Parameterized Approaches to Orthogonal Compaction

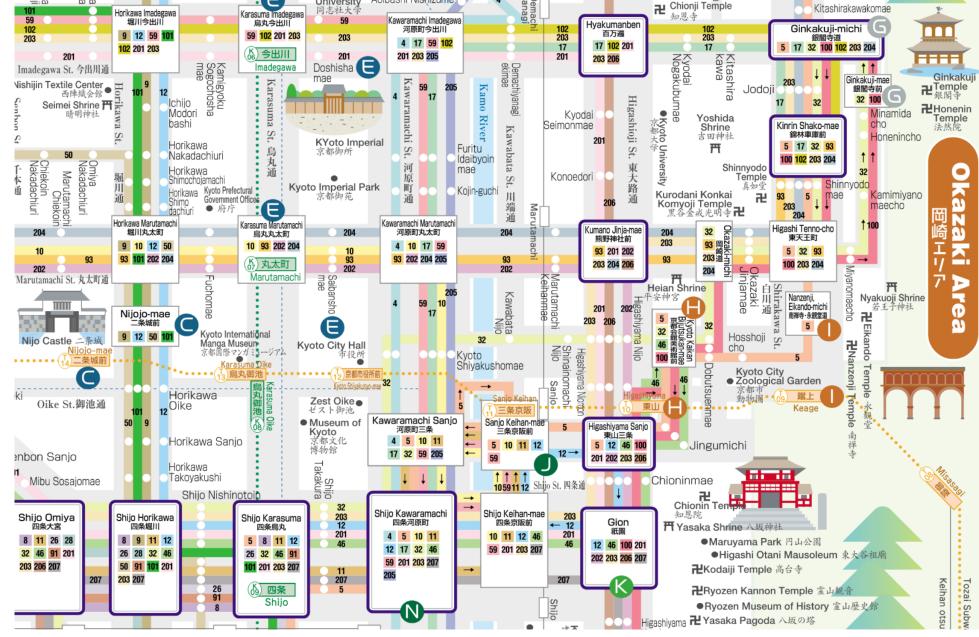
Walter Didimo
Giuseppe Liotta

Siddharth Gupta P *Alexander Wolff*

Philipp Kindermann Meirav Zehavi

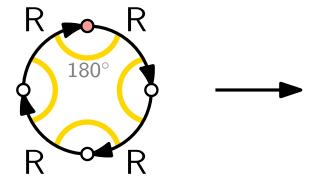
SOFSEM 2023

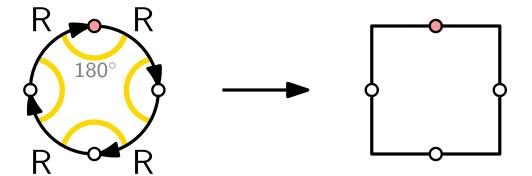
Orthogonal Graph Drawing

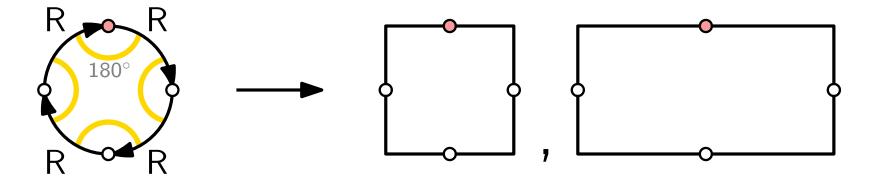


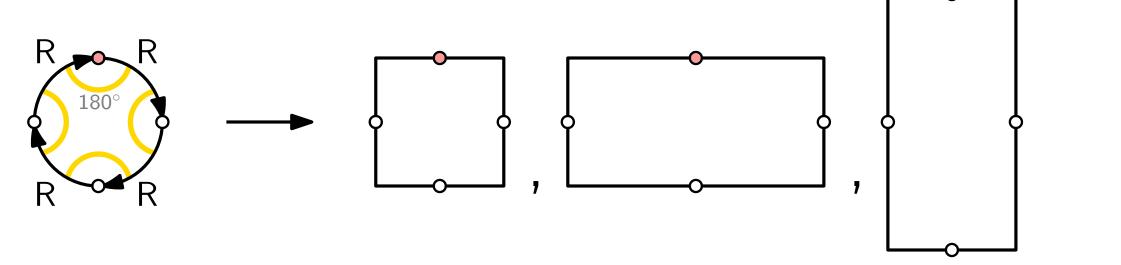
Kyoto Transportation Authority (c) 2008

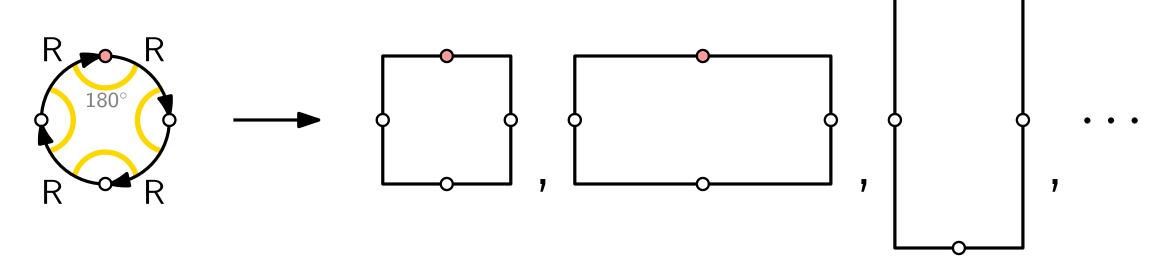
University AUIDGOIII I VIOLIIZUIIIC Chionji Temple Kitashirakawakomae Orthogonal Graph Drawing Horikawa Imadegawa Kawaramachi Imadegawa 烏丸今出川 -Hyakumanber Ginkakuji-michi 102 203 9 12 59 101 59 102 201 203 銀閣寺道 5 17 32 100 102 203 204 4 17 59 102 17 102 201 102 201 203 (権) 今出川 201 203 205 203 206 Doshisha (E Imadegawa St. 今出川通 Ginkaku Ginkakuji-mae ₹Temple 銀閣寺 Jodoji 銀閣寺前 32 100 Seimei Shrine 开 kawa 晴明神社 **H**Onenin Modori Kyodai Yoshida Shrine bashi Kinrin Shako-mae 錦林車庫前 Honenincho 吉田神社 5 17 32 93 Idaibyoin 100 102 203 204 Customer «enumeration» Konoedori CustomerType CRM ID (id) Kojin-guch Kurodani Konkai type: CustomerType Individual Komyoji Temple 黑谷金戒光明寺 卍 端通 maecho description: String [0..1] Company Entitlement ligashi Tenno-cho (umano Jinja-ma EID: String {id} type: EntitlementType 93 201 202 5 32 93 203 置字 startDate: Date 93 202 203 204 206 100 203 204 endDate: Date [0..1] neverExpires: Boolean = true Heian Shrine Nanzenji, Eikando-michi 南禅寺·永観堂道 comments: String [0..1] Nyakuoji Shrine Individual Company firstName: String name: String «enumeration» lastName: String phone: String [0..1] Hosshoji EntitlementType middleName: String [0..1] fax: String [0..1] Kyoto Shiyakushomae email: String Hardware Key Kyoto City Zoological Garden phone: String [0..1] Product Key locale: String [0..1] = "English" Protection Key Update Sanjo Sanjo Keihan-mae Higashiyama Sanjo Contact 三条京阪前 東山三条 Details Jingumich firstName: String **Batch Code** street: String [0..1] 201 202 203 206 lastName: String billing billing city: String [0..1] middleName: String [0..1] id: String (id, id.size() = 5) postalCode: String [0..1] Chionin Temph 知思院 email: String shipping shipping state: String [0..1] locale: String [0..1] = "English" country: String [0..1] Shijo Keihan-mae 开Yasaka Shrine 八坂神社 201 10 11 12 46 ●Maruyama Park 円山公園 12 46 100 201 59 201 203 207 ●Higashi Otani Mausoleum 東大谷祖廟 202 203 206 207 «enumeration» 卍Kodaiji Temple 高台寺 LockingType * {ordered, unique} features {ordered, unique} 卍Ryozen Kannon Temple 霊山観音 ●Ryozen Museum of History 霊山歴史館 Product SL-AdminMode associatedFeature Feature 卍Yasaka Pagoda 八坂の塔 SL-UserMode id: Integer {id} HL or SL-AdminMode id: Integer {id} name: String {name.size() <= 50} HL or SL (AdminMode or UserMode) Kyoto Transportation Authority (c) 2008 name: String {name.size() <= 50} lockingType: LockingType provisionalProduct description: String [0..1] rehost: Rehost description: String [0..1] «enumeration» Rehost {ordered, baseProduct products unique} Enable Disable Specify at entitlement time Dragon1 as UML Diagram Tool: www.dragon1.com

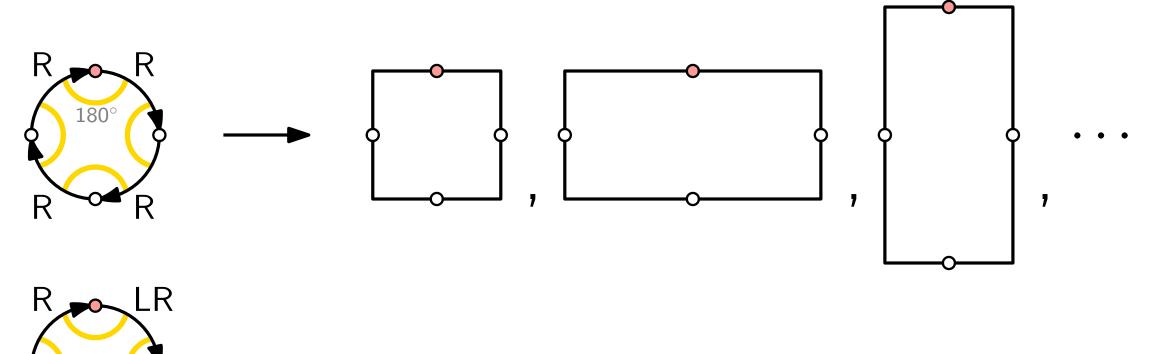


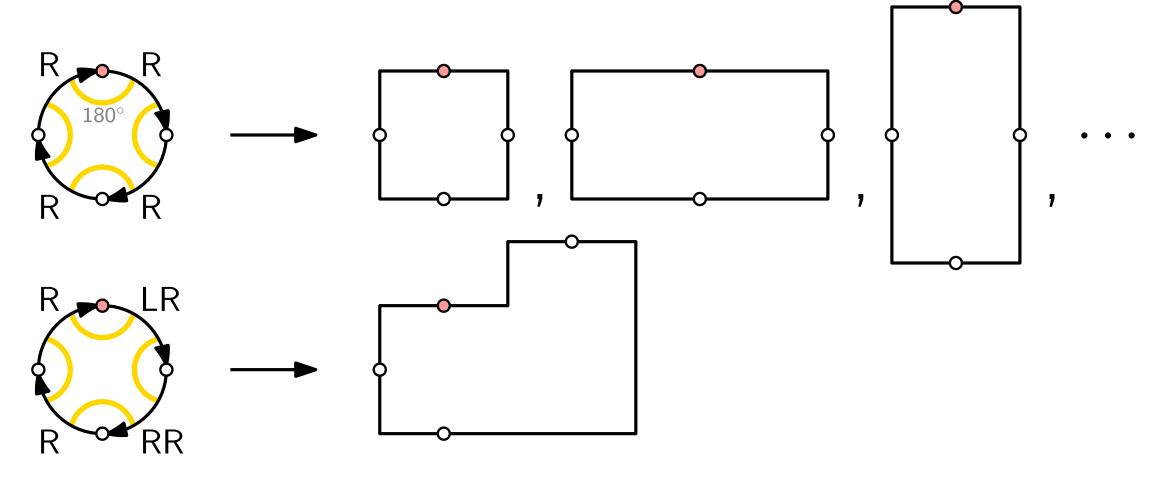


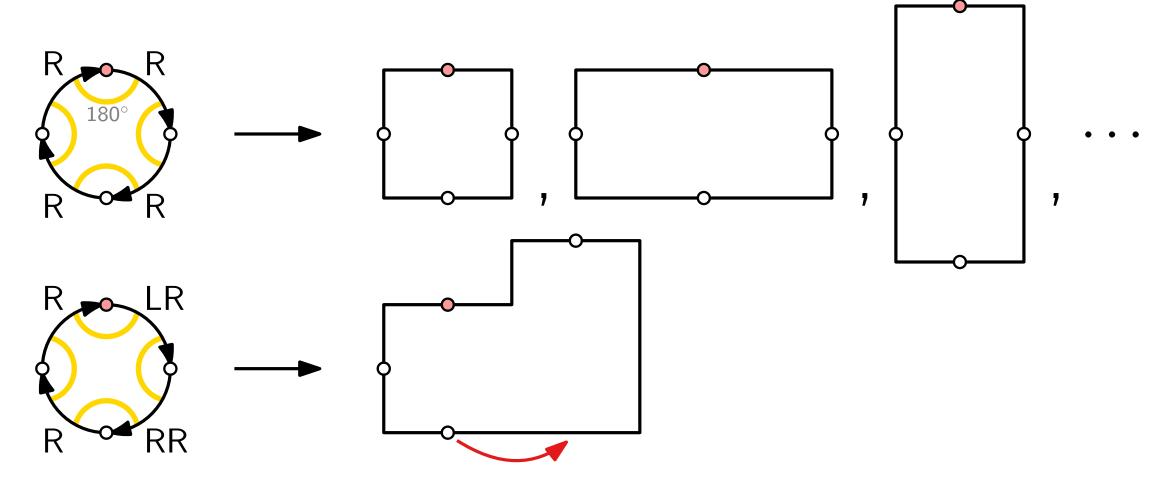


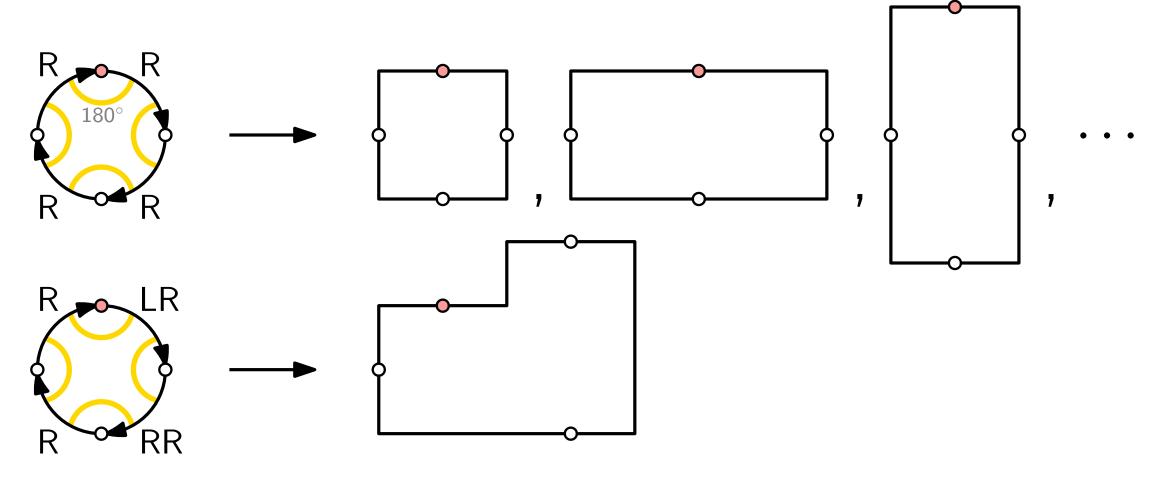


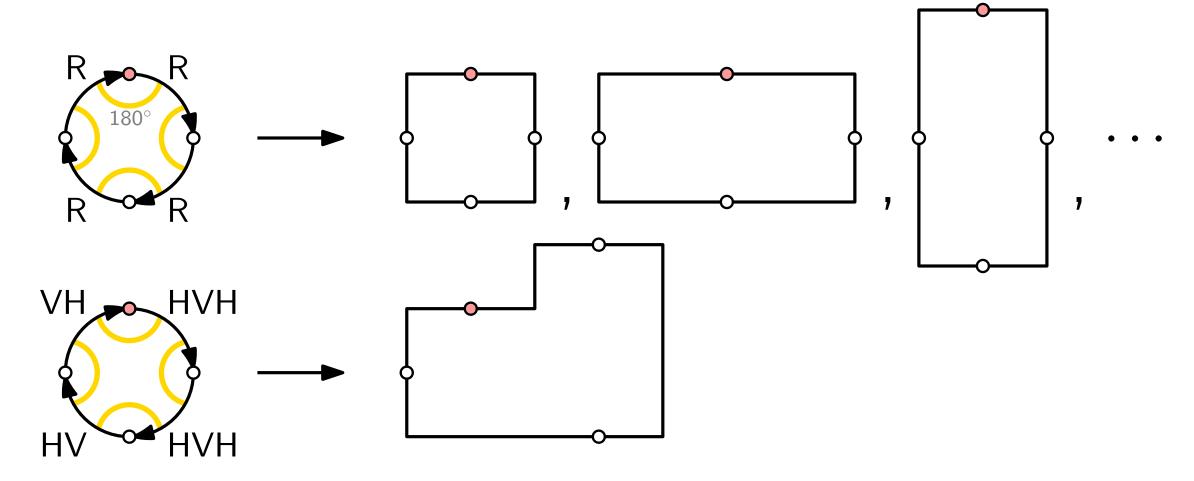












■ Tamassia's seminal work [SIAM J Comp 1987]: Given *embedded* graph of max-degree 4, can compute orthogonal representation with minimum number of bends (via flow netw.).

- Tamassia's seminal work [SIAM J Comp 1987]: Given *embedded* graph of max-degree 4, can compute orthogonal representation with minimum number of bends (via flow netw.).
- Orthogonal Compaction (OC) is NP-hard. In other words: Given an orthogonal representation R, it is NP-hard to find a minimum-area drawing of R. [Patrignani: CGTA 2001]

- Tamassia's seminal work [SIAM J Comp 1987]: Given *embedded* graph of max-degree 4, can compute orthogonal representation with minimum number of bends (via flow netw.).
- Orthogonal Compaction (OC) is NP-hard. In other words: Given an orthogonal representation R, it is NP-hard to find a minimum-area drawing of R. [Patrignani: CGTA 2001]

Even if the given graph is just a cycle :-([Evans, Fleszar, Kindermann, Saeedi, Shin, Wolff: CGTA 2022]

- Tamassia's seminal work [SIAM J Comp 1987]: Given *embedded* graph of max-degree 4, can compute orthogonal representation with minimum number of bends (via flow netw.).
- Orthogonal Compaction (OC) is NP-hard. In other words:

 Given an orthogonal representation R, it is NP-hard to find a minimum-area drawing of R.

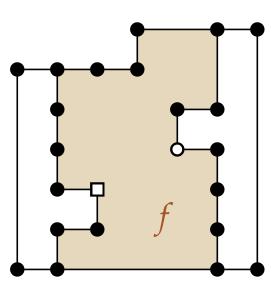
 [Patrignani: CGTA 2001]
- Even if the given graph is just a cycle :-([Evans, Fleszar, Kindermann, Saeedi, Shin, Wolff: CGTA 2022]

Cycles have pathwidth (and treewidth) 2, so cannot expect FPT algorithm for OC w.r.t. these parameters :-(

What's so hard about OC then??

