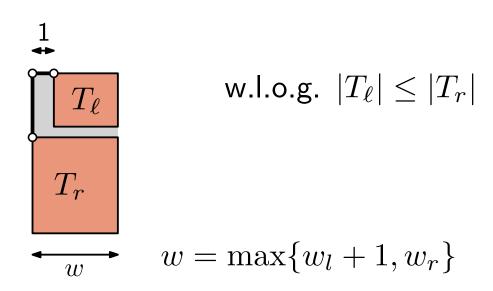




If your graph class has a recursive description, construct the graph drawing recursively.

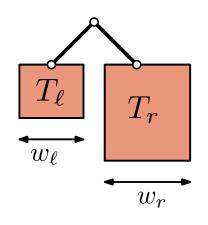


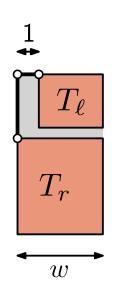




If your graph class has a recursive description, construct the graph drawing recursively.

Binary trees:





w.l.o.g. $|T_\ell| \leq |T_r|$

$$w = \max\{w_l + 1, w_r\}$$

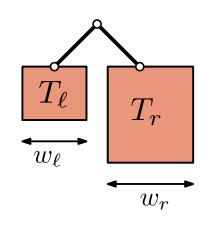
$$W(n) \le W(n/2) + 1$$

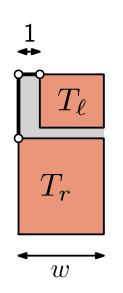
$$W(n) = O(\log n)$$

No row without vertex: H(n) = O(n)

If your graph class has a recursive description, construct the graph drawing recursively.

Binary trees:





w.l.o.g. $|T_\ell| \leq |T_r|$

$$w = \max\{w_l + 1, w_r\}$$

$$W(n) \le W(n/2) + 1$$

$$W(n) = O(\log n)$$

No row without vertex: H(n) = O(n)

 \Rightarrow Area $O(n \log n)$ for upward grid drawing.

[Crescenzi, Di Battista, Piperno '92]

If your graph class has an inductive construction, build the graph drawing inductively.

If your graph class has an inductive construction, build the graph drawing inductively.

Goal: Draw a graph with few segments.

If your graph class has an inductive construction, build the graph drawing inductively.

Goal: Draw a graph with few segments.

8 vertices 12 edges

8 segments

If your graph class has an inductive construction, build the graph drawing inductively.

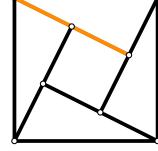
Goal: Draw a graph with few segments.

Planar 3-trees can be drawn with 2n-4 segments.

[Dujmović et al. '05]

If your graph class has an inductive construction, build the graph drawing inductively.

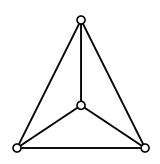
Goal: Draw a graph with few segments.



8 vertices
12 edges
8 segments

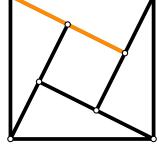
Planar 3-trees can be drawn with 2n-4 segments.

[Dujmović et al. '05]



If your graph class has an inductive construction, build the graph drawing inductively.

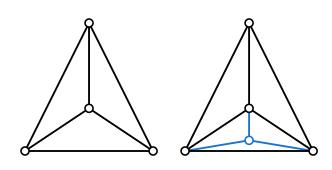
Goal: Draw a graph with few segments.



8 vertices
12 edges
8 segments

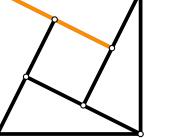
Planar 3-trees can be drawn with 2n-4 segments.

[Dujmović et al. '05]



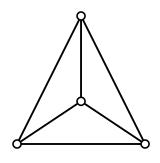
If your graph class has an inductive construction, build the graph drawing inductively.

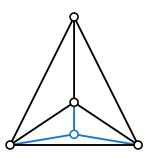
Goal: Draw a graph with few segments.

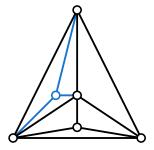


8 vertices
12 edges
8 segments

Planar 3-trees can be drawn with 2n-4 segments.

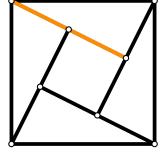






If your graph class has an inductive construction, build the graph drawing inductively.

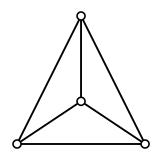
Goal: Draw a graph with few segments.

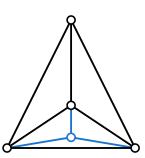


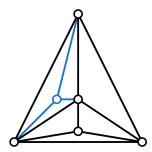
8 vertices 12 edges

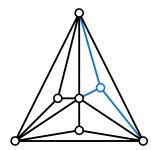
8 segments

Planar 3-trees can be drawn with 2n-4 segments.



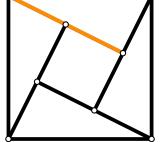






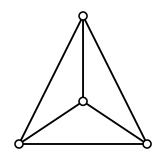
If your graph class has an inductive construction, build the graph drawing inductively.

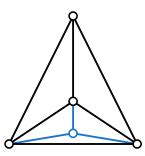
Goal: Draw a graph with few segments.

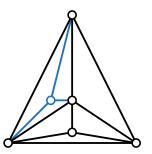


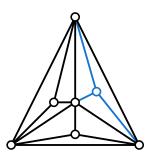
8 vertices
12 edges
8 segments

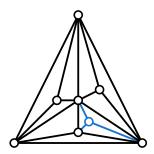
Planar 3-trees can be drawn with 2n-4 segments.





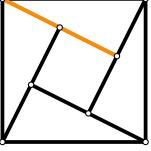






If your graph class has an inductive construction, build the graph drawing inductively.

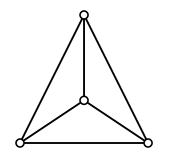
Goal: Draw a graph with few segments.

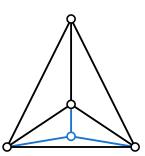


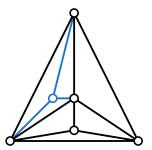
8 vertices 12 edges

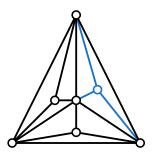
8 segments

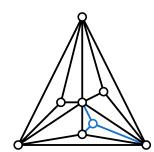
Planar 3-trees can be drawn with 2n-4 segments.

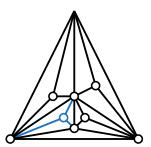






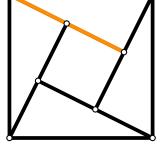






If your graph class has an inductive construction, build the graph drawing inductively.

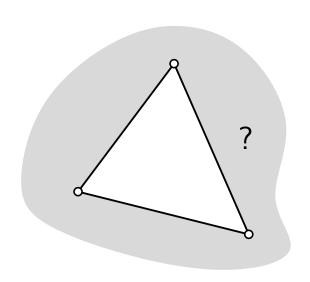
Goal: Draw a graph with few segments.



8 vertices
12 edges
8 segments

Planar 3-trees can be drawn with 2n-4 segments.

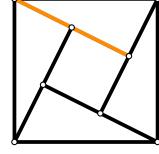
[Dujmović et al. '05]



3-tree before last addition $\leq 2(n-1)-4$ segments

If your graph class has an inductive construction, build the graph drawing inductively.

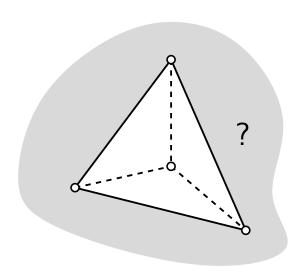
Goal: Draw a graph with few segments.



8 vertices
12 edges
8 segments

Planar 3-trees can be drawn with 2n-4 segments.

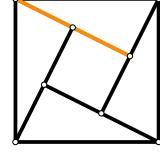
[Dujmović et al. '05]



3-tree before last addition $\leq 2(n-1)-4$ segments

If your graph class has an inductive construction, build the graph drawing inductively.

Goal: Draw a graph with few segments.

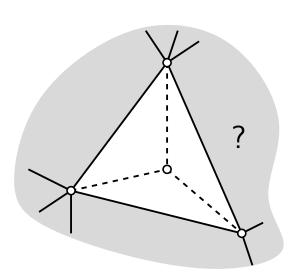


8 vertices 12 edges

8 segments

[Dujmović et al. '05]

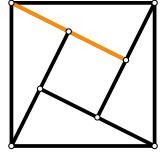
Planar 3-trees can be drawn with 2n-4 segments.



3-tree before last addition $\leq 2(n-1)-4$ segments

If your graph class has an inductive construction, build the graph drawing inductively.

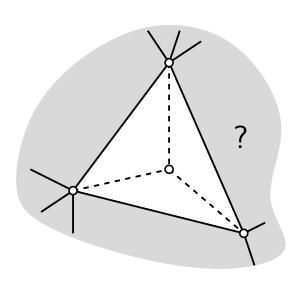
Goal: Draw a graph with few segments.



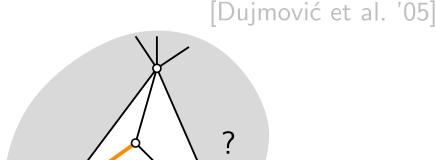
8 vertices 12 edges

8 segments

Planar 3-trees can be drawn with 2n-4 segments.

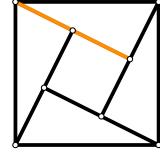


3-tree before last addition $\leq 2(n-1)-4$ segments



If your graph class has an inductive construction, build the graph drawing inductively.

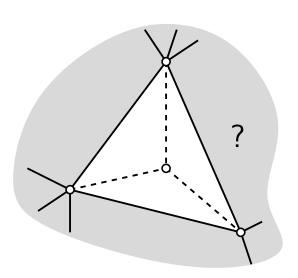
Goal: Draw a graph with few segments.



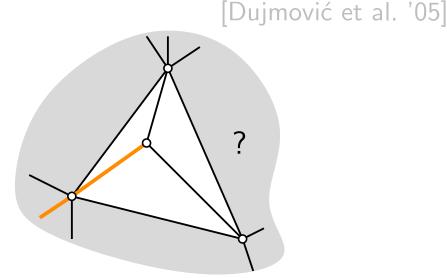
8 vertices 12 edges

8 segments

Planar 3-trees can be drawn with 2n-4 segments.



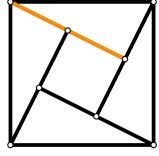
3-tree before last addition $\leq 2(n-1)-4$ segments



$$\leq 2(n-1) - 4 + 2 = 2n - 4$$
 segments

If your graph class has an inductive construction, build the graph drawing inductively.

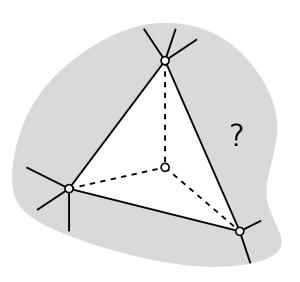
Goal: Draw a graph with few segments.



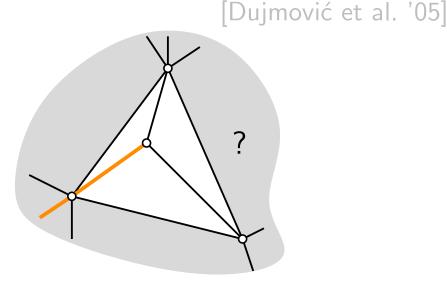
8 vertices 12 edges

8 segments

Planar 3-trees can be drawn with 2n-4 segments.



3-tree before last addition $\leq 2(n-1)-4$ segments

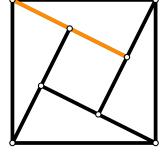


$$\leq 2(n-1) - 4 + 2 = 2n - 4$$
 segments

3-connected planar graphs have an inductive construction sequence:

If your graph class has an inductive construction, build the graph drawing inductively.

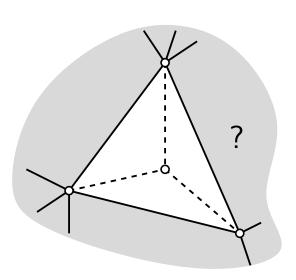
Goal: Draw a graph with few segments.



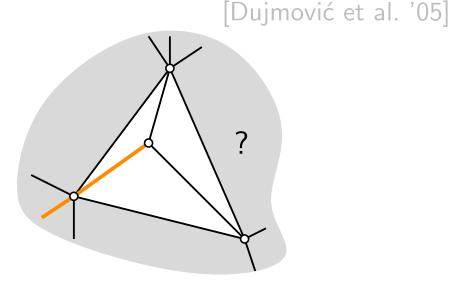
8 vertices 12 edges

8 segments

Planar 3-trees can be drawn with 2n-4 segments.



3-tree before last addition $\leq 2(n-1)-4$ segments

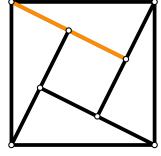


$$\leq 2(n-1) - 4 + 2 = 2n - 4$$
 segments

3-connected planar graphs have an inductive construction sequence: canonical ordering [De Fraysseix, Pach, Pollack '90]

If your graph class has an inductive construction, build the graph drawing inductively.

Goal: Draw a graph with few segments.

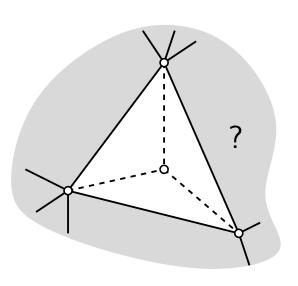


8 vertices 12 edges

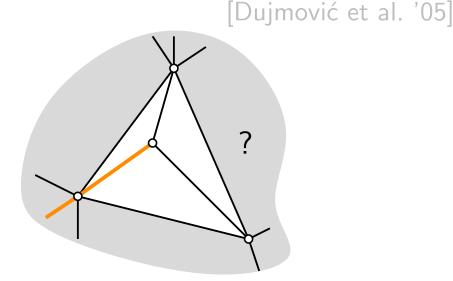
12 euges

8 segments

Planar 3-trees can be drawn with 2n-4 segments.



3-tree before last addition $\leq 2(n-1)-4$ segments



$$\leq 2(n-1) - 4 + 2 = 2n - 4$$
 segments

3-connected planar graphs have an inductive construction sequence: canonical ordering [De Fraysseix, Pach, Pollack '90] @ boost C++ lib

■ The approach that (arguably) works best in practice is the spring embedder.

- The approach that (arguably) works best in practice is the spring embedder.
- Model the graph as a physical system:
 - 1. all vertices repel
- 2. adjacent vertices attract

- The approach that (arguably) works best in practice is the spring embedder.
- Model the graph as a physical system:
 - 1. all vertices repel

$$F_{ij} = 0$$
 (but pin a face)

2. adjacent vertices attract

$$F_{ij} = \omega_{ij}(p_i - p_j)$$
 (like a spring)

- The approach that (arguably) works best in practice is the spring embedder.
- Model the graph as a physical system:
 - 1. all vertices repel

$$F_{ij} = 0$$
 (but pin a face)

2. adjacent vertices attract

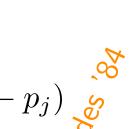
$$F_{ij} = \omega_{ij}(p_i - p_j)$$
 (like a spring)

- The approach that (arguably) works best in practice is the spring embedder.
- Model the graph as a physical system:
 - 1. all vertices repel

$$F_{ij} = 0$$
 (but pin a face)

2. adjacent vertices attract

$$F_{ij} = \omega_{ij}(p_i - p_j)$$
 (like a spring)



$$F_{ij} = \frac{c_1}{\|p_i - p_j\|^{1/2}} (p_j - p_i) \quad F_{ij} = c_2 \log \left(\frac{\|p_i - p_j\|}{c_3}\right) (p_i - p_j)$$

- The approach that (arguably) works best in practice is the spring embedder.
- Model the graph as a physical system:
 - 1. all vertices repel

$$F_{ij} = 0$$
 (but pin a face)

2. adjacent vertices attract

Fruchterman Os n801d

$$F_{ij} = \omega_{ij}(p_i - p_j)$$
 (like a spring)

$$F_{ij} = \frac{c_1}{\|p_i - p_j\|^{1/2}} (p_j - p_i) \quad F_{ij} = c_2 \log \left(\frac{\|p_i - p_j\|}{c_3}\right) (p_i - p_j)$$

$$F_{ij} = \frac{k^2}{\|p_i - p_j\|} (p_j - p_i)$$
 $F_{ij} = \frac{\|p_i - p_j\|}{k} (p_i - p_j)$

Given: Graphs $G_1 = (V, E_1), G_2 = (V, E_2), ...$

Question: Can we place V such that each of these graphs has a planar

(straight-line) drawing?

Given: Graphs $G_1 = (V, E_1), G_2 = (V, E_2), ...$

Question: Can we place V such that each of these graphs has a planar

(straight-line) drawing?

Two paths: YES

Given: Graphs $G_1 = (V, E_1), G_2 = (V, E_2), ...$

Question: Can we place V such that each of these graphs has a planar

(straight-line) drawing?

