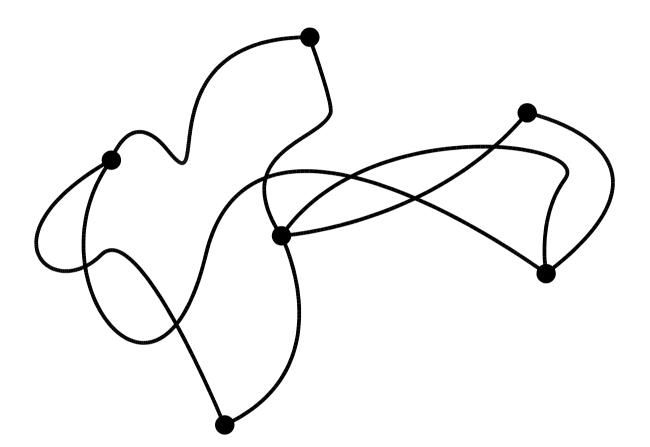
Configurations with Few Crossings in Topological Graphs

Christian Knauer

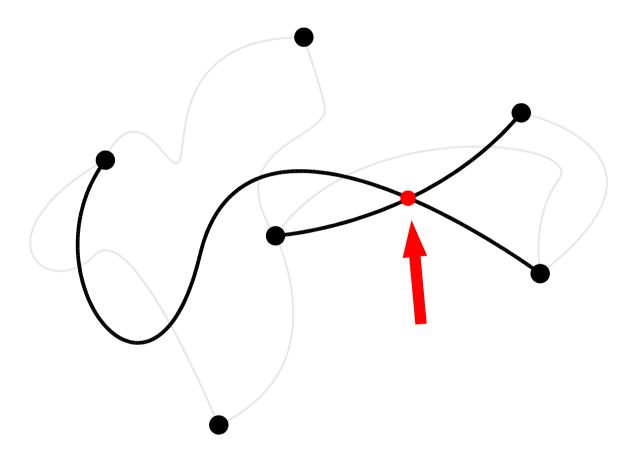
Étienne Schramm

Andreas Spillner

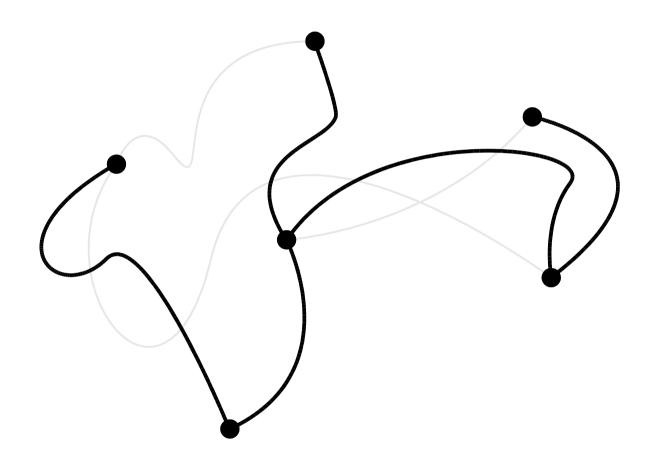
Alexander Wolff



Graph G with a fixed embedding.



Pair of crossing edges.



Decision problems: Is there a crossing-free spanning tree?

NP-hard

for general topological graphs

[Kratochvíl, Lubiw, Nešetřil 1991]

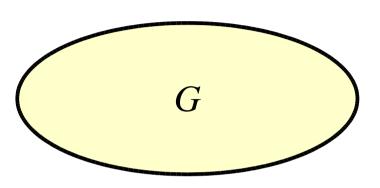
for very restricted classes of topological graphs

[Jansen, Woeginger 1993]

Our results

Optimization problems: Find a spanning tree with as few crossings as possible.

- heuristics
- hardness of approximation
- fixed-parameter algorithms
- mixed-integer linear program formulation