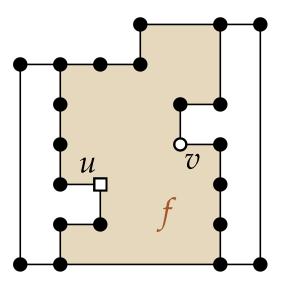
What's so hard about OC then??

Let f be a face of G.



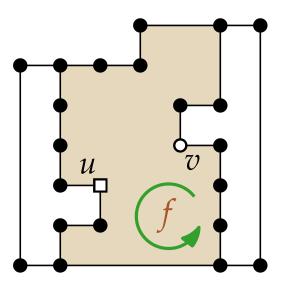
What's so hard about OC then??

Let f be a face of G. Let u and v be two reflex vertices of f.



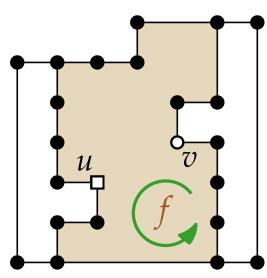
What's so hard about OC then??

Let f be a face of G. Let u and v be two reflex vertices of f. We direct f ccw iff f is internal.



What's so hard about OC then??

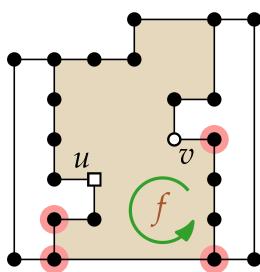
Let f be a face of G. Let u and v be two reflex vertices of f. We direct f ccw iff f is internal. rot(u,v):=# convex corners -# reflex corners on ∂f from u (included) to v (excluded); a reflex vertex of degree 1 is counted like two reflex vertices.



What's so hard about OC then??

Let f be a face of G. Let u and v be two reflex vertices of f. We direct f ccw iff f is internal.

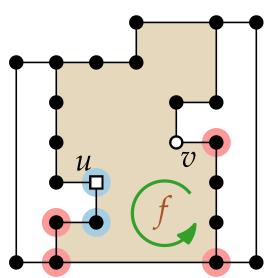
 $rot(u, v) := \# convex corners - \# reflex corners on <math>\partial f$ from u (included) to v (excluded); a reflex vertex of degree 1 is counted like two reflex vertices.



What's so hard about OC then??

Let f be a face of G. Let u and v be two reflex vertices of f. We direct f ccw iff f is internal.

 $rot(u, v) := \# convex corners - \# reflex corners on <math>\partial f$ from u (included) to v (excluded); a reflex vertex of degree 1 is counted like two reflex vertices.

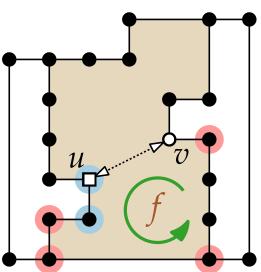


What's so hard about OC then??

Let f be a face of G. Let u and v be two reflex vertices of f. We direct f ccw iff f is internal.

 $rot(u, v) := \# convex corners - \# reflex corners on <math>\partial f$ from u (included) to v (excluded); a reflex vertex of degree 1 is counted like two reflex vertices.

We say that $\{u, v\}$ is a *pair of kitty corners* of f if rot(u, v) = 2 or rot(v, u) = 2.

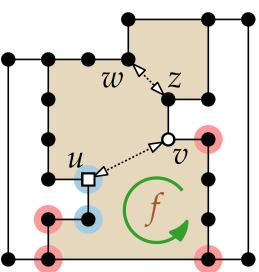


What's so hard about OC then??

Let f be a face of G. Let u and v be two reflex vertices of f. We direct f ccw iff f is internal.

 $rot(u, v) := \# convex corners - \# reflex corners on <math>\partial f$ from u (included) to v (excluded); a reflex vertex of degree 1 is counted like two reflex vertices.

We say that $\{u, v\}$ is a *pair of kitty corners* of f if rot(u, v) = 2 or rot(v, u) = 2.

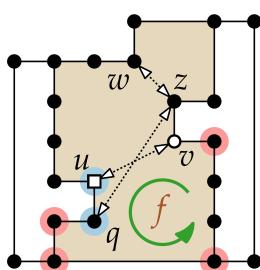


What's so hard about OC then??

Let f be a face of G. Let u and v be two reflex vertices of f. We direct f ccw iff f is internal.

 $rot(u, v) := \# convex corners - \# reflex corners on <math>\partial f$ from u (included) to v (excluded); a reflex vertex of degree 1 is counted like two reflex vertices.

We say that $\{u, v\}$ is a *pair of kitty corners* of f if rot(u, v) = 2 or rot(v, u) = 2.



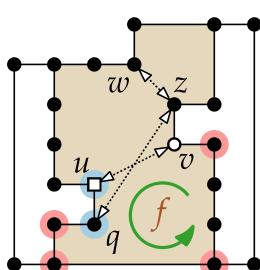
What's so hard about OC then??

Let f be a face of G. Let u and v be two reflex vertices of f. We direct f ccw iff f is internal.

 $rot(u, v) := \# convex corners - \# reflex corners on <math>\partial f$ from u (included) to v (excluded); a reflex vertex of degree 1 is counted like two reflex vertices.

We say that $\{u, v\}$ is a *pair of kitty corners* of f if rot(u, v) = 2 or rot(v, u) = 2.

A vertex is a *kitty corner* if it is part of a pair of kitty corners.



What's so hard about OC then??

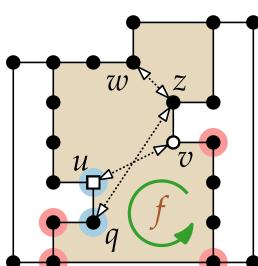
Let f be a face of G. Let u and v be two reflex vertices of f. We direct f ccw iff f is internal.

 $rot(u, v) := \# convex corners - \# reflex corners on <math>\partial f$ from u (included) to v (excluded); a reflex vertex of degree 1 is counted like two reflex vertices.

We say that $\{u, v\}$ is a *pair of kitty corners* of f if rot(u, v) = 2 or rot(v, u) = 2.

A vertex is a *kitty corner* if it is part of a pair of kitty corners.

An orthogonal representation R is turn-regular if R has no kitty corners.



What's so hard about OC then??

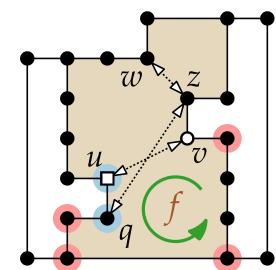
Let f be a face of G. Let u and v be two reflex vertices of f. We direct f ccw iff f is internal.

 $rot(u, v) := \# convex corners - \# reflex corners on <math>\partial f$ from u (included) to v (excluded); a reflex vertex of degree 1 is counted like two reflex vertices.

We say that $\{u, v\}$ is a *pair of kitty corners* of f if rot(u, v) = 2 or rot(v, u) = 2.

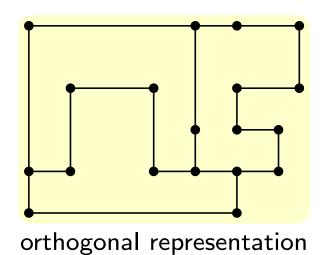
A vertex is a *kitty corner* if it is part of a pair of kitty corners.

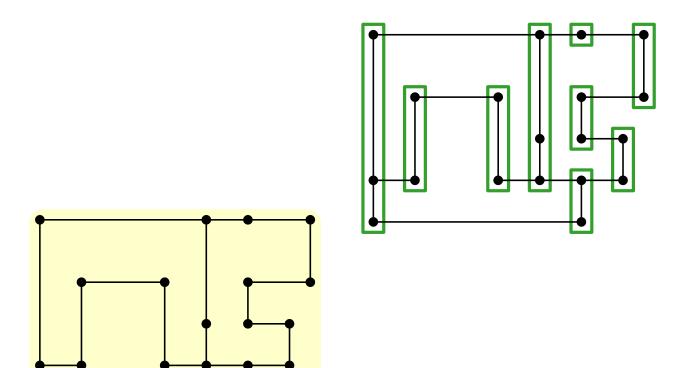
An orthogonal representation R is turn-regular if R has no kitty corners.



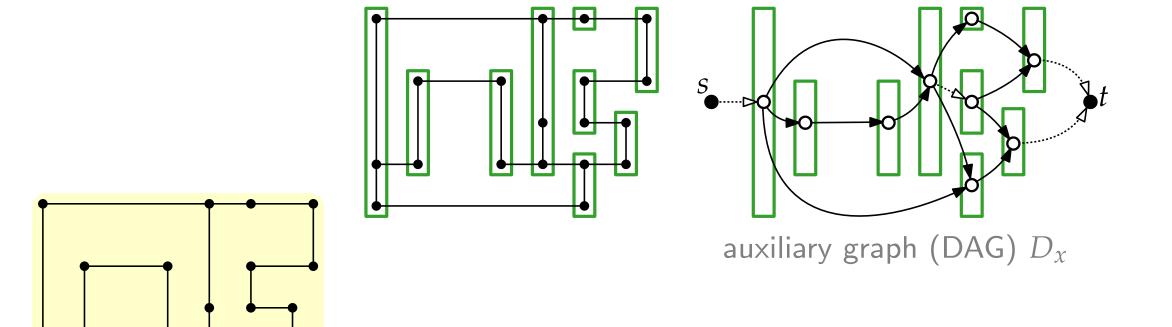
Theorem. If R is turn-regular, a min-area drawing of R can be computed in linear time.

[Bridgeman, Di Battista, Didimo, Liotta, Tamassia, Vismara: CGTA 2000]

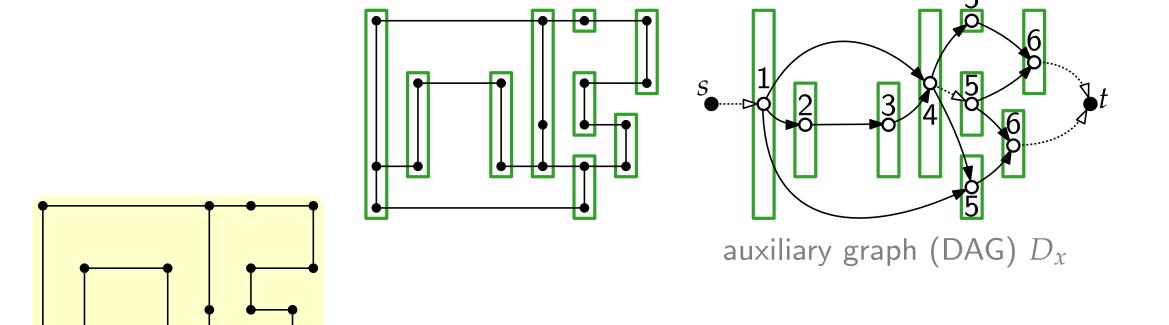




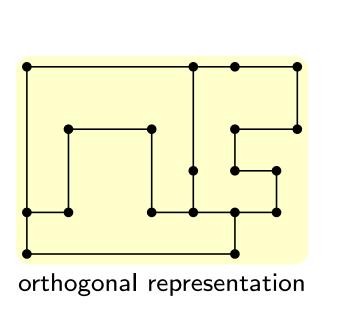
orthogonal representation

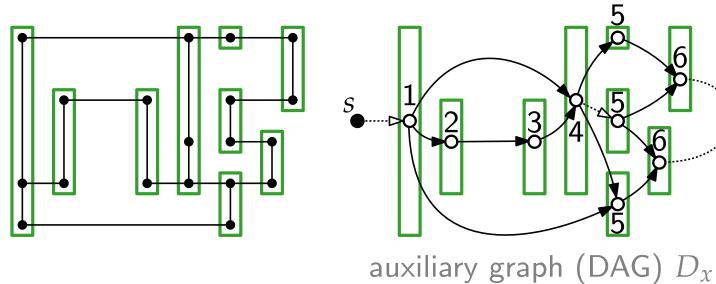


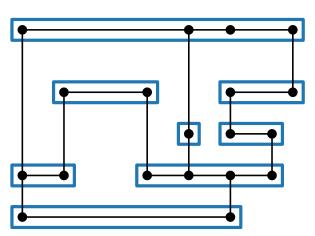
orthogonal representation

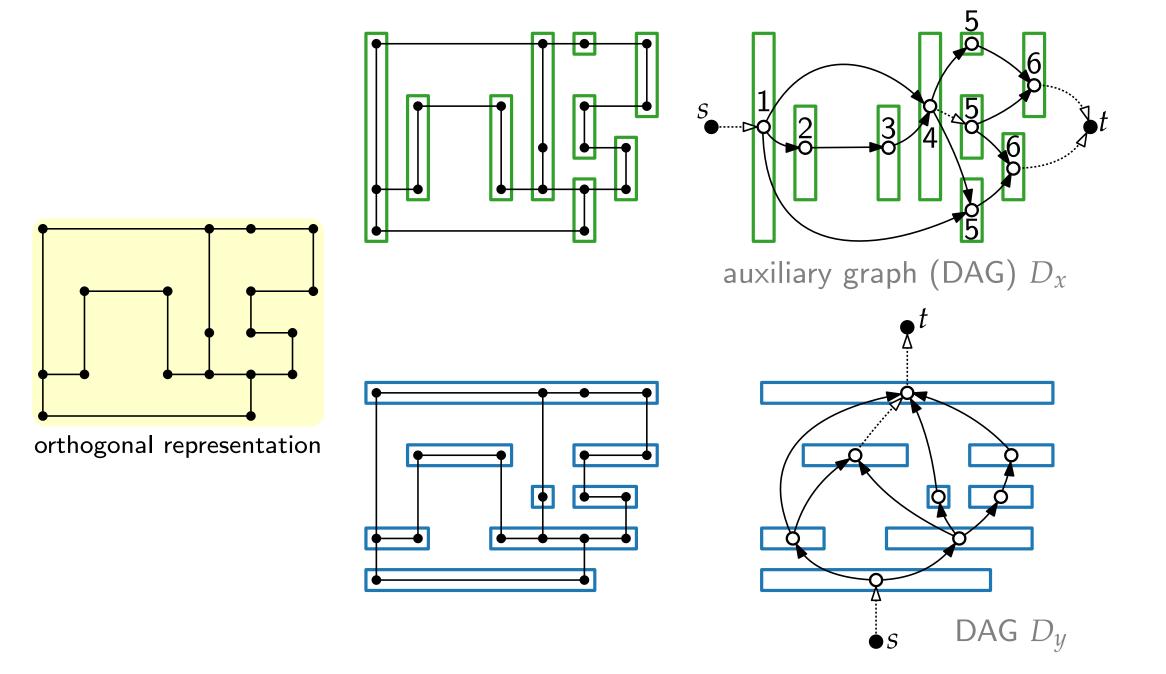


orthogonal representation

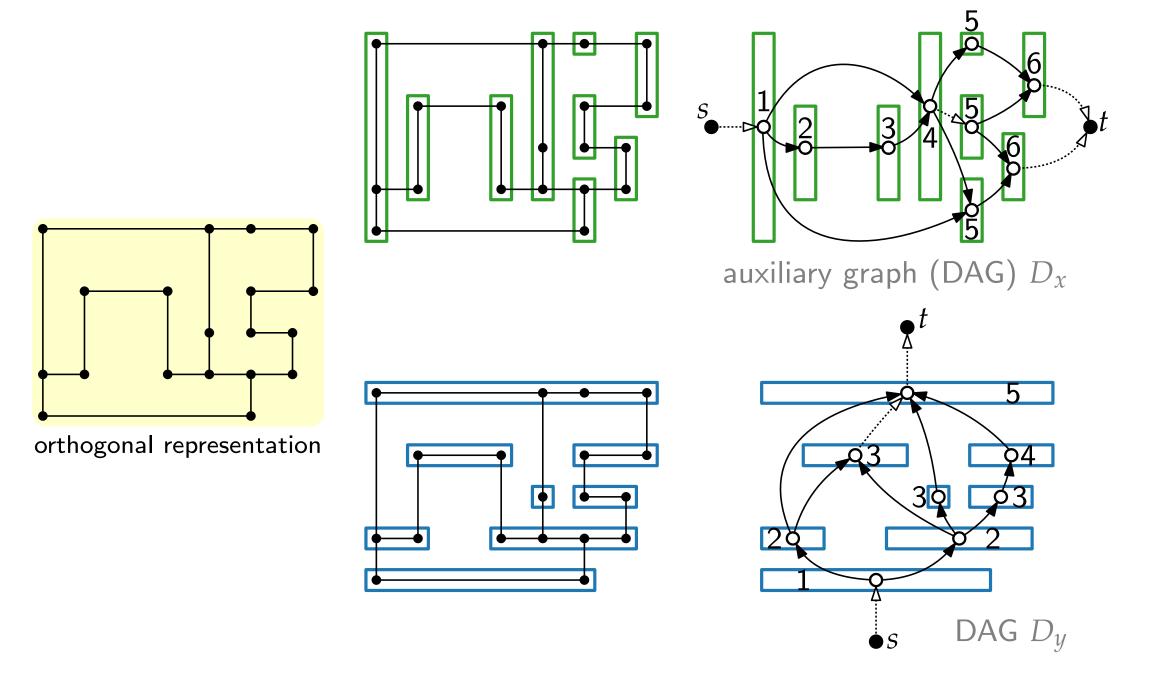




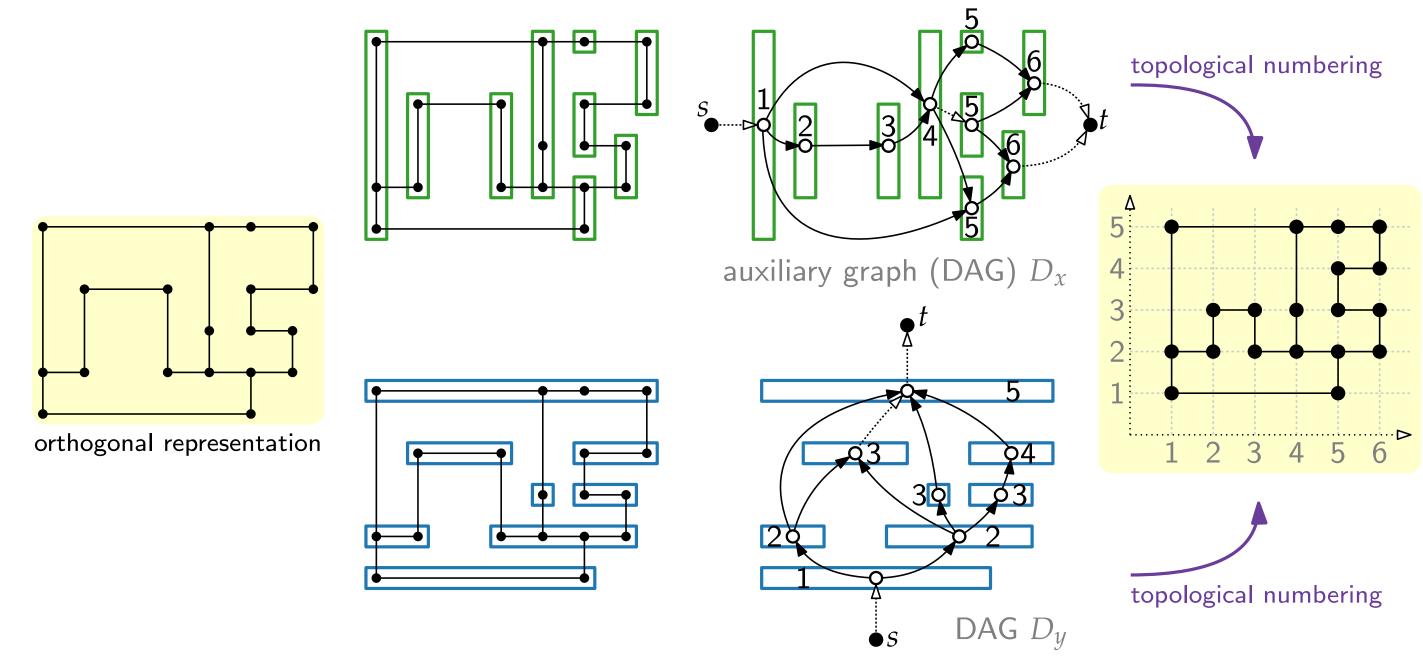




Drawing Turn-Regular Representations Optimally



Drawing Turn-Regular Representations Optimally



■ Number of kitty corners: (the number of vertices involved in some pair of kitty corners)

■ **Number of kitty corners:** (the number of vertices involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*

■ **Number of kitty corners:** (the number of vertices involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*

Number of faces:

- **Number of kitty corners:** (the number of vertices involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*
- Number of faces: OC is para-NP-hard when parametrized by the number of faces.