Two paths: YES

$$\pi_1 = (v_2, v_1, v_5, v_3, v_6, v_4)$$

$$\pi_2 = (v_1, v_5, v_2, v_6, v_4, v_3)$$

Given: Graphs $G_1 = (V, E_1), G_2 = (V, E_2), ...$

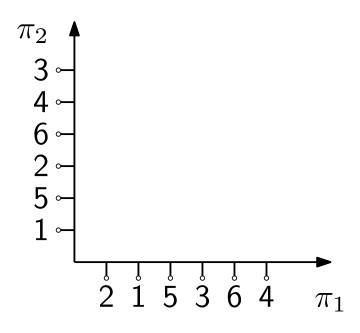
Question: Can we place V such that each of these graphs has a planar

(straight-line) drawing?

Two paths: YES

$$\pi_1 = (v_2, v_1, v_5, v_3, v_6, v_4)$$

$$\pi_2 = (v_1, v_5, v_2, v_6, v_4, v_3)$$



Given: Graphs $G_1 = (V, E_1), G_2 = (V, E_2), ...$

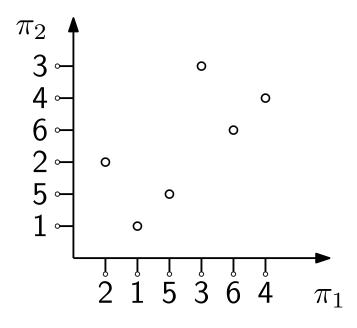
Question: Can we place V such that each of these graphs has a planar

(straight-line) drawing?

Two paths: YES

$$\pi_1 = (v_2, v_1, v_5, v_3, v_6, v_4)$$

$$\pi_2 = (v_1, v_5, v_2, v_6, v_4, v_3)$$



Given: Graphs $G_1 = (V, E_1), G_2 = (V, E_2), ...$

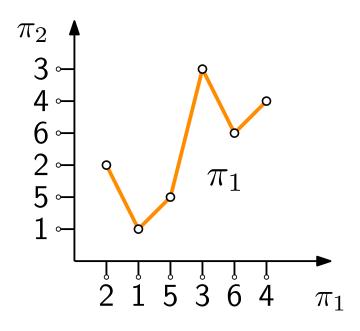
Question: Can we place V such that each of these graphs has a planar

(straight-line) drawing?

Two paths: YES

$$\pi_1 = (v_2, v_1, v_5, v_3, v_6, v_4)$$

$$\pi_2 = (v_1, v_5, v_2, v_6, v_4, v_3)$$



Given: Graphs $G_1 = (V, E_1), G_2 = (V, E_2), ...$

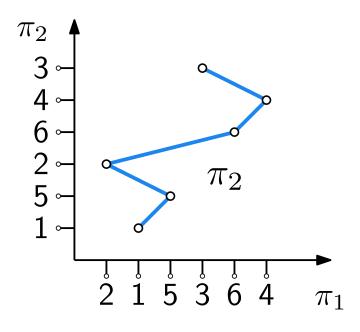
Question: Can we place V such that each of these graphs has a planar

(straight-line) drawing?

Two paths: YES

$$\pi_1 = (v_2, v_1, v_5, v_3, v_6, v_4)$$

$$\pi_2 = (v_1, v_5, v_2, v_6, v_4, v_3)$$



Given: Graphs $G_1 = (V, E_1), G_2 = (V, E_2), ...$

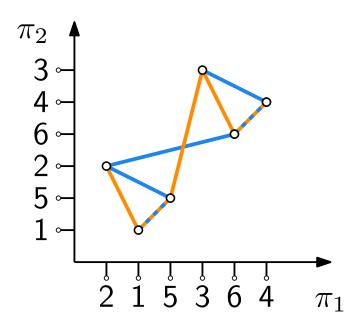
Question: Can we place V such that each of these graphs has a planar

(straight-line) drawing?

Two paths: YES

$$\pi_1 = (v_2, v_1, v_5, v_3, v_6, v_4)$$

$$\pi_2 = (v_1, v_5, v_2, v_6, v_4, v_3)$$



Given: Graphs $G_1 = (V, E_1), G_2 = (V, E_2), ...$

Question: Can we place V such that each of these graphs has a planar

(straight-line) drawing?

Two paths: YES

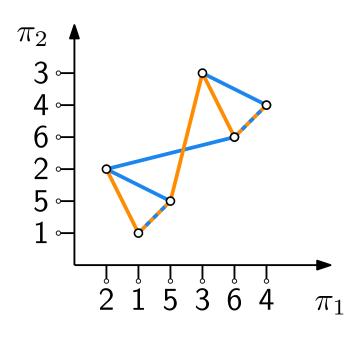
[Brass et al. '07]

$$\pi_1 = (v_2, v_1, v_5, v_3, v_6, v_4)$$

$$\pi_2 = (v_1, v_5, v_2, v_6, v_4, v_3)$$

Six Matchings: NO

[Cabello et al. '07]



Graphs $G_1 = (V, E_1), G_2 = (V, E_2), \dots$ Given:

Can we place V such that each of these graphs has a planar Question:

(straight-line) drawing?

Two paths: YES

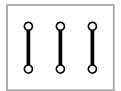
[Brass et al. '07]

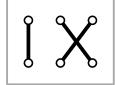
$$\pi_1 = (v_2, v_1, v_5, v_3, v_6, v_4)$$

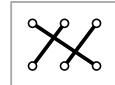
$$\pi_2 = (v_1, v_5, v_2, v_6, v_4, v_3)$$

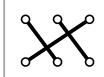
Six Matchings: NO

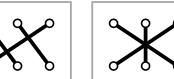
[Cabello et al. '07]

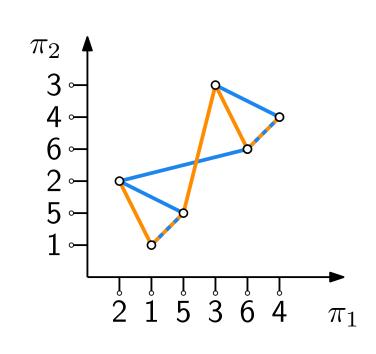












Given: Graphs $G_1 = (V, E_1), G_2 = (V, E_2), \dots$

Question: Can we place V such that each of these graphs has a planar

(straight-line) drawing?

Two paths: YES

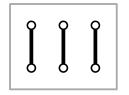
[Brass et al. '07]

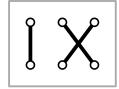
$$\pi_1 = (v_2, v_1, v_5, v_3, v_6, v_4)$$

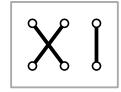
$$\pi_2 = (v_1, v_5, v_2, v_6, v_4, v_3)$$

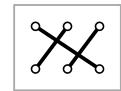
Six Matchings: NO

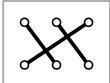
[Cabello et al. '07]

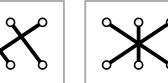




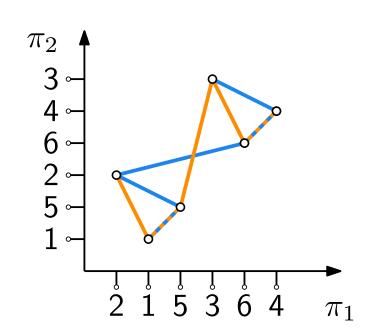








In a $K_{3,3}$ -drawing at least two edges cross. For every pair of edges one matching contains these.



Given: Graphs $G_1 = (V, E_1), G_2 = (V, E_2), ...$

Question: Can we place V such that each of these graphs has a planar

(straight-line) drawing?

Two paths: YES

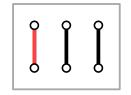
[Brass et al. '07]

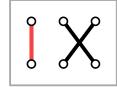
$$\pi_1 = (v_2, v_1, v_5, v_3, v_6, v_4)$$

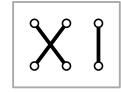
$$\pi_2 = (v_1, v_5, v_2, v_6, v_4, v_3)$$

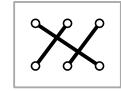
Six Matchings: NO

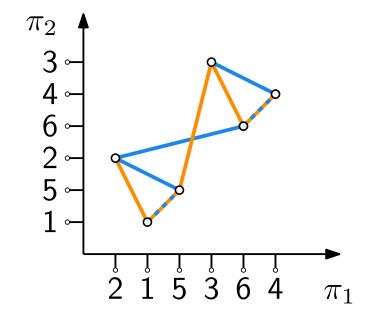
[Cabello et al. '07]











In a $K_{3,3}$ -drawing at least two edges cross. For every pair of edges one matching contains these.

Given: Two plane drawings δ_1 and δ_2 of a planar graph G = (V, E).

Question: Can we continuously deform δ_1 to δ_2 without introducing

crossings?

Given: Two plane drawings δ_1 and δ_2 of a planar graph G = (V, E).

Question: Can we continuously deform δ_1 to δ_2 without introducing

crossings?

Solution:

[Floater & Gotsman '99]

- Compute (asymmetric) spring weights for the two drawings of *G*.
- Interpolate between weights and compute spring embedding.

Given: Two plane drawings δ_1 and δ_2 of a planar graph G = (V, E).

Question: Can we continuously deform δ_1 to δ_2 without introducing

crossings?

Solution:

[Floater & Gotsman '99]

- Compute (asymmetric) spring weights for the two drawings of G.
- Interpolate between weights and compute spring embedding.
- → Works well in practice but gives complicated trajectories.

Morphing

Given: Two plane drawings δ_1 and δ_2 of a planar graph G = (V, E).

Question: Can we continuously deform δ_1 to δ_2 without introducing

crossings?

Solution:

[Floater & Gotsman '99]

- Compute (asymmetric) spring weights for the two drawings of G.
- Interpolate between weights and compute spring embedding.
- → Works well in practice but gives complicated trajectories.

Alternative Solution:

[Angelini et al. '14]

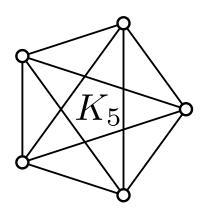
- linear number of linear moves per vertex (worst-case opt.)
- complicated

Given a graph G, find a set of planes in 3-space such that there is a *crossing-free straight-line drawing* of G with all vertices and edges drawn on these planes.

Given a graph G, find a set of planes in 3-space such that there is a *crossing-free straight-line drawing* of G with all vertices and edges drawn on these planes.

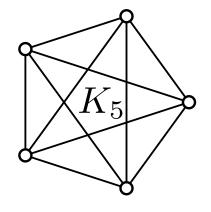
Given a graph G, find a set of planes in 3-space such that there is a *crossing-free straight-line drawing* of G with all vertices and edges drawn on these planes.

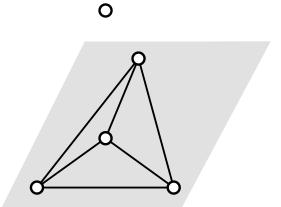
$$\rho_3^2(K_5) = ?$$



Given a graph G, find a set of planes in 3-space such that there is a *crossing-free straight-line drawing* of G with all vertices and edges drawn on these planes.

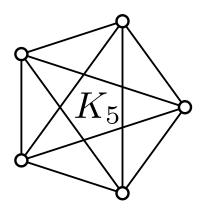
$$\rho_3^2(K_5) = ?$$

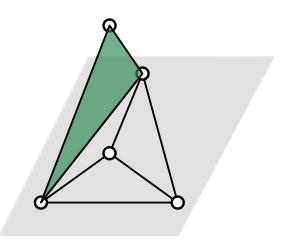




Given a graph G, find a set of planes in 3-space such that there is a *crossing-free straight-line drawing* of G with all vertices and edges drawn on these planes.

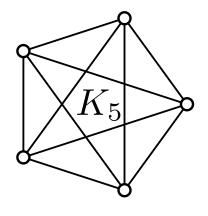
$$\rho_3^2(K_5) = ?$$

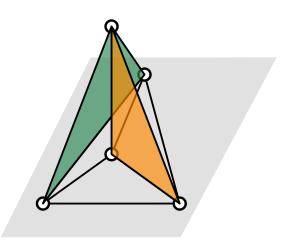




Given a graph G, find a set of planes in 3-space such that there is a *crossing-free straight-line drawing* of G with all vertices and edges drawn on these planes.

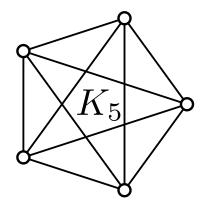
$$\rho_3^2(K_5) = ?$$

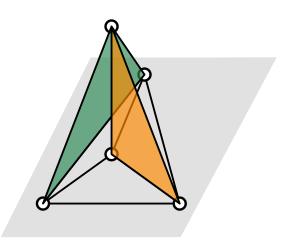




Given a graph G, find a set of planes in 3-space such that there is a *crossing-free straight-line drawing* of G with all vertices and edges drawn on these planes.

$$\rho_3^2(K_5) = 3$$



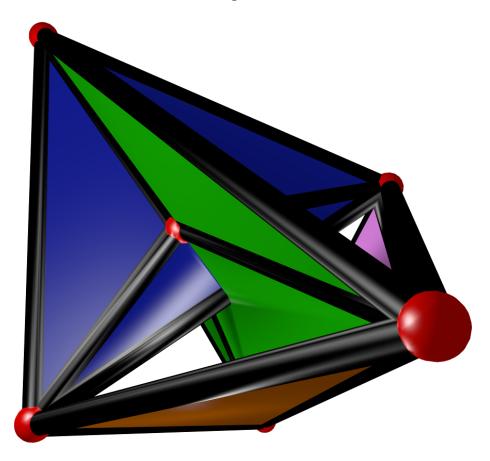


Given a graph G, find a set of planes in 3-space such that there is a *crossing-free straight-line drawing* of G with all vertices and edges drawn on these planes.

$$\rho_3^2(K_6) = ?$$

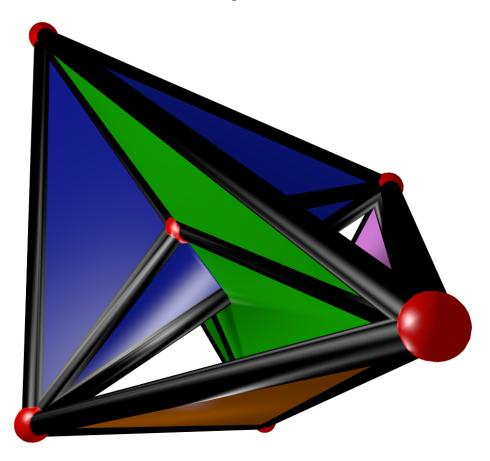
Given a graph G, find a set of planes in 3-space such that there is a *crossing-free straight-line drawing* of G with all vertices and edges drawn on these planes.

$$\rho_3^2(K_6) = ?$$



Given a graph G, find a set of planes in 3-space such that there is a *crossing-free straight-line drawing* of G with all vertices and edges drawn on these planes.

$$\rho_3^2(K_6) = 4$$

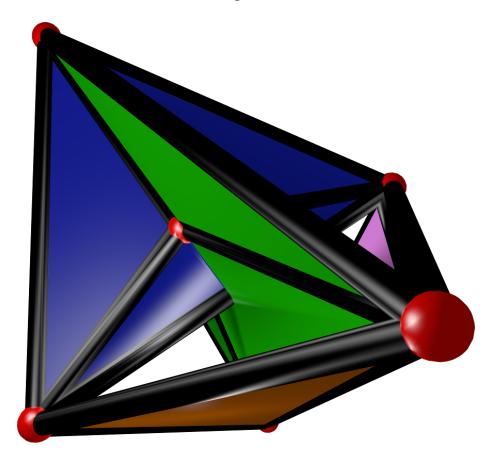


Given a graph G, find a set of planes in 3-space such that there is a *crossing-free straight-line drawing* of G with all vertices and edges drawn on these planes.

Call the minimum number of planes needed $\rho_3^2(G)$.

$$\rho_3^2(K_6) = 4$$

For any planar graph G, clearly $\rho_3^2(G) = 1$.



Given a graph G, find a set of planes in 3-space such that there is a *crossing-free straight-line drawing* of G with all vertices and edges drawn on these planes.

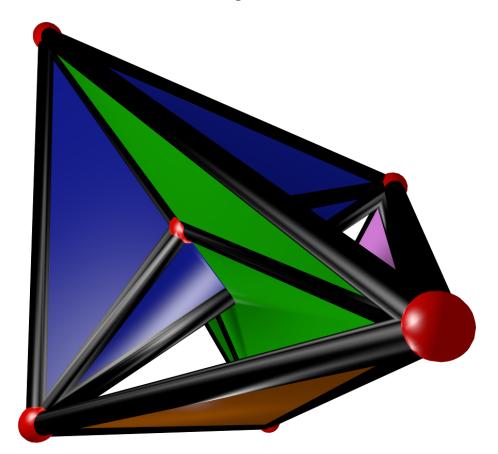
Call the minimum number of planes needed $\rho_3^2(G)$.

$$\rho_3^2(K_6) = 4$$

For any planar graph G, clearly $\rho_3^2(G) = 1$.

