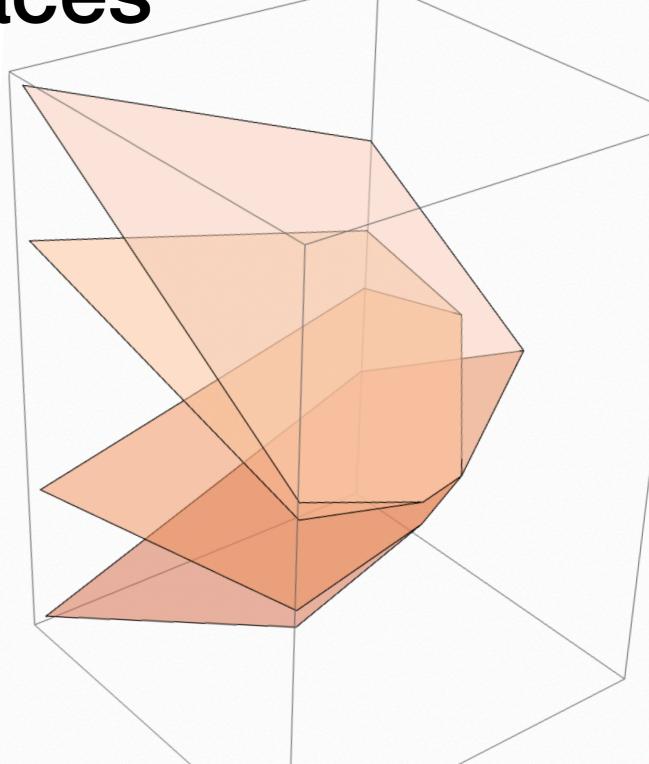
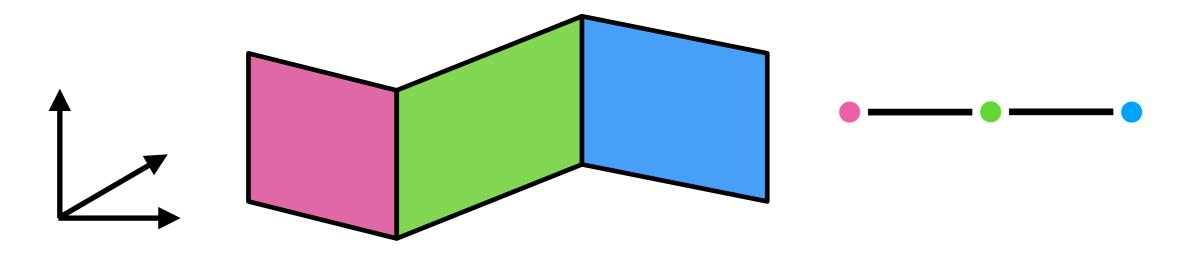
The 37th International Symposium on Computational Geometry

Elena Arseneva
Linda Kleist
Boris Klemz
Maarten Löffler
André Schulz
Birgit Vogtenhuber
Alexander Wolff

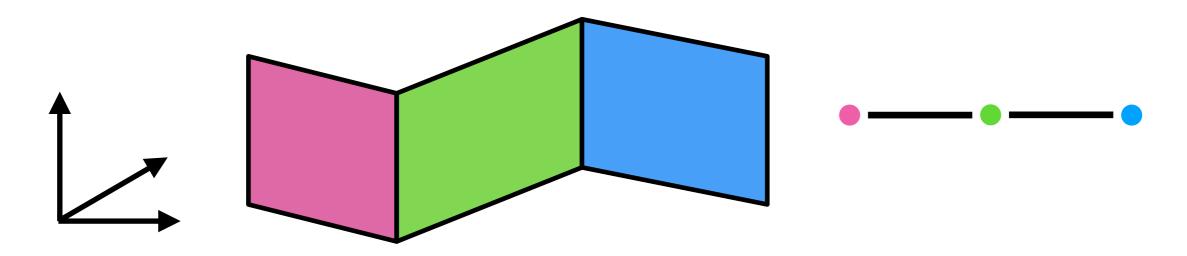


- given: polyhedral surface in 3d
- adjacency graph of the surface:
 - vertices are the polygons
 - edge iff two polygons share a side (properly)

