Optimizing Active Ranges for Consistent Dynamic Map Labeling

Ken Been¹ Martin Nöllenburg² Sheung-Hung Poon³ Alexander Wolff⁴

¹Yeshiva University

²Universität Karlsruhe

³National Tsing Hua University

⁴TU Findhoven

Outline

Model

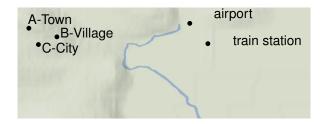
Complexity

- Approximation
 - Top-to-bottom sweep algorithm
 - Level-based algorithm

non-overlapping labels

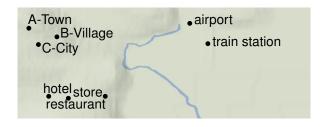
non-overlapping labels

- non-overlapping labels
- proximity of feature and label

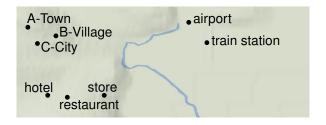


- non-overlapping labels
- proximity of feature and label

- non-overlapping labels
- proximity of feature and label
- unambiguity



- non-overlapping labels
- proximity of feature and label
- unambiguity



- non-overlapping labels
- proximity of feature and label
- unambiguity
- maximize number of labeled features

- non-overlapping labels
- proximity of feature and label
- unambiguity
- maximize number of labeled features

interactive maps add more requirements

- static map at each scale
 - non-overlapping labels
 - feature—label proximity
 - unambiguity
 - maximize label number
- during zooming & panning
 - no popping of labels
 - no jumping of labels
 - map independent of navigation history

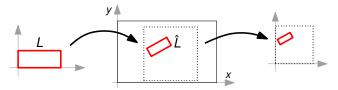
Static model

Static selection

Boolean function that selects subset of non-overlapping labels

Static placement

- transform label L to world coordinates (by translation, rotation, dilation)
- 2 transform world coordinates to screen coordinates with dilation factor 1/s (define s as the scale of the map)



Dynamic selection

Boolean function of scale selects each label L_i in at most one scale interval $[a_i, A_i]$, its active range

Dynamic selection

Boolean function of scale selects each label L_i in at most one scale interval $[a_i, A_i]$, its active range \rightarrow no popping

Dynamic selection

Boolean function of scale selects each label L_i in at most one scale interval $[a_i, A_i]$, its active range \rightarrow no popping

Dynamic placement

- static placement \hat{L}^s for each scale s
- continuous with s
- transforms label L to extended world coordinates (x, y, s)
- \hat{L}^s is cross section of extended world coordinates at scale s

Dynamic selection

Boolean function of scale selects each label L_i in at most one scale interval $[a_i, A_i]$, its active range \rightarrow no popping

Dynamic placement

- static placement \hat{L}^s for each scale s
- ullet continuous with s o no jumping
- transforms label L to extended world coordinates (x, y, s)
- \hat{L}^s is cross section of extended world coordinates at scale s

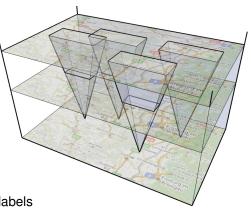
Extended world coordinates

- scale as 3rd dimension
- union of label shapes over scale: "extrusion"
- restriction to active range: "truncated extrusion"

here:

axis-aligned rectangular labels

- invariant-point placement
- proportional dilation



Active-range optimization

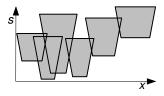
Problem

IN: • labels L_1, \ldots, L_n with dynamic placement,

• available ranges $[s_i, S_i]$ for i = 1, ..., n.

OUT: active ranges $[a_i, A_i] \subseteq [s_i, S_i]$ such that

- total active range height $H = \sum_{i} (A_i a_i)$ is max,
- truncated extrusions do not overlap.