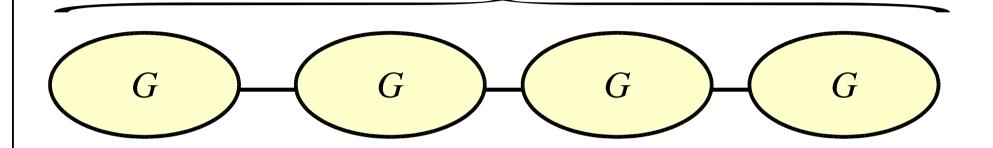


spanning tree

crossing-free

at least one crossing

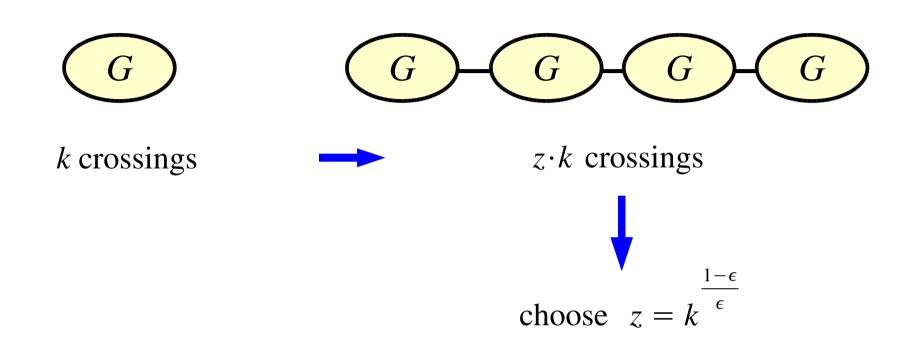
z copies of G



spanning tree

crossing-free

at least z crossings

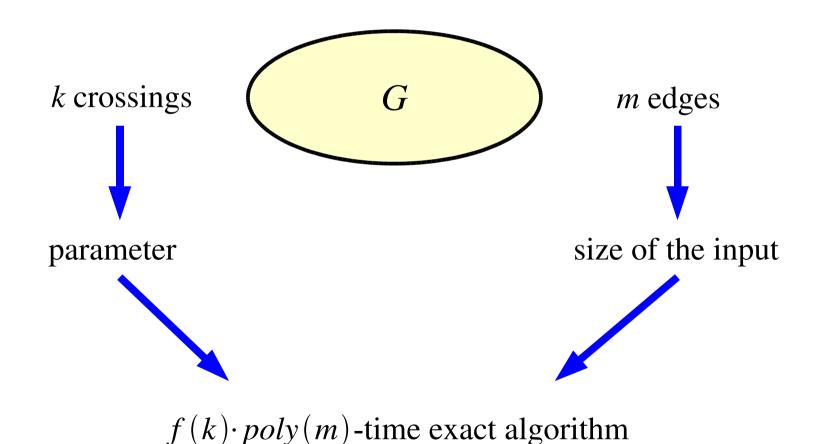