- given: polyhedral surface in 3d
- adjacency graph of the surface:
 - vertices are the polygons
 - edge iff two polygons share a side (properly)

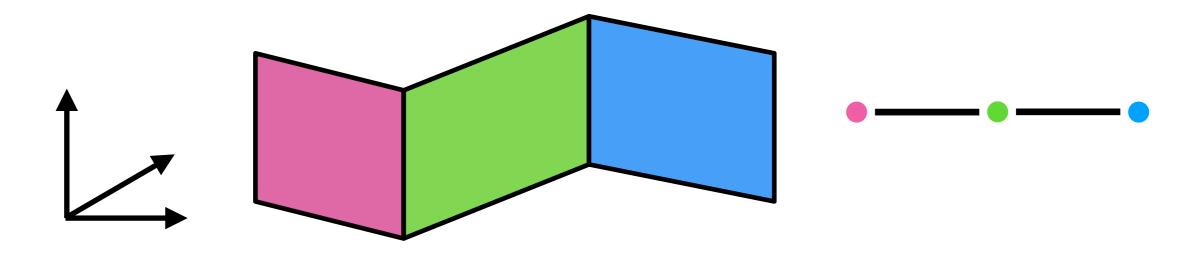


- given: polyhedral surface in 3d
- adjacency graph of the surface:
 - vertices are the polygons
 - edge iff two polygons share a side (properly)



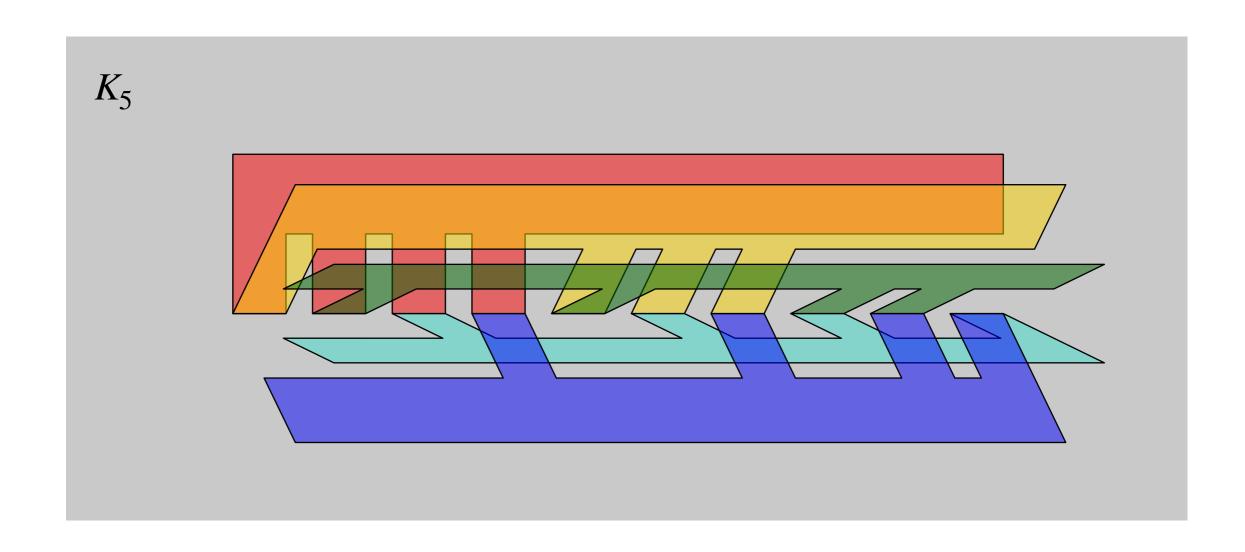
- remark 1: surfaces can have a boundary!
- remark 2: at most 2 polygons share a side