Active-range optimization

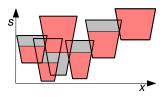
Problem

IN: • labels L_1, \ldots, L_n with dynamic placement,

• available ranges $[s_i, S_i]$ for i = 1, ..., n.

OUT: active ranges $[a_i, A_i] \subseteq [s_i, S_i]$ such that

- total active range height $H = \sum_{i} (A_i a_i)$ is max,
- truncated extrusions do not overlap.



Active-range optimization

Problem

- IN: labels L_1, \ldots, L_n with dynamic placement,
 - available ranges $[s_i, S_i]$ for i = 1, ..., n.
- OUT: active ranges $[a_i, A_i] \subseteq [s_i, S_i]$ such that
 - total active range height $H = \sum_{i} (A_i a_i)$ is max,
 - truncated extrusions do not overlap.

Simple problem

All available ranges are $[0, S_{max}]$.

Outline

Model

Complexity

- Approximation
 - Top-to-bottom sweep algorithm
 - Level-based algorithm

Theorem

The active-range optimization problem is NP-hard – even the simple variant.

Theorem

The active-range optimization problem is NP-hard – even the simple variant.

Sketch of proof

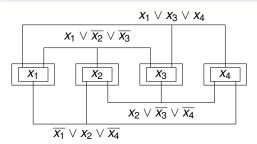
By reduction from PLANAR 3SAT.

Theorem

The active-range optimization problem is NP-hard – even the simple variant.

Sketch of proof

By reduction from PLANAR 3SAT.



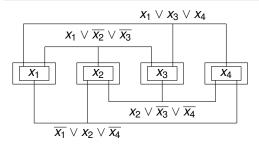
planar 3SAT formula φ

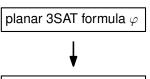
Theorem

The active-range optimization problem is NP-hard – even the simple variant.

Sketch of proof

By reduction from PLANAR 3SAT.





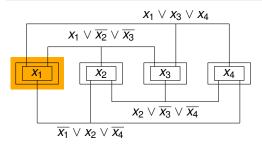
(set of labels, int k) s.t. $H \ge k \Leftrightarrow \varphi$ satisfiable

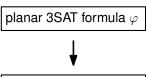
Theorem

The active-range optimization problem is NP-hard – even the simple variant.

Sketch of proof

By reduction from PLANAR 3SAT.





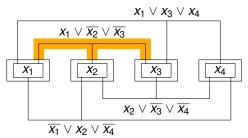
(set of labels, int k) s.t. $H \ge k \Leftrightarrow \varphi$ satisfiable

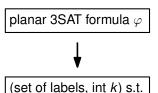
Theorem

The active-range optimization problem is NP-hard – even the simple variant.

Sketch of proof

By reduction from PLANAR 3SAT.

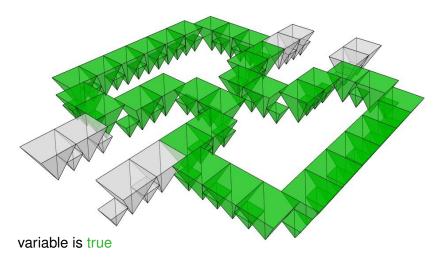




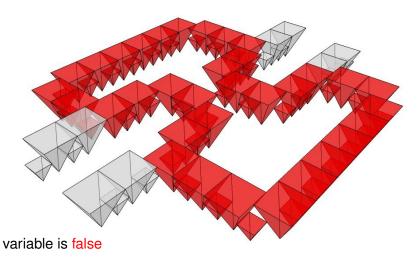
 $H \ge k \Leftrightarrow \varphi$ satisfiable