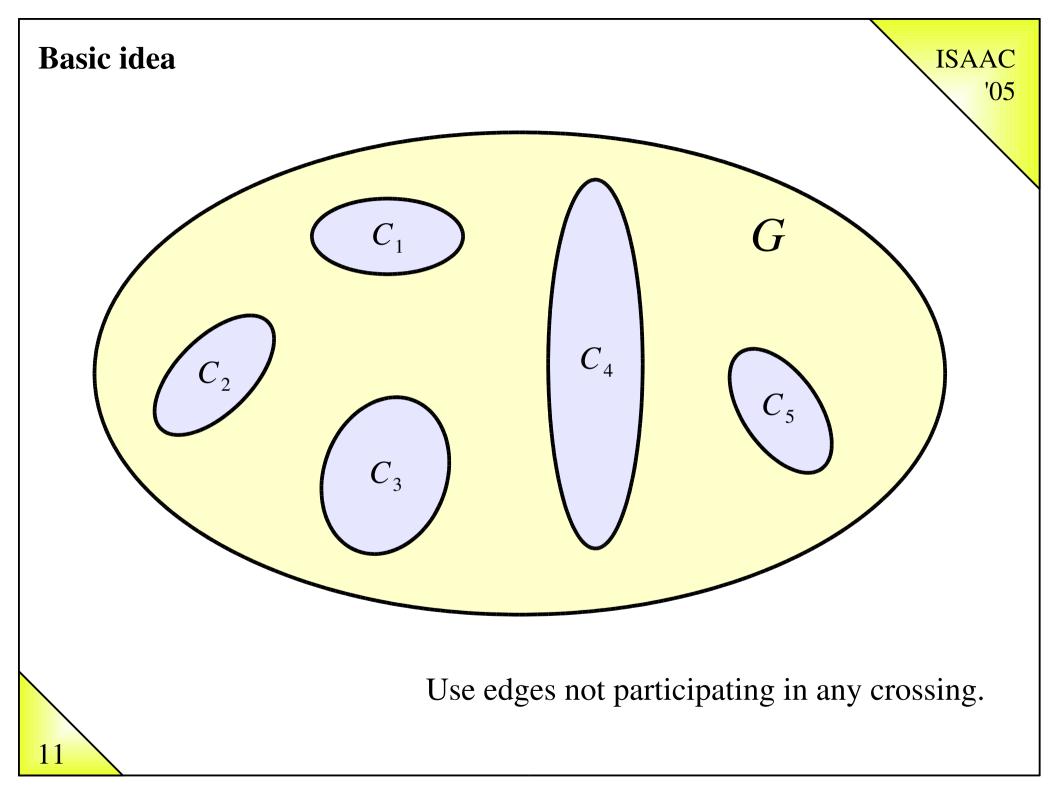
Result

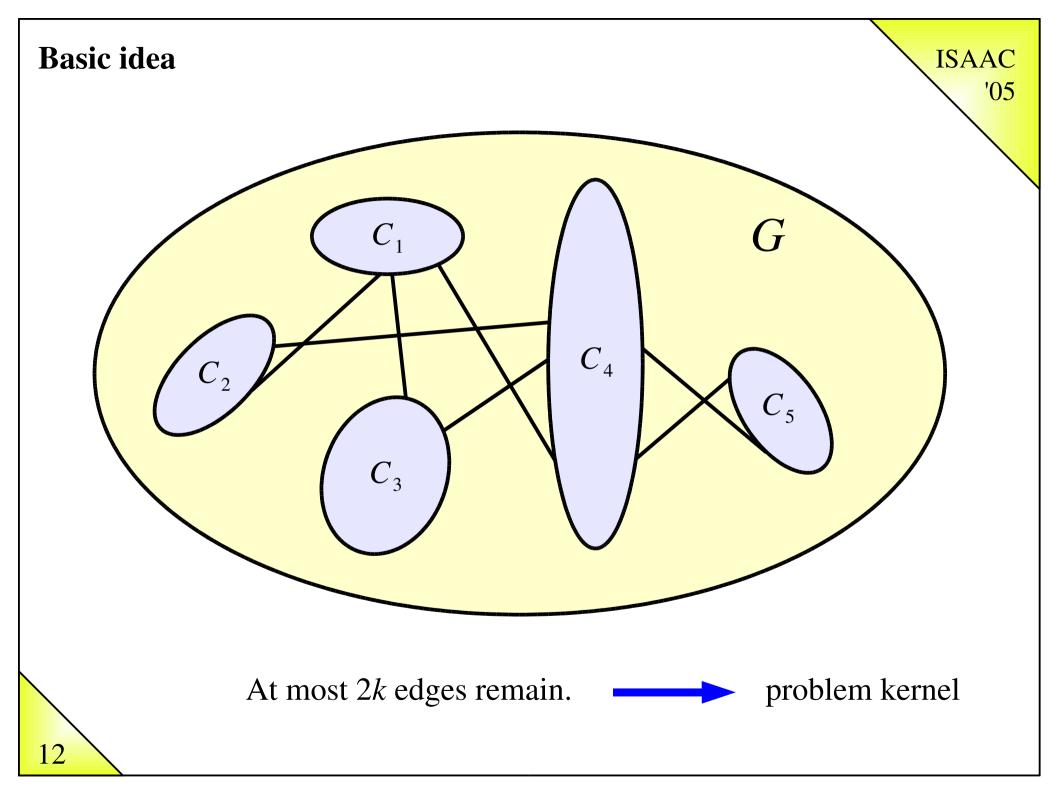
It is NP-hard to approximate the minimum number of crossings in a spanning tree of G within a factor of $k^{1-\epsilon}$ for any $\epsilon > 0$.