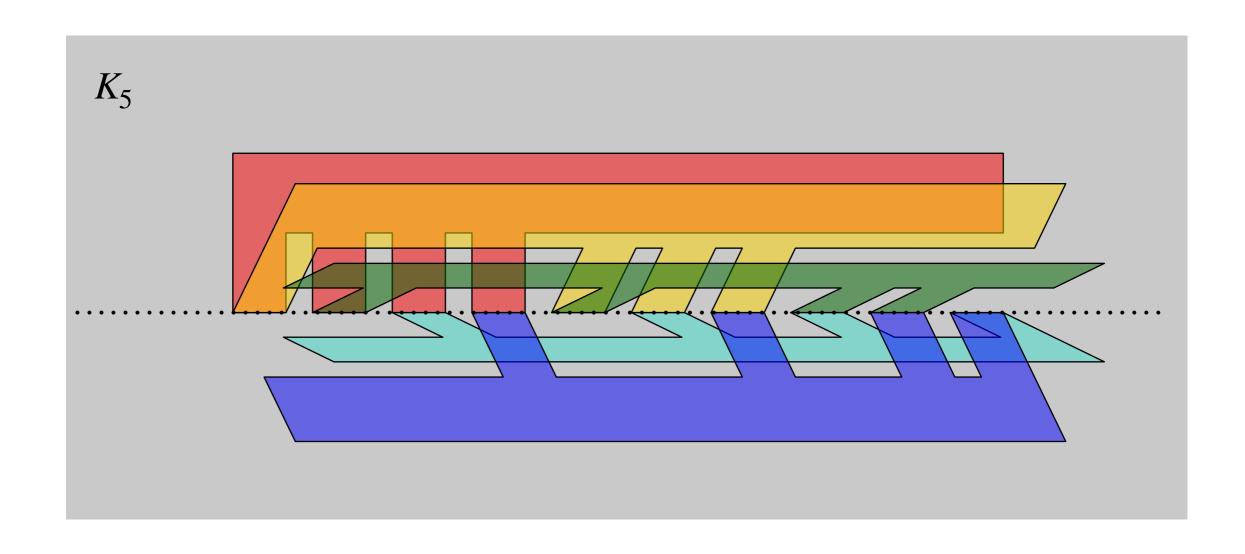
- given: polyhedral surface in 3d
- adjacency graph of the surface:
 - vertices are the polygons
 - edge iff two polygons share a side (properly)

