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Minimum Monotone Spanning Trees
▶ Input:

– A pointset S in the plane and a set D of directions
▶ Output:

– A D-monotone tree T that spans all points in S and has
minimum total length among all such trees
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▶ Angelini, Colasante, Di Battista, Frati, and Patrignani.
Monotone drawings of graphs. (JGAA 2012)

Area requirements of monotone drawings of trees

▶ Angelini et al. (2012): grid of size O(n1.6)×O(n1.6) (BFS-based
algorithm)

▶ Angelini et al. (2012): grid of size O(n)×O(n2) (DFS-based
algorithm)

▶ Kindermann et al. (2014): grid of size O(n1.5)×O(n1.5)

▶ He and He (2015): grid of size O(n1.205)×O(n1.205)

▶ He and He (2016): grid of size O(n log n)×O(n log n)

▶ He and He (2016): grid of size 12n× 12n

▶ Oikonomou and Symvonis (2017): grid of size n× n
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▶ Mastakas and Symvonis. Rooted uniform monotone minimum
spanning trees. (2017)
Input:
– A set S of points in the plane and a designated root r ∈ S
Output:
– An MST such that the path from r to any other point of S is

monotone with respect to (i) one direction or (ii) two
orthogonal directions.

▶ Mastakas. Uniform 2d-monotone minimum spanning graphs. (2018)

▶ Mastakas. Drawing a rooted tree as a rooted y-monotone minimum
spanning tree. (2021)
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Lemma 1

Let ⟨u, v, w⟩ be a geometric path. If u and w lie in the same
half-plane determined by d(v), then the path between u and w is
not d-monotone.

d(v)

d(v)

w

v

u



5 - 7Basic Properties
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Lemma 2

Let P = ⟨u, . . . , v, . . . , w⟩ be a geometric path. If u and w lie in
the same wedge in WD(v), then the path P is not D-monotone.

Lemma 3

Let T be a D-monotone spanning tree of S. Then, ∆(T ) ≤ 2k.
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Lemma 4 [Angelini et al. (2012)]

Given a directed geometric path P ,
P is monotone ⇔ the angle of sec(P) is smaller than π.
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Lemma 4 [Angelini et al. (2012)]

Given a directed geometric path P ,
P is monotone ⇔ the angle of sec(P) is smaller than π.
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u
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Let T be a spanning tree of S. Then, T is D-monotone if and only if:
(a) Every leaf path and every branch P in T is D-monotone.
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Lemma

If T is a D-monotone spanning tree of S, then T has at most 2k leaves.

Theorem

Let T be a spanning tree of S. Then, T is D-monotone if and only if:
(a) Every leaf path and every branch P in T is D-monotone.
(b) For every two leaf paths P1 and P2, WP1

and WP2
are disjoint.

(c) For every branch or leaf path Pu,v it holds that Ru,v ∩Wu\v(u) = ∅.
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Homeomorphically Irreducible Tree (HIT)
▶ An embedded tree without vertices of degree two

tree THIT H

Lemma

The number of different HITs with at most 2k leaves is
O(72k · 2k!), and these HITs can be enumerated in O(72k · 2k!)
time.
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Algorithm
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MMST(S,D) can be solved in O(f(k) · n2k−1 log n)
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Thank you for your attention!

Questions?
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Theorem

Let T be a spanning tree of S. Then, T is D-monotone if and only if:
(a) Every leaf path and every branch P in T is D-monotone.
(b) For every two leaf paths P1 and P2 incident to branching vertices u

and v, respectively, WP1 and WP2 are disjoint.
(c) For every branch or leaf path Pu,v of T it holds thatRu,v∩Wu\v(u) =
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Corollary 6

Let D be a set of k (pairwise non-opposite) directions, and let
P be a directed geometric path. Given a direction d ∈ D, P is

d-monotone if and only if d(o) does not intersect the interior of
WP , where o is the origin.
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