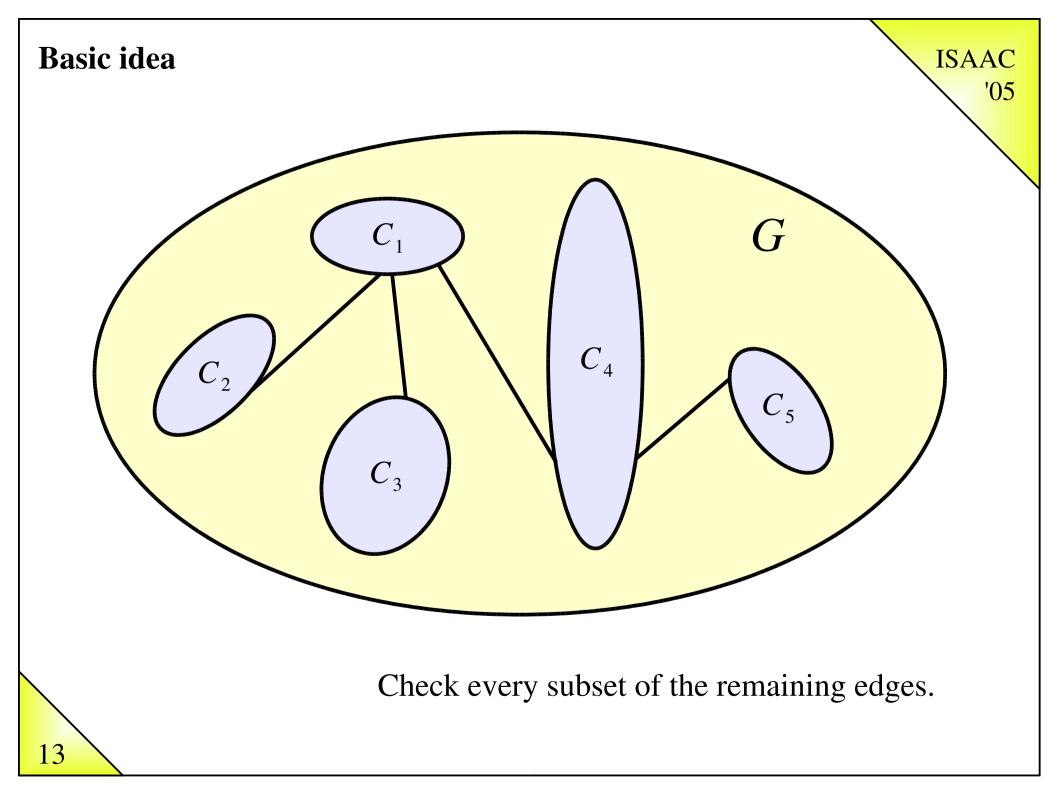
Fixed-parameter algorithms

What makes the problem computationally hard?









After polynomial-time preprocessing:

 $\leq 2^{2k}$ subsets to check

 $4^k \cdot poly(k)$ -time algorithm

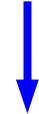
Result

The optimization problem is fixed-parameter tractable and can always be reduced to a problem kernel of size at most 2k.

Observation 1: From every pair of crossing edges at most one can appear in a crossing-free spanning tree.



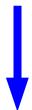
 $\leq 2^k$ subsets to check



 $2^k \cdot poly(k)$ -time algorithm

Observation 2:

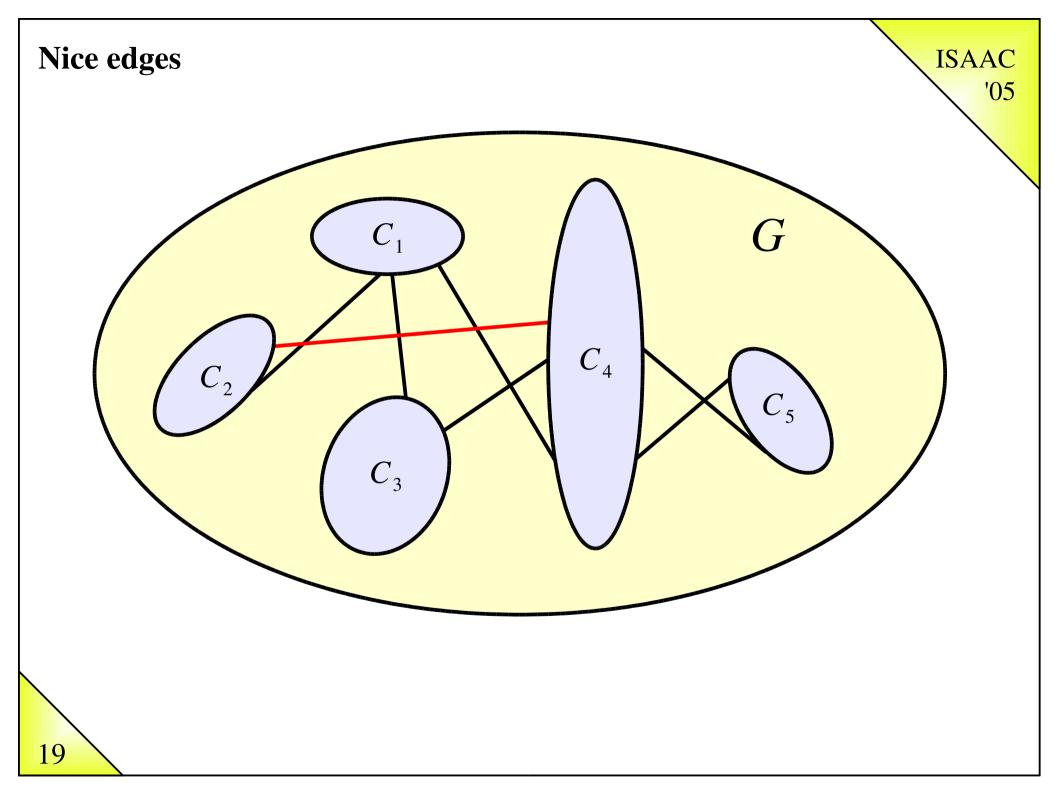
 $c^k \cdot poly(k)$ – time algorithm for the decision problem