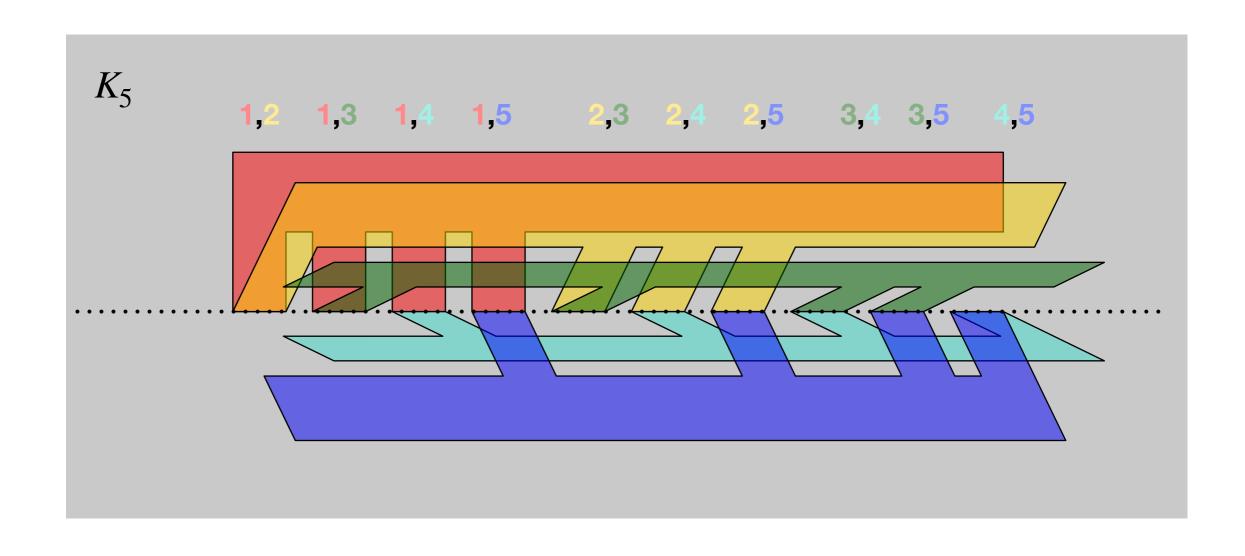


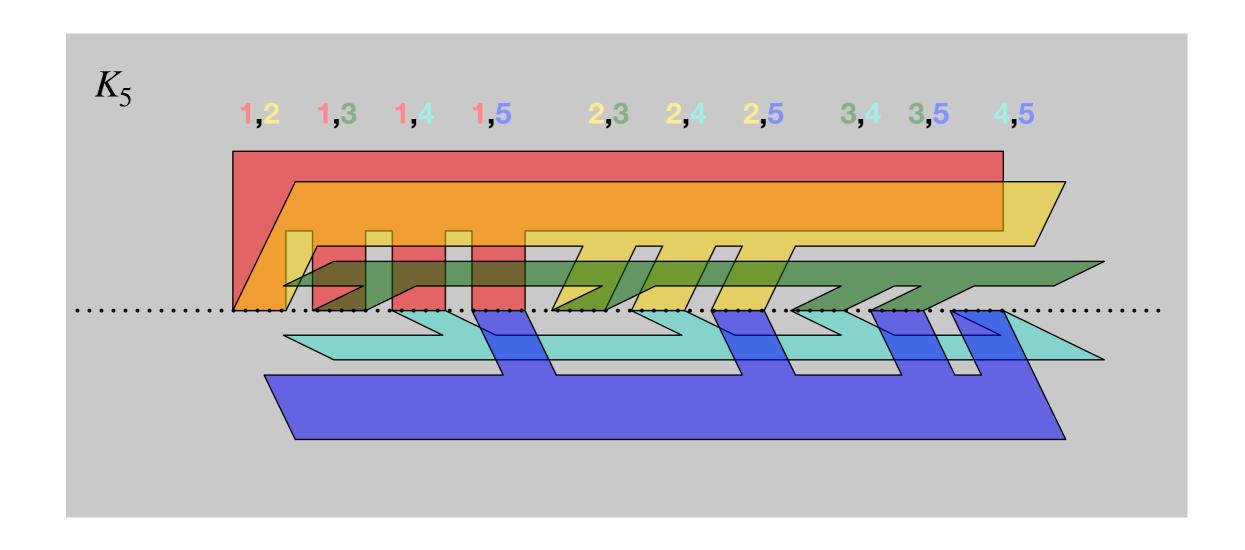
- remark 1: surfaces can have a boundary!
- remark 2: at most 2 polygons share a side

Q: What kind of graphs are possible? (or: Which graphs have a realization?)

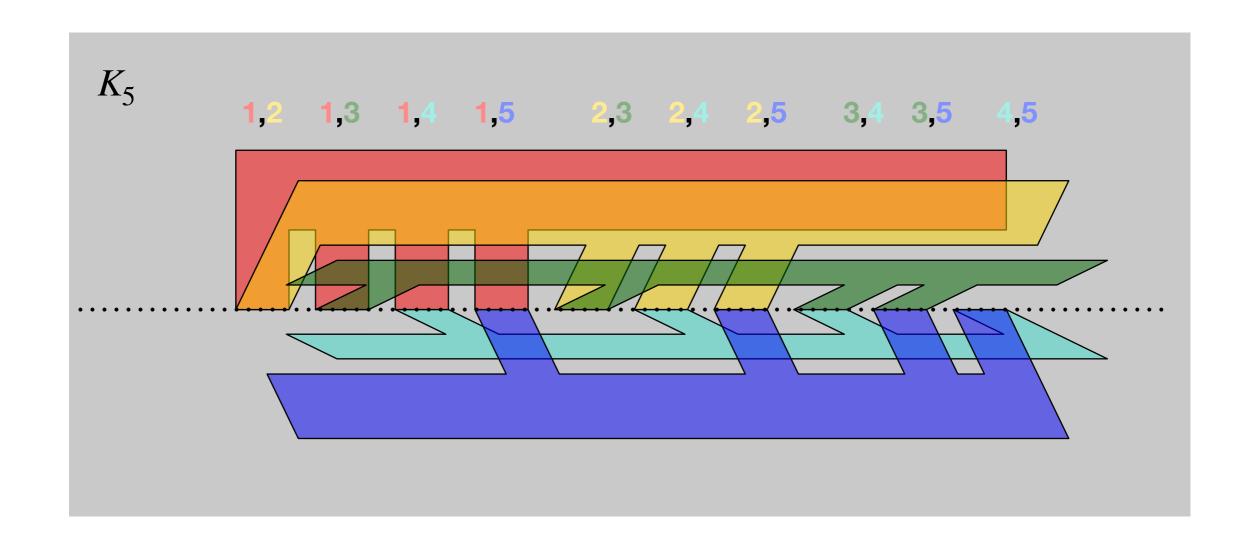








All graphs have such a representation.