- **Number of kitty corners:** (the number of vertices involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*
- **Number of faces:** OC is para-NP-hard when parametrized by the number of faces. For *one* face (cycle), we show the *existence of a polynomial kernel for OC*. when parametrized by the number of kitty corners.

- **Number of kitty corners:** (the number of vertices involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*
- **Number of faces:** OC is para-NP-hard when parametrized by the number of faces. For *one* face (cycle), we show the *existence of a polynomial kernel for OC*. when parametrized by the number of kitty corners.
- Maximum face-degree:

- **Number of kitty corners:** (the number of vertices involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*
- Number of faces: OC is para-NP-hard when parametrized by the number of faces. For one face (cycle), we show the existence of a polynomial kernel for OC. when parametrized by the number of kitty corners.
- Maximum face-degree: The reductions of Patrignani & Evans et al. use linear-size faces.

- **Number of kitty corners:** (the number of vertices involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*
- **Number of faces:** OC is para-NP-hard when parametrized by the number of faces. For *one* face (cycle), we show the *existence of a polynomial kernel for OC*. when parametrized by the number of kitty corners.
- Maximum face-degree: The reductions of Patrignani & Evans et al. use linear-size faces. We show: *OC remains NP-hard when parametrized by maximum face degree.*

- **Number of kitty corners:** (the number of vertices involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*
- **Number of faces:** OC is para-NP-hard when parametrized by the number of faces. For *one* face (cycle), we show the *existence of a polynomial kernel for OC*. when parametrized by the number of kitty corners.
- Maximum face-degree: The reductions of Patrignani & Evans et al. use linear-size faces. We show: *OC remains NP-hard when parametrized by maximum face degree.*
- Height:

- **Number of kitty corners:** (the number of vertices involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*
- Number of faces: OC is para-NP-hard when parametrized by the number of faces. For *one* face (cycle), we show the *existence of a polynomial kernel for OC*. when parametrized by the number of kitty corners.
- Maximum face-degree: The reductions of Patrignani & Evans et al. use linear-size faces. We show: OC remains NP-hard when parametrized by maximum face degree.
- **Height:** (minimum number of distinct y-coordinates required to draw the representation)

- **Number of kitty corners:** (the number of vertices involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*
- **Number of faces:** OC is para-NP-hard when parametrized by the number of faces. For *one* face (cycle), we show the *existence of a polynomial kernel for OC*. when parametrized by the number of kitty corners.
- Maximum face-degree: The reductions of Patrignani & Evans et al. use linear-size faces. We show: OC remains NP-hard when parametrized by maximum face degree.
- **Height:** (minimum number of distinct y-coordinates required to draw the representation) A $(w \times h)$ -grid has pathwidth at most h.

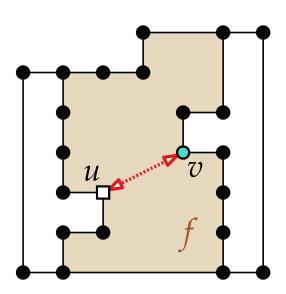
- **Number of kitty corners:** (the number of vertices involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*
- **Number of faces:** OC is para-NP-hard when parametrized by the number of faces. For *one* face (cycle), we show the *existence of a polynomial kernel for OC*. when parametrized by the number of kitty corners.
- Maximum face-degree: The reductions of Patrignani & Evans et al. use linear-size faces. We show: OC remains NP-hard when parametrized by maximum face degree.
- **Height:** (minimum number of distinct y-coordinates required to draw the representation) A $(w \times h)$ -grid has pathwidth at most h.
 - ⇒ Graphs of bounded height have bounded pathwidth.

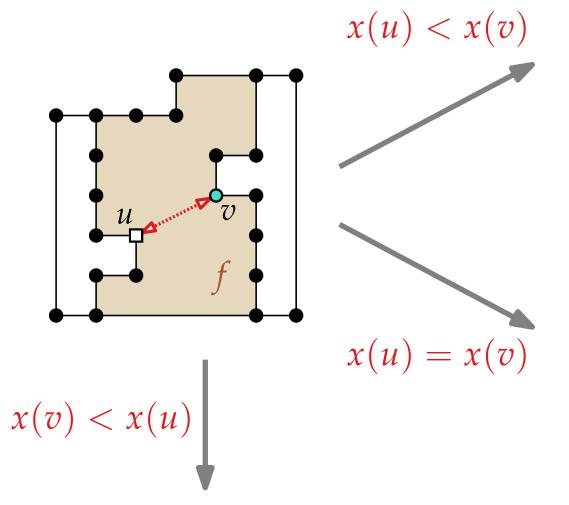
- **Number of kitty corners:** (the number of vertices involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*
- **Number of faces:** OC is para-NP-hard when parametrized by the number of faces. For *one* face (cycle), we show the *existence of a polynomial kernel for OC*. when parametrized by the number of kitty corners.
- Maximum face-degree: The reductions of Patrignani & Evans et al. use linear-size faces. We show: OC remains NP-hard when parametrized by maximum face degree.
- **Height:** (minimum number of distinct y-coordinates required to draw the representation) A $(w \times h)$ -grid has pathwidth at most h.
 - ⇒ Graphs of bounded height have bounded pathwidth. But converse generally not true.

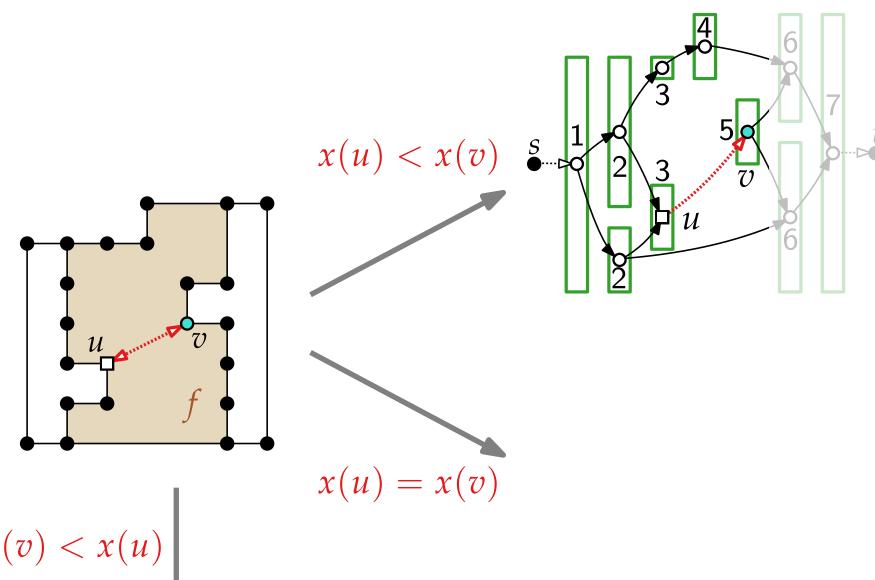
- **Number of kitty corners:** (the number of vertices involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*
- **Number of faces:** OC is para-NP-hard when parametrized by the number of faces. For *one* face (cycle), we show the *existence of a polynomial kernel for OC*. when parametrized by the number of kitty corners.
- Maximum face-degree: The reductions of Patrignani & Evans et al. use linear-size faces. We show: *OC remains NP-hard when parametrized by maximum face degree.*
- **Height:** (minimum number of distinct y-coordinates required to draw the representation) A $(w \times h)$ -grid has pathwidth at most h.
 - ⇒ Graphs of bounded height have bounded pathwidth. But converse generally not true. We show: *OC admits an XP algorithm parametrized by height.*

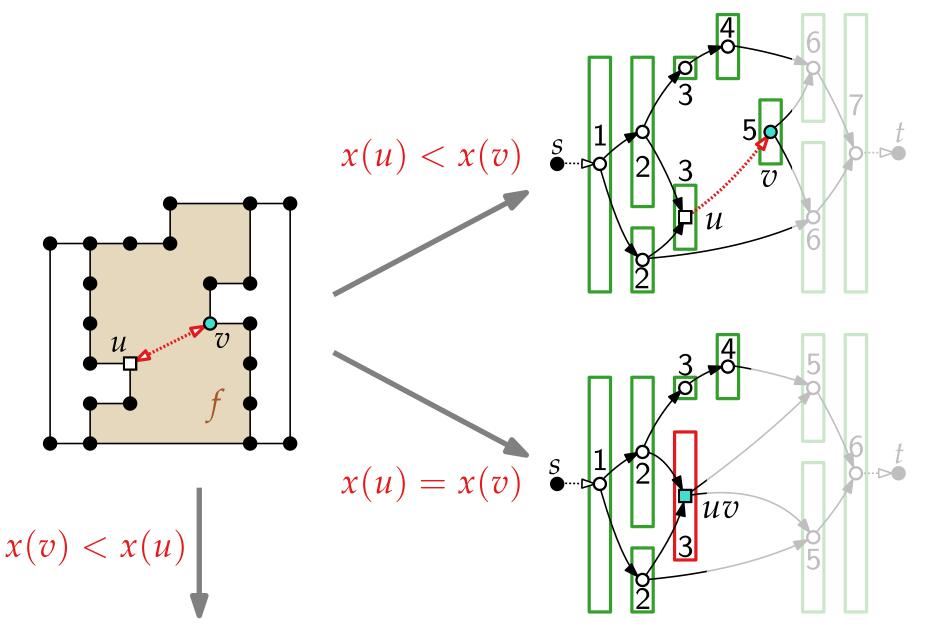
- **Number of kitty corners:** (the number of vertices involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*
- **Number of faces:** OC is para-NP-hard when parametrized by the number of faces. For *one* face (cycle), we show the *existence of a polynomial kernel for OC*. when parametrized by the number of kitty corners.
- Maximum face-degree: The reductions of Patrignani & Evans et al. use linear-size faces. We show: OC remains NP-hard when parametrized by maximum face degree.
- **Height:** (minimum number of distinct y-coordinates required to draw the representation) A $(w \times h)$ -grid has pathwidth at most h.
 - ⇒ Graphs of bounded height have bounded pathwidth. But converse generally not true. We show: *OC admits an XP algorithm parametrized by height*. (Just a DP, left to right.)

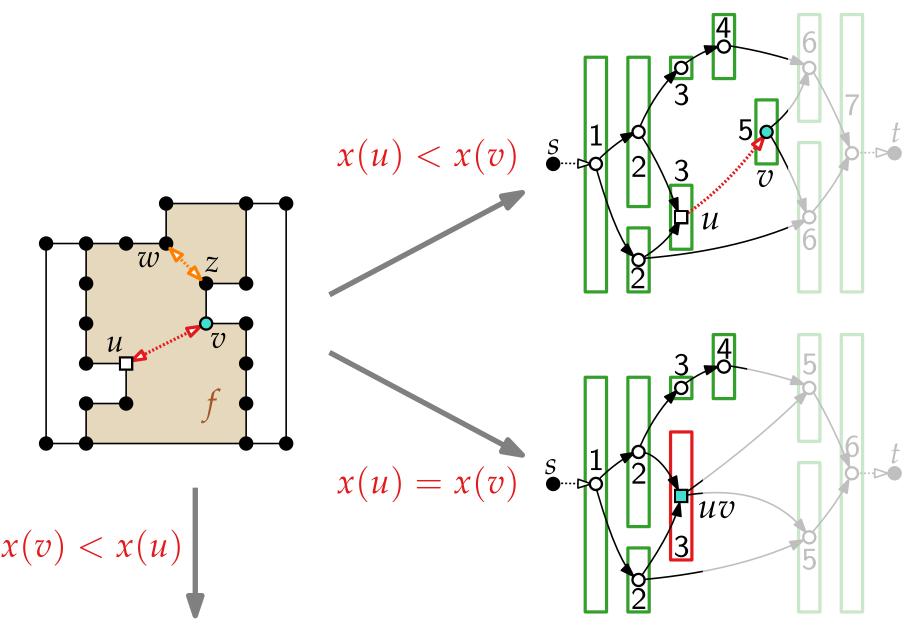
- Number of kitty corners: (the number of vertices involved in some pair of kitty corners)
 We show: OC admits an FPT algorithm parametrized by the number of kitty corners.
- **Number of faces:** OC is para-NP-hard when parametrized by the number of faces. For *one* face (cycle), we show the *existence of a polynomial kernel for OC*. when parametrized by the number of kitty corners.
- Maximum face-degree: The reductions of Patrignani & Evans et al. use linear-size faces. We show: *OC remains NP-hard when parametrized by maximum face degree.*
- **Height:** (minimum number of distinct y-coordinates required to draw the representation) A $(w \times h)$ -grid has pathwidth at most h.
 - ⇒ Graphs of bounded height have bounded pathwidth. But converse generally not true. We show: *OC admits an XP algorithm parametrized by height.* (Just a DP, left to right.)