Note: $\rho_3^2(K_n) \in \Theta(n^2)$.

$$\binom{n}{2}/6 \lesssim \rho_3^2(K_n) \lesssim \binom{n}{2}/3$$



Let G be a graph and $1 \leq m < d$.

Affine cover number $\rho_d^m(G)$:

minimum number of m-dimensional hyperplanes in \mathbb{R}^d s.t. G has a crossing-free straight-line drawing that is contained in these planes.

Let G be a graph and $1 \leq m < d$.

Affine cover number $\rho_d^m(G)$:

minimum number of m-dimensional hyperplanes in \mathbb{R}^d s.t. G has a crossing-free straight-line drawing that is contained in these planes.

Weak affine cover number $\pi_d^m(G)$:

requires only vertices to be contained in the planes.

Let G be a graph and $1 \leq m < d$.

Affine cover number $\rho_d^m(G)$:

minimum number of m-dimensional hyperplanes in \mathbb{R}^d s.t. G has a crossing-free straight-line drawing that is contained in these planes.

Weak affine cover number $\pi_d^m(G)$:

requires only vertices to be contained in the planes.

Observations

$$\rho_d^m = \pi_d^m = 1 \text{ for } m \geq 3$$

Let G be a graph and $1 \leq m < d$.

Affine cover number $\rho_d^m(G)$:

minimum number of m-dimensional hyperplanes in \mathbb{R}^d s.t. G has a crossing-free straight-line drawing that is contained in these planes.

Weak affine cover number $\pi_d^m(G)$:

requires only vertices to be contained in the planes.

Observations

$$\rho_d^m=\pi_d^m=1 \text{ for } m\geq 3 \qquad \rho_d^m=\rho_3^m \text{ and } \pi_d^m=\pi_3^m \text{ for } d\geq 3$$

Let G be a graph and $1 \leq m < d$.

Affine cover number $\rho_d^m(G)$:

minimum number of m-dimensional hyperplanes in \mathbb{R}^d s.t. G has a crossing-free straight-line drawing that is contained in these planes.

Weak affine cover number $\pi_d^m(G)$:

requires only vertices to be contained in the planes.

Observations

"Collapse of the Affine Hierarchy"

$$\rho_d^m=\pi_d^m=1 \text{ for } m\geq 3 \qquad \rho_d^m=\rho_3^m \text{ and } \pi_d^m=\pi_3^m \text{ for } d\geq 3$$

Let G be a graph and $1 \leq m < d$.

Affine cover number $\rho_d^m(G)$:

minimum number of m-dimensional hyperplanes in \mathbb{R}^d s.t. G has a crossing-free straight-line drawing that is contained in these planes.

Weak affine cover number $\pi_d^m(G)$:

requires only vertices to be contained in the planes.

Observations

"Collapse of the Affine Hierarchy"

$$ho_d^m = \pi_d^m = 1$$
 for $m \geq 3$ $ho_d^m = \pi_d^m \leq
ho_d^m$

$$\rho_d^m = \pi_d^m = 1 \text{ for } m \geq 3 \qquad \rho_d^m = \rho_3^m \text{ and } \pi_d^m = \pi_3^m \text{ for } d \geq 3$$

Let G be a graph and $1 \leq m < d$.

Affine cover number $\rho_d^m(G)$:

minimum number of m-dimensional hyperplanes in \mathbb{R}^d s.t. G has a crossing-free straight-line drawing that is contained in these planes.

Weak affine cover number $\pi_d^m(G)$:

requires only vertices to be contained in the planes.

Observations

"Collapse of the Affine Hierarchy"

$$\begin{array}{ll} \rho_d^m = \pi_d^m = 1 \text{ for } m \geq 3 & \rho_d^m = \rho_3^m \text{ and } \pi_d^m = \pi_3^m \text{ for } d \geq 3 \\ \pi_d^m \leq \rho_d^m & \rho_3^2 \leq \rho_3^1 \leq \rho_2^1 & \pi_3^2 \leq \pi_3^1 \leq \pi_2^1 \end{array}$$

Let G be a graph and $1 \leq m < d$.

Affine cover number $\rho_d^m(G)$:

minimum number of m-dimensional hyperplanes in \mathbb{R}^d s.t. G has a crossing-free straight-line drawing that is contained in these planes.

Weak affine cover number $\pi_d^m(G)$:

requires only vertices to be contained in the planes.

Observations

"Collapse of the Affine Hierarchy"

$$\begin{array}{ll} \rho_d^m = \pi_d^m = 1 \text{ for } m \geq 3 & \rho_d^m = \rho_3^m \text{ and } \pi_d^m = \pi_3^m \text{ for } d \geq 3 \\ \pi_d^m \leq \rho_d^m & \rho_3^2 \leq \rho_3^1 \leq \rho_2^1 & \pi_3^2 \leq \pi_3^1 \leq \pi_2^1 \end{array}$$

Interesting cases

Line cover numbers in 2D and 3D: ρ_2^1 , ρ_3^1 , π_2^1 , π_3^1

Let G be a graph and $1 \leq m < d$.

Affine cover number $\rho_d^m(G)$:

minimum number of m-dimensional hyperplanes in \mathbb{R}^d s.t. G has a crossing-free straight-line drawing that is contained in these planes.

Weak affine cover number $\pi_d^m(G)$:

requires only vertices to be contained in the planes.

Observations

"Collapse of the Affine Hierarchy"

$$\begin{array}{ll} \rho_d^m = \pi_d^m = 1 \text{ for } m \geq 3 & \rho_d^m = \rho_3^m \text{ and } \pi_d^m = \pi_3^m \text{ for } d \geq 3 \\ \pi_d^m \leq \rho_d^m & \rho_3^2 \leq \rho_3^1 \leq \rho_2^1 & \pi_3^2 \leq \pi_3^1 \leq \pi_2^1 \end{array}$$

Interesting cases

- Line cover numbers in 2D and 3D: ρ_2^1 , ρ_3^1 , π_2^1 , π_3^1
- Plane cover numbers in 3D: ρ_3^2 , π_3^2

Let G be a graph and $1 \leq m < d$.

Affine cover number $\rho_d^m(G)$:

minimum number of m-dimensional hyperplanes in \mathbb{R}^d s.t. G has a crossing-free straight-line drawing that is contained in these planes.

Weak affine cover number $\pi_d^m(G)$:

requires only vertices to be contained in the planes.

Observations

"Collapse of the Affine Hierarchy"

$$\begin{array}{ll} \rho_d^m = \pi_d^m = 1 \text{ for } m \geq 3 & \rho_d^m = \rho_3^m \text{ and } \pi_d^m = \pi_3^m \text{ for } d \geq 3 \\ \pi_d^m \leq \rho_d^m & \rho_3^2 \leq \rho_3^1 \leq \rho_2^1 & \pi_3^2 \leq \pi_3^1 \leq \pi_2^1 \end{array}$$

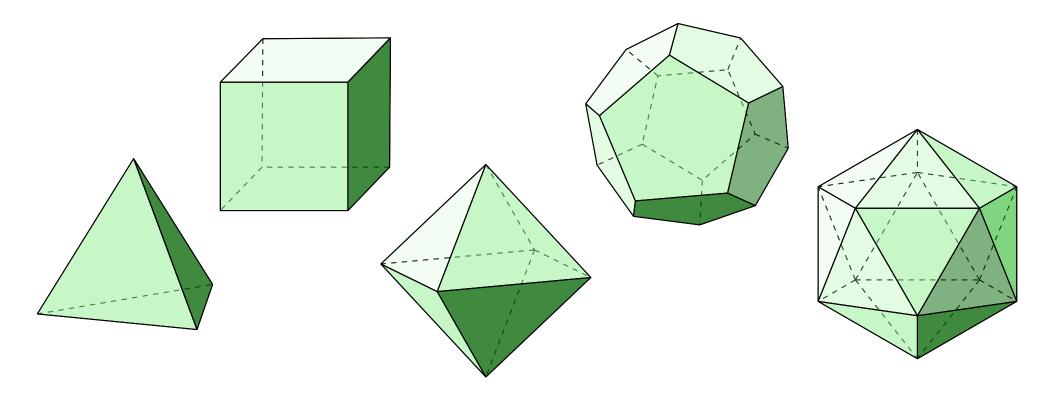
Interesting cases

- Line cover numbers in 2D and 3D: ρ_2^1 , ρ_3^1 , π_2^1 , π_3^1
- Plane cover numbers in 3D: ρ_3^2 , π_3^2

WADS'17

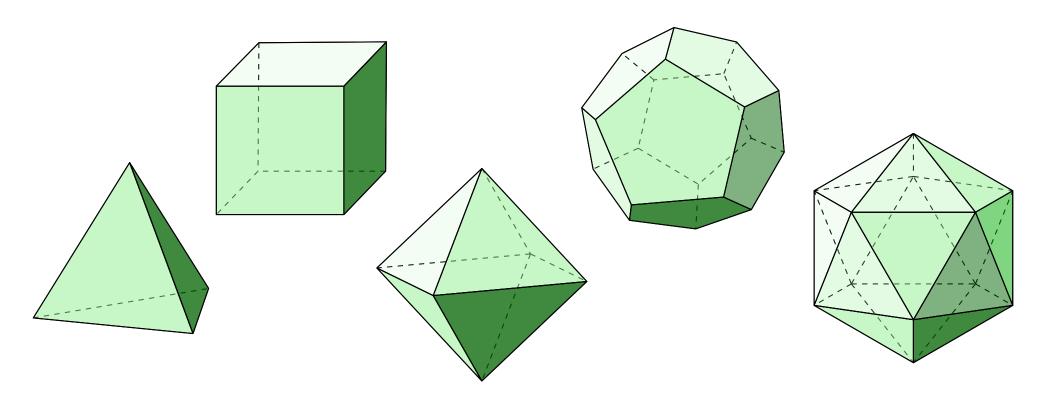
Unfortunately, each of these numbers is NP-hard to compute :-(& GD'19]

G = (V, E)	V	E	F	$\rho_2^1(G)$	$ \rho_3^1(G) $	$\pi^1_2(G)$	$\pi^1_3(G)$
tetrahedron	4	6	4				
cube	8	12	6				
octahedron	6	12	8				
dodecahedron	20	30	12				
icosahedron	12	30	20				



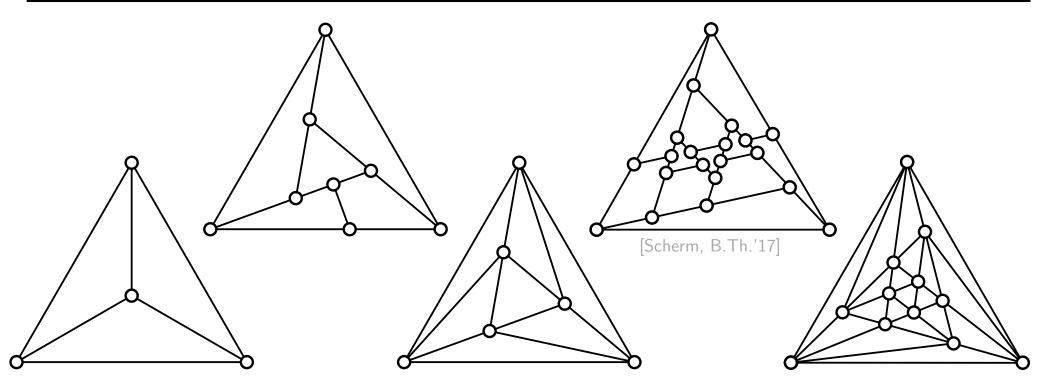
[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$\rho_2^1(G)$	$ \rho_3^1(G) $	$\pi^1_2(G)$	$\pi^1_3(G)$
tetrahedron	4	6	4				
cube	8	12	6				
octahedron	6	12	8				
dodecahedron	20	30	12				
icosahedron	12	30	20				

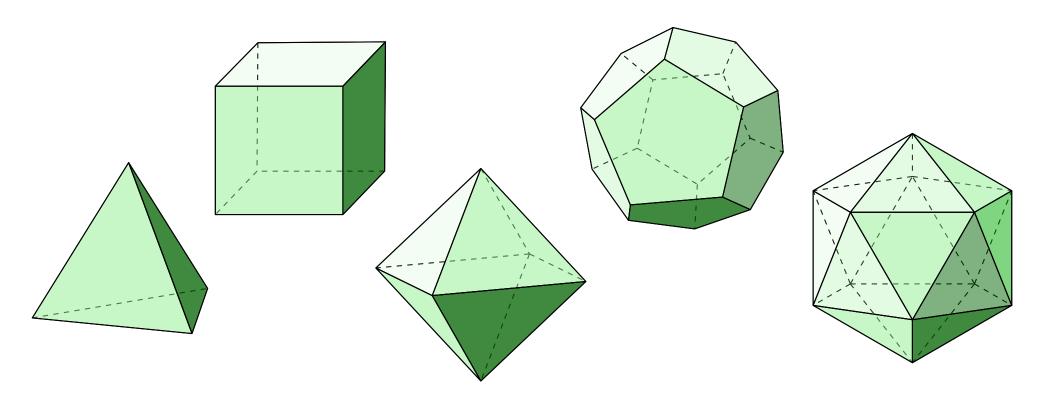


[Kryven et al., CALDAM'18]

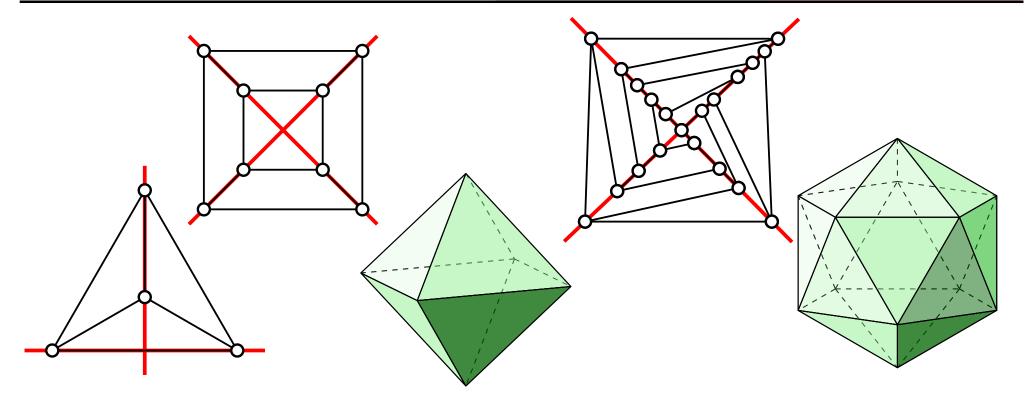
G = (V, E)	V	E	F	$ ho_2^1(G)$	$ \rho_3^1(G) $	$\pi^1_2(G)$	$\pi^1_3(G)$
tetrahedron	4	6	4	6	6		
cube	8	12	6	7	7		
octahedron	6	12	8	9	9		
dodecahedron	20	30	12	910	910		
icosahedron	12	30	20	1315	1315		



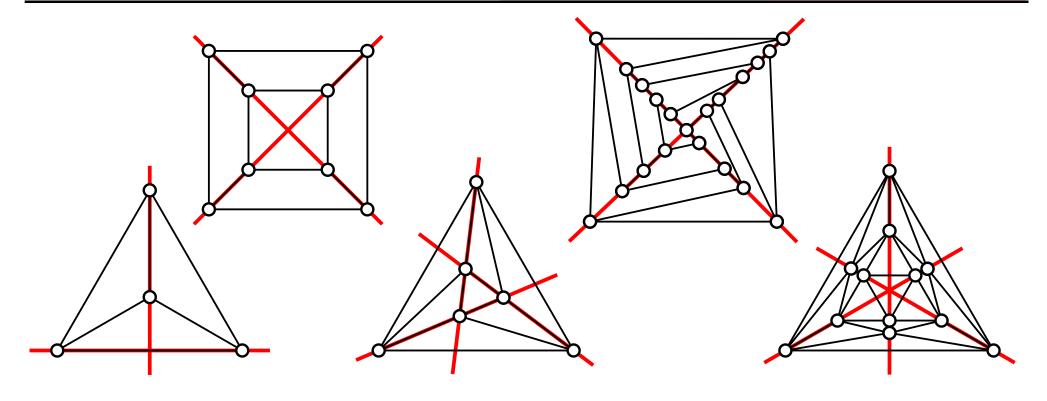
G = (V, E)	V	E	F	$ ho_2^1(G)$	$ \rho_3^1(G) $	$\pi_2^1(G)$	$\pi^1_3(G)$
tetrahedron	4	6	4	6	6		
cube	8	12	6	7	7		
octahedron	6	12	8	9	9		
dodecahedron	20	30	12	910	910		
icosahedron	12	30	20	1315	1315		