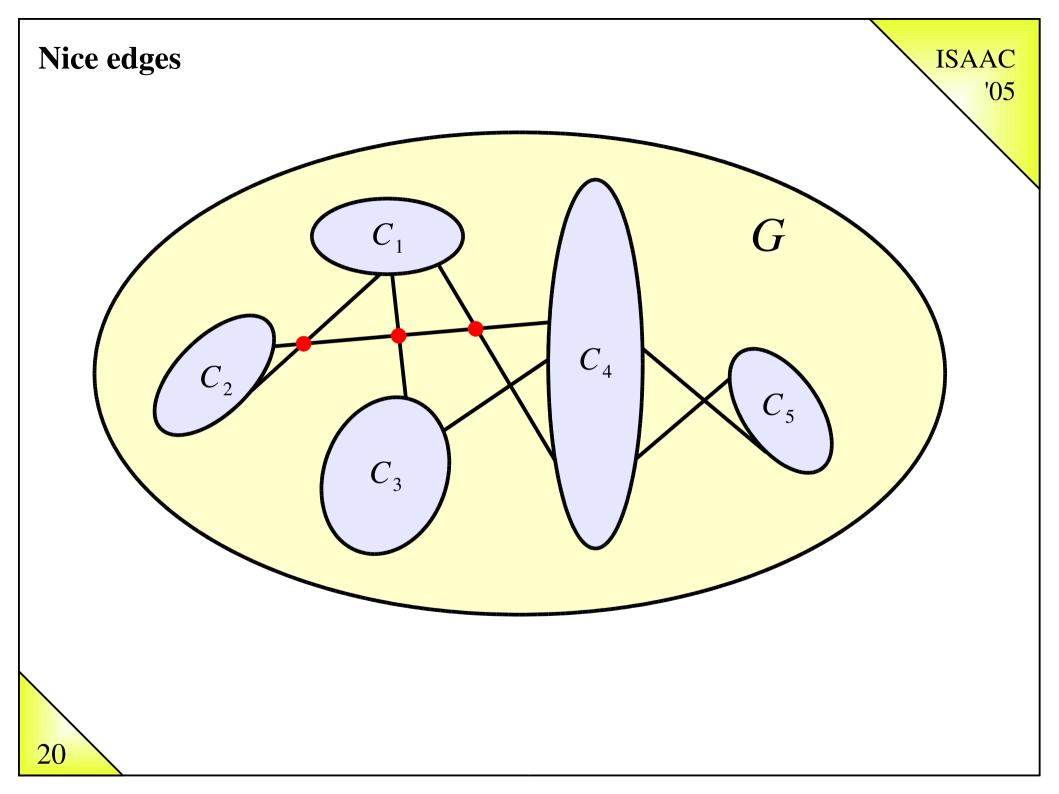


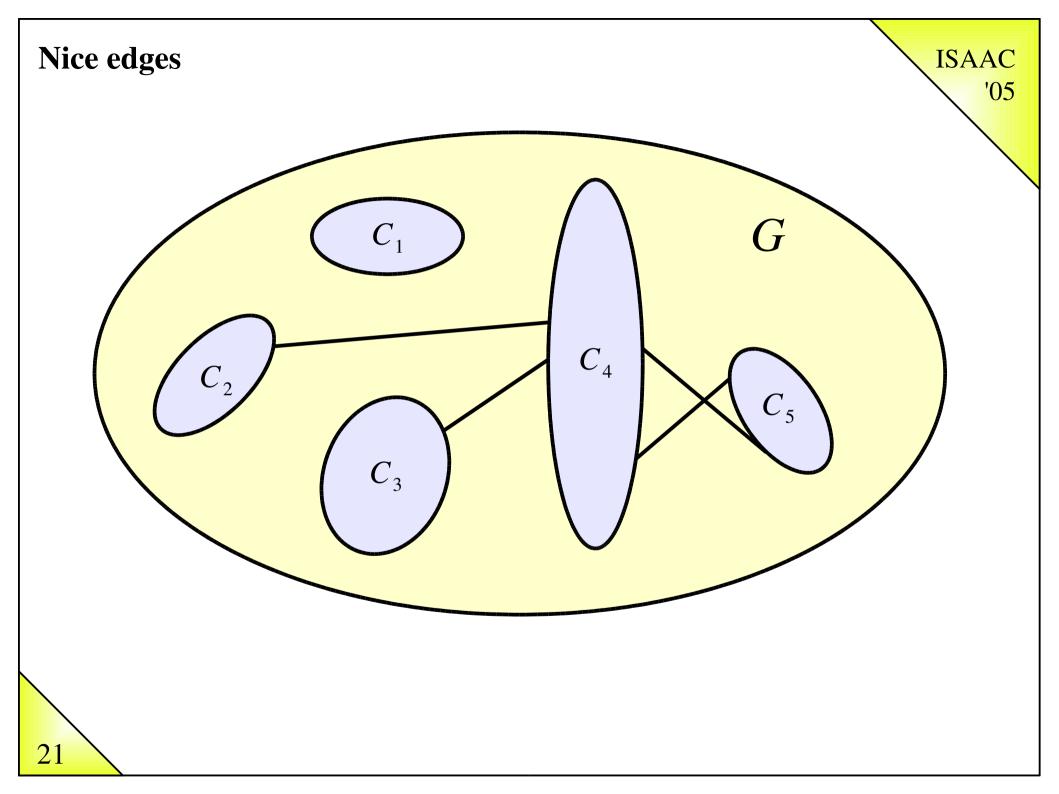
optimal solution in
$$\sum_{j=0}^{k} {k \choose j} c^{k-j} \cdot poly(k) = (c+1)^k \cdot poly(k)$$
 time

