
Václav Blažej
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Ordered Level Planarity
examples

disjoint levels → independence

bounding walls
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input: a graph G with vertex coordinates ℓ:V → N2

output: a planar drawing of G where vertices are on
prescribed coordinates, and edges are y-monotone

Ordered Level Planarity
(slow) algorithm
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input: a graph G with vertex coordinates ℓ:V → N2

output: a planar drawing of G where vertices are on
prescribed coordinates, and edges are y-monotone

Ordered Level Planarity
(slow) algorithm

using dynamic programming, runs in nO(h)

h = 6
levels
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images of B. Klemz, G. Rote, Ordered Level Planarity . . .
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nO(h) algorithm XP
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slice-wise polynomial
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nO(1) algorithm

W[1]-hardness → no FPT algorithm

Parameterized complexity

h = height, number of distinct y-coordinates
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W[1]-hard from Multicolored Independent Set

input: a graph H, an integer k, and a k-coloring
C1, C2, . . . , Ck of V (H)

output: Does H have an independent set X ⊆ V (H)
that contains one vertex of Cj for every j ∈ [k]?

parameter: k
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XP runs in nf(k)

W[1]-hard, from Ind. Set

FPT
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W[t]-hard ∀t

XNLP-hard
XNLP
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XP and W[1]-hard and linear structure → XNLP?

XNLP membershipXP
algorithm that runs in
nf(k) time

nondeterministic algo-
rithm that runs in f(k) ·nc

time and g(k) · logn space

XNLP-hard

from Chained Multicol-
ored Independent Set

parameterized reduction
that runs in O(f(k) · nc)
time and uses only
O(g(k) · logn) space

W[1]-hard
parameterized reduction
that runs in O(f(k) · nc)
time
from Multicolored In-
dependent Set



XNLP membership nondeterministic algo-
rithm that runs in f(k) ·nc

time and g(k) · logn space

y = 3
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y = 1
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XNLP-hardness parameterized reduction
that runs in O(f(k) · nc)
time and uses only
O(g(k) · logn) space

Chained Multicolored
Independent Set

input: a graph H, an integer k, a k-coloring
C1, C2, . . . , Ck and an r-partition V1, . . . , Vr of V (H)
such that ∀uv ∈ E(H), u ∈ Vi ⇒ v ∈ (Vi−1∪Vi∪Vi+1).

output: Does H have an indep. set X ⊆ V (H) that
contains one vertex of Cj∩Vi for every j ∈ [k], i ∈ [r]?

parameter: k

V1 V2 Vr

k colors



XNLP-hardness parameterized reduction
that runs in O(f(k) · nc)
time and uses only
O(g(k) · logn) space



XNLP-hardness parameterized reduction
that runs in O(f(k) · nc)
time and uses only
O(g(k) · logn) space

· · ·



is XNLP-complete

the end □

Václav Blažej
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