G = (V, E)	V	E	F	$ ho_2^1(G)$	$\rho_3^1(G)$	$\pi_2^1(G)$	$\pi^1_3(G)$
tetrahedron	4	6	4	6	6	2	
cube	8	12	6	7	7	2	
octahedron	6	12	8	9	9		
dodecahedron	20	30	12	910	910	2	
icosahedron	12	30	20	1315	1315		



G = (V, E)	V	E	F	$ ho_2^1(G)$	$ \rho_3^1(G) $	$\pi_2^1(G)$	$\pi^1_3(G)$
tetrahedron	4	6	4	6	6	2	
cube	8	12	6	7	7	2	
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	910	910	2	
icosahedron	12	30	20	1315	1315	3	



[Kryven et al., CALDAM'18]

[Firman, MTh. '17]

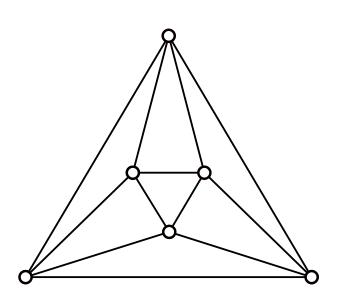
G = (V, E)	V	E	F	$ \rho_2^1(G) $	$ \rho_3^1(G) $	$\pi^1_2(G)$	$\pi^1_3(G)$
tetrahedron	4	6	4	6	6	2	
cube	8	12	6	7	7	2	
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	910	910	2	
icosahedron	12	30	20	1315	1315	3	

[Kryven et al., CALDAM'18]

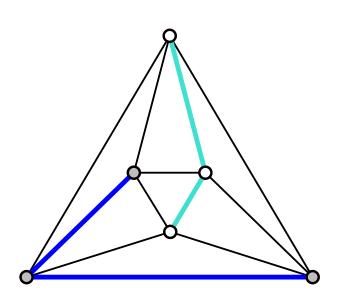
[Firman, MTh. '17]

G = (V, E)	V	E	F	$ \rho_2^1(G) $	$ \rho_3^1(G) $	$\pi^1_2(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	1315	3	

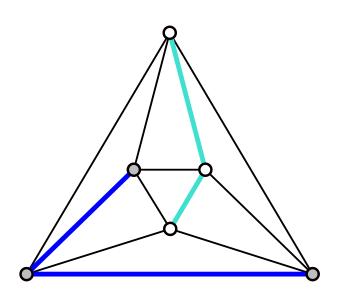
G = (V, E)	V	E	F	$ \rho_2^1(G) $	$ \rho_3^1(G) $	$\pi^1_2(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	1315	3	

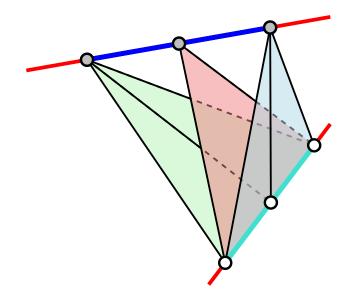


G = (V, E)	V	E	F	$ \rho_2^1(G) $	$ \rho_3^1(G) $	$\pi^1_2(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	2
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	1315	3	

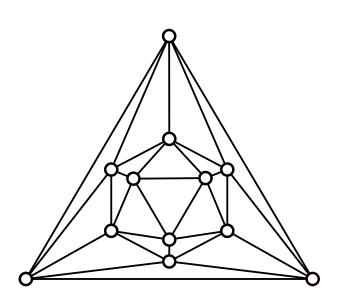


G = (V, E)	V	E	F	$ \rho_2^1(G) $	$ \rho_3^1(G) $	$\pi^1_2(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	2
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	1315	3	

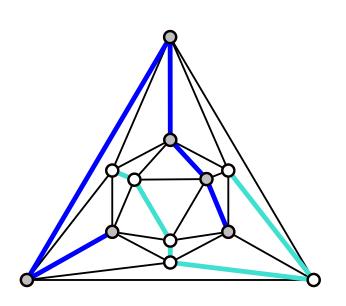




G = (V, E)	V	E	F	$ \rho_2^1(G) $	$ \rho_3^1(G) $	$\pi^1_2(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	2
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	1315	3	



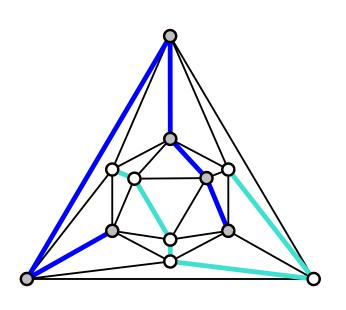
G = (V, E)	V	E	F	$ \rho_2^1(G) $	$ \rho_3^1(G) $	$\pi^1_2(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	2
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	1315	3	2

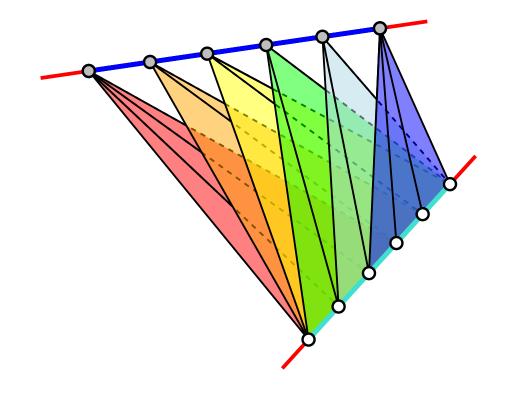


Line Cover Numbers of the Platonic Solids

[Kryven et al., CALDAM'18] [Firman, MTh. '17]

G = (V, E)	V	E	F	$ \rho_2^1(G) $	$ \rho_3^1(G) $	$\pi^1_2(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	2
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	1315	3	2





[Evans, Rzążewski, Saeedi, Shin, W., GD'19]

Many settings have been studied...

[Evans, Rzążewski, Saeedi, Shin, W., GD'19]

Many settings have been studied... We propose:

[Evans, Rzążewski, Saeedi, Shin, W., GD'19]

Many settings have been studied... We propose:

```
\begin{array}{c} \mathsf{vertices} \, \to \\ \mathsf{edges} \quad \to \end{array}
```

[Evans, Rzążewski, Saeedi, Shin, W., GD'19]

Many settings have been studied... We propose:

```
vertices \rightarrow flat convex polygons edges \rightarrow
```

[Evans, Rzążewski, Saeedi, Shin, W., GD'19]

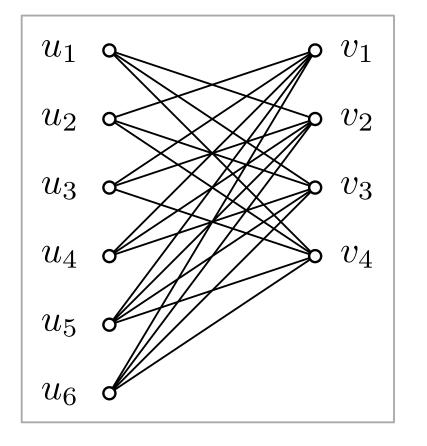
Many settings have been studied... We propose:

```
vertices \rightarrow flat convex polygons edges \rightarrow vertex contacts
```

[Evans, Rzążewski, Saeedi, Shin, W., GD'19]

Many settings have been studied... We propose:

```
vertices \rightarrow flat convex polygons edges \rightarrow vertex contacts
```

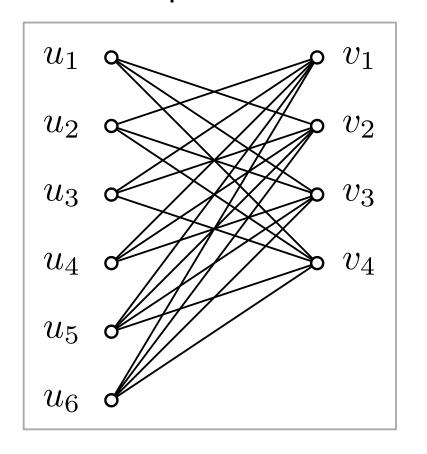


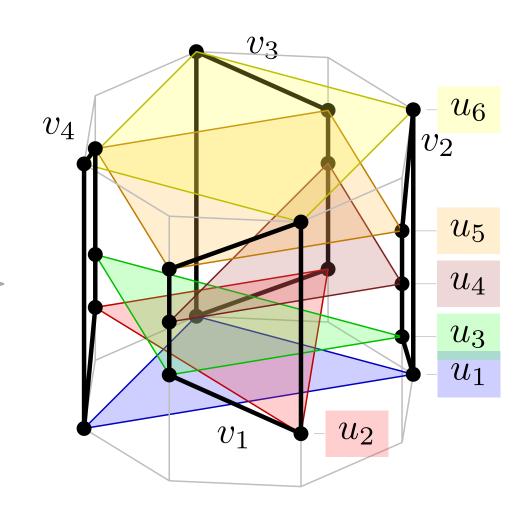
[Evans, Rzążewski, Saeedi, Shin, W., GD'19]

Many settings have been studied... We propose:

vertices → flat convex polygons

edges \rightarrow vertex contacts



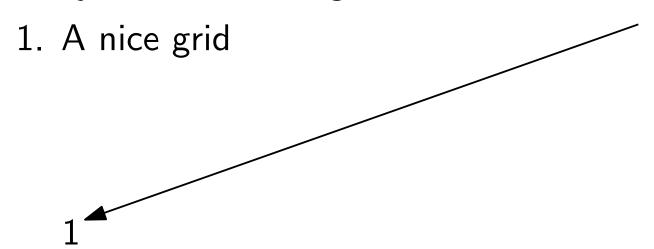


We just need two ingredients:

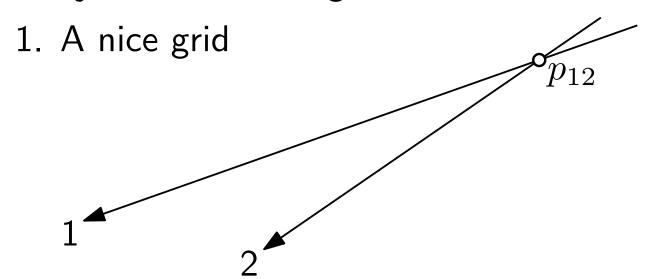
We just need two ingredients:

1. A nice grid

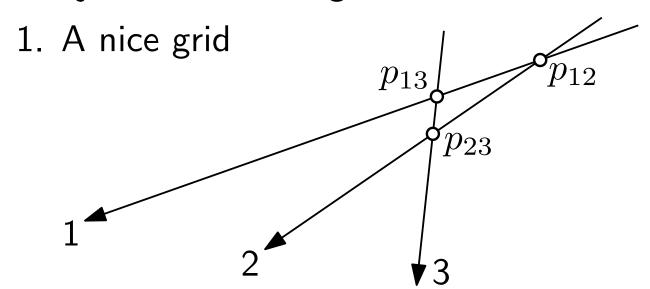
We just need two ingredients:



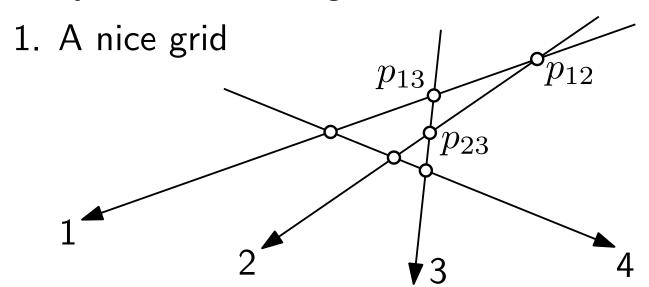
We just need two ingredients:



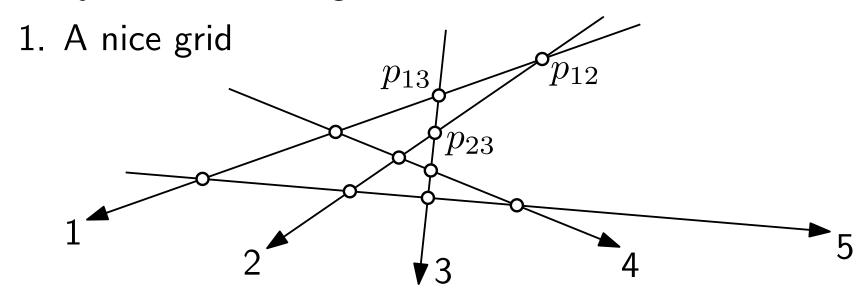
We just need two ingredients:



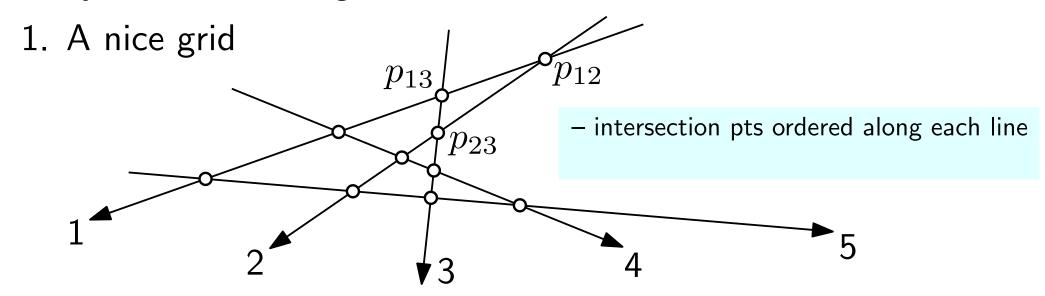
We just need two ingredients:



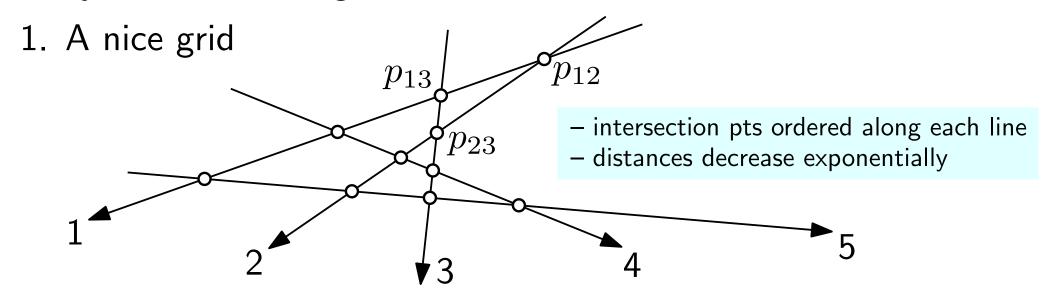
We just need two ingredients:



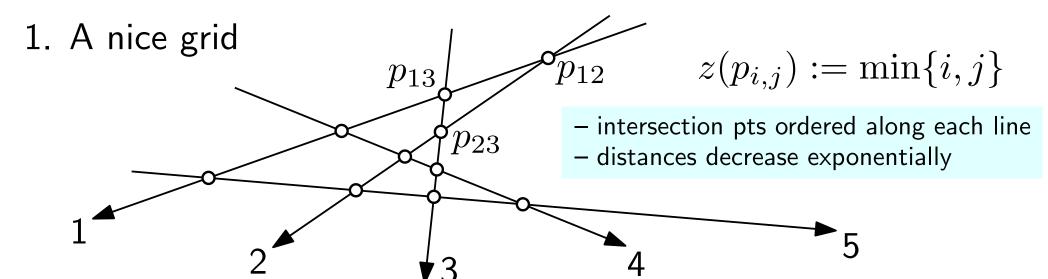
We just need two ingredients:



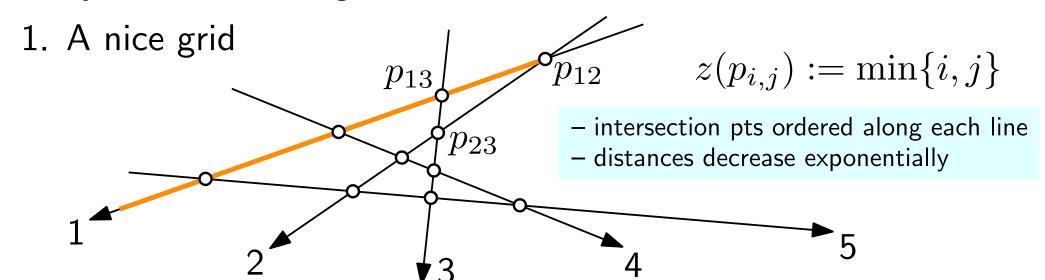
We just need two ingredients:



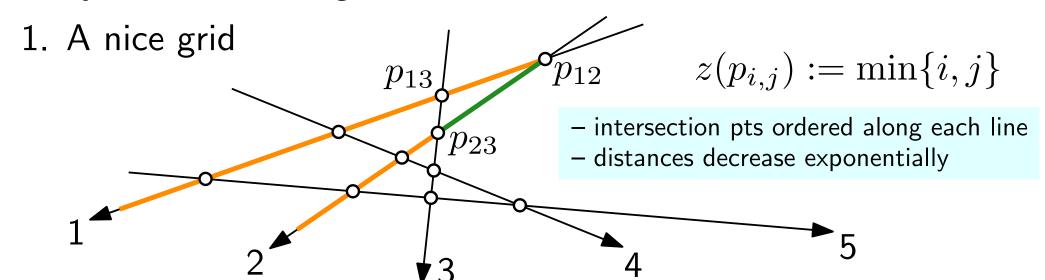
We just need two ingredients:



