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Def. The'm-dimensional affine cover number J2H] is
the minimum number of m-dimensional planes in R?
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weak m(G)
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weak m(G)
Def. The'm-dimensional affine cover number oA is
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Notation

Linear vertex arboricity Iva(G) of a graph G:
smallest size r of a partition of V(G)= Vi U---UV,

such that every V; induces a linear forest.

K, G

lva(Ky) = 2 lva(G) =3

Treewidth tw(G) of a graph G:

upper bound 3-tree

tw(G) < k start
if G is a subgraph of a k-tree. with

lower bound

tw(G) > mindeg(G).
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Motivation

W% How large can it be?

Q: Is the m3-value unbounded for some graph families?

Yes!
° tW(G,') =5

e maxdeg(G;) < 12
W%(Gi) > n0-01
New!
o tw(G;) =3
maxdeg(G;) = 6
m5(Gi) € 2(log n;)
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Why?
maximum degree treewidth 2D weak line
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Short proof

Consider the graph H;11,1 =1,2,3,....

In each step
+1 line

'

W%(G,) >+ 1

Hit1

l [ni =20-3'"1 — 4]

m3(G;) € 2(log n;)
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Open problems

Problem 1

How small can we make the maximum degree in a family of
planar graphs such that their m3-value is still unbounded?

Problem 2

Does the class of treewidth-2 graphs have constant m3-value?

Problem 3
Is it NP-hard to compute m3(G) for a given graph G?

Yes, by reduction from (a restricted version of) Level Planarity.
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