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ORDERED LEVEL PLANARITY

input: a graph G with vertex coordinates ¢: V — N?

output: a planar drawing of G where vertices are on
prescribed coordinates, and edges are y-monotone
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ORDERED LEVEL PLANARITY
examples

subdivide straighten
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subdivide straighten
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ORDERED LEVEL PLANARITY
examples

disjoint levels — independence



ORDERED LEVEL PLANARITY
examples

bounding walls



ORDERED LEVEL PLANARITY
(slow) algorithm
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input: a graph G with vertex coordinates ¢: V — N?

output: a planar drawing of G where vertices are on
prescribed coordinates, and edges are y-monotone
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output: a planar drawing of G where vertices are on
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input: a graph G with vertex coordinates ¢: V — N?

output: a planar drawing of G where vertices are on
prescribed coordinates, and edges are y-monotone
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input: a graph G with vertex coordinates ¢: V — N?

output: a planar drawing of G where vertices are on
prescribed coordinates, and edges are y-monotone



ORDERED LEVEL PLANARITY
(slow) algorithm
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input: a graph G with vertex coordinates ¢: V — N?

output: a planar drawing of G where vertices are on
prescribed coordinates, and edges are y-monotone
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input: a graph G with vertex coordinates ¢: V — N?

output: a planar drawing of G where vertices are on
prescribed coordinates, and edges are y-monotone



ORDERED LEVEL PLANARITY
(slow) algorithm

state
3,1,1,2,5,1 ®
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input: a graph G with vertex coordinates ¢: V — N?

output: a planar drawing of G where vertices are on
prescribed coordinates, and edges are y-monotone
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(slow) algorithm

state
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input: a graph G with vertex coordinates ¢: V — N?

output: a planar drawing of G where vertices are on
prescribed coordinates, and edges are y-monotone
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(slow) algorithm
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input: a graph G with vertex coordinates ¢: V — N?

output: a planar drawing of G where vertices are on
prescribed coordinates, and edges are y-monotone
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input: a graph G with vertex coordinates ¢: V — N?

output: a planar drawing of G where vertices are on
prescribed coordinates, and edges are y-monotone
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input: a graph G with vertex coordinates ¢: V — N?

output: a planar drawing of G where vertices are on
prescribed coordinates, and edges are y-monotone



ORDERED LEVEL PLANARITY
(slow) algorithm

using dynamic programming, runs in nOh)

levels

h=06

input: a graph G with vertex coordinates ¢: V — N?

output: a planar drawing of G where vertices are on
prescribed coordinates, and edges are y-monotone
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polynomial-time reduction (runs in nO(l))

of NP-hard problem to our problem
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0-1 Integer programming

Independent set
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h = height, number of distinct y-coordinates

NP-hard (for big h) — no n®W algorithm

n®") algorithm

our problem
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Parameterized complexity

h = height, number of distinct y-coordinates

NP-hard (for big h) — no n®W algorithm

n®M) algorithm XP slice-wise polynomial

our problem

2" . n©W algorithm FPT fixed-parameter tractable
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our problem

Parameterized complexity

h = height, number of distinct y-coordinates

NP-hard (for big h)

n®") algorithm XP

W|1]-hardness

oM. nOM) algorithm FPT

n®M) algorithm

— no nW algorithm

slice-wise polynomial

— no FPT algorithm

fixed-parameter tractable



W/1]-hardness

parameterized reduction (runs in f(k) - n®W)

of W|1]-hard problem to our problem
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parameterized reduction (runs in f(k) - n®W)

of W|1]-hard problem to our problem
parameter

Independent Set (its size)
Multicolored Ind. Set (size)
List Coloring (treewidth)
Odd Set (size)

Grid tiling (grid size)

Partial Vertex Cover (size)



W/1]-hardness

parameterized reduction (runs in f(k) - n®W)

of W|1]-hard problem to our problem
parameter

Independent Set (its size)
Multicolored Ind. Set (size)
List Coloring (treewidth)
Odd Set (size)

Grid tiling (grid size) Ordered Level Planarity

Partial Vertex Cover (size)



W/1]-hard from MULTICOLORED INDEPENDENT SET
input: a graph H, an integer k, and a k-coloring
01,02,...,Ck of V(H)

parameter: k

output: Does H have an independent set X C V(H)
that contains one vertex of C; for every j € [k]?
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W/1]-hard from MULTICOLORED INDEPENDENT SET
input: a graph H, an integer k, and a k-coloring
01,02,...,Ck of V(H)

parameter: k

output: Does H have an independent set X C V(H)
that contains one vertex of C; for every j € [k]?




W/(1]-hard from MULTICOLORED INDEPENDENT SET
input: a graph M, an integer k, and a k-coloring
01,02,...,Ck of V(H)

parameter: k£

output: Does H have an independent set X C V(H)
that contains one vertex of C; for every j € [k]?




Complexity of ORDERED LEVEL PLANARITY

maximum leaf number vertex cover
bandwidth distance to linear forest distance to stars vertex integrity twin-c
cutwidth topological bandwidth feedback vertex set distance to interval treedepth
ee carving-width bisection bandwidth pathwidth distance to outerplanar shrub-depth diameter
listance to maximum degree treewidth linear rank width

i (l

h-index book thickness branch width

A rank width
' 4

B inf-flip-width boolean width
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clique width
A

A < f(B) for computable function f
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even for constant
parameter value
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XP and W/1]-hard and linear structure — XNLP?

XP runs in nf®

W/|1]-hard, from IND. SET
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XP and W/1]-hard and linear structure — XNLP?

XP runs in nf*
XNLP
XNLP-hard

W/t]-hard V¢

3]-hard
2]-hard

==
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1]-hard, from IND. SET

FPT



XP and W/1]-hard and linear structure — XNLP?

XP XNLP membership
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time and g(k) - logn space



XP and W/1]-hard and linear structure — XNLP?

XP

algorithm that runs in
nf*) time

W/[1]-hard

parameterized reduction

that runs in O(f(k) - n°)
time

from MULTICOLORED IN-
DEPENDENT SET

XNLP membership

nondeterministic algo-
rithm that runs in f(k)-n°
time and g(k) - logn space

XNLP-hard

parameterized reduction
that runs in O(f(k) - n°)
time and uses only
O(g(k) - logn) space

from CHAINED MULTICOL-
ORED INDEPENDENT SET



XNLP membership

nondeterministic algo-
rithm that runs in f(k)-n°
time and g(k) - logn space




XNILP-hardness parameterized reduction
that runs in O(f(k) - n°)

time and uses only

CHAINED MULTICOLORED
O(g(k) - logn) space

INDEPENDENT SET

input: a graph H, an integer k, a k-coloring
C1,Cs,...,Cr and an r-partition Vq,...,V,. of V(H)
such that Vuv € E(H),u € V; = v € (V;_1UV;UV;11).

parameter: k

output: Does H have an indep. set X C V(H) that
contains one vertex of C;NV; for every j € k|, ¢ € |r|?

k colors

Vl V2 Vfr

<8/




XNILP-hardness parameterized reduction
that runs in O(f(k) - n°)

time and uses only
O(g(k) - logn) space
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XNILP-hardness parameterized reduction
that runs in O(f(k) - n°)

time and uses only
O(g(k) - logn) space
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