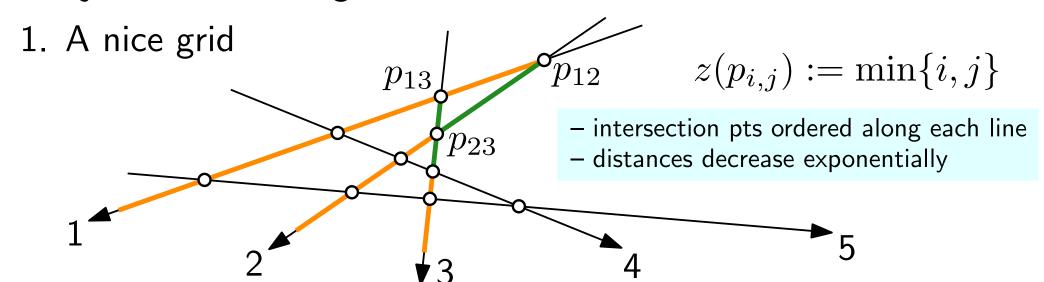
We just need two ingredients:



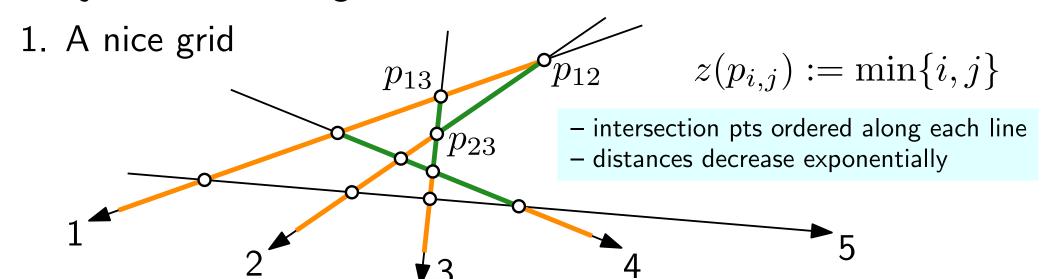
We just need two ingredients:



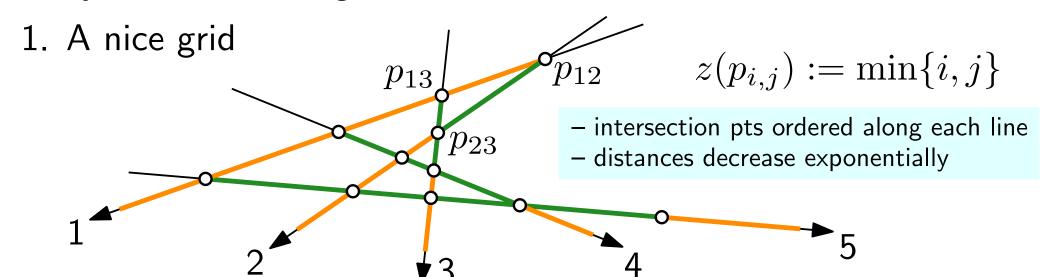
We just need two ingredients:



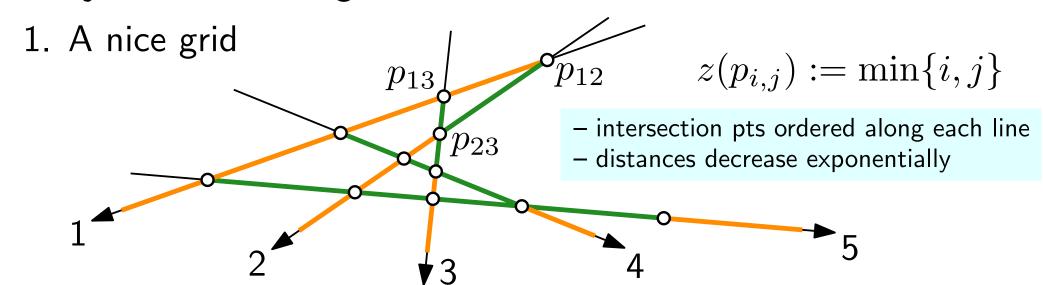
We just need two ingredients:

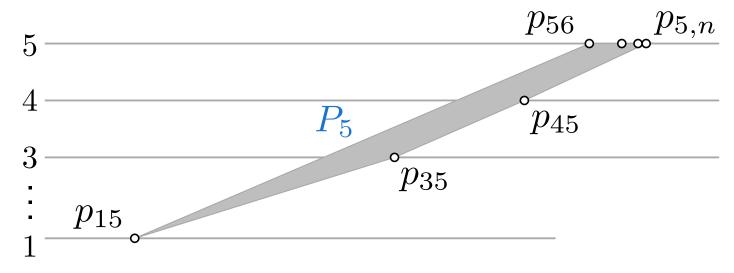


We just need two ingredients:

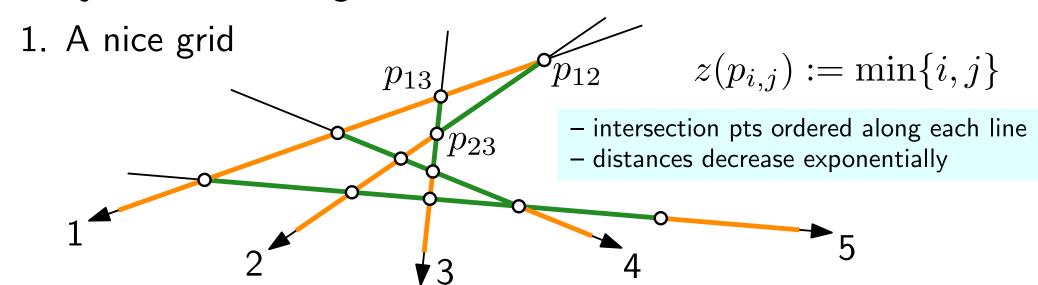


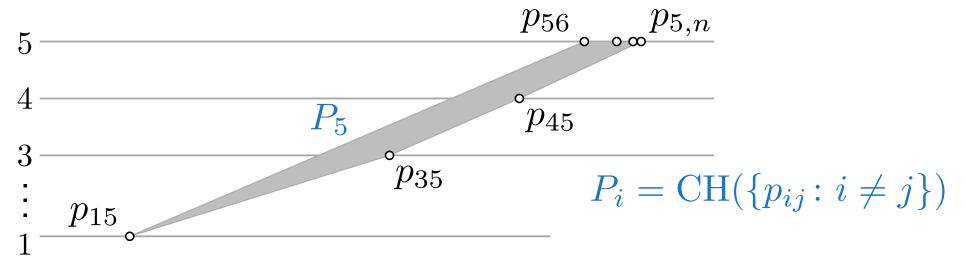
We just need two ingredients:



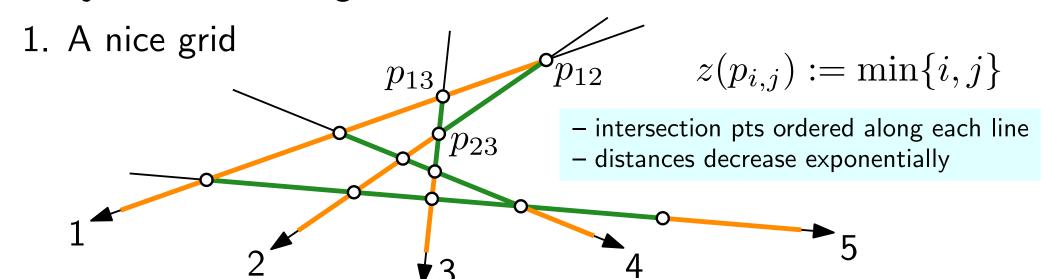


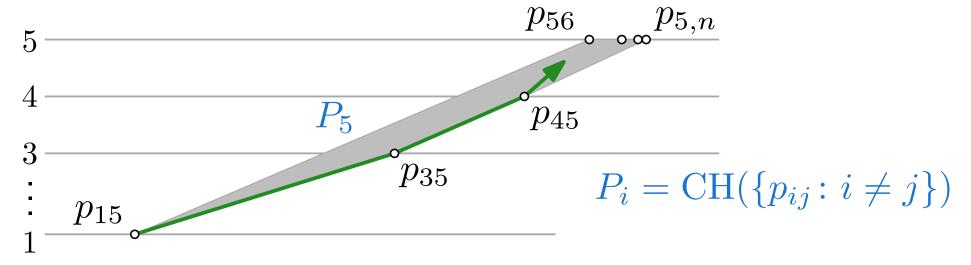
We just need two ingredients:



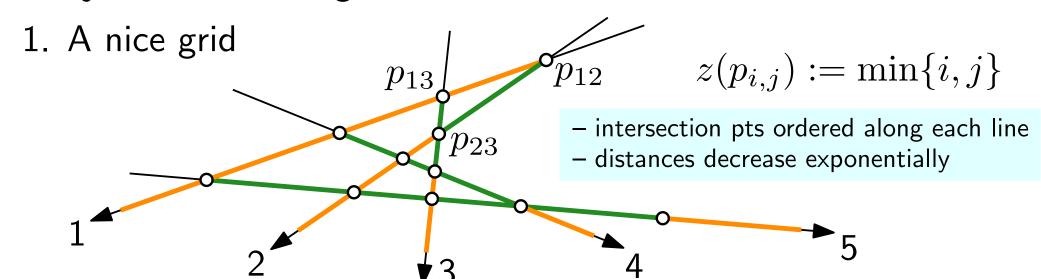


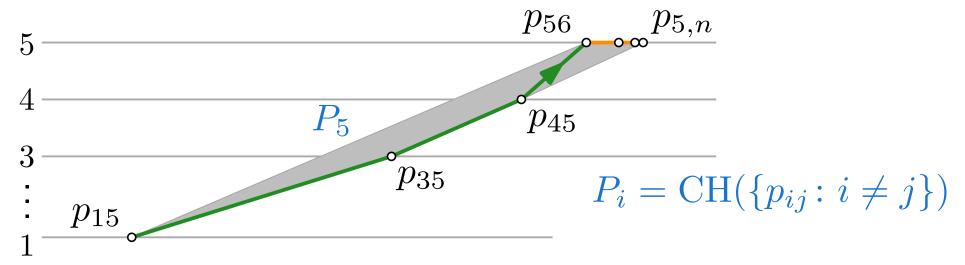
We just need two ingredients:



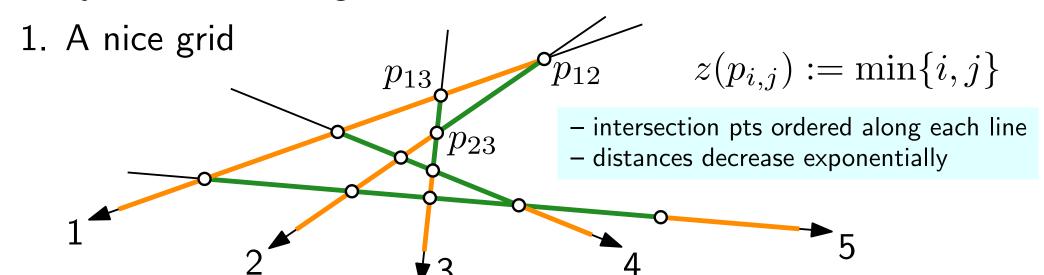


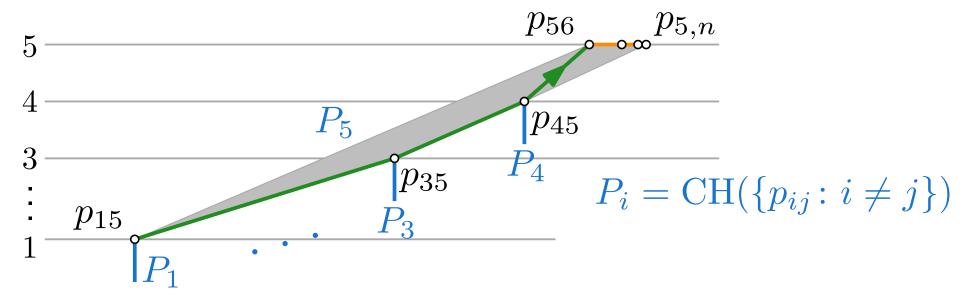
We just need two ingredients:



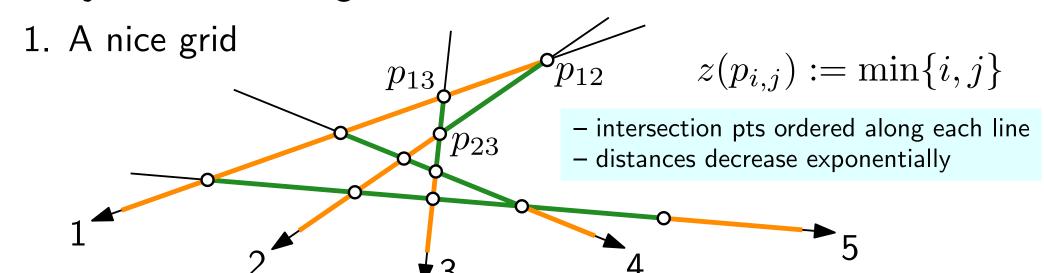


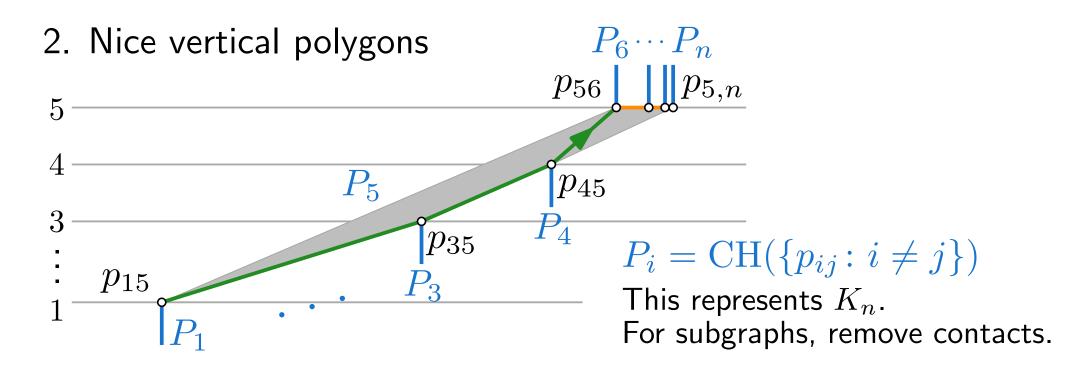
We just need two ingredients:





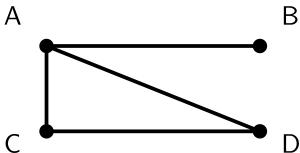
We just need two ingredients:



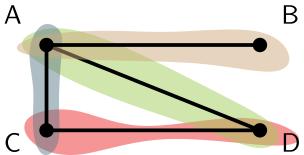


$${A,B}, {C,D}, {D,A}, {A,C}$$

$$\{A, B\}, \{C, D\}, \{D, A\}, \{A, C\}$$



$$\{A, B\}, \{C, D\}, \{D, A\}, \{A, C\}$$



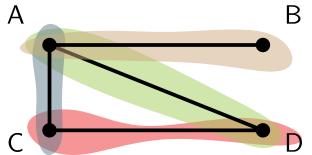
 Graphs are defined by a set of edges, which are sets of two elements.

$$\{A, B\}, \{C, D\}, \{D, A\}, \{A, C\}$$

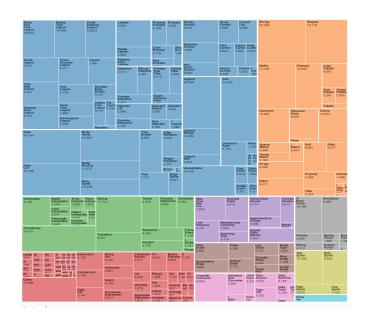
Hierarchical data can be describes by a tree

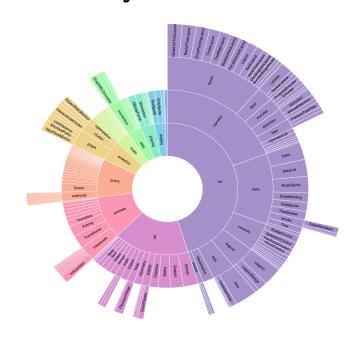
 Graphs are defined by a set of edges, which are sets of two elements.

$$\{A, B\}, \{C, D\}, \{D, A\}, \{A, C\}$$



Hierarchical data can be describes by a tree

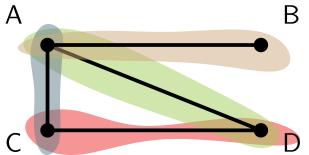




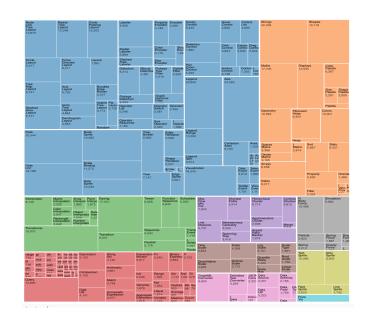
Graphs vs. Sets

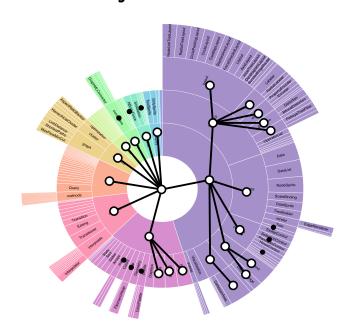
 Graphs are defined by a set of edges, which are sets of two elements.

$$\{A, B\}, \{C, D\}, \{D, A\}, \{A, C\}$$



Hierarchical data can be describes by a tree





Graph
$$G = (V, E)$$

 $E \subseteq \{\{a, b\} \mid a, b \in V\}$

Graph
$$G=(V,E)$$
 Hyperedges
$$E\subseteq \{\{a,b\}\mid a,b\in V\}$$

$$E\subseteq \{X\mid X\subseteq V\}$$

Hypergraphs can model any collection of sets.