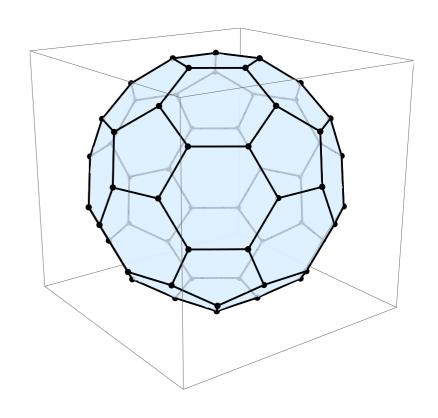


All graphs have such a representation.

(From now on convex polygons only!)

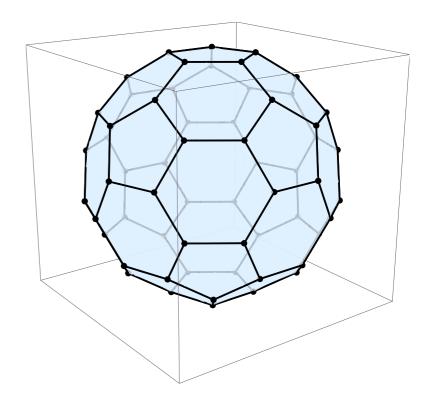
Steinitz's Theorem:

The 3-connected planar graphs are exactly the skeletons of convex polyhedra.



Steinitz's Theorem:

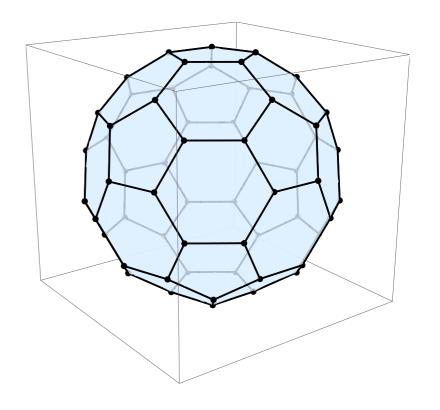
The 3-connected planar graphs are exactly the skeletons of convex polyhedra.



The dual of a 3-connected planar graph is again a 3-connected planar graph.

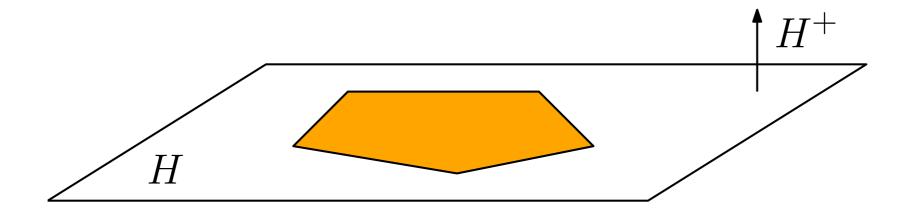
Steinitz's Theorem:

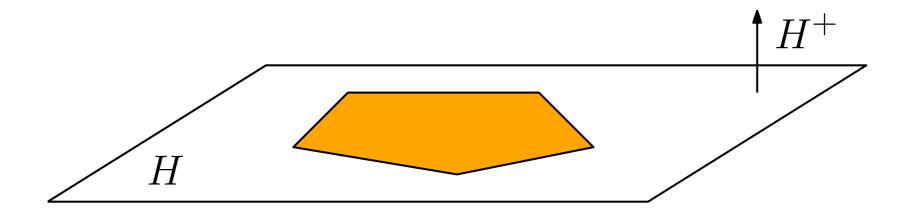
The 3-connected planar graphs are exactly the skeletons of convex polyhedra.



