Constrained and Ordered Level Planarity Parameterized by the Number of Levels

Václav Blažej

with Boris Klemz, Felix Klesen, Marie Diana Sieper, Alexander Wolff, and Johannes Zink

SoCG 2024

Engineering and Physical Sciences Research Council

Constrained and Ordered Level Planarity Parameterized by the Number of Levels

Václav Blažej

with Boris Klemz, Felix Klesen, Marie Diana Sieper, Alexander Wolff, and Johannes Zink

SoCG 2024

Engineering and Physical Sciences Research Council

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

output: a planar drawing of G where vertices are on prescribed coordinates, and edges are y-monotone

no crossings

going only up

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

Ordered Level Planarity examples

Ordered Level Planarity examples

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

using dynamic programming, runs in $n^{\mathcal{O}(h)}$

input: a graph G with vertex coordinates $\ell: V \to \mathbb{N}^2$

NP-hardness

polynomial-time reduction (runs in $n^{O(1)}$) of NP-hard problem to our problem

NP-hardness

polynomial-time reduction (runs in $n^{O(1)}$) of NP-hard problem to our problem

Satisfiability (SAT) 3-SAT 3-SAT-(2,2) Planar monotone 3-SAT 0-1 Integer programming Independent set

NP-hardness

polynomial-time reduction (runs in $n^{O(1)}$) of NP-hard problem to our problem

Satisfiability (SAT) 3-SAT 3-SAT-(2,2) Planar monotone 3-SAT 0-1 Integer programming Independent set

Ordered Level Planarity

NP-hard from Planar Monotone 3-SAT

images of B. Klemz, G. Rote, Ordered Level Planarity ...

NP-hard from Planar Monotone 3-SAT

images of B. Klemz, G. Rote, Ordered Level Planarity ...

NP-hard from Planar Monotone 3-SAT

images of B. Klemz, G. Rote, Ordered Level Planarity ...

h = height, number of distinct y-coordinatesNP-hard (for big h) $\rightarrow \text{ no } n^{\mathcal{O}(1)}$ algorithm

upped n
$$n^{\mathcal{O}(h)}$$
 algorithm $2^h \cdot n^{\mathcal{O}(1)}$ algorithm ?

 $n^{\mathcal{O}(1)}$ algorithm

Parameterized complexity

h = height, number of distinct y-coordinatesNP-hard (for big h) $\rightarrow \text{ no } n^{\mathcal{O}(1)}$ algorithm

Parameterized complexity

h = height, number of distinct y-coordinatesNP-hard (for big h) $\rightarrow \text{ no } n^{\mathcal{O}(1)}$ algorithm

lem	$n^{\mathcal{O}(h)}$ algorithm XP	slice-wise polynomial
prob	W[1]-hardness	\rightarrow no FPT algorithm
our	$2^h \cdot n^{\mathcal{O}(1)}$ algorithm FPT	fixed-parameter tractable

 $n^{\mathcal{O}(1)}$ algorithm

W[1]-hardness

parameterized reduction (runs in $f(k) \cdot n^{O(1)}$) of W[1]-hard problem to our problem

W[1]-hardness

parameterized reduction (runs in $f(k) \cdot n^{O(1)}$) of <u>W[1]-hard problem</u> to our problem

parameter

Independent Set (its size)
Multicolored Ind. Set (size)
List Coloring (treewidth)
Odd Set (size)
Grid tiling (grid size)
Partial Vertex Cover (size)

W[1]-hardness

parameterized reduction (runs in $f(k) \cdot n^{O(1)}$) of <u>W[1]-hard problem</u> to <u>our problem</u>

parameter

Independent Set (its size)
Multicolored Ind. Set (size)
List Coloring (treewidth)
Odd Set (size)
Grid tiling (grid size)
Partial Vertex Cover (size)