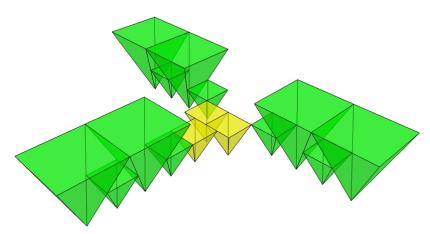
10

Variable gadget

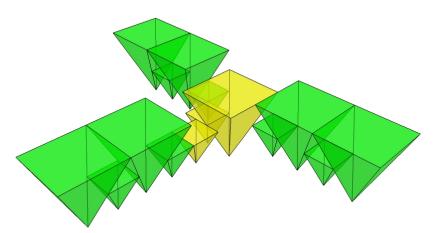


Variable gadget

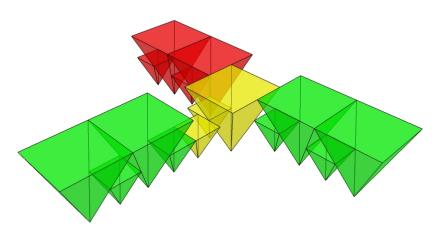




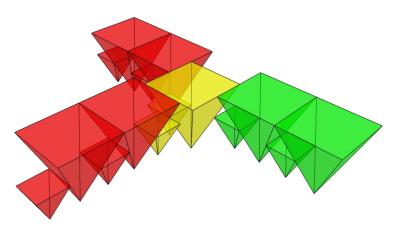
3 literals are true



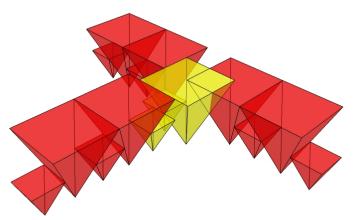
3 literals are true \rightarrow contribution to $H: 2 \cdot S_{max}$



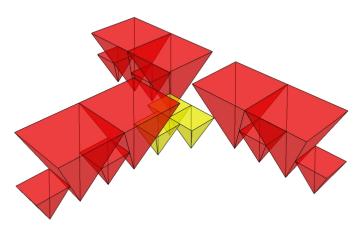
2 literals are true \rightarrow contribution to $H: 2 \cdot S_{max}$



1 literal is true \rightarrow contribution to $H: 2 \cdot S_{max}$



0 literals are true \rightarrow contribution to H: ?



0 literals are true → contribution to $H: 1.5 \cdot S_{max}$

Outline

Model

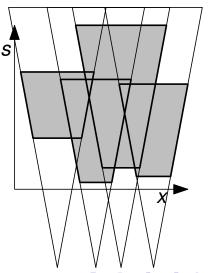
Complexity

- Approximation
 - Top-to-bottom sweep algorithm
 - Level-based algorithm

Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

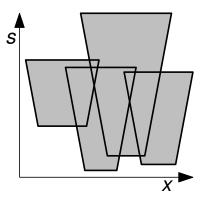
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

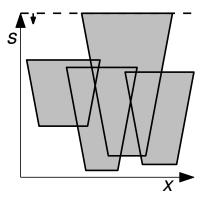
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

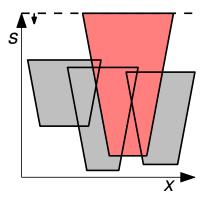
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

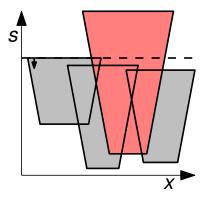
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

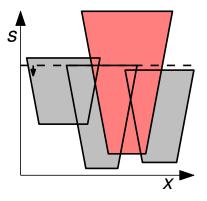
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

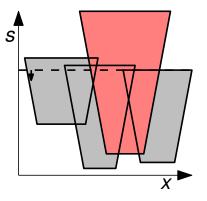
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

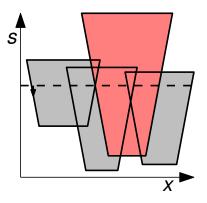
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

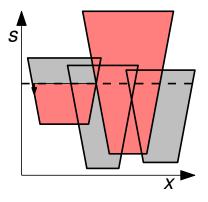
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

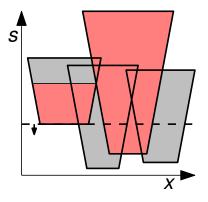
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