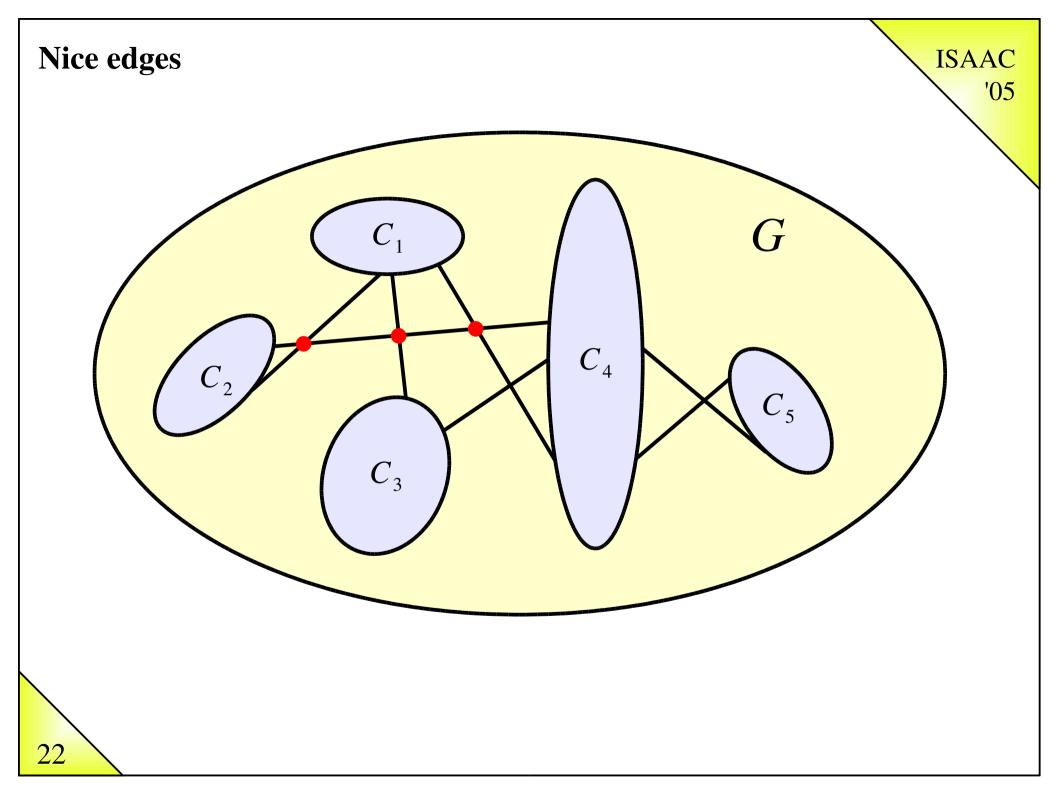
Goal: $c^k \cdot poly(k)$ -time algorithm with c < 2

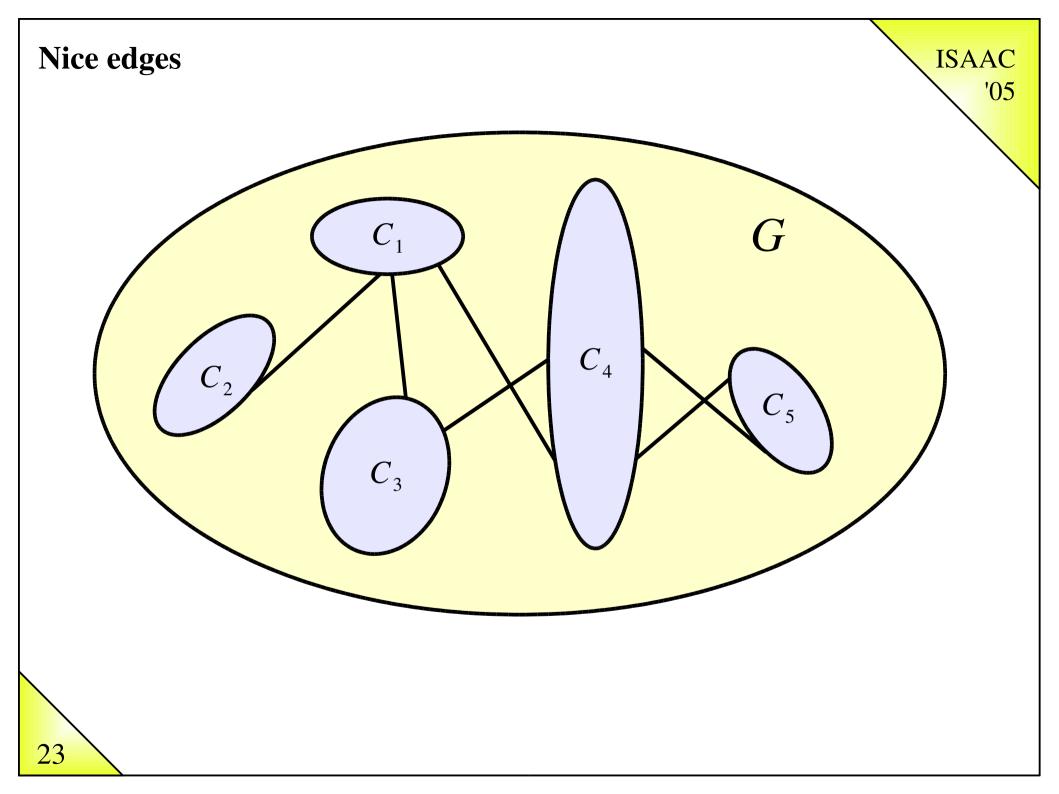
Result: $1.9999996^k \cdot poly(k)$ -time algorithm



