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Minimum Spanning Trees
> |nput:
— A set S of points in the plane
» Output:
— A geometric tree 1" that spans all points in .S and has the
minimum total length

[t/ln O(nlogn) time using the Delaunay Triangulation
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Introduction

Monotonicity d
» Given a direction d: >
— A geometric path (vy,va,...,v,) is d-monotone if the order of

the vertices coincides with the order of their projections on a line
parallel to d
» |t is monotone if it is d-monotone with respect to some direction d.

d1 : \‘/
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d;-monotone not d;-monotone | ds-monotone
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Minimum Monotone Spanning Trees
» |nput:
— A pointset S in the plane and a set D of directions
» Output:
— A D-monotone tree T’ that spans all points in S and has
minimum total length among all such trees
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» Angelini, Colasante, Di Battista, Frati, and Patrignani.

Monotone drawings of graphs. (JGAA 2012)

Area requirements of monotone drawings of trees
» Angelini et al. (2012): grid of size O(n'%) x O(n!-®) (BFS-based
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algorithm)

Angelini et al. (2012): grid of size O(n) x O(n?) (DFS-based
algorithm)

Kindermann et al. (2014): grid of size O(n'-®) x O(n'-®)
He and He (2015): grid of size O(n'?%?) x O(n!-2%°)

He and He (2016): grid of size O(nlogn) x O(nlogn)
He and He (2016): grid of size 12n x 12n

Oikonomou and Symvonis (2017): grid of size n x n



Known Results

» Mastakas and Symvonis. Rooted uniform monotone minimum
spanning trees. (2017)
Input:
— A set S of points in the plane and a designated root r» € S

Output:
— An MST such that the path from r to any other point of S is

monotone with respect to (i) one direction or (ii) two
orthogonal directions.

» Mastakas. Uniform 2d-monotone minimum spanning graphs. (2018)

» Mastakas. Drawing a rooted tree as a rooted y-monotone minimum
spanning tree. (2021)
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Our Contribution

For every even integer k > 2, there exists a point set S and a
set D of k directions such that any minimum-length D-monotone
spanning tree of S has maximum vertex degree 2k.
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Basic Properties

set D of k directions

lines passing through point v

ds(v
Ve d 1 (”U)
wedge set

WD(U) — {WQ(U), Wl (U), PN ng_l(v)}

N (v)

Wolv)™ ¥ wedges
! Wo(v) based on
LY orthogonal
lines



Basic Properties

Let (u,v,w) be a geometric path. If v and w lie in the same
half-plane determined by d(v), then the path between u and w is
not d-monotone.
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Let P = (u,...,v,...,w) be a geometric path. If v and w lie in
the same wedge in Wp(v), then the path P is not D-monotone.

Let T" be a D-monotone spanning tree of S. Then, A(T) < 2k.

ds(v) M) T
Y . " Wo(v)
Wz(v)\\ _1(U)
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path P = (v1,va,...,0p) sector of directions of P, sec(P)

wedge set Wp of the
directed path P

d1(o)
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Lemma 4 [Angelini et al. (2012)]

Given a directed geometric path P,
P is monotone < the angle of sec(P) is smaller than 7.
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A Characterization of D-Monotone Spanning Trees

®Branching vertex
A vertex of degree at least 3

WLeaf path
A path from a leaf to the
closest branching vertex

Branch 5, ,

A path connecting “adjacent”
branching vertices u, v

+Wedge set 1V,,, of
subtree 7,,,

The smallest consecutive set
of utilized wedges in T,

“Region R, , of path P,
Ru,v — WP’U,,U (u) M va,u (U)
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A Characterization of D-Monotone Spanning Trees

Let 1" be a spanning tree of S. Then, T' is D-monotone if and only if:
(a) Every leaf path and every branch P in T is D-monotone.

(b) For every two leaf paths P; and P>, Wp, and Whp, are disjoint.

(c) For every branch or leaf path P, ,, it holds that Ry , "W\, (u) = 0.

| If I" is a D-monotone spanning tree of S, then 1" has at most 2k leaves. |
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An algorithm for MMST (.S, D)

Homeomorphically Irreducible Tree (HIT)

» An embedded tree without vertices of degree two

L emma

The number of different HITs with at most 2k leaves is

O(72" . 2k!), and these HITs can be enumerated in O(72% - 2k!)
time.