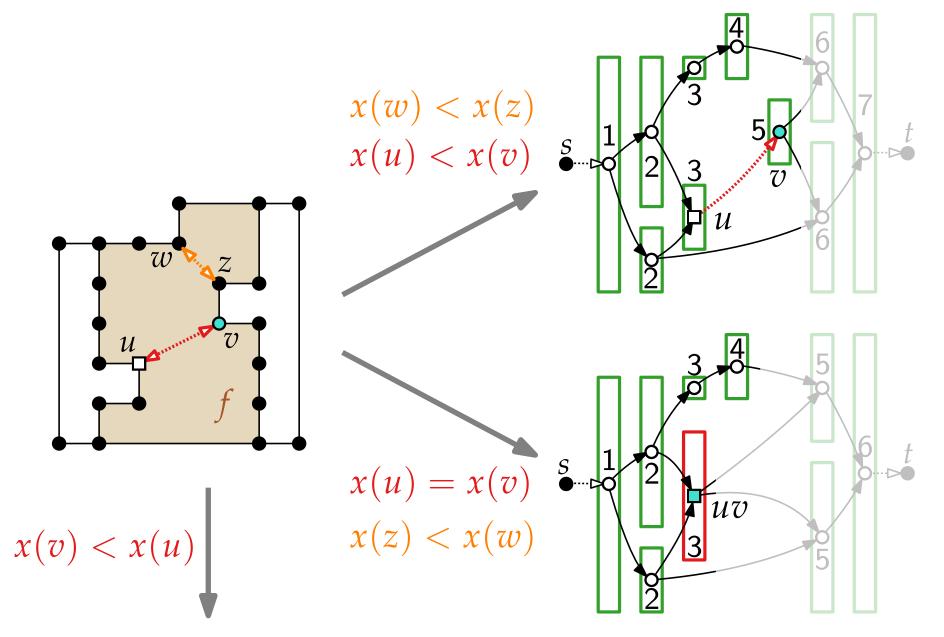


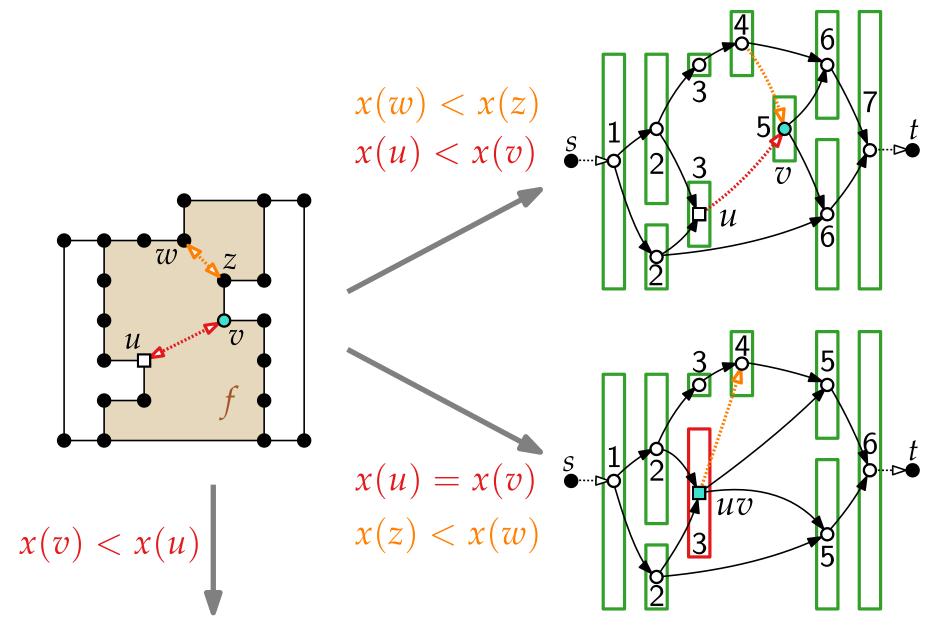


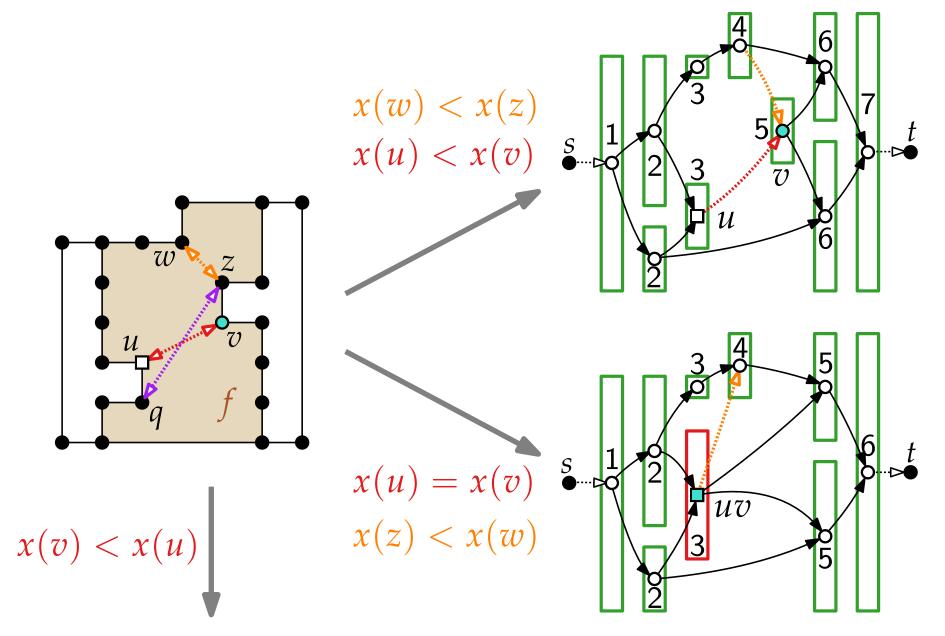




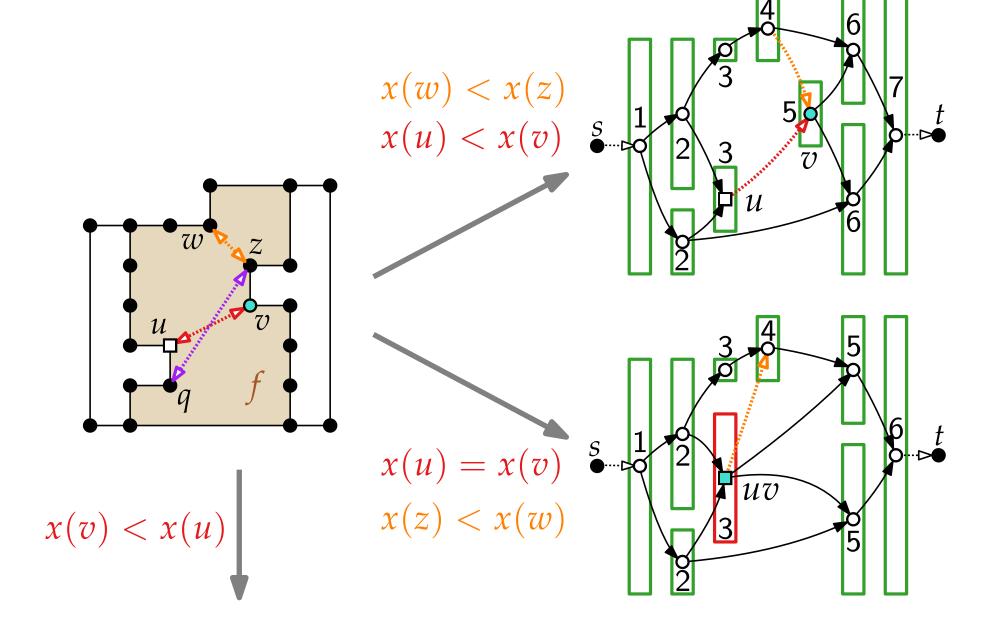








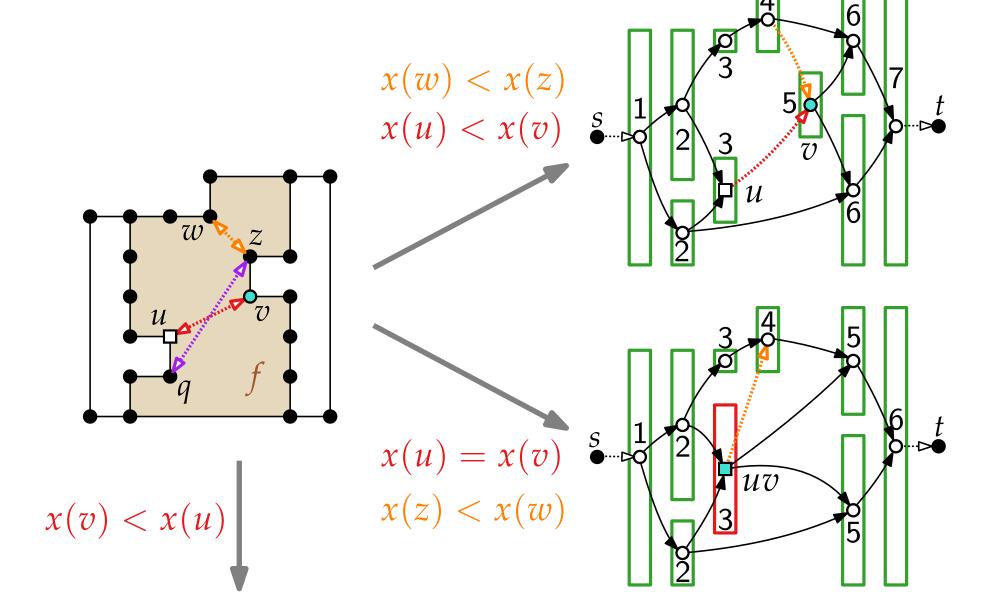
Idea: For each (?) pair $\{u, v\}$ of kitty corners, guess whether $x(u) \leq x(v)$ and $y(u) \leq y(v)$.



Question:

Do we need to deal with $\{q, z\}$ analogously?

Idea: For each (?) pair $\{u, v\}$ of kitty corners, guess whether $x(u) \leq x(v)$ and $y(u) \leq y(v)$.



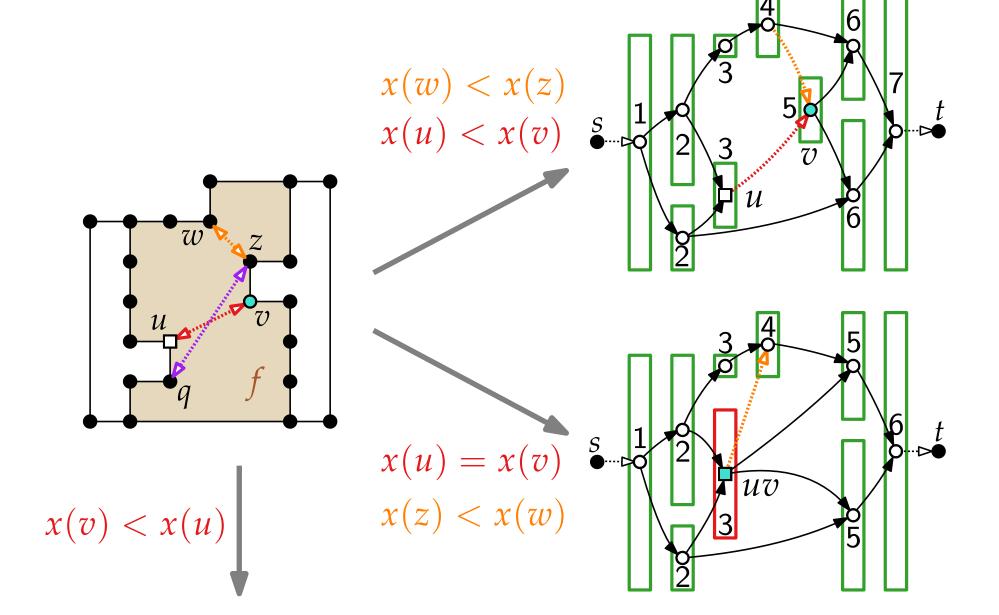
Question:

Do we need to deal with $\{q, z\}$ analogously?

Answer:

No, doesn't add new information.

Idea: For each (?) pair $\{u, v\}$ of kitty corners, guess whether $x(u) \leq x(v)$ and $y(u) \leq y(v)$.



Question:

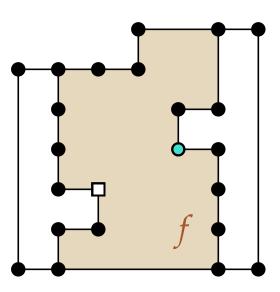
Do we need to deal with $\{q, z\}$ analogously?

Answer:

No, doesn't add new information.

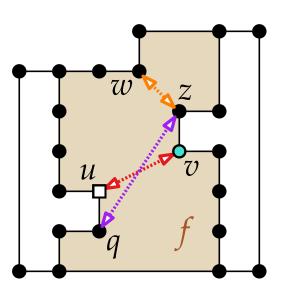
Thus:

Suffices to consider a maximal planar subset of the set K_f of "kitty corner edges" of f.

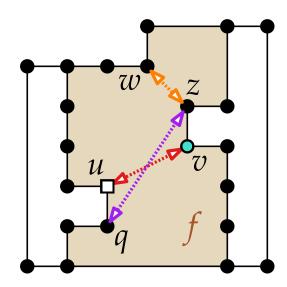


Let f be a face of the given orthogonal representation of G.

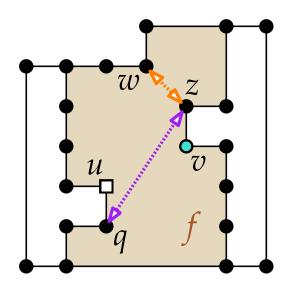
Let K_f be the set of kitty corner edges in f.



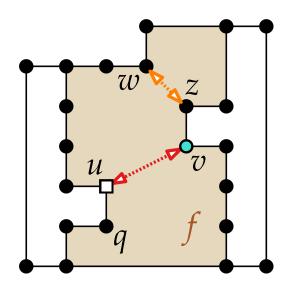
- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.



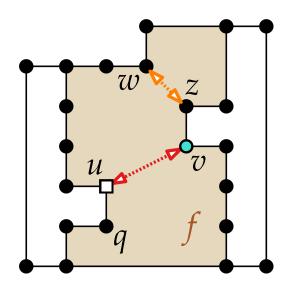
- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.



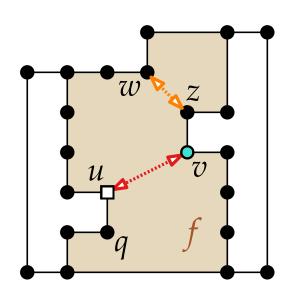
- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.



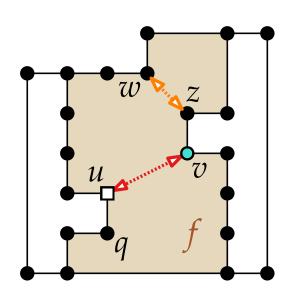
- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.
- For each element $p = (p_1, ..., p_F)$ of \mathcal{P} , let E_p be the corresponding set of edges.



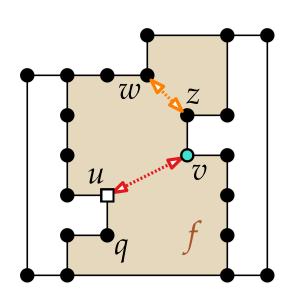
- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.
- For each element $p = (p_1, ..., p_F)$ of \mathcal{P} , let E_p be the corresponding set of edges.
 - For each edge $\{u,v\}$ in E_p , try adding each of $x(u) \leq x(v)$ and $y(u) \leq y(v)$ to D_x/D_y .



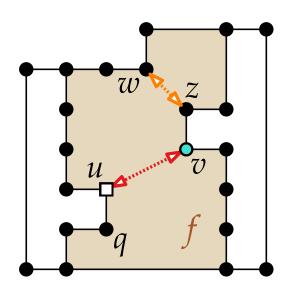
- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.
- For each element $p = (p_1, ..., p_F)$ of \mathcal{P} , let E_p be the corresponding set of edges.
 - For each edge $\{u,v\}$ in E_p , try adding each of $x(u) \leq x(v)$ and $y(u) \leq y(v)$ to D_x/D_y .
 - Let $\mathcal{D}_x/\mathcal{D}_y$ be the resulting sets of DAGs. For each combination $(D_x, D_y) \in \mathcal{D}_x \times \mathcal{D}_y$:



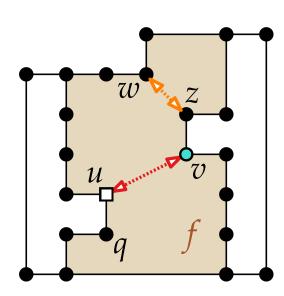
- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.
- For each element $p = (p_1, ..., p_F)$ of \mathcal{P} , let E_p be the corresponding set of edges.
 - For each edge $\{u,v\}$ in E_p , try adding each of $x(u) \leq x(v)$ and $y(u) \leq y(v)$ to D_x/D_y .
 - Let $\mathcal{D}_x/\mathcal{D}_y$ be the resulting sets of DAGs. For each combination $(D_x, D_y) \in \mathcal{D}_x \times \mathcal{D}_y$:
 - Run the algorithm for the turn-regular case.



- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.
- For each element $p = (p_1, ..., p_F)$ of \mathcal{P} , let E_p be the corresponding set of edges.
 - For each edge $\{u,v\}$ in E_p , try adding each of $x(u) \leq x(v)$ and $y(u) \leq y(v)$ to D_x/D_y .
 - Let $\mathcal{D}_x/\mathcal{D}_y$ be the resulting sets of DAGs. For each combination $(D_x, D_y) \in \mathcal{D}_x \times \mathcal{D}_y$:
 - Run the algorithm for the turn-regular case.
 - If the resulting drawing does not self-intersect, measure its area.



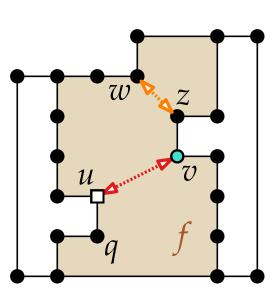
- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.
- For each element $p = (p_1, ..., p_F)$ of \mathcal{P} , let E_p be the corresponding set of edges.
 - For each edge $\{u,v\}$ in E_p , try adding each of $x(u) \leq x(v)$ and $y(u) \leq y(v)$ to D_x/D_y .
 - Let $\mathcal{D}_x/\mathcal{D}_y$ be the resulting sets of DAGs. For each combination $(D_x, D_y) \in \mathcal{D}_x \times \mathcal{D}_y$:
 - Run the algorithm for the turn-regular case.
 - If the resulting drawing does not self-intersect, measure its area.
- Return the drawing of minimum area.



Let f be a face of the given orthogonal representation of G.

- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.
- For each element $p = (p_1, ..., p_F)$ of \mathcal{P} , let E_p be the corresponding set of edges.
 - For each edge $\{u,v\}$ in E_p , try adding each of $x(u) \leq x(v)$ and $y(u) \leq y(v)$ to D_x/D_y .
 - Let $\mathcal{D}_x/\mathcal{D}_y$ be the resulting sets of DAGs. For each combination $(D_x, D_y) \in \mathcal{D}_x \times \mathcal{D}_y$:
 - Run the algorithm for the turn-regular case.
 - If the resulting drawing does not self-intersect, measure its area.
- Return the drawing of minimum area.

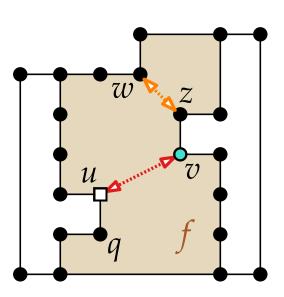
Runtime: Let $k_f = \#$ kitty corners in face f.



Let f be a face of the given orthogonal representation of G.

- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.
- For each element $p = (p_1, ..., p_F)$ of \mathcal{P} , let E_p be the corresponding set of edges.
 - For each edge $\{u,v\}$ in E_p , try adding each of $x(u) \leq x(v)$ and $y(u) \leq y(v)$ to D_x/D_y .
 - Let $\mathcal{D}_x/\mathcal{D}_y$ be the resulting sets of DAGs. For each combination $(D_x, D_y) \in \mathcal{D}_x \times \mathcal{D}_y$:
 - Run the algorithm for the turn-regular case.
 - If the resulting drawing does not self-intersect, measure its area.
- Return the drawing of minimum area.

Runtime: Let $k_f = \#$ kitty corners in face f. # maximal planar subsets of $K_f =$

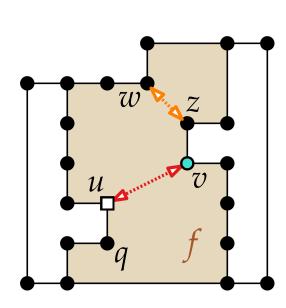


Let f be a face of the given orthogonal representation of G.

- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.
- For each element $p = (p_1, ..., p_F)$ of \mathcal{P} , let E_p be the corresponding set of edges.
 - For each edge $\{u,v\}$ in E_p , try adding each of $x(u) \leq x(v)$ and $y(u) \leq y(v)$ to D_x/D_y .
 - Let $\mathcal{D}_x/\mathcal{D}_y$ be the resulting sets of DAGs. For each combination $(D_x, D_y) \in \mathcal{D}_x \times \mathcal{D}_y$:
 - Run the algorithm for the turn-regular case.
 - If the resulting drawing does not self-intersect, measure its area.
- Return the drawing of minimum area.

Runtime: Let $k_f = \#$ kitty corners in face f.

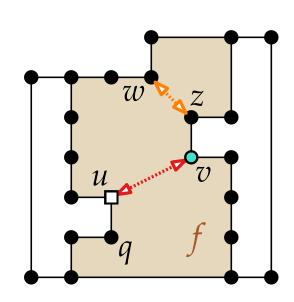
maximal planar subsets of $K_f=\#$ outerplanar graphs on k_f vertices



Let f be a face of the given orthogonal representation of G.

- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.
- For each element $p = (p_1, ..., p_F)$ of \mathcal{P} , let E_p be the corresponding set of edges.
 - For each edge $\{u,v\}$ in E_p , try adding each of $x(u) \leq x(v)$ and $y(u) \leq y(v)$ to D_x/D_y .
 - Let $\mathcal{D}_x/\mathcal{D}_y$ be the resulting sets of DAGs. For each combination $(D_x, D_y) \in \mathcal{D}_x \times \mathcal{D}_y$:
 - Run the algorithm for the turn-regular case.
 - If the resulting drawing does not self-intersect, measure its area.
- Return the drawing of minimum area.

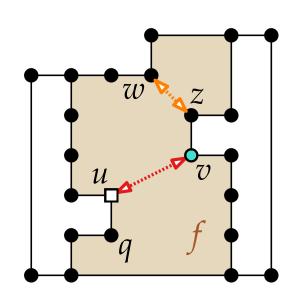
Runtime: Let $k_f = \#$ kitty corners in face f. # maximal planar subsets of $K_f = \#$ outerplanar graphs on k_f vertices $< 2^{2k_f-3}$



Let f be a face of the given orthogonal representation of G.

- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.
- For each element $p = (p_1, ..., p_F)$ of \mathcal{P} , let E_p be the corresponding set of edges.
 - For each edge $\{u,v\}$ in E_p , try adding each of $x(u) \leq x(v)$ and $y(u) \leq y(v)$ to D_x/D_y .
 - Let $\mathcal{D}_x/\mathcal{D}_y$ be the resulting sets of DAGs. For each combination $(D_x, D_y) \in \mathcal{D}_x \times \mathcal{D}_y$:
 - Run the algorithm for the turn-regular case.
 - If the resulting drawing does not self-intersect, measure its area.
- Return the drawing of minimum area.

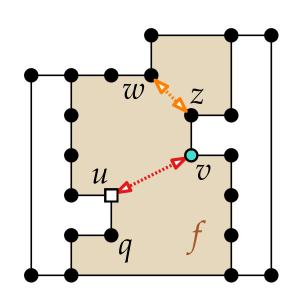
Runtime: Let $k_f=\#$ kitty corners in face f. # maximal planar subsets of $K_f=\#$ outerplanar graphs on k_f vertices $<2^{2k_f-3}<4^{k_f}$



Let f be a face of the given orthogonal representation of G.

- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.
- For each element $p = (p_1, ..., p_F)$ of \mathcal{P} , let E_p be the corresponding set of edges.
 - For each edge $\{u,v\}$ in E_p , try adding each of $x(u) \leq x(v)$ and $y(u) \leq y(v)$ to D_x/D_y .
 - Let $\mathcal{D}_x/\mathcal{D}_y$ be the resulting sets of DAGs. For each combination $(D_x, D_y) \in \mathcal{D}_x \times \mathcal{D}_y$:
 - Run the algorithm for the turn-regular case.
 - If the resulting drawing does not self-intersect, measure its area.
- Return the drawing of minimum area.

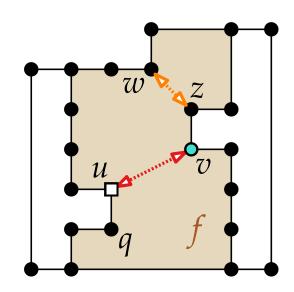
Runtime: Let $k_f = \#$ kitty corners in face f. # maximal planar subsets of $K_f = \#$ outerplanar graphs on k_f vertices $\leq 2^{2k_f-3} < 4^{k_f} \implies \#$ augmentations for the whole graph: $\Pi_f 4^{k_f}$



Let f be a face of the given orthogonal representation of G.

- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.
- For each element $p = (p_1, ..., p_F)$ of \mathcal{P} , let E_p be the corresponding set of edges.
 - For each edge $\{u,v\}$ in E_p , try adding each of $x(u) \leq x(v)$ and $y(u) \leq y(v)$ to D_x/D_y .
 - Let $\mathcal{D}_x/\mathcal{D}_y$ be the resulting sets of DAGs. For each combination $(D_x, D_y) \in \mathcal{D}_x \times \mathcal{D}_y$:
 - Run the algorithm for the turn-regular case.
 - If the resulting drawing does not self-intersect, measure its area.
- Return the drawing of minimum area.

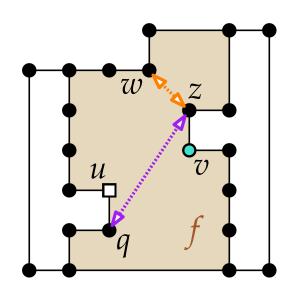
Runtime: Let $k_f = \#$ kitty corners in face f. # maximal planar subsets of $K_f = \#$ outerplanar graphs on k_f vertices $\leq 2^{2k_f-3} < 4^{k_f} \implies \#$ augmentations for the whole graph: $\Pi_f 4^{k_f} \leq 4^k$.



Let f be a face of the given orthogonal representation of G.

- Let K_f be the set of kitty corner edges in f.
- Let \mathcal{P}_f be the set of maximal planar subsets of K_f . Let $\mathcal{P} = \Pi_f \mathcal{P}_f$.
- For each element $p = (p_1, ..., p_F)$ of \mathcal{P} , let E_p be the corresponding set of edges.
 - For each edge $\{u,v\}$ in E_p , try adding each of $x(u) \leq x(v)$ and $y(u) \leq y(v)$ to D_x/D_y .
 - Let $\mathcal{D}_x/\mathcal{D}_y$ be the resulting sets of DAGs. For each combination $(D_x, D_y) \in \mathcal{D}_x \times \mathcal{D}_y$:
 - Run the algorithm for the turn-regular case.
 - If the resulting drawing does not self-intersect, measure its area.
- Return the drawing of minimum area.

Runtime: Let $k_f = \#$ kitty corners in face f. # maximal planar subsets of $K_f = \#$ outerplanar graphs on k_f vertices $\leq 2^{2k_f-3} < 4^{k_f} \implies \#$ augmentations for the whole graph: $\Pi_f 4^{k_f} \leq 4^k$.



maximal planar subsets of $K_f=$

maximal planar subsets of $K_f=\#$ outerplanar graphs on k_f vertices

maximal planar subsets of $K_f=\#$ outerplanar graphs on k_f vertices $<4^{k_f}$.

```
\# maximal planar subsets of K_f=\# outerplanar graphs on k_f vertices <4^{k_f}. \# augmentations for the whole graph \le4^k
```

maximal planar subsets of $K_f=\#$ outerplanar graphs on k_f vertices < 4 k_f .

augmentations for the whole graph $\leq 4^k$

Each augmentation consists of $\leq \sum_{f} 2k_f - 3 \leq 2k$ kitty corner edges.

maximal planar subsets of $K_f=\#$ outerplanar graphs on k_f vertices < 4 k_f .

augmentations for the whole graph $\leq 4^k$

Each augmentation consists of $\leq \sum_{f} 2k_{f} - 3 \leq 2k$ kitty corner edges.

For each such edge, we have 3 possibilities to define D_x and 3 to define D_y .

maximal planar subsets of $K_f=\#$ outerplanar graphs on k_f vertices < 4 k_f .

augmentations for the whole graph $\leq 4^k$

Each augmentation consists of $\leq \sum_{f} 2k_{f} - 3 \leq 2k$ kitty corner edges.

For each such edge, we have 3 possibilities to define D_x and 3 to define D_y .

$$\Rightarrow |\mathcal{D}_{x} \times \mathcal{D}_{y}| \leq 3^{2k} \cdot 3^{2k} = 3^{4k} = 81^{k}.$$

maximal planar subsets of $K_f=\#$ outerplanar graphs on k_f vertices $<4^{k_f}$.

augmentations for the whole graph $\leq 4^k$

Each augmentation consists of $\leq \sum_{f} 2k_{f} - 3 \leq 2k$ kitty corner edges.

For each such edge, we have 3 possibilities to define D_x and 3 to define D_y .

$$\Rightarrow |\mathcal{D}_{x} \times \mathcal{D}_{y}| \leq 3^{2k} \cdot 3^{2k} = 3^{4k} = 81^{k}.$$

Total running time = # augmentations $\cdot |\mathcal{D}_x \times \mathcal{D}_y|$ · self-intersection check

maximal planar subsets of $K_f=\#$ outerplanar graphs on k_f vertices < 4 k_f .

augmentations for the whole graph $\leq 4^k$

Each augmentation consists of $\leq \sum_{f} 2k_{f} - 3 \leq 2k$ kitty corner edges.

For each such edge, we have 3 possibilities to define D_x and 3 to define D_y .

$$\Rightarrow |\mathcal{D}_x \times \mathcal{D}_y| \leq 3^{2k} \cdot 3^{2k} = 3^{4k} = 81^k.$$

Total running time = # augmentations $|\mathcal{D}_x \times \mathcal{D}_y|$ self-intersection check

maximal planar subsets of $K_f=\#$ outerplanar graphs on k_f vertices < 4 k_f .

augmentations for the whole graph $\leq 4^k$

Each augmentation consists of $\leq \sum_{f} 2k_f - 3 \leq 2k$ kitty corner edges.

For each such edge, we have 3 possibilities to define D_x and 3 to define D_y .

$$\Rightarrow |\mathcal{D}_x \times \mathcal{D}_y| \leq 3^{2k} \cdot 3^{2k} = 3^{4k} = 81^k.$$

Total running time = # augmentations $|\mathcal{D}_x \times \mathcal{D}_y|$ self-intersection check

$$\leq 324^k \cdot O(n \log n)$$

maximal planar subsets of $K_f=\#$ outerplanar graphs on k_f vertices $<4^{k_f}$.

augmentations for the whole graph $\leq 4^k$

Each augmentation consists of $\leq \sum_{f} 2k_{f} - 3 \leq 2k$ kitty corner edges.

For each such edge, we have 3 possibilities to define D_x and 3 to define D_y .

$$\Rightarrow |\mathcal{D}_x \times \mathcal{D}_y| \leq 3^{2k} \cdot 3^{2k} = 3^{4k} = 81^k.$$

Total running time = # augmentations $|\mathcal{D}_x \times \mathcal{D}_y|$ self-intersection check

$$\leq 324^k \cdot O(n \log n)$$

by a sweep-line algorithm, but we think that O(n) suffices.

maximal planar subsets of $K_f=\#$ outerplanar graphs on k_f vertices $<4^{k_f}$.

augmentations for the whole graph $\leq 4^k$

Each augmentation consists of $\leq \sum_{f} 2k_{f} - 3 \leq 2k$ kitty corner edges.

For each such edge, we have 3 possibilities to define D_x and 3 to define D_y .

$$\Rightarrow |\mathcal{D}_x \times \mathcal{D}_y| \leq 3^{2k} \cdot 3^{2k} = 3^{4k} = 81^k.$$

Total running time = # augmentations $|\mathcal{D}_x \times \mathcal{D}_y|$ self-intersection check

$$\leq 324^k \cdot O(n \log n)$$

 $\leq 324^k \cdot O(n \log n)$ by a sweep-line algorithm, but we think that O(n) suffices.

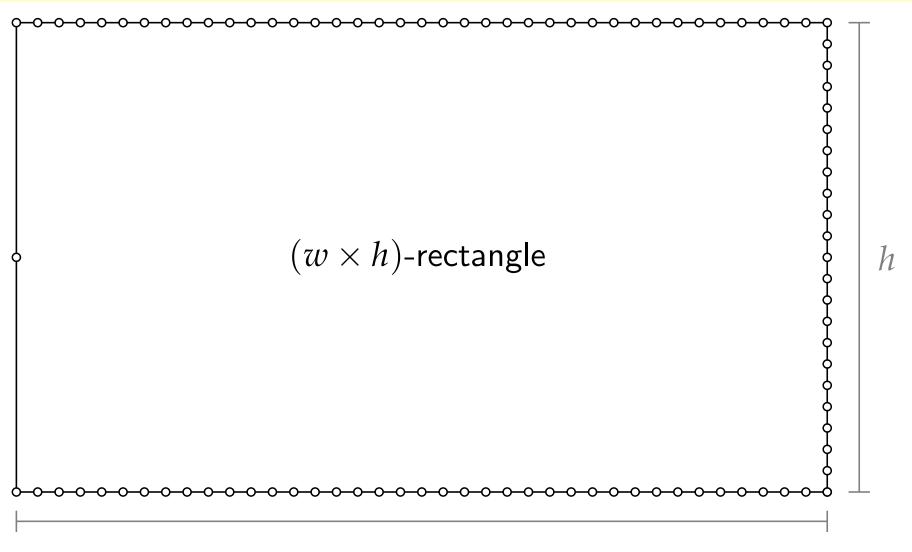
Theorem. OC is FPT w.r.t. the number of kitty corners.

Table of Contents

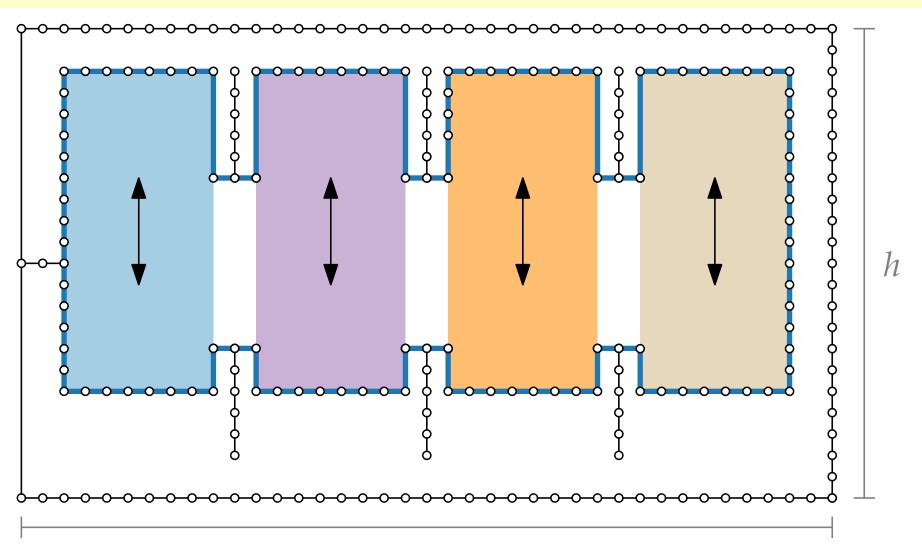
- Number of kitty corners: (the number of corners involved in some pair of kitty corners) We show: *OC admits an FPT algorithm parametrized by the number of kitty corners.*
- **Number of faces:** OC is para-NP-hard when parametrized by the number of faces. For *one* face (cycle), we show the *existence of a polynomial kernel for OC*. when parametrized by the number of kitty corners.
- Maximum face-degree: The reductions of Patrignani & Evans et al. use linear-size faces. We show: OC remains NP-hard when parametrized by maximum face degree.
- **Height:** (minimum number of distinct y-coordinates required to draw the representation) A $(w \times h)$ -grid has pathwidth at most h.
 - ⇒ Graphs of bounded height have bounded pathwidth. But converse generally not true. We show: *OC admits an XP algorithm parametrized by height.*

Theorem. OC is NP-hard.

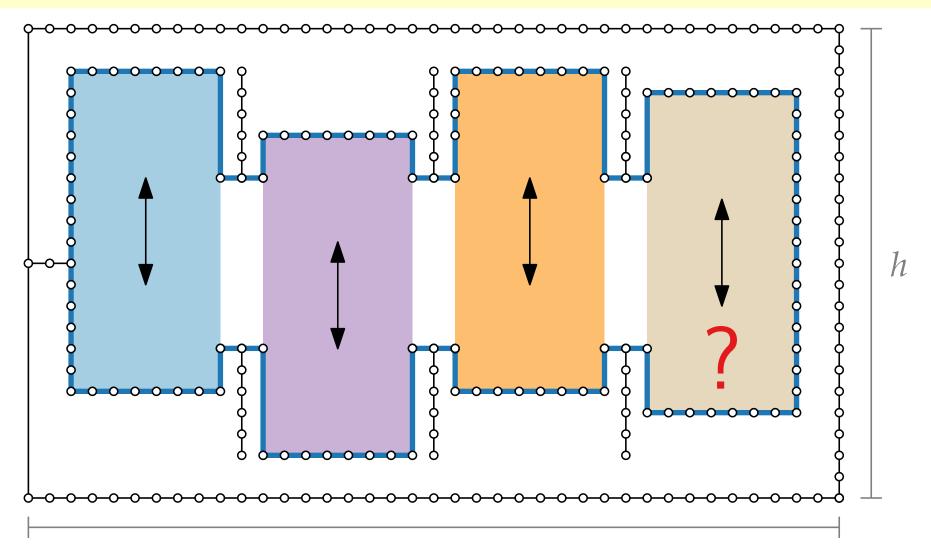
Theorem. OC is NP-hard.



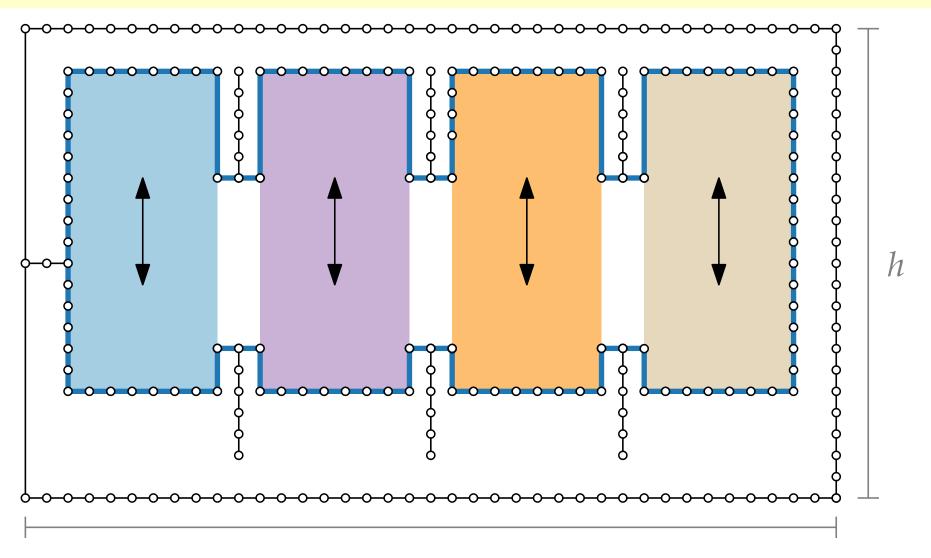
Theorem. OC is NP-hard.



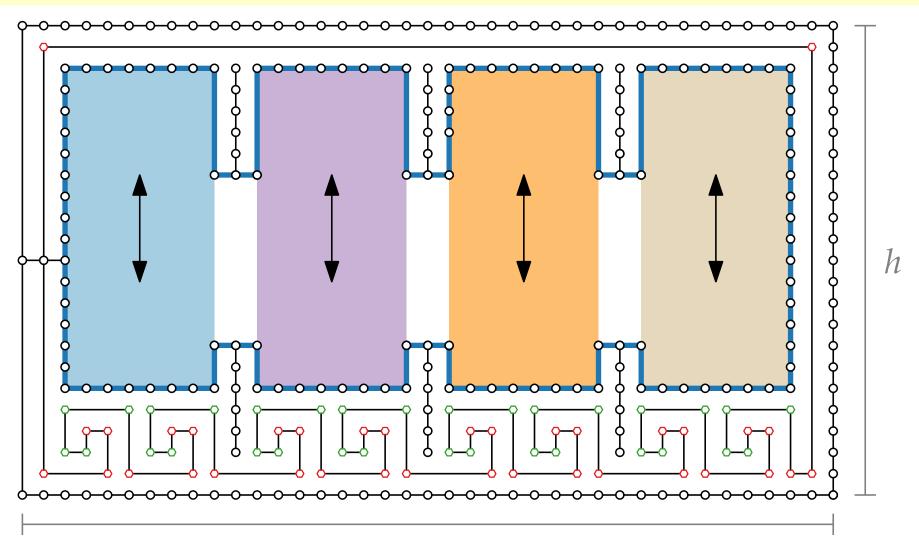
Theorem. OC is NP-hard.



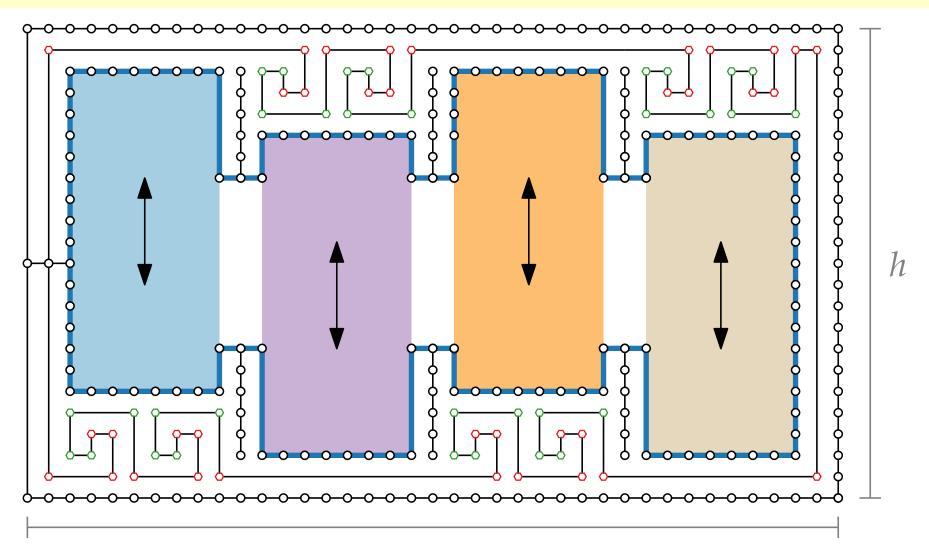
Theorem. OC is NP-hard.