Graph G=(V,E) Hyperedges $E\subseteq \{\{a,b\}\mid a,b\in V\}$ $E\subseteq \{X\mid X\subseteq V\}$

Example:

 $V = \{$ black, red, green, yellow, blue, white, orange $\}$

Hypergraphs can model any collection of sets.

Graph G=(V,E) Hyperedges $E\subseteq \{\{a,b\}\mid a,b\in V\}$ $E\subseteq \{X\mid X\subseteq V\}$

Example:

```
\begin{split} V &= \{ \text{black, red, green, yellow, blue, white, orange} \} \\ E &= \big\{ \{ \text{red, white} \}, \{ \text{black, red, yellow} \}, \{ \text{blue, white, red} \}, \\ \{ \{ \text{blue, yellow} \}, \{ \{ \text{green, white, red} \}, \{ \{ \text{green, white, orange} \}, \} \\ \{ \{ \{ \text{blue, black, white} \}, \{ \{ \text{blue, yellow, red} \}, \{ \{ \text{blue, white} \}, \} \} \\ \{ \{ \{ \text{green, red} \}, \{ \{ \text{red, yellow} \} \} \} \\ \end{split}
```

Many ideas have been proposed to generalize graph drawing methodology for hypergraphs.

Many ideas have been proposed to generalize graph drawing methodology for hypergraphs.

Subset-based method:

draw for every hyperedge a curve enclosing its vertices

Many ideas have been proposed to generalize graph drawing methodology for hypergraphs.

Subset-based method:

draw for every hyperedge a curve enclosing its vertices

$$H = (\{A, B, C, D\}, \{\{A, B\}, \{B, C, D\}, \{A, D, C\}\})$$

A .

 B_{ullet}

 C_{ullet}

 D^{ullet}

Many ideas have been proposed to generalize graph drawing methodology for hypergraphs.

Subset-based method:

draw for every hyperedge a curve enclosing its vertices

$$H = (\{A, B, C, D\}, \{\{A, B\}, \{B, C, D\}, \{A, D, C\}\})$$

 A_{ullet} B_{ullet}

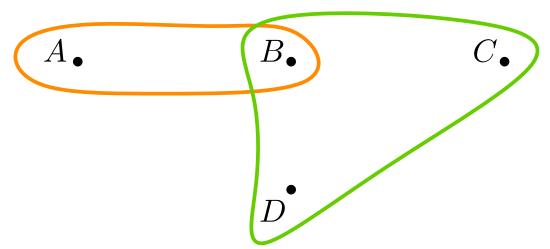
 D^{ullet}

Many ideas have been proposed to generalize graph drawing methodology for hypergraphs.

Subset-based method:

draw for every hyperedge a curve enclosing its vertices

$$H = (\{A, B, C, D\}, \{\{A, B\}, \{B, C, D\}, \{A, D, C\}\})$$

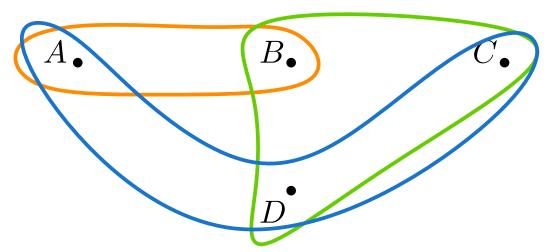


Many ideas have been proposed to generalize graph drawing methodology for hypergraphs.

Subset-based method:

draw for every hyperedge a curve enclosing its vertices

$$H = (\{A, B, C, D\}, \{\{A, B\}, \{B, C, D\}, \{A, D, C\}\})$$

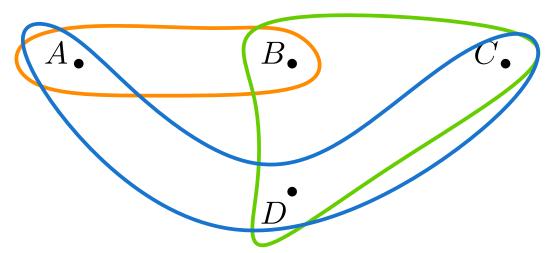


Many ideas have been proposed to generalize graph drawing methodology for hypergraphs.

Subset-based method:

draw for every hyperedge a curve enclosing its vertices

$$H = (\{A, B, C, D\}, \{\{A, B\}, \{B, C, D\}, \{A, D, C\}\})$$



spring embedder algorithm by Bertault and Eades 2000

Subset-based method gets easily confusing.

- Subset-based method gets easily confusing.
- Alternatives: subdivision-based & edge-based

- Subset-based method gets easily confusing.
- Alternatives: subdivision-based & edge-based

- vertices are regions
- hyperedges are connected unions
- ... and more criteria

- Subset-based method gets easily confusing.
- **Alternatives:** subdivision-based & edge-based

- vertices are regions
- hyperedges are connected unions
- ... and more criteria

$$\begin{array}{c|ccc} A & B & C \\ \hline & D & \end{array}$$

$$H = \Big(\{A, B, C, D\}, \big\{ \{A, B\}, \{B, C, D\}, \{A, D, C\} \big\} \Big)$$

- Subset-based method gets easily confusing.
- **Alternatives:** subdivision-based & edge-based

- vertices are regions
- hyperedges are connected unions
- ... and more criteria

$$egin{array}{c|c} A & B & C \\ \hline & D & \end{array}$$

$$H = (\{A, B, C, D\}, \{\{A, B\}, \{B, C, D\}, \{A, D, C\}\})$$

- Subset-based method gets easily confusing.
- Alternatives: subdivision-based & edge-based

- vertices are regions
- hyperedges are connected unions
- ... and more criteria

$$egin{array}{c|c} A & B & C \\ \hline & D & \end{array}$$

$$H = \Big(\{A, B, C, D\}, \big\{ \{A, B\}, \{B, C, D\}, \{A, D, C\} \big\} \Big)$$

- Subset-based method gets easily confusing.
- Alternatives: subdivision-based & edge-based

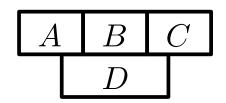
- vertices are regions
- hyperedges are connected unions
- ... and more criteria

$$egin{array}{c|c} A & B & C \ \hline & D & \end{array}$$

$$H = (\{A, B, C, D\}, \{\{A, B\}, \{B, C, D\}, \{A, D, C\}\})$$

- Subset-based method gets easily confusing.
- **Alternatives:** subdivision-based & edge-based

- vertices are regions
- hyperedges are connected unions
- ... and more criteria

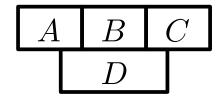


- drawn as node-link diagram,
 with vertices as some nodes
- hyperedges yield connected subgraphs
- ... and more criteria

$$H = \Big(\{A, B, C, D\}, \big\{ \{A, B\}, \{B, C, D\}, \{A, D, C\} \big\} \Big)$$

- Subset-based method gets easily confusing.
- Alternatives: subdivision-based & edge-based

- vertices are regions
- hyperedges are connected unions
- ... and more criteria

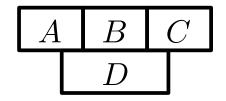


- drawn as node-link diagram,
 with vertices as some nodes
- hyperedges yield connected subgraphs
- ... and more criteria

$$H = \Big(\{A, B, C, D\}, \big\{ \{A, B\}, \{B, C, D\}, \{A, D, C\} \big\} \Big)$$

- Subset-based method gets easily confusing.
- Alternatives: subdivision-based & edge-based

- vertices are regions
- hyperedges are connected unions
- ... and more criteria



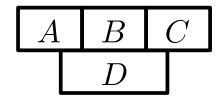
- drawn as node-link diagram,
 with vertices as some nodes
- hyperedges yield connected subgraphs
- ... and more criteria

$$C$$
 A
 C
 A
 C

$$H = \Big(\{A, B, C, D\}, \big\{ \{A, B\}, \{B, C, D\}, \{A, D, C\} \big\} \Big)$$

- Subset-based method gets easily confusing.
- Alternatives: subdivision-based & edge-based

- vertices are regions
- hyperedges are connected unions
- ... and more criteria

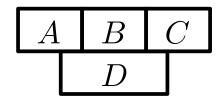


- drawn as node-link diagram,
 with vertices as some nodes
- hyperedges yield connected subgraphs
- ... and more criteria

$$H = \Big(\{A, B, C, D\}, \big\{ \{A, B\}, \{B, C, D\}, \{A, D, C\} \big\} \Big)$$

- Subset-based method gets easily confusing.
- **Alternatives:** subdivision-based & edge-based

- vertices are regions
- hyperedges are connected unions
- ... and more criteria

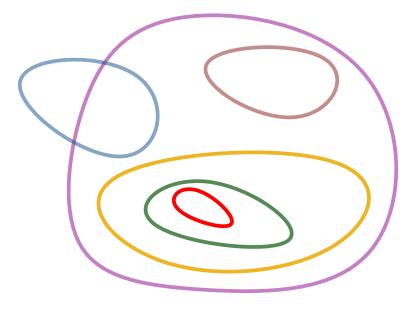


- drawn as node-link diagram,
 with vertices as some nodes
- hyperedges yield connected subgraphs
- ... and more criteria

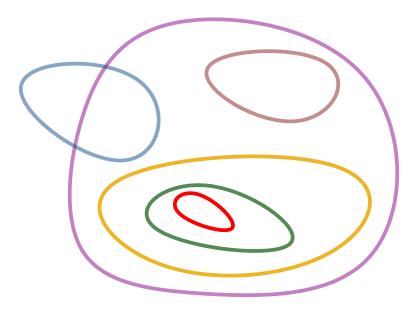
$$H = (\{A, B, C, D\}, \{\{A, B\}, \{B, C, D\}, \{A, D, C\}\})$$

Concrete Euler Diagrams

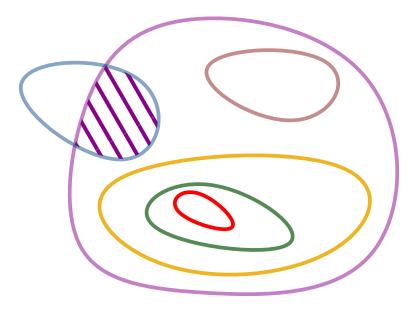
hyperedges are drawn as simple closed curves (interior/exterior)



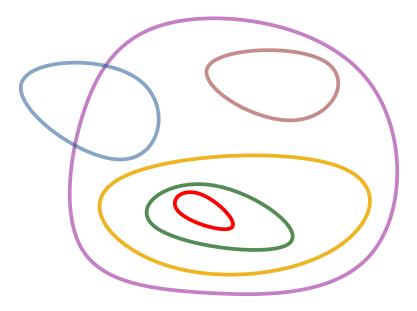
- hyperedges are drawn as simple closed curves (interior/exterior)
- intersections of hyperedges = zone



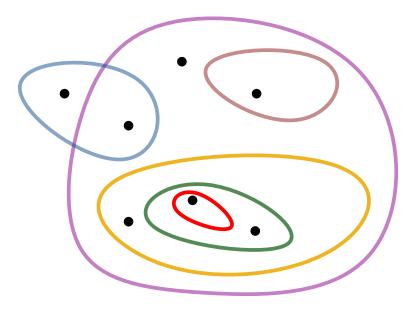
- hyperedges are drawn as simple closed curves (interior/exterior)
- intersections of hyperedges = zone



- hyperedges are drawn as simple closed curves (interior/exterior)
- intersections of hyperedges = zone
- for every zone there is a vertex in the corresponding intersection

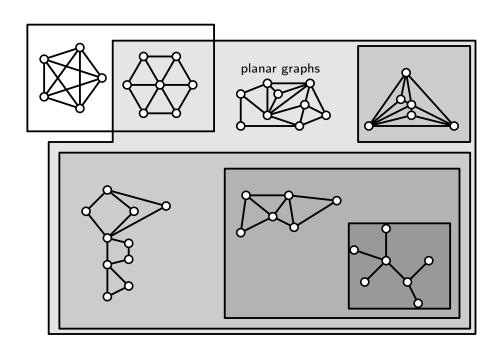


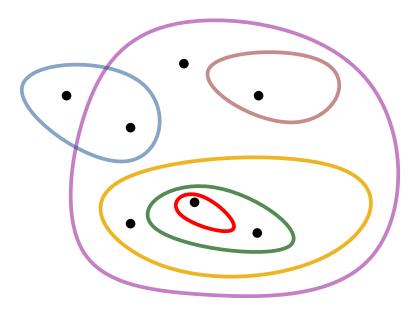
- hyperedges are drawn as simple closed curves (interior/exterior)
- intersections of hyperedges = zone
- for every zone there is a vertex in the corresponding intersection



Concrete Euler Diagrams

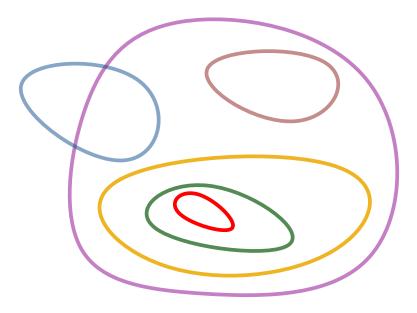
- hyperedges are drawn as simple closed curves (interior/exterior)
- intersections of hyperedges = zone
- for every zone there is a vertex in the corresponding intersection





Concrete Euler Diagrams

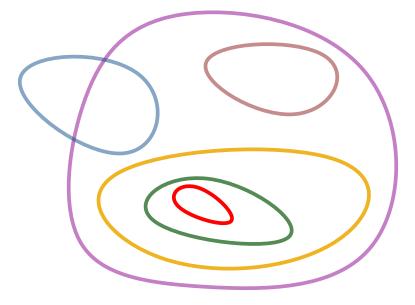
- hyperedges are drawn as simple closed curves (interior/exterior)
- intersections of hyperedges = zone
- for every zone there is a vertex in the corresponding intersection
- no two zones for the same intersection



Concrete Euler Diagrams

- hyperedges are drawn as simple closed curves (interior/exterior)
- intersections of hyperedges = zone
- for every zone there is a vertex in the corresponding intersection
- no two zones for the same intersection

only proper crossings



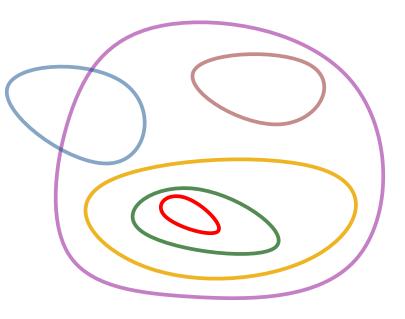
Concrete Euler Diagrams

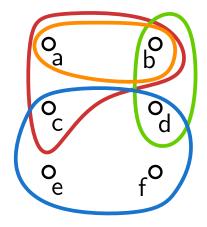
- hyperedges are drawn as simple closed
- intersections of hyperedges = zone
- for every zone there is a vertex in the c
- no two zones for the same intersection

only proper crossings

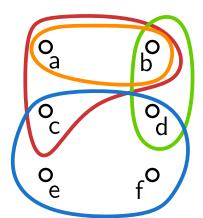
Venn diagrams

Euler Diagrams



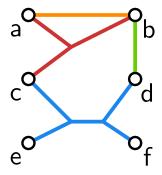


subset-based drawing

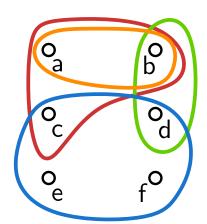


subset-based drawing

Examples:

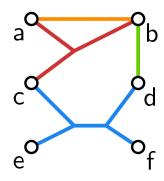


edge-based drawing

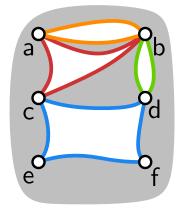


subset-based drawing

Examples:



edge-based drawing

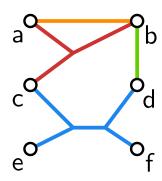


Zykov representation

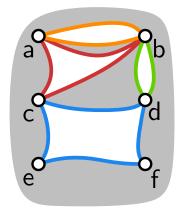
O_a O_b O_d O_e O_e f

subset-based drawing

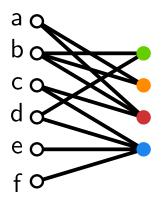
Examples:



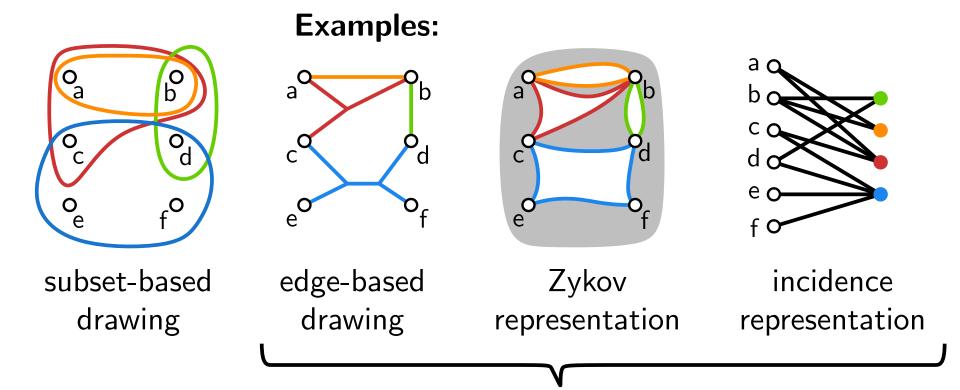
edge-based drawing



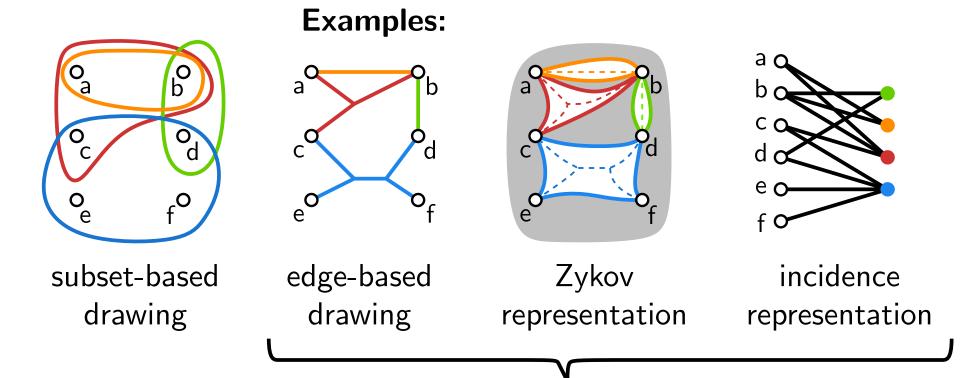
Zykov representation



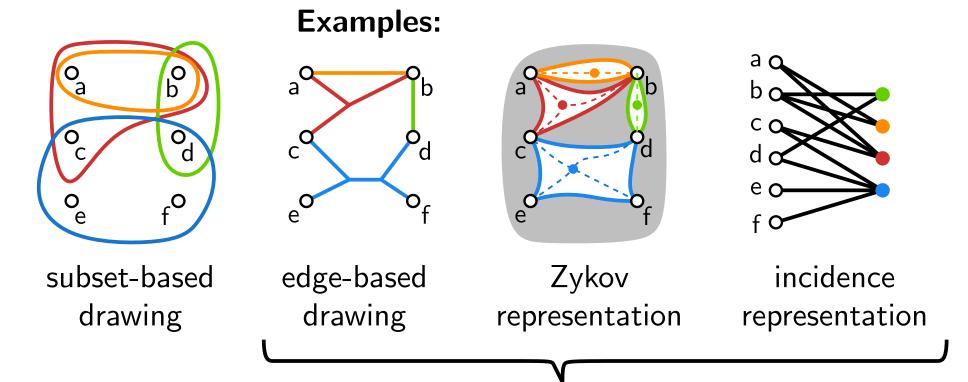
incidence representation



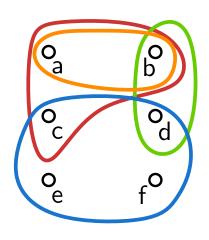
planarity is equivalent in all three models



planarity is equivalent in all three models

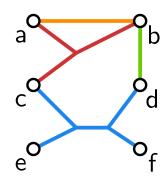


planarity is equivalent in all three models

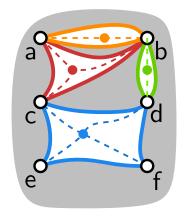


subset-based drawing

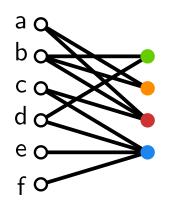
Examples:



edge-based drawing



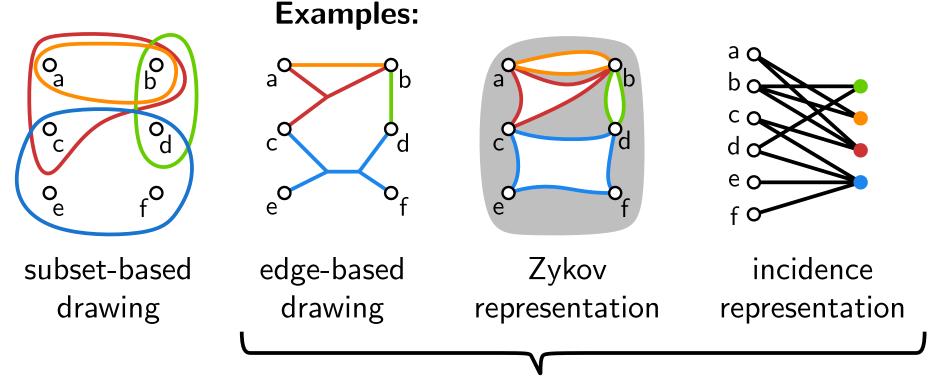
Zykov representation



incidence representation

"planarity" NP-complete

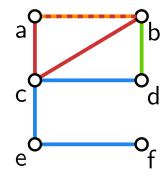
planarity is equivalent in all three models ∈ P

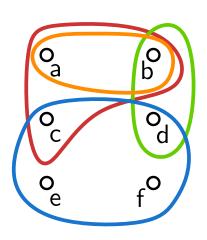


"planarity" NP-complete

planarity is equivalent in all three models ∈ P

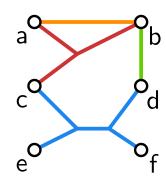
Def.: Support of a hypergraph is a graph such that every hyperedge induces a connected subgraph.



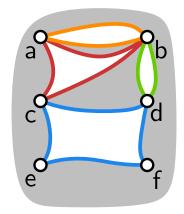


subset-based drawing

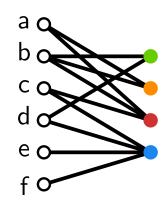
Examples:



edge-based drawing



Zykov representation



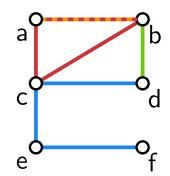
incidence representation

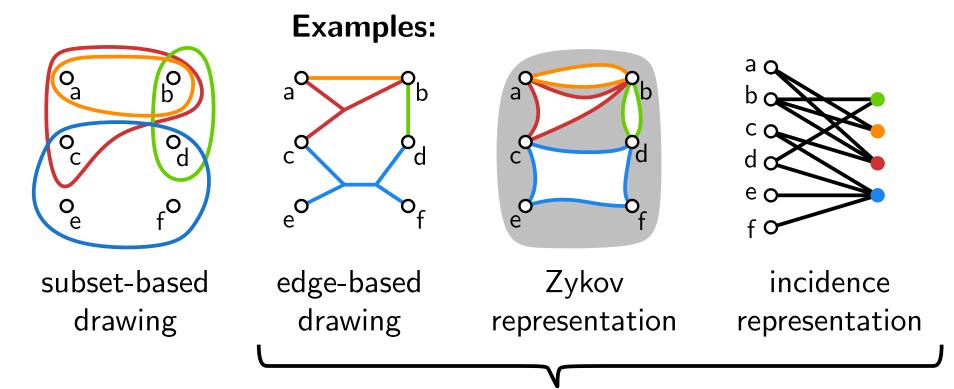
"planarity"
NP-complete

planarity is equivalent in all three models ∈ P

Def.: Support of a hypergraph is a graph such that every hyperedge induces a connected subgraph.

= planar support





"planarity" NP-complete planarity is equivalent in all three models ∈ P

a

Def.: Support of a hypergraph is a graph such that

= planar support

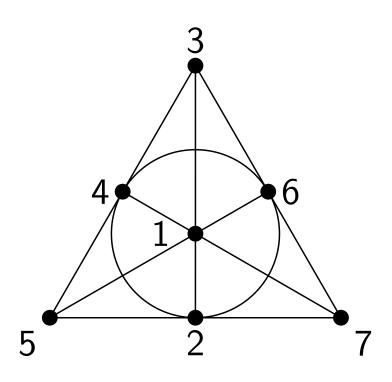
every hyperedge induces a connected subgraph.

Test for cycle-, tree-, or cactus-support is feasible.

[Evans, Rzążewski, Saeedi, Shin, W., GD'19]

The Fano plane S(2,3,7):

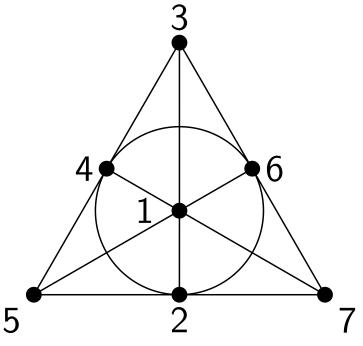
[Evans, Rzążewski, Saeedi, Shin, W., GD'19]

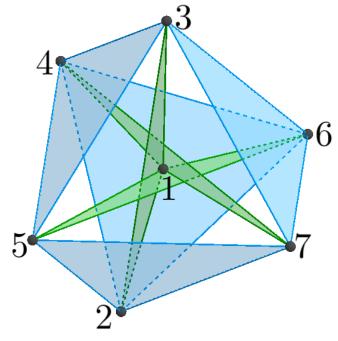


The Fano plane S(2,3,7):

[Evans, Rzążewski, Saeedi, Shin, W., GD'19]

...can be realized by touching triangles in 3D:

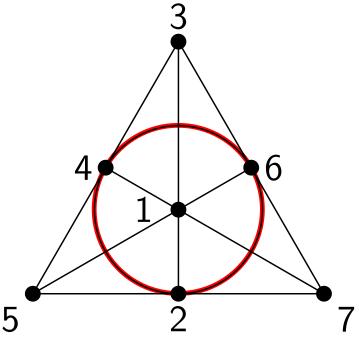


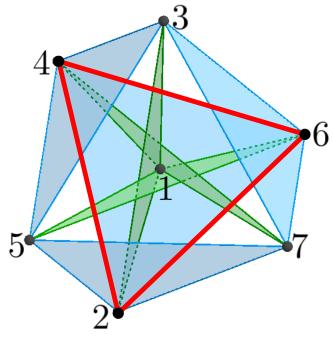


The Fano plane S(2,3,7):

[Evans, Rzążewski, Saeedi, Shin, W., GD'19]

...can be realized by touching triangles in 3D:

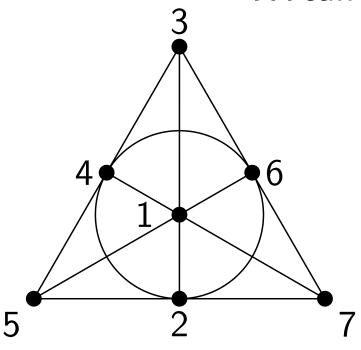


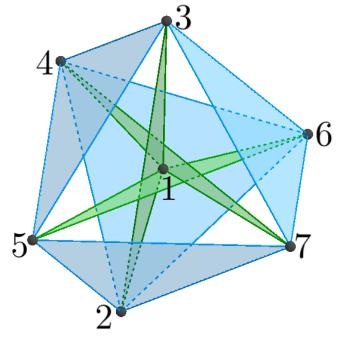


[Evans, Rzążewski, Saeedi, Shin, W., GD'19]

The Fano plane S(2,3,7):

...can be realized by touching triangles in 3D:





Theorem.

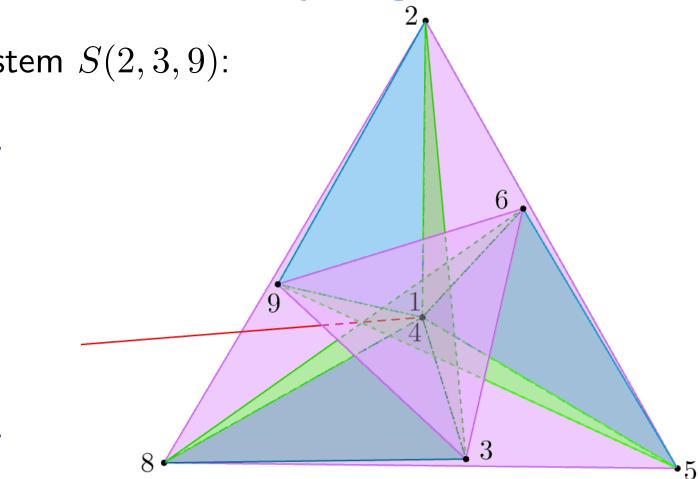
[Carmesin/Pardon]

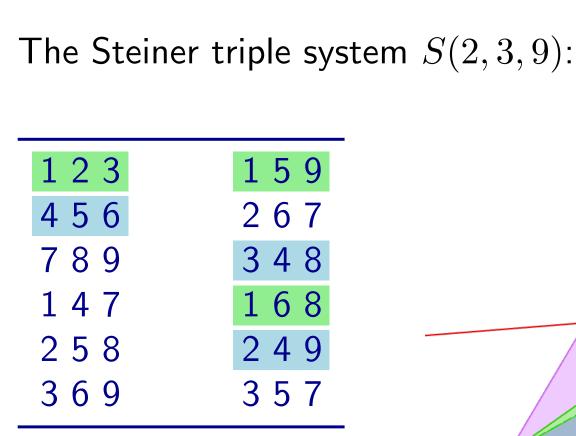
For any $n \ge 6$, the 3-uniform complete hypergraph with n vertices, \mathcal{K}_n^3 , cannot be realized by touching triangles in 3D.