Ordered Level Planarity

 $\mathrm{W}[1]\text{-}\mathrm{hard}\ \mathrm{from}\ \mathrm{Multicolored}\ \mathrm{Independent}\ \mathrm{Set}$

input: a graph H, an integer k, and a k-coloring C_1, C_2, \ldots, C_k of V(H)

parameter: k

input: a graph H, an integer k, and a k-coloring C_1, C_2, \ldots, C_k of V(H)

parameter: k

input: a graph H, an integer k, and a k-coloring C_1, C_2, \ldots, C_k of V(H)

parameter: k

input: a graph H, an integer k, and a k-coloring C_1, C_2, \ldots, C_k of V(H)

parameter: k

input: a graph H, an integer k, and a k-coloring C_1, C_2, \ldots, C_k of V(H)

parameter: k

input: a graph H, an integer k, and a k-coloring C_1, C_2, \ldots, C_k of V(H)

parameter: k

input: a graph H, an integer k, and a k-coloring C_1, C_2, \ldots, C_k of V(H)

parameter: k

input: a graph H, an integer k, and a k-coloring C_1, C_2, \ldots, C_k of V(H)

parameter: k

 $\mathrm{W}[1]\text{-}\mathrm{hard}\ \mathrm{from}\ \mathrm{Multicolored}\ \mathrm{Independent}\ \mathrm{Set}$

input: a graph H, an integer k, and a k-coloring C_1, C_2, \ldots, C_k of V(H)

parameter: k

 $\mathrm{W}[1]\text{-}\mathrm{hard}\ \mathrm{from}\ \mathrm{Multicolored}\ \mathrm{Independent}\ \mathrm{Set}$

input: a graph H, an integer k, and a k-coloring C_1, C_2, \ldots, C_k of V(H)

parameter: k

input: a graph H, an integer k, and a k-coloring C_1, C_2, \ldots, C_k of V(H)

parameter: k

input: a graph H, an integer k, and a k-coloring C_1, C_2, \ldots, C_k of V(H)

parameter: k

XP runs in $n^{f(k)}$

W[1]-hard, from IND. SET

FPT

XP runs in $n^{f(k)}$ XNLP XNLP-hard W[t]-hard $\forall t$ W[3]-hard W[2]-hard W[1]-hard, from IND. SET

FPT

XP

algorithm that runs in $n^{f(k)}$ time

XNLP membership **nondeterministic** algorithm that runs in $f(k) \cdot n^c$ time and $g(k) \cdot \log n$ space

XP algorithm that runs in $n^{f(k)}$ time

XNLP membership nondeterministic algorithm that runs in $f(k) \cdot n^c$ time and $g(k) \cdot \log n$ space

W[1]-hard

parameterized reduction that runs in $\mathcal{O}(f(k) \cdot n^c)$ time

from Multicolored INdependent Set XNLP-hard parameterized reduction that runs in $\mathcal{O}(f(k) \cdot n^c)$ time and uses only $\mathcal{O}(g(k) \cdot \log n)$ space

from Chained Multicolored Independent Set

nondeterministicalgo-rithm that runs in $f(k) \cdot n^c$ time and $g(k) \cdot \log n$ space

XNLP membership

XNLP-hardness

CHAINED MULTICOLORED INDEPENDENT SET parameterized reduction that runs in $\mathcal{O}(f(k) \cdot n^c)$ time and uses only $\mathcal{O}(g(k) \cdot \log n)$ space

input: a graph H, an integer k, a k-coloring C_1, C_2, \ldots, C_k and an r-partition V_1, \ldots, V_r of V(H) such that $\forall uv \in E(H), u \in V_i \Rightarrow v \in (V_{i-1} \cup V_i \cup V_{i+1})$. **parameter:** k

output: Does H have an indep. set $X \subseteq V(H)$ that contains one vertex of $C_j \cap V_i$ for every $j \in [k], i \in [r]$?

XNLP-hardness

parameterized reduction that runs in $\mathcal{O}(f(k) \cdot n^c)$ time and uses only $\mathcal{O}(g(k) \cdot \log n)$ space

XNLP-hardness

parameterized reduction that runs in $\mathcal{O}(f(k) \cdot n^c)$ time and uses only $\mathcal{O}(g(k) \cdot \log n)$ space

Constrained and Ordered Level Planarity Parameterized by the Number of Levels is XNLP-complete

Václav Blažej

with Boris Klemz, Felix Klesen, Marie Diana Sieper, Alexander Wolff, and Johannes Zink

SoCG 2024