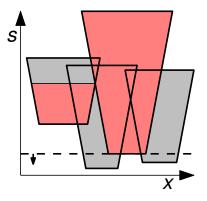
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

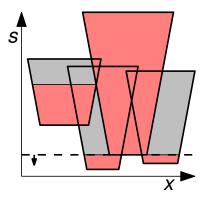
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

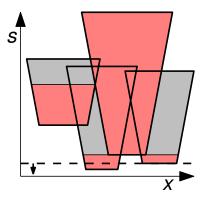
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

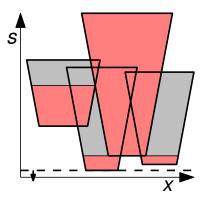
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

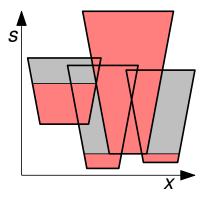
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

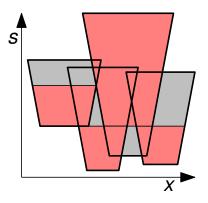
Subroutine try to fill extrusion E_i



Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

Subroutine try to fill extrusion E_i

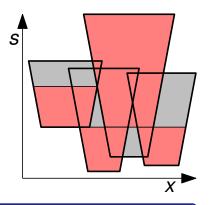


Algorithm

- sweep from top to bottom
- at each event try to fill available but inactive extru.

Subroutine try to fill extrusion E_i

If E_i doesn't intersect any active extrusion at current scale s, then set $[a_i, A_i] = [s_i, s]$.



Theorem

For segments of congruent triangles, this is a $\frac{1}{2}$ -approximation.

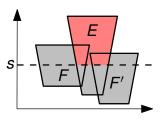
Blocking Lemma

If an extrusion E never blocks more than c pairwise independent extrusions,then our algorithm computes a 1/c-approximation.

Blocking Lemma

If an extrusion *E* never blocks more than *c* pairwise independent extrusions, then our algorithm computes a 1/*c*-approximation.

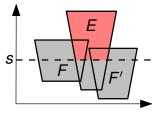
E blocks F at scale s if E is active and overlaps F at s.



Blocking Lemma

If an extrusion *E* never blocks more than *c* pairwise independent extrusions, then our algorithm computes a 1/*c*-approximation.

- *E blocks F* at scale *s* if *E* is active and overlaps *F* at *s*.
- F and F' are *independent* at s if they do not overlap at s.



Blocking Lemma

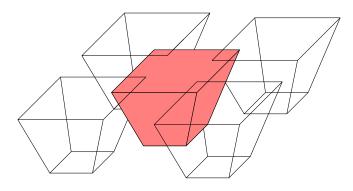
If an extrusion *E* never blocks more than *c* pairwise independent extrusions, then our algorithm computes a 1/*c*-approximation.

- E blocks F at scale s if E is active and overlaps F at s.
- F and F' are *independent* at s if they do not overlap at s.

Proof

Integrate **if**-condition over all scales \Rightarrow **then**-statement.

Example: frustal segments of congruent cones

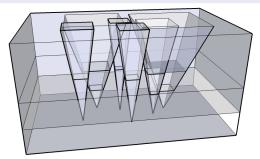


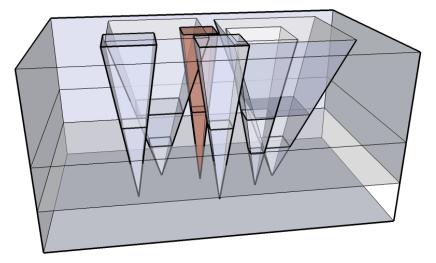
- each label at each scale has the same shape
- blocking lemma ⇒ sweep yields 1/4-approximation