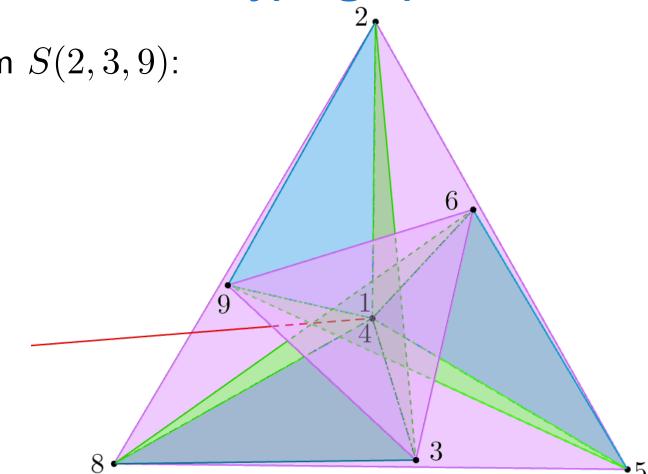
The Steiner triple system S(2,3,9):

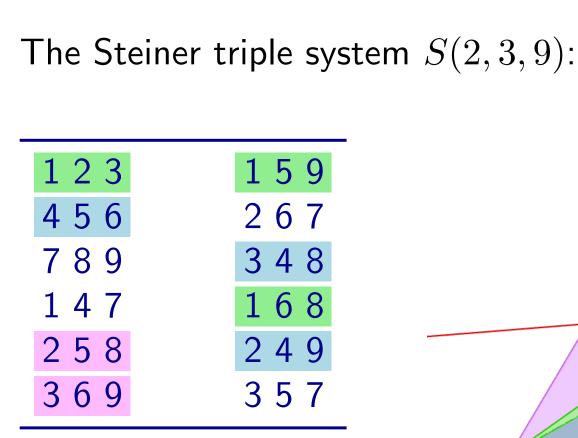
1 2 3	1 5 9
4 5 6	267
7 8 9	3 4 8
1 4 7	168
2 5 8	2 4 9
3 6 9	3 5 7

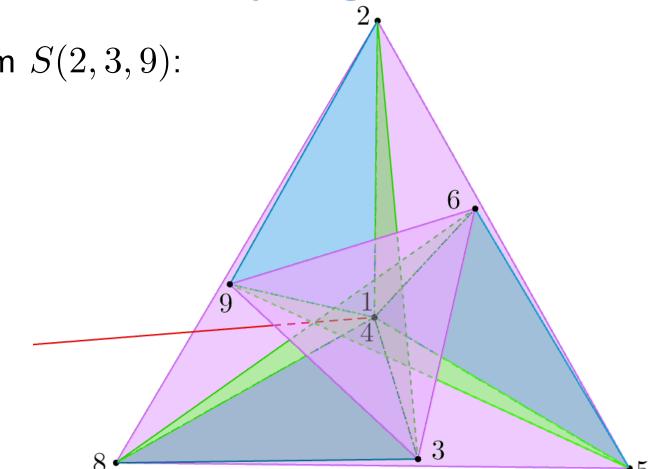
The Steiner	triple syst
1 2 3	1 5 9
4 5 6	267
789	3 4 8
1 4 7	1 6 8
2 5 8	2 4 9
3 6 9	3 5 7

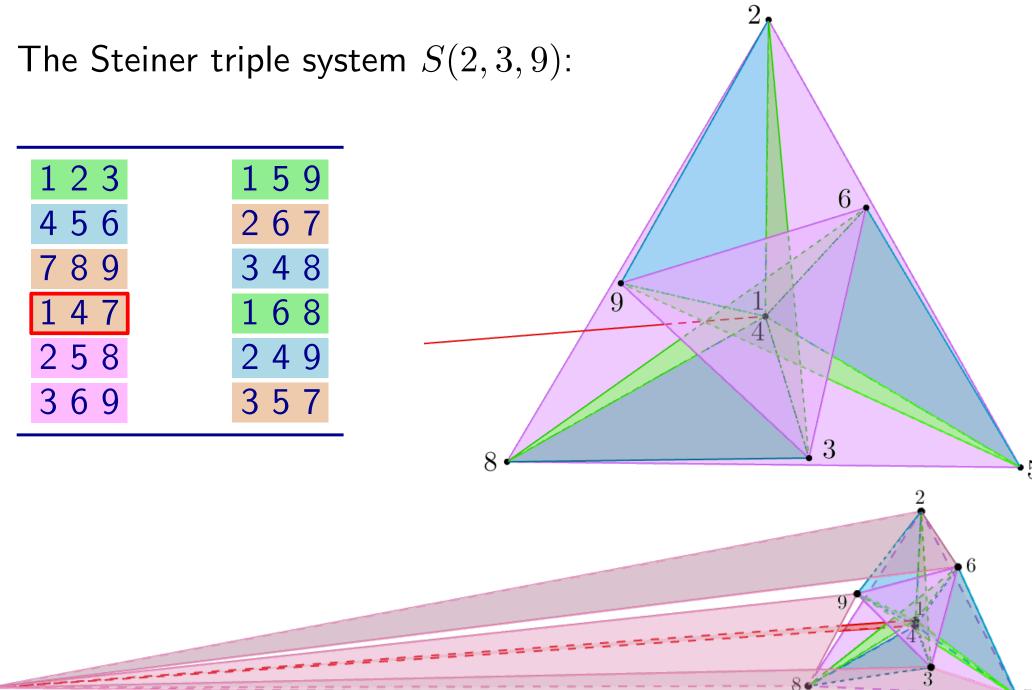


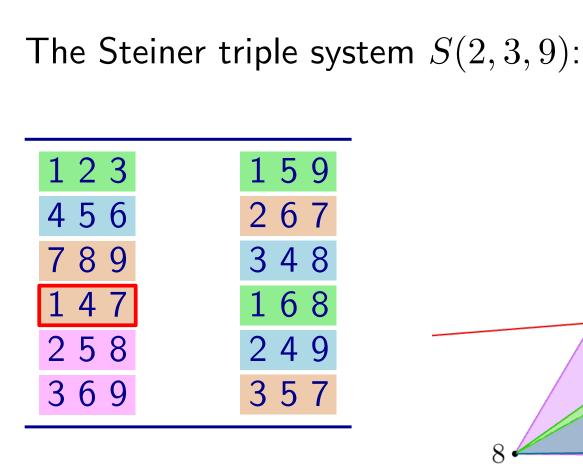


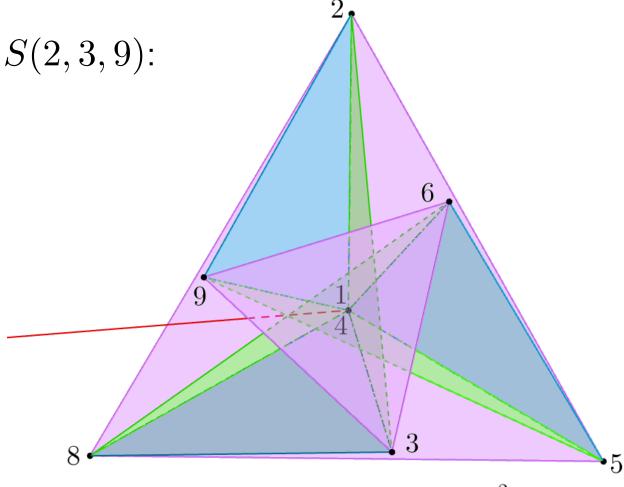












Open: Complexity of the recognition problem?



S(3, 4, 8)			
1 2 4 8	3 5 6 7		
2 3 5 8	1 4 6 7		
3 4 6 8	1 2 5 7		
4 5 7 8	1 2 3 6		
1568	2 3 4 7		
2678	1 3 4 5		
1 3 7 8	2 4 5 6		

S(3, 4)	(4, 8)
1 2 4 8	3 5 6 7
2 3 5 8	1 4 6 7
3 4 6 8	1 2 5 7
4 5 7 8	1 2 3 6
1568	2 3 4 7
2678	1 3 4 5
1 3 7 8	2 4 5 6

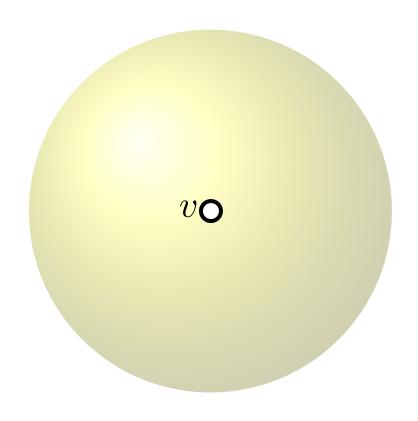
Theorem. The Steiner quadruple system S(3,4,8) does not admit a contact representation by quadrilaterals.

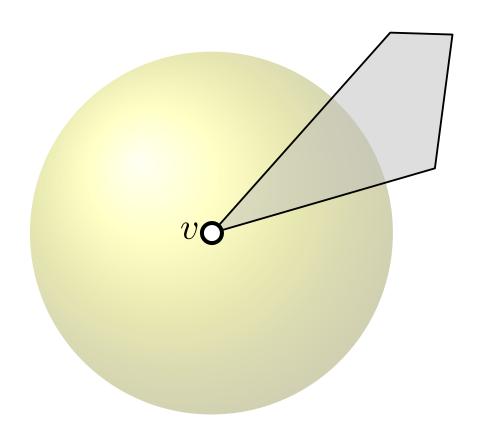
S(3,4)	1,8)		S(3, 4, 10)	
1 2 4 8 2 3 5 8 3 4 6 8 4 5 7 8 1 5 6 8 2 6 7 8 1 3 7 8	3 5 6 7 1 4 6 7 1 2 5 7 1 2 3 6 2 3 4 7 1 3 4 5 2 4 5 6	1 2 4 5 2 3 5 6 3 4 6 7 4 5 7 8 5 6 8 9 6 7 9 0 1 7 8 0 1 2 8 9 2 3 9 0 1 3 4 0	1 2 3 7 2 3 4 8 3 4 5 9 4 5 6 0 1 5 6 7 2 6 7 8 3 7 8 9 4 8 9 0 1 5 9 0 1 2 6 0	1 3 5 8 2 4 6 9 3 5 7 0 1 4 6 8 2 5 7 9 3 6 8 0 1 4 7 9 2 5 8 0 1 3 6 9 2 4 7 0

Theorem. The Steiner quadruple system S(3,4,8) does not admit a contact representation by quadrilaterals.

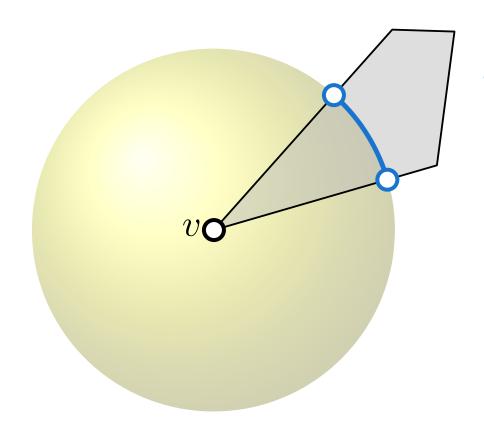
S(3,	4,8)		S(3, 4, 10)	
1 2 4 8 2 3 5 8 3 4 6 8 4 5 7 8 1 5 6 8 2 6 7 8 1 3 7 8	3 5 6 7 1 4 6 7 1 2 5 7 1 2 3 6 2 3 4 7 1 3 4 5 2 4 5 6	1 2 4 5 2 3 5 6 3 4 6 7 4 5 7 8 5 6 8 9 6 7 9 0 1 7 8 0 1 2 8 9 2 3 9 0 1 3 4 0	1 2 3 7 2 3 4 8 3 4 5 9 4 5 6 0 1 5 6 7 2 6 7 8 3 7 8 9 4 8 9 0 1 5 9 0 1 2 6 0	1 3 5 8 2 4 6 9 3 5 7 0 1 4 6 8 2 5 7 9 3 6 8 0 1 4 7 9 2 5 8 0 1 3 6 9 2 4 7 0

Theorem. The Steiner quadruple system S(3,4,8) does not admit a contact representation by quadrilaterals.

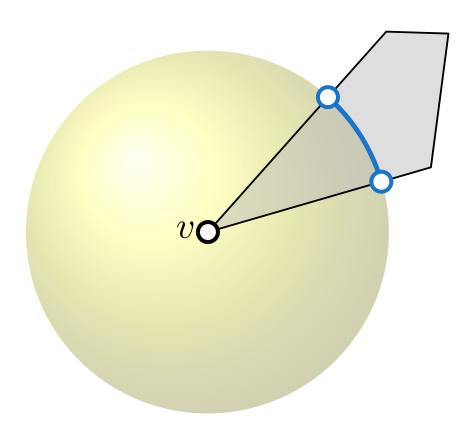




Dey and Edelsbrunner [DCG'94]



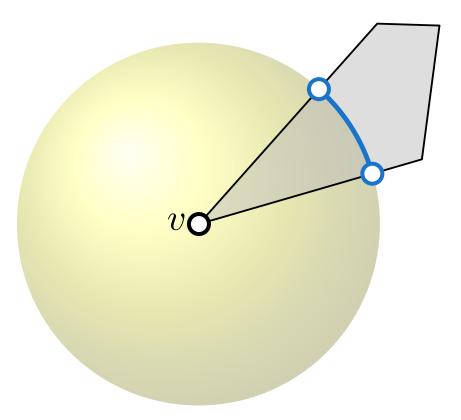
Link graph of v:



Dey and Edelsbrunner [DCG'94]

Link graph of v:

- edge for each hyperedge
- vertex for each vtx $\neq v$

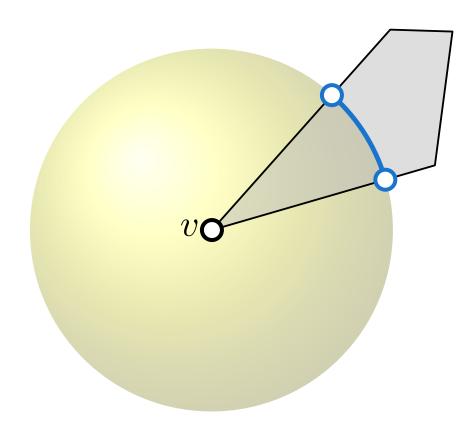


Dey and Edelsbrunner [DCG'94]

Link graph of v:

- edge for each hyperedge
- vertex for each vtx $\neq v$

must be *planar*!



Dey and Edelsbrunner [DCG'94]

Link graph of v:

- edge for each hyperedge
- vertex for each vtx $\neq v$

must be *planar*!

Here:

vertices = n - 1

edges = (n-1)(n-2)/6

Trick: split quadrilaterals!

 \Rightarrow # edges = (n-1)(n-2)/3

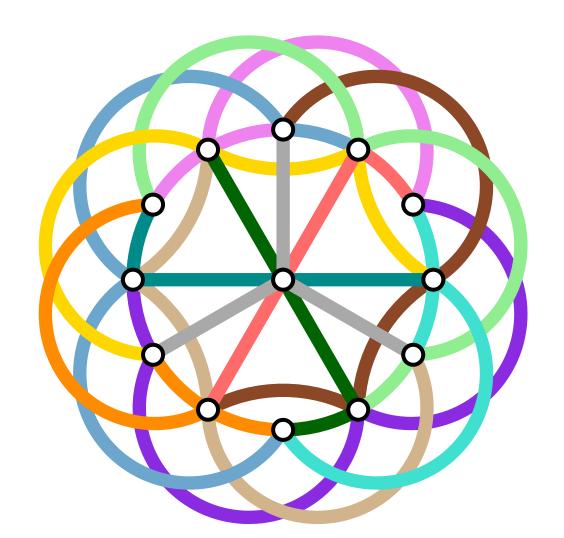
 \Rightarrow link graph not planar for n > 8.

Discrete Projective Plane

Open:

Can the second smallest projective plane, PG(3) (= S(2,4,13)), be represented by touching (convex) quadrilaterals?

Α	В	C	D
Α	1	2	3
Α	4	5	6
Α	7	8	9
В	1	4	7
В	2	5	8
В	3	6	9
C	1	5	9
C	2	6	7
C	3	4	8
D	1	6	8
D	2	4	9
D	3	5	7



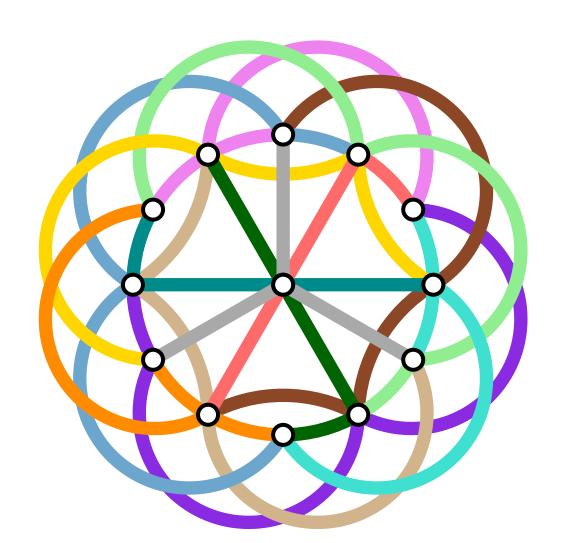
Discrete Projective Plane

Open:

Can the second smallest projective plane, PG(3) (= S(2,4,13)), be represented by touching

- (convex) quadrilaterals?
- tetrahedra?

Α	В	C	D
Α	1	2	3
Α	4	5	6
Α	7	8	9
В	1	4	7
В	2	5	8
В	3	6	9
C	1	5	9
C	2	6	7
C	3	4	8
D	1	6	8
D	2	4	9
D	3	5	7



Many important topics had to be left out ...

- Many important topics had to be left out ...
 - crossing numbers
 - clustered planarity
 - labeling
 - beyond planar graphs
 - right-angle-crossing drawings
 - universal point sets
 - topological drawings
 - representation as contact/intersection graphs
 - layered drawings
 - bus drawings
 - more subdivision drawings for hypergraphs
 - . . .

- Many important topics had to be left out ...
 - crossing numbers
 - clustered planarity
 - labeling
 - beyond planar graphs
 - right-angle-crossing drawings
 - universal point sets
 - topological drawings
 - representation as contact/intersection graphs
 - layered drawings
 - bus drawings
 - more subdivision drawings for hypergraphs
 - . . .
- So I hope to talk to you more about Graph Drawing

- Many important topics had to be left out ...
 - crossing numbers
 - clustered planarity
 - labeling
 - beyond planar graphs
 - right-angle-crossing drawings
 - universal point sets
 - topological drawings
 - representation as contact/intersection graphs
 - layered drawings
 - bus drawings
 - more subdivision drawings for hypergraphs
 - . . .
- So I hope to talk to you more about Graph Drawing maybe at the Winter School in Teheran next year?