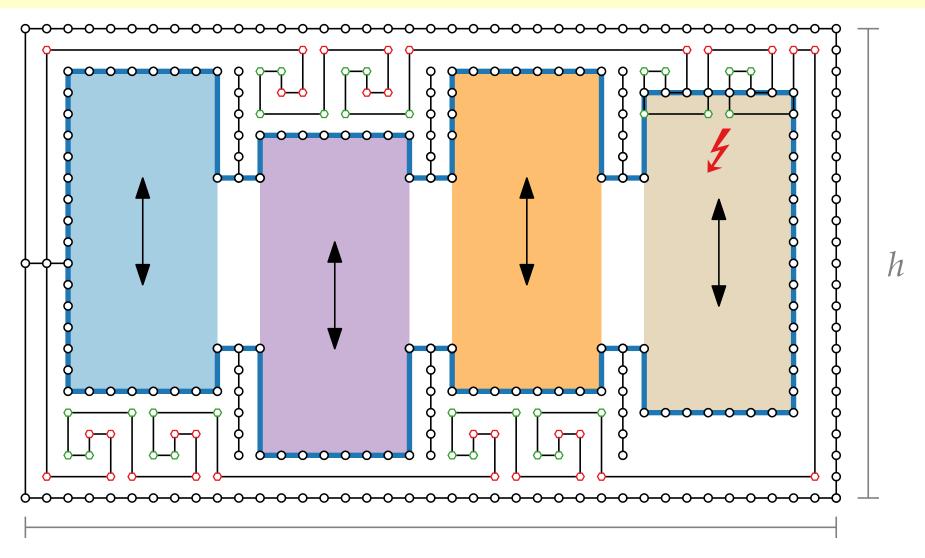
Theorem. OC is NP-hard.



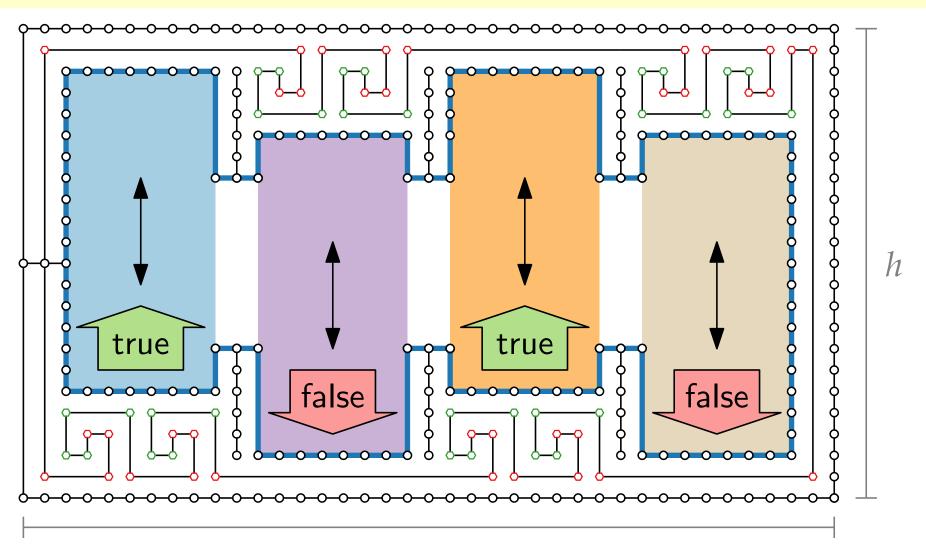
Theorem. OC is NP-hard.



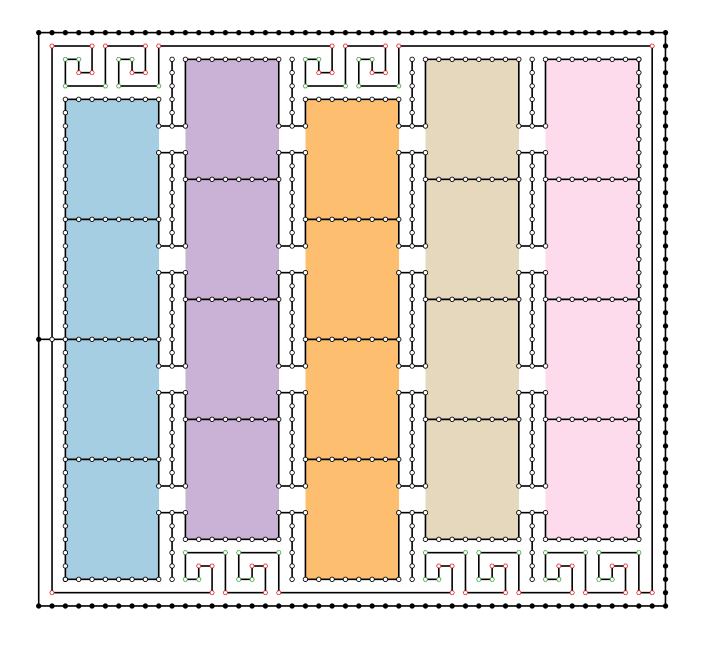
Theorem. OC is NP-hard.



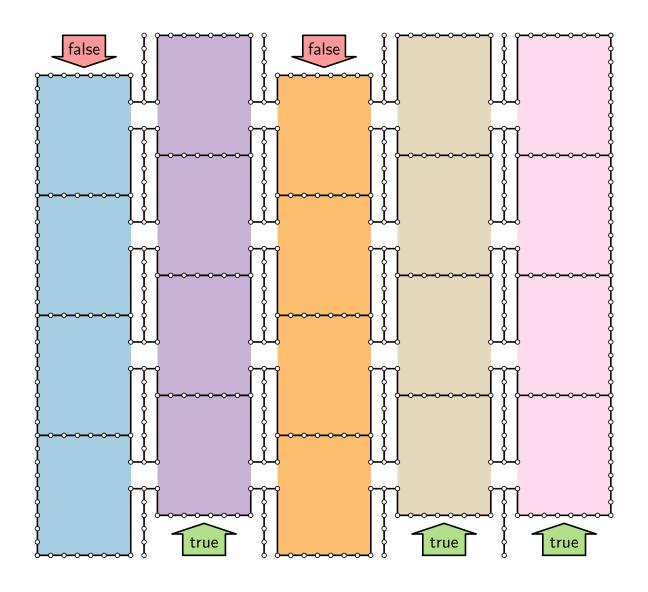
Theorem. OC is NP-hard.

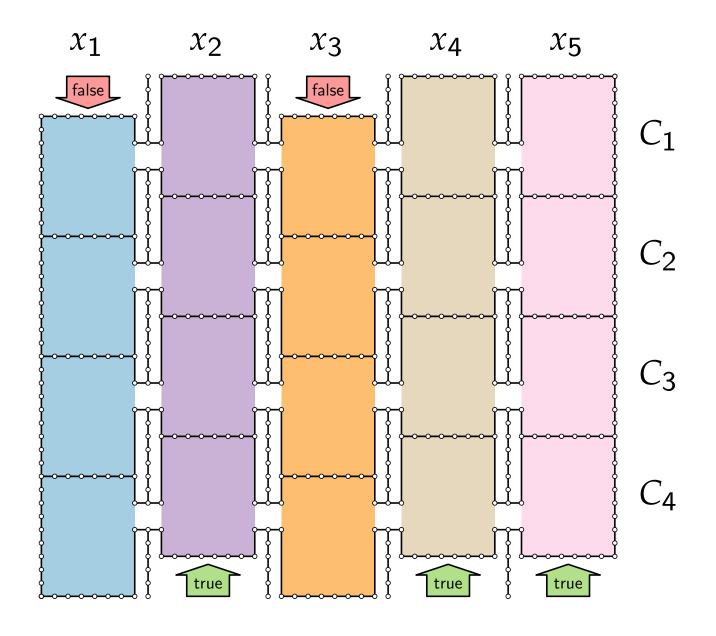


Clause Gadgets



Clause Gadgets







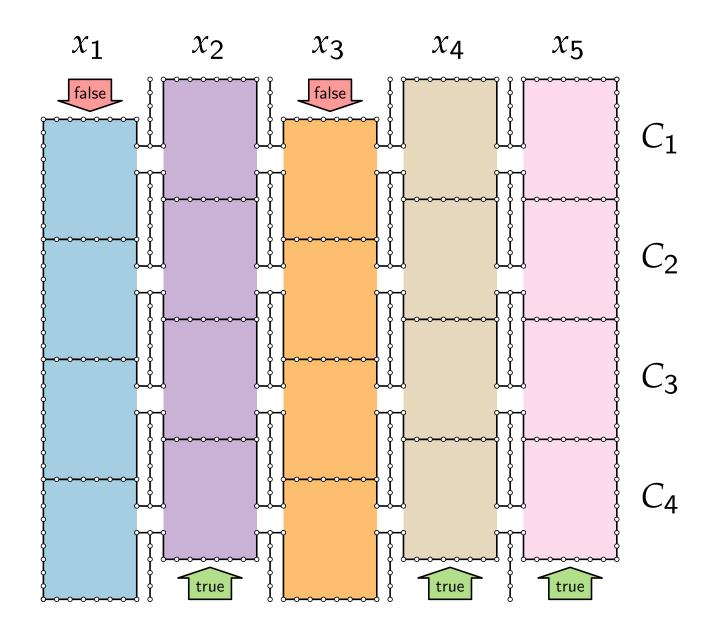
Example:

$$C_1 = x_2 \lor \overline{x_4}$$

$$C_2 = x_1 \lor x_2 \lor \overline{x_3}$$

$$C_3 = x_5$$

$$C_4 = x_4 \lor \overline{x_5}$$



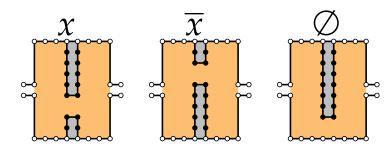
Example:

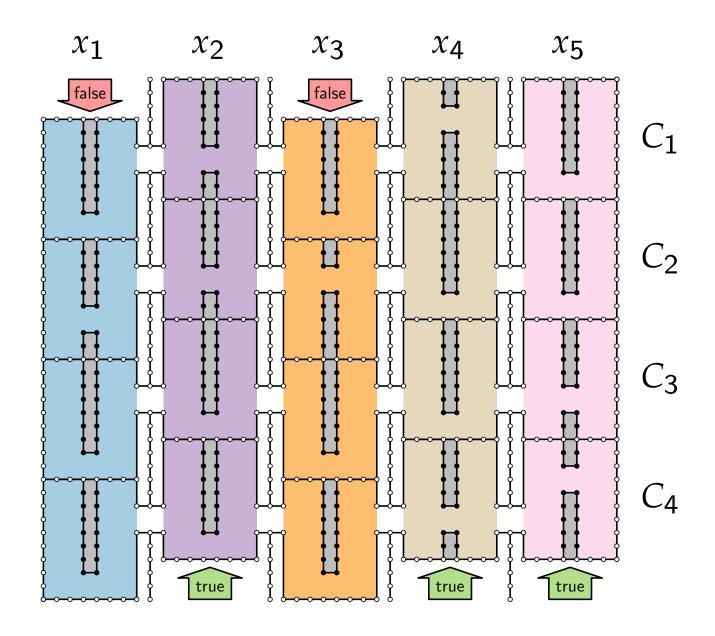
$$C_1 = x_2 \lor \overline{x_4}$$

$$C_2 = x_1 \lor x_2 \lor \overline{x_3}$$

$$C_3 = x_5$$

$$C_4 = x_4 \lor \overline{x_5}$$





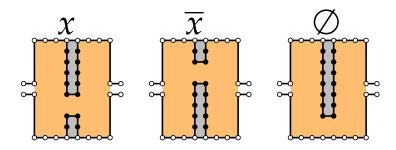
Example:

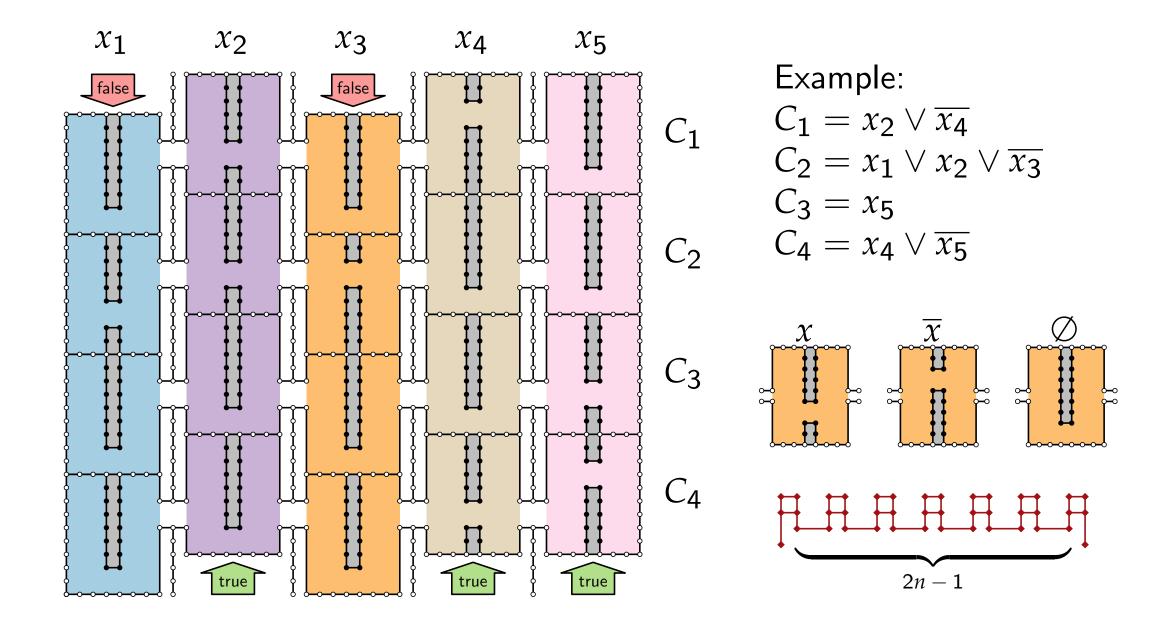
$$C_{1} = x_{2} \vee \overline{x_{4}}$$

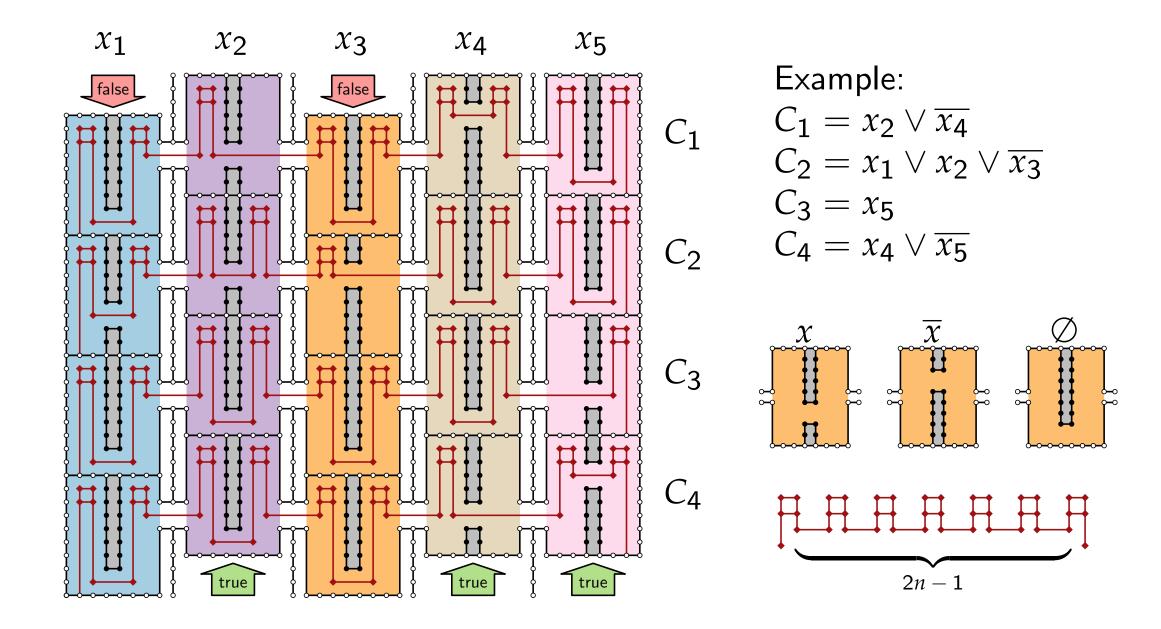
$$C_{2} = x_{1} \vee x_{2} \vee \overline{x_{3}}$$

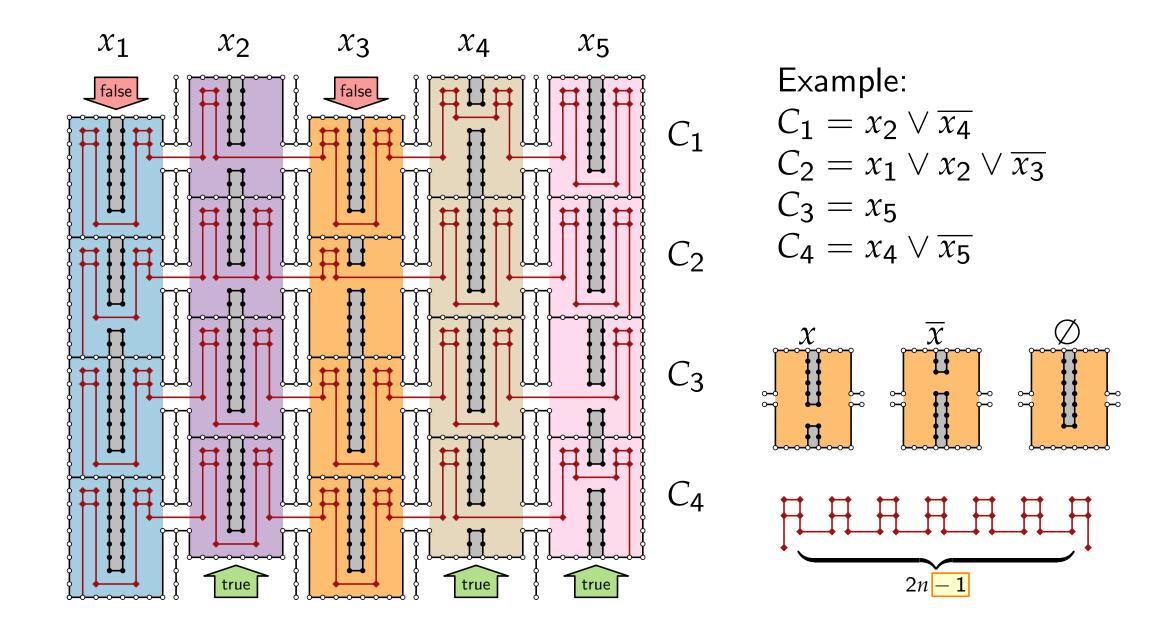
$$C_{3} = x_{5}$$

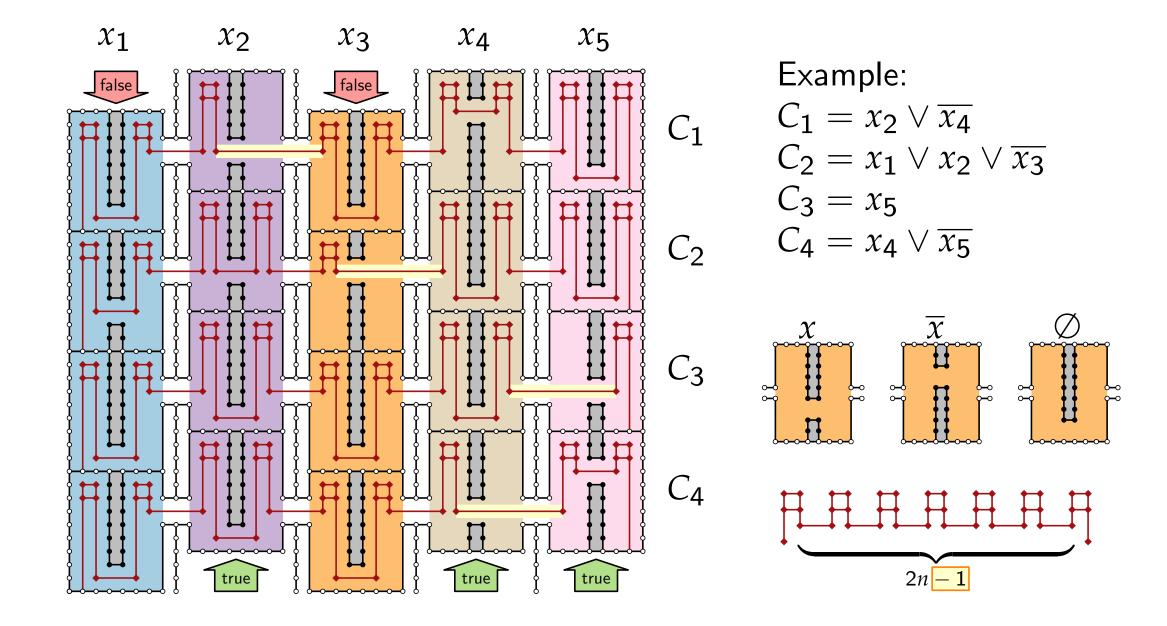
$$C_{4} = x_{4} \vee \overline{x_{5}}$$



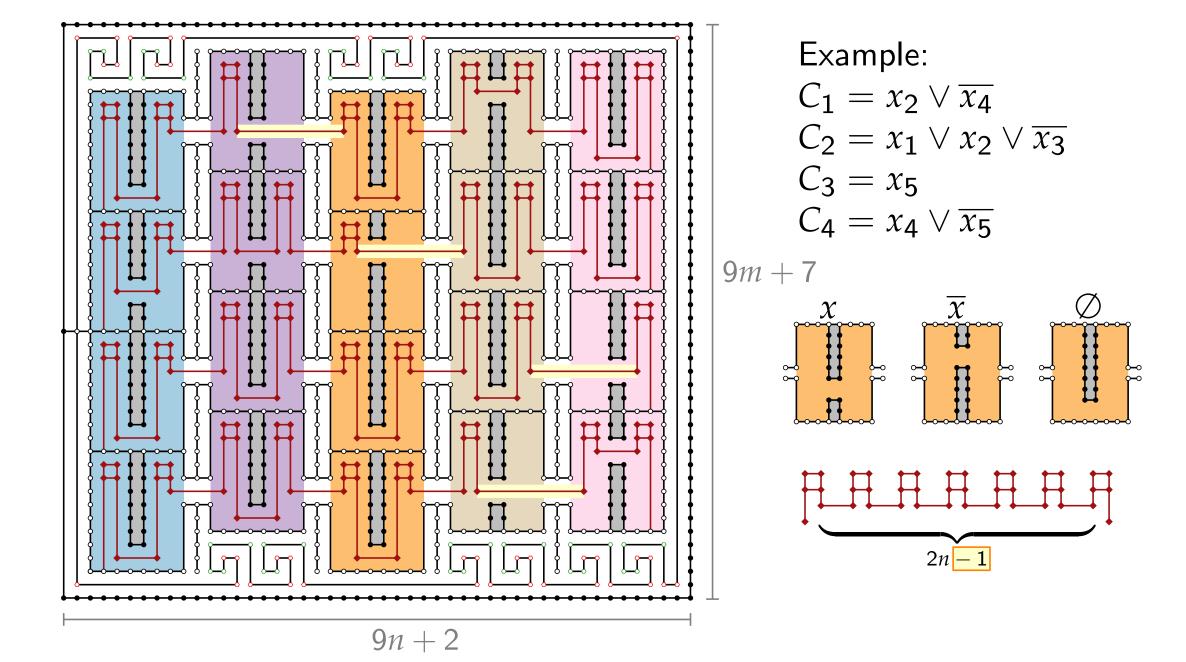




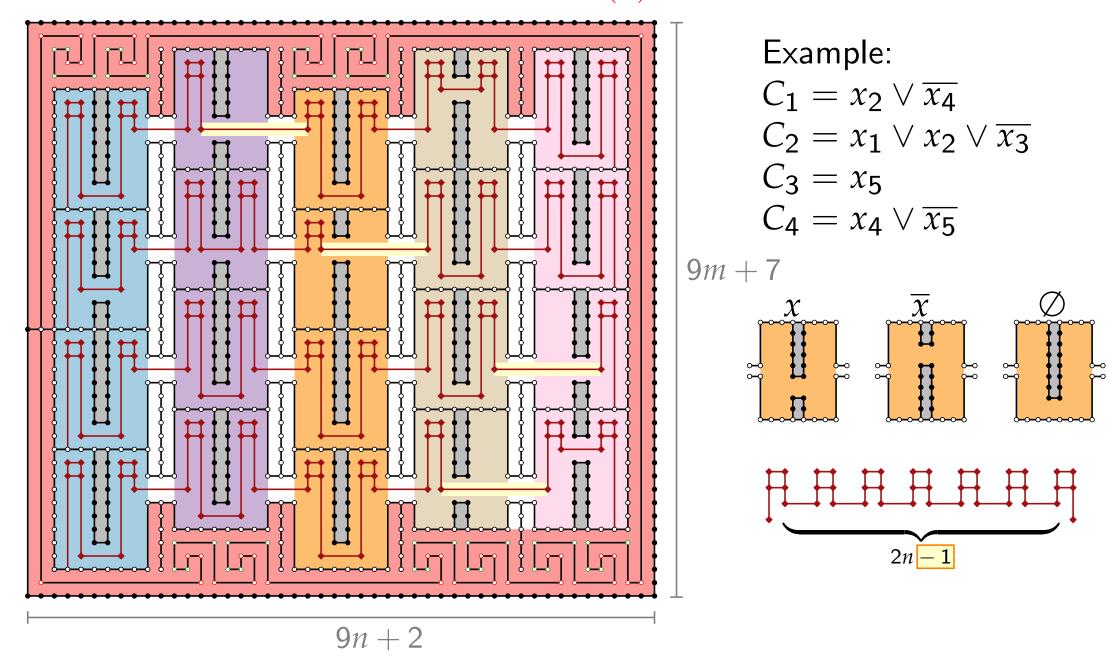




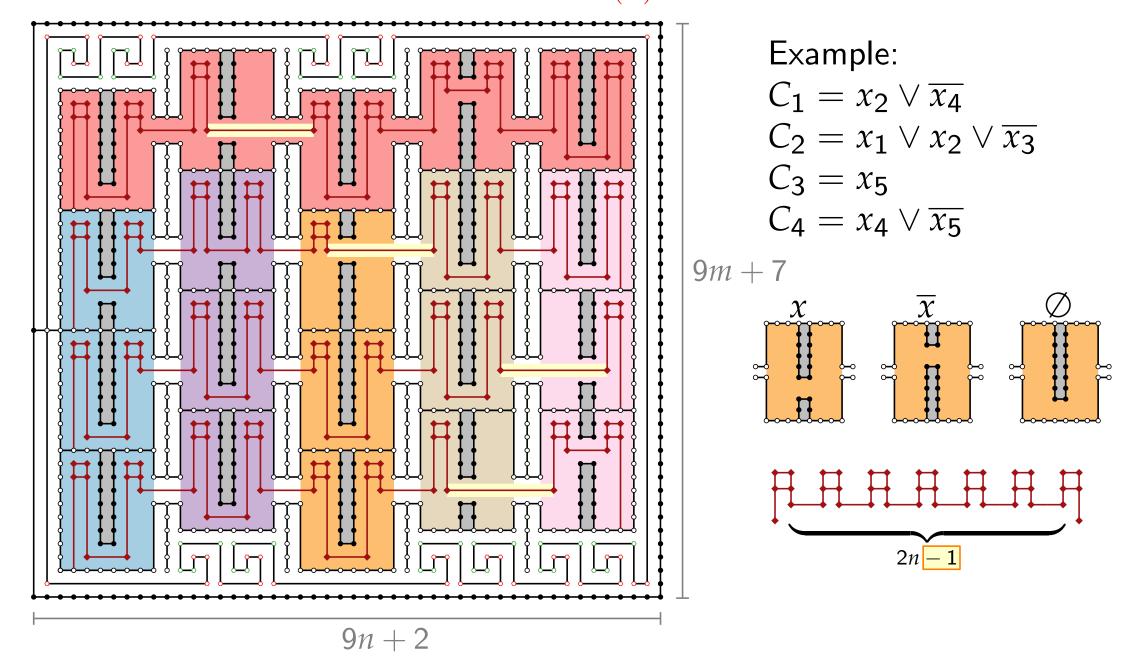
Full reduction

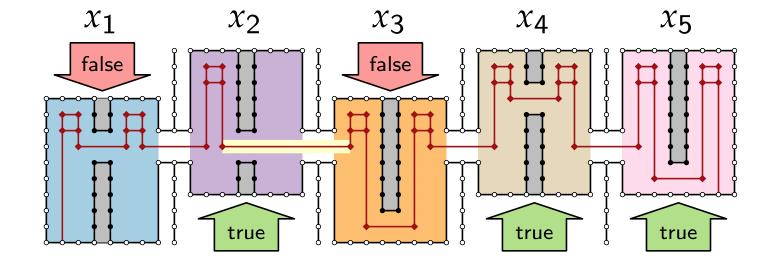


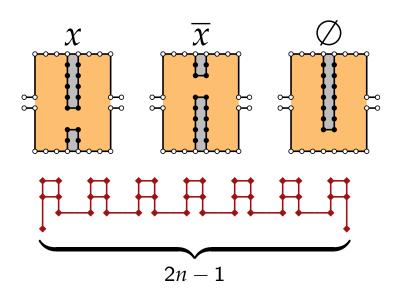
Full reduction

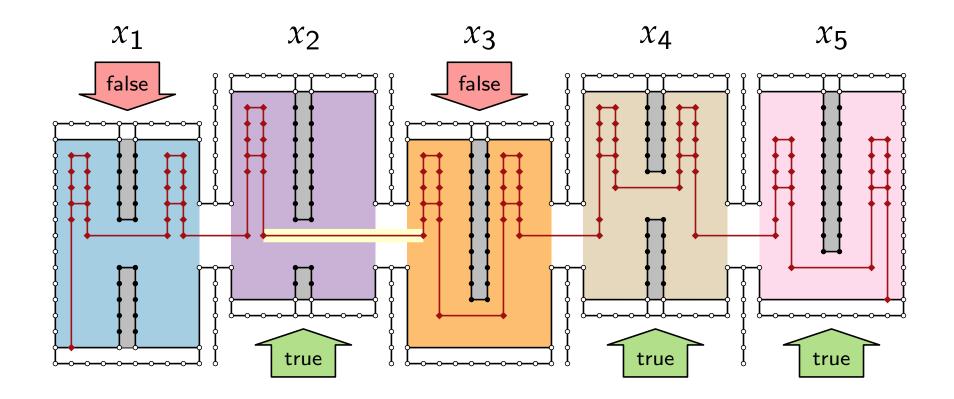


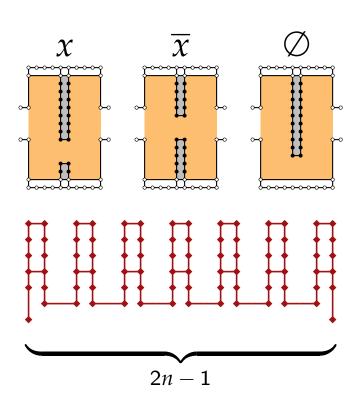
Full reduction

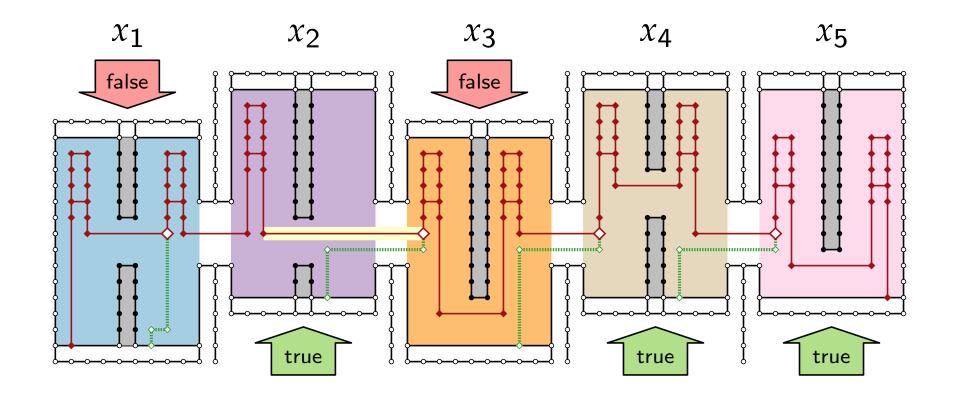


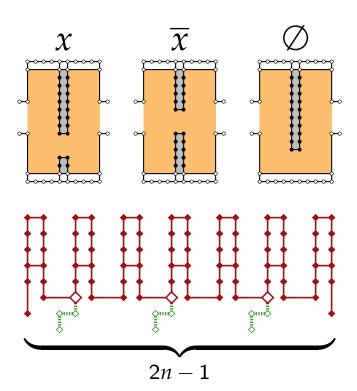


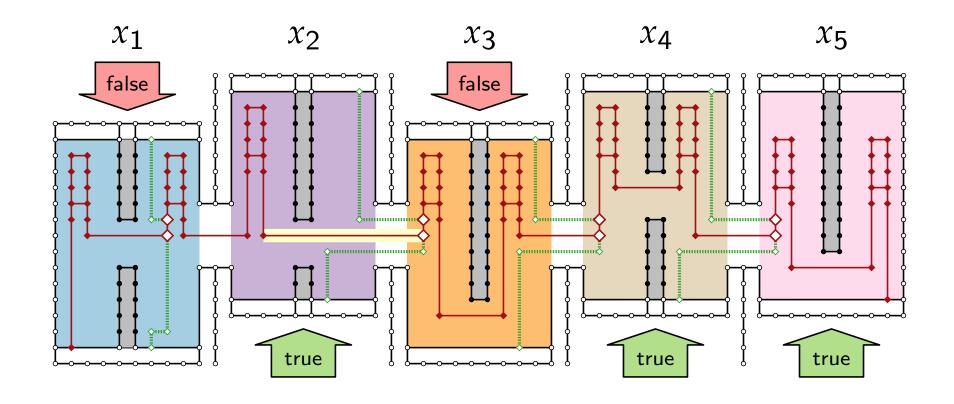


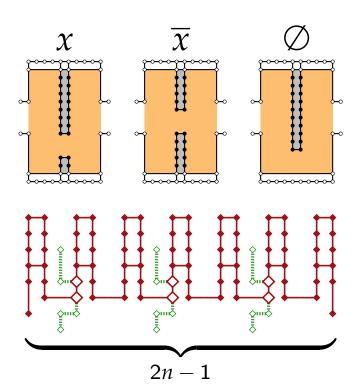




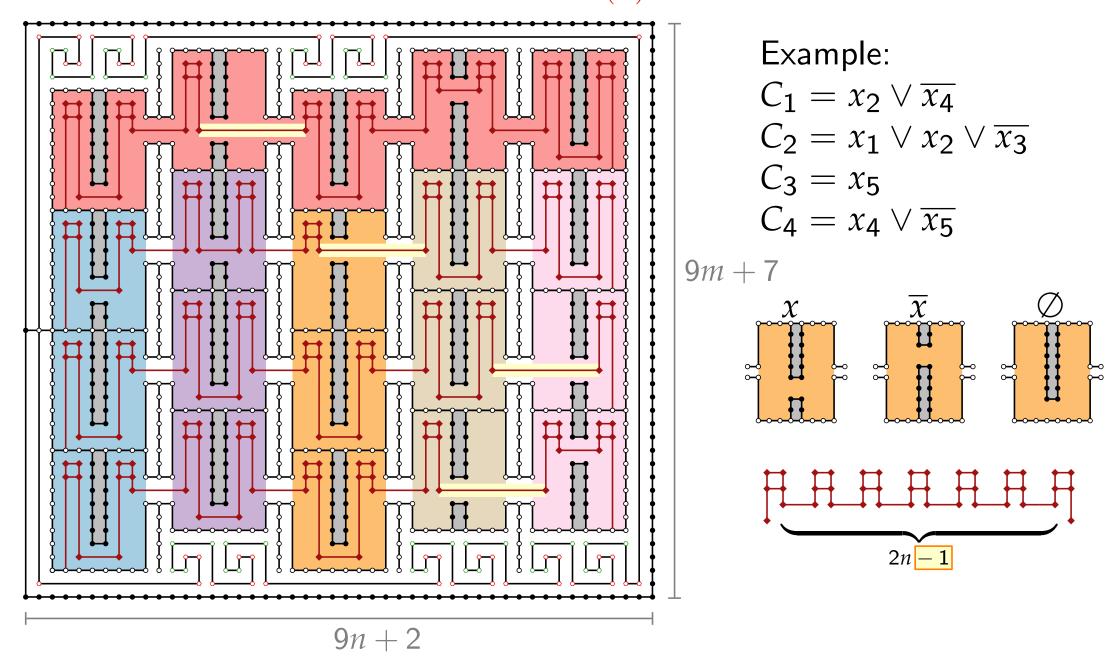




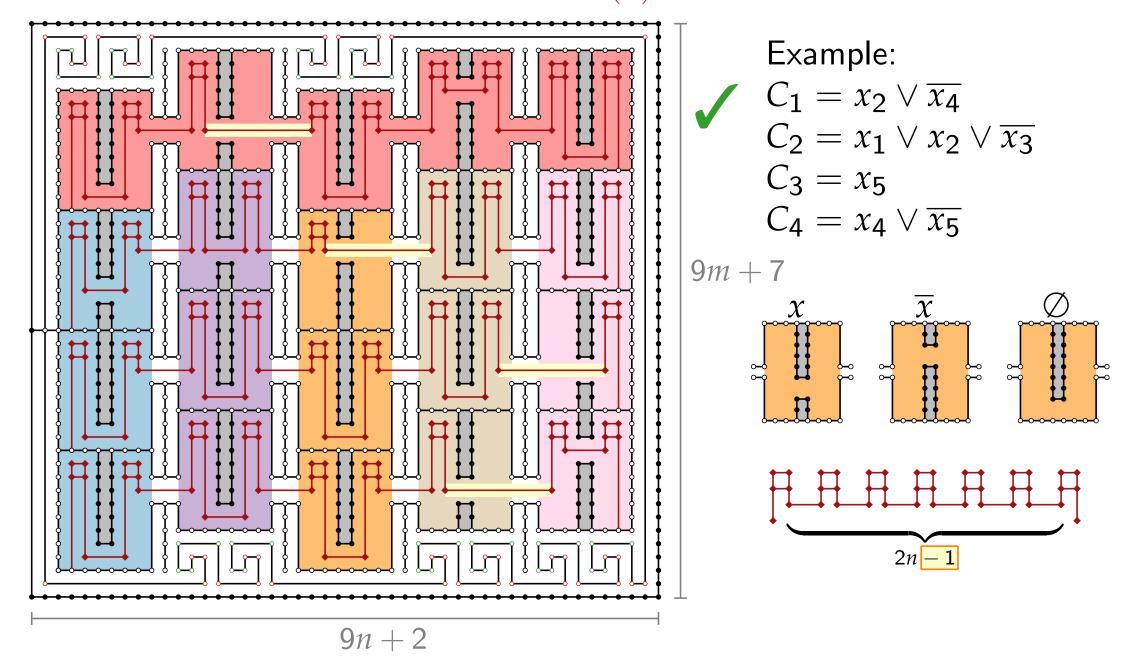




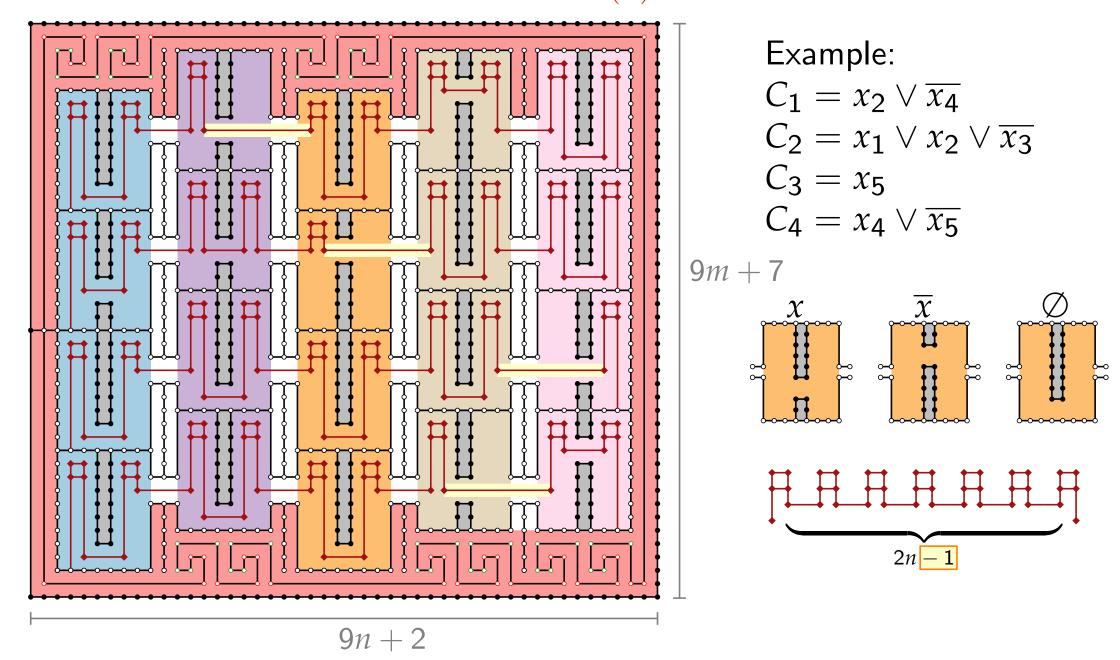
Full Reduction

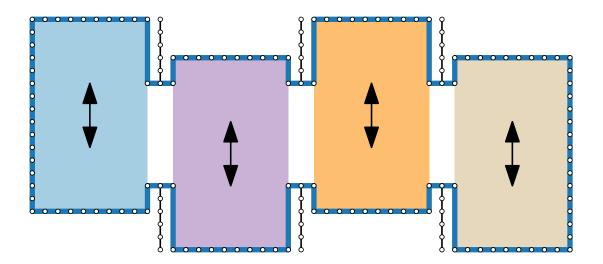


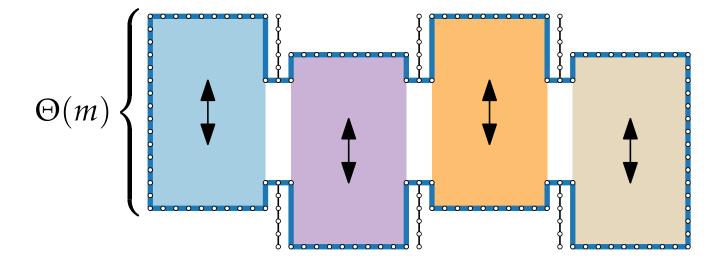
Full Reduction

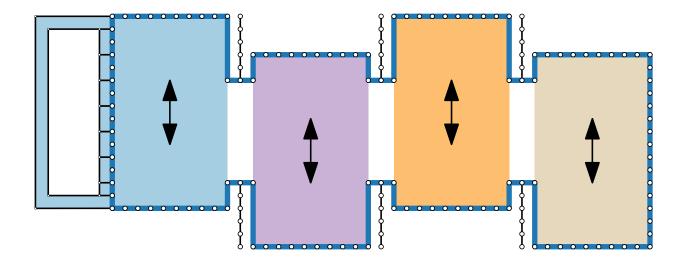


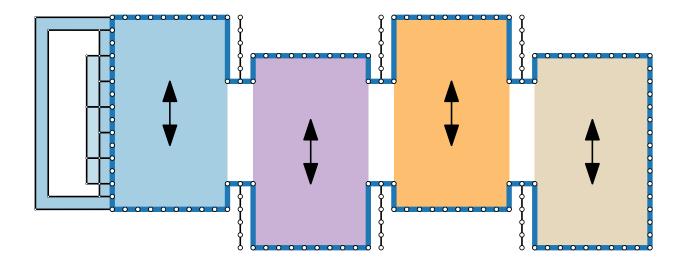
Full Reduction

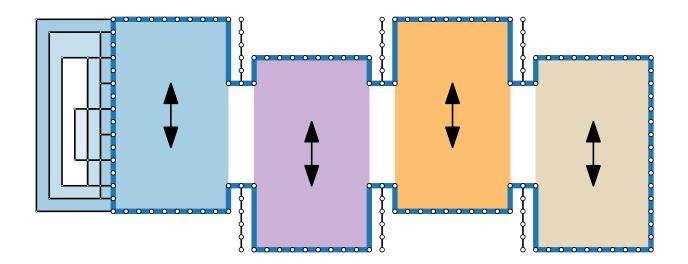


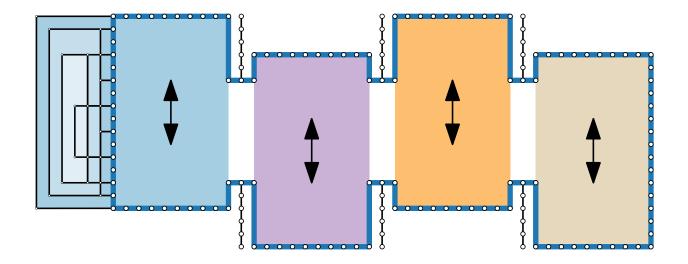


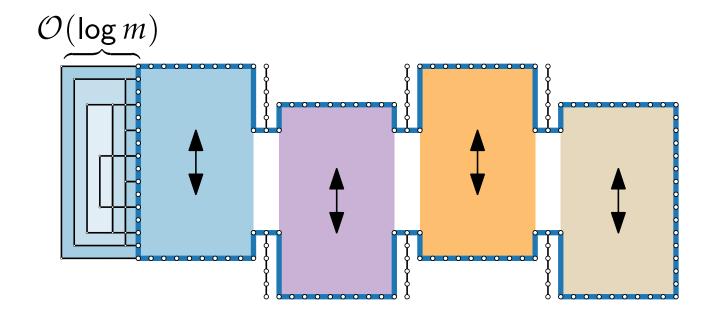


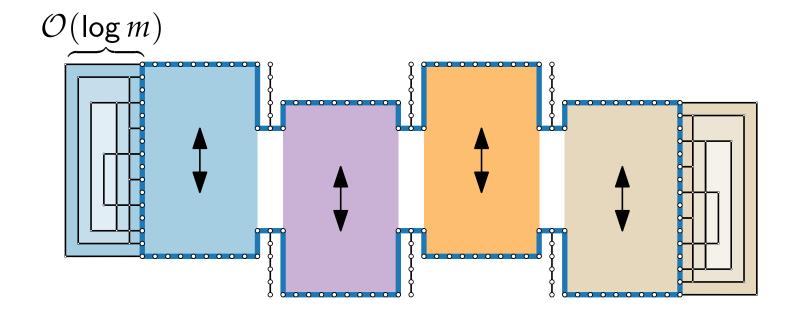


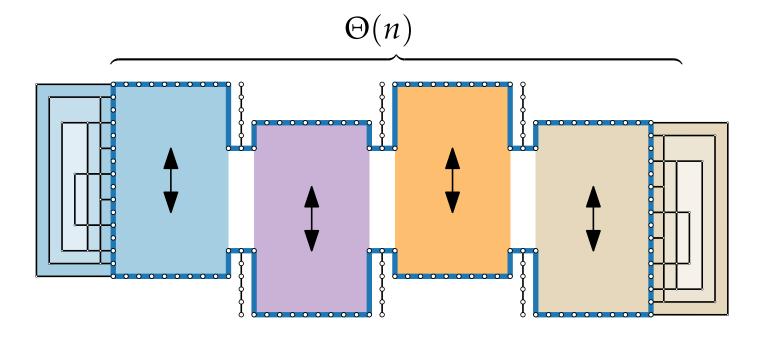


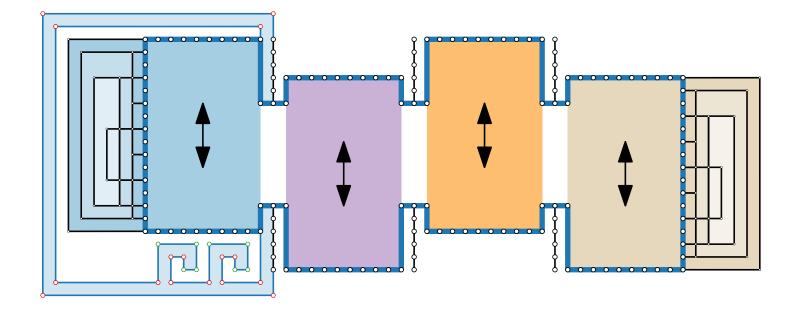


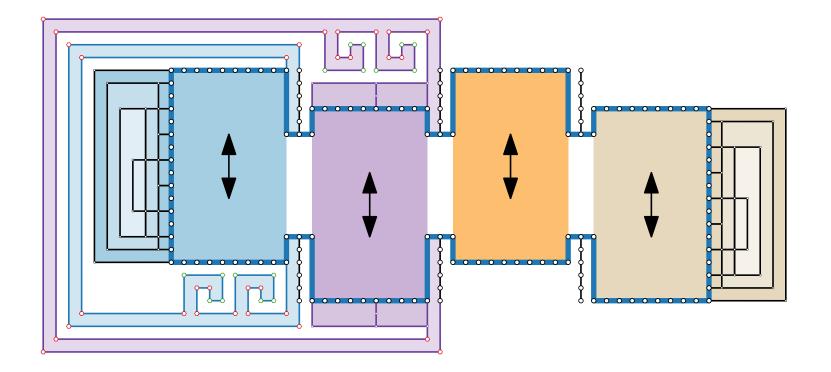


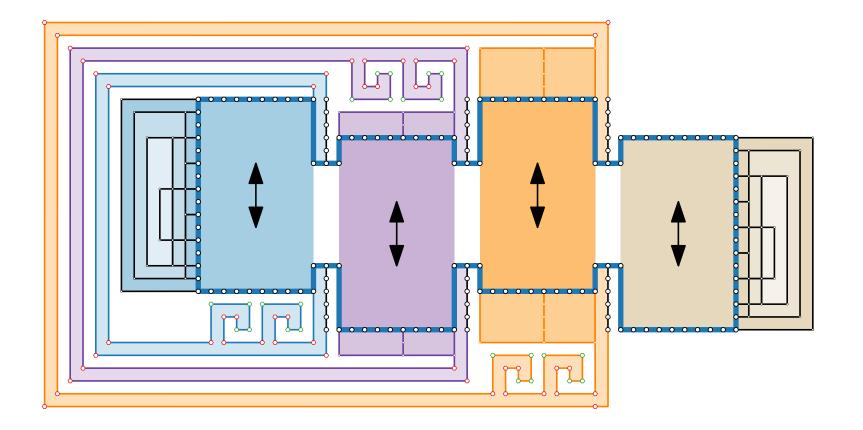


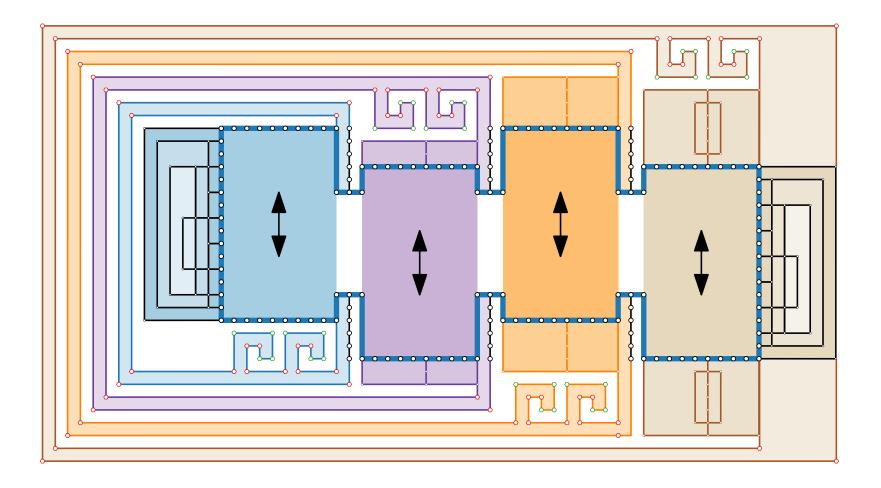


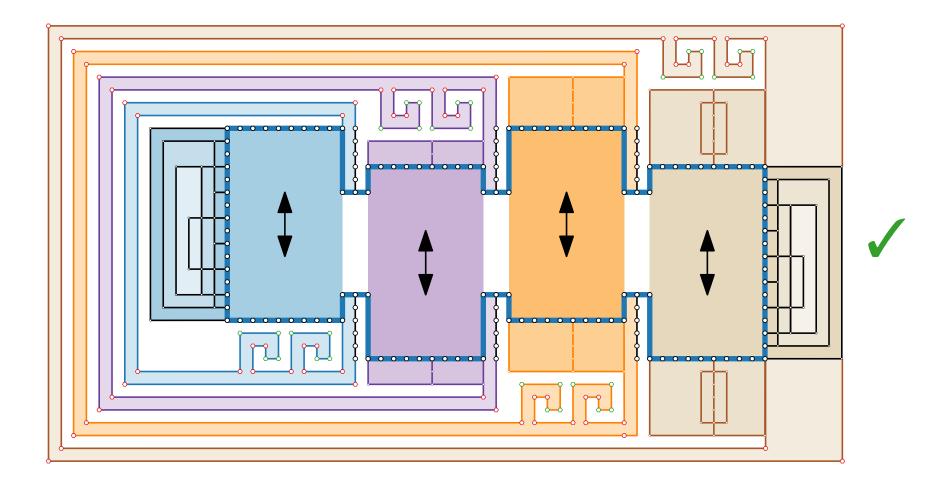


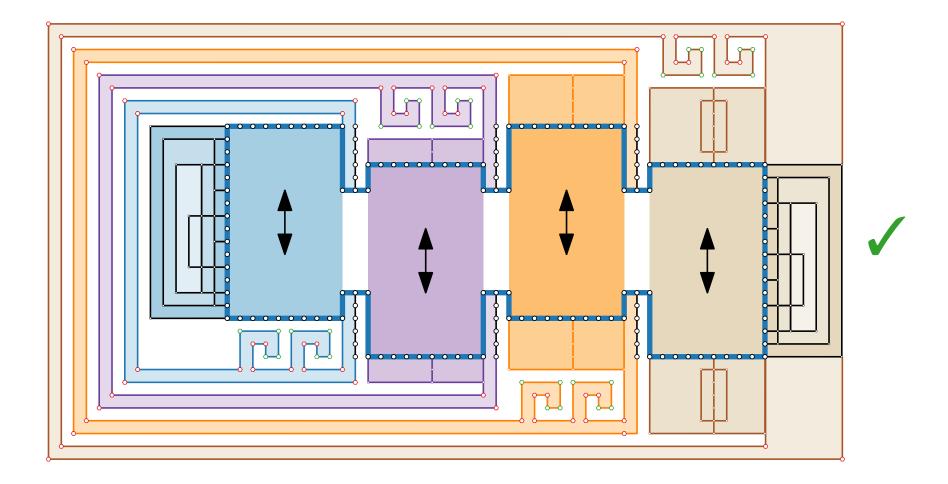












Theorem. OC is para-NP-hard when parameterized by the maximum face degree.

■ Can we find a polynomial kernel for OC w.r.t. the number of kitty corners, or at least w.r.t. the number of kitty corners *plus the number of faces*, for general graphs?

- Can we find a polynomial kernel for OC w.r.t. the number of kitty corners, or at least w.r.t. the number of kitty corners *plus the number of faces*, for general graphs?
- Does OC admit an FPT algorithm w.r.t. the height of the orthogonal representation?

- Can we find a polynomial kernel for OC w.r.t. the number of kitty corners, or at least w.r.t. the number of kitty corners *plus the number of faces*, for general graphs?
- Does OC admit an FPT algorithm w.r.t. the height of the orthogonal representation?
- Is OC solvable in $2^{O(\sqrt{n})}$ time? This bound would be tight assuming that the Exponential Time Hypothesis is true.

- Can we find a polynomial kernel for OC w.r.t. the number of kitty corners, or at least w.r.t. the number of kitty corners *plus the number of faces*, for general graphs?
- Does OC admit an FPT algorithm w.r.t. the height of the orthogonal representation?
- Is OC solvable in $2^{O(\sqrt{n})}$ time? This bound would be tight assuming that the Exponential Time Hypothesis is true.
- If we parametrize by the number of *pairs* of kitty corners, can we achieve substantially better running times?