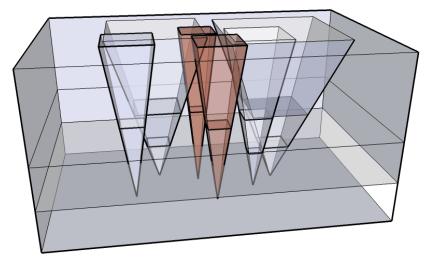
Level-based algorithm (sketch)

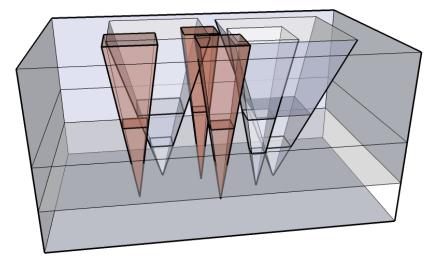
Setting

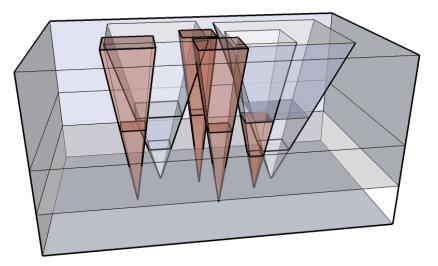
- n arbitrary square cones
- available ranges [0, S_{max}]
- use horizontal planes at scales $S_{\text{max}}/2^i$ for $i = 0, ..., \log n$

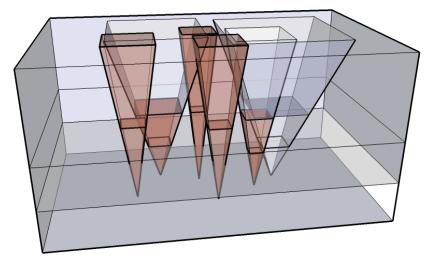


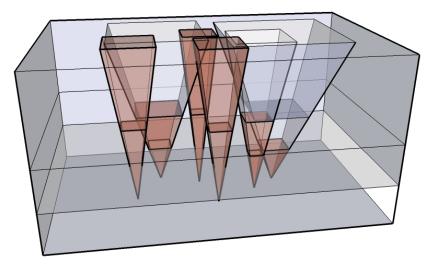












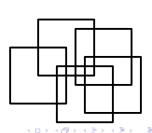
extrusions	approx.	running time
frustal segm. of congr. cones	1/4	$O((n+k)\log^2 n)$
congruent frusta	1/(4W)	O(n ⁴)
arbitrary square cones (simple)	1/24	$O(n\log^3 n)$
congruent square cones (simple)	1/8	$O(n\log^3 n)$

19

extrusions	approx.	running time
frustal segm. of congr. cones	1/4	$O((n+k)\log^2 n)$
congruent frusta	1/(4W)	O(n ⁴)
arbitrary square cones (simple)	1/24	$O(n\log^3 n)$
congruent square cones (simple)	1/8	$O(n\log^3 n)$

Open Problems

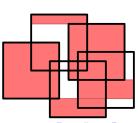
- better approximations, also in 1d
- (non-) existence of a PTAS
- more realistic extrusion shapes



extrusions	approx.	running time
frustal segm. of congr. cones	1/4	$O((n+k)\log^2 n)$
congruent frusta	1/(4W)	$O(n^4)$
arbitrary square cones (simple)	1/24	$O(n\log^3 n)$
congruent square cones (simple)	1/8	$O(n\log^3 n)$

Open Problems

- better approximations, also in 1d
- (non-) existence of a PTAS
- more realistic extrusion shapes



extrusions	approx.	running time
frustal segm. of congr. cones	1/4	$O((n+k)\log^2 n)$
congruent frusta	1/(4W)	O(n ⁴)
arbitrary square cones (simple)	1/24	$O(n\log^3 n)$
congruent square cones (simple)	1/8	$O(n\log^3 n)$

Open Problems

- better approximations, also in 1d
- (non-) existence of a PTAS
- more realistic extrusion shapes