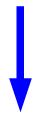




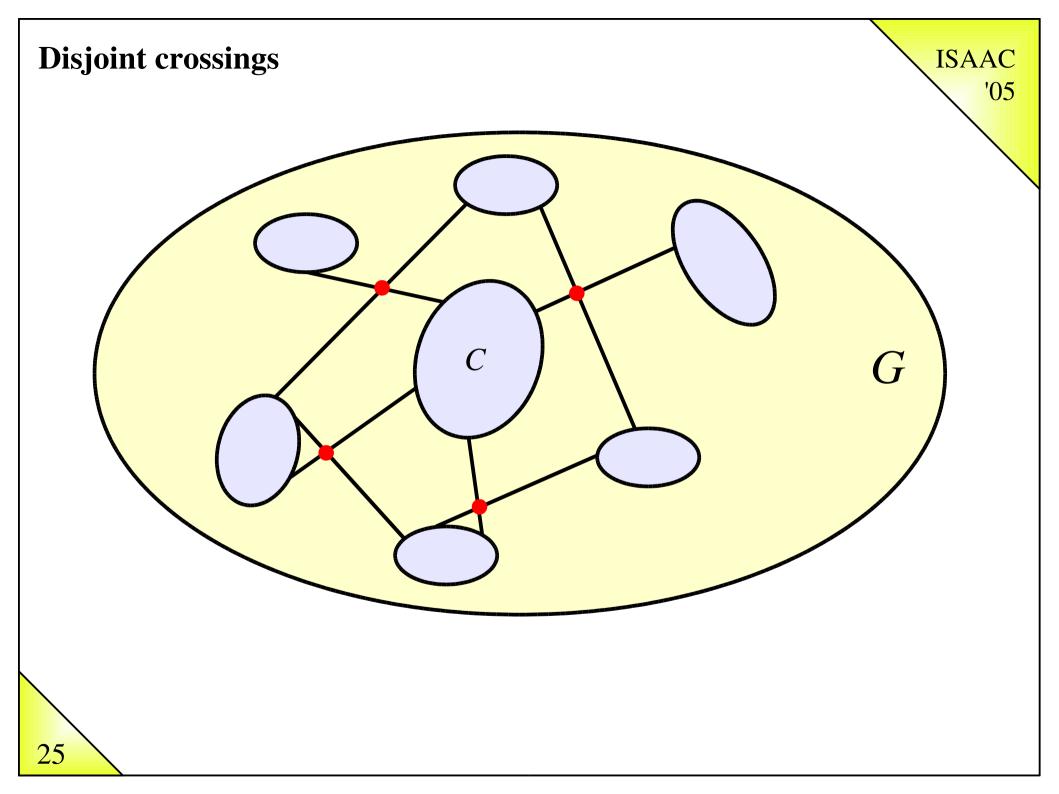


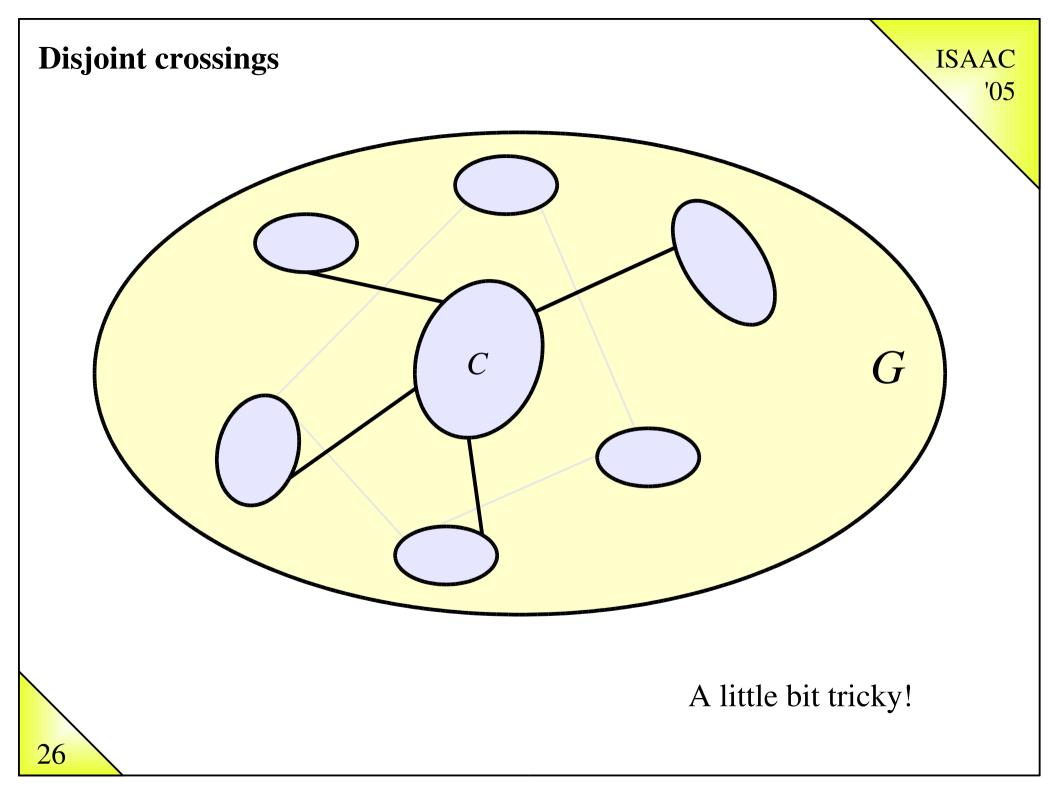


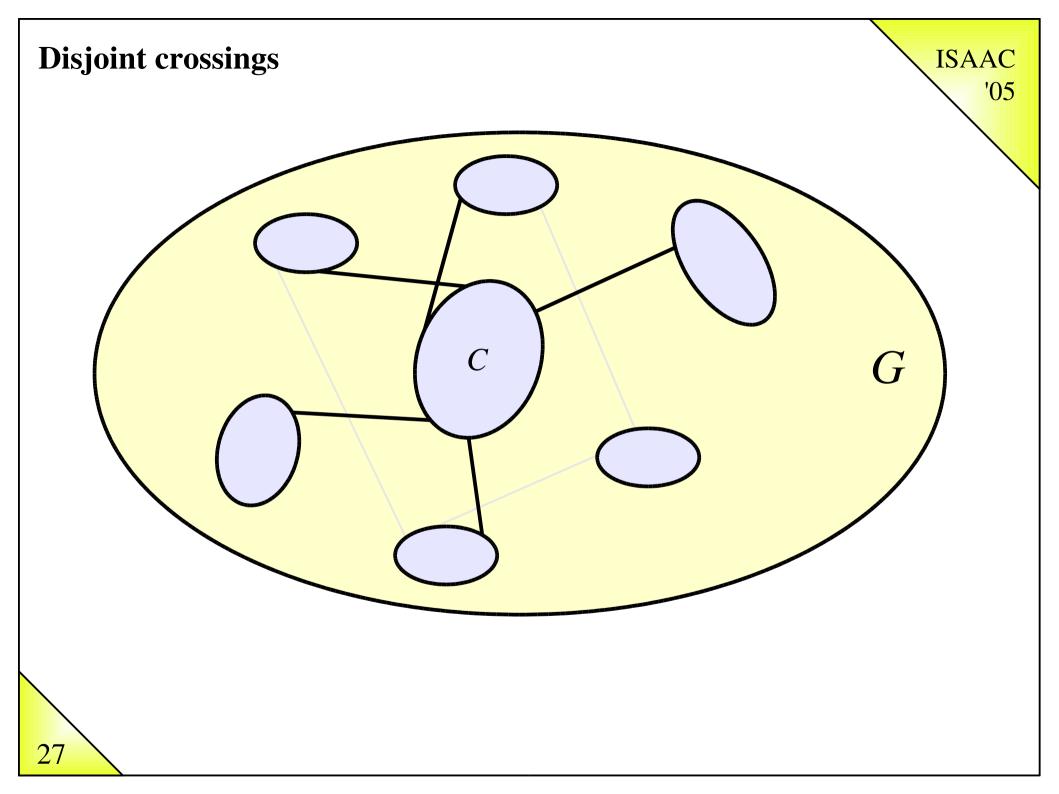
Recurrence: $T(k) \le 2T(k-z)$ with $z \ge 2$



 $\sqrt{2}^k \cdot poly(k)$ -time algorithm







Case 1:

Many components — Component with few incident edges.

Case 2:

Few components

Few edges suffice to build a spanning tree.

- \blacksquare approximation factor in o(k)
- faster fixed-parameter algorithms:

$$c^k \cdot poly(k)$$

- other parameters
- further similar problems
- implementation and evaluation

ISAAC '05

Thank You