HIT H tree T’

L
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An algorithm for MMST (.S, D)

Algorithm
for every HIT H O(7%% . 2k!)
for every mapping M of internal O(n2-2)

vertices H to points in S

for every assignment A of a set of
consecutive wedges to the leaves of H

O(2k - 22F)

» test monotonicity of tree 1" based on
O(nl k+ k
the characterization (nlogn +nk + k)

MMST (S, D) can be solved in O(f(k) - n**~!logn)
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» Computing a minimum D-monotone spanning graph for S.
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Open Problems

> Is MMST(S, D) NP-hard if K = |D| is part of the input?

» Computing a minimum D-monotone spanning graph for S.

Thank you for your attention!
Questions?



A Characterization of D-Monotone Spanning Trees

Let 1" be a spanning tree of S. Then, T' is D-monotone if and only if:

(a) Every leaf path and every branch P in T is D-monotone.

(b) For every two leaf paths P; and P, incident to branching vertices u
and v, respectively, Wp, and Wp, are disjoint.

(c) Forevery branch or leaf path P, , of T'it holds that R, , "W\, (u) =
0.
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A Characterization of D-Monotone Spanning Trees

Given: S, D, and T'. Then, T is ‘D-monotone if:
(a) Every leaf path and every branch P in T is D-monotone.
(b) For every two leaf paths P; and P, incident to branching vertices u

and v, respectively, Wp, and Wp, are disjoint.
(c) For every branch or leaf path P,, of T it holds that R, , N

Wane (1) = 0.

Case 1: X\ and u are adjacent to the same branching vertex u

(a) = both leaf paths P,  and P, , are
D-monotone.

= [Wp, .| <k and [Wp, | < k.

(b) = Wp, , and Wp, , are disjoint

= 3 d € D s.t. d(u) separates Wp, , (u)
and Wp,  (u) and does not intersect the
interior of either of them.

e




A Characterization of D-Monotone Spanning Trees

Given: S, D, and T'. Then, T is ‘D-monotone if:

(a) Every leaf path and every branch P in T is D-monotone.

(b) For every two leaf paths P; and P, incident to branching vertices u
and v, respectively, Wp, and Wp, are disjoint.

(c) For every branch or leaf path P,, of T it holds that R, , N
Wane (1) = 0.

Case 2: A is adjacent to branching vertex u and u is adjacent to
branching vertex v

)\c\X
U
(L



A Characterization of D-Monotone Spanning Trees

Given: S, D, and T'. Then, T is ‘D-monotone if:

(a) Every leaf path and every branch P in T is D-monotone.

(b) For every two leaf paths P; and P, incident to branching vertices u
and v, respectively, Wp, and Wp, are disjoint.

(c) For every branch or leaf path P,, of T it holds that R, , N
Wane (1) = 0.

Case 2: A is adjacent to branching vertex u and u is adjacent to
branching vertex v

)\‘\th
. b2
by @
\bm—i—l
br.&
W= br—l—l



A Characterization of D-Monotone Spanning Trees

Corollary 6

Let D be a set of k& (pairwise non-opposite) directions, and let
P be a directed geometric path. Given a direction d € D, P is

d-monotone if and only if d(o) does not intersect the interior of
Wp, where o is the origin.
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Case 2: A is adjacent to branching vertex u and u is adjacent to

branching vertex v
It suffices to show that there is a direction d such that

A by line E(u) does not intersect the interior
of WPM,,\(/‘) = ’WPM,/\l < k.

®bo
" » Let P, be the path from b; to A
b

b ..'
m\ » We show by induction on the number of the

br.\ m branching vertices that [Wp, | < k
M= br—l—l

» P,.1 is by definition the oriented path from p to A
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Given: S, D, and T'. Then, T is ‘D-monotone if:

(a) Every leaf path and every branch P in T is D-monotone.

(b) For every two leaf paths P; and P, incident to branching vertices u
and v, respectively, Wp, and Wp, are disjoint.

(c) For every branch or leaf path P,, of T it holds that R, , N
Wane (1) = 0.

Case 2: A is adjacent to branching vertex u and u is adjacent to
branching vertex v

Base case: P; is the path from b1 = u to A
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Maximum degree of D-Monotone Spanning Trees

In contrast to the MST, whose vertex degree is at most six, for
every even integer kK > 2, there exists a point set S and a set D of
k directions such that any minimum-length D-monotone spanning
tree of S, has maximum vertex degree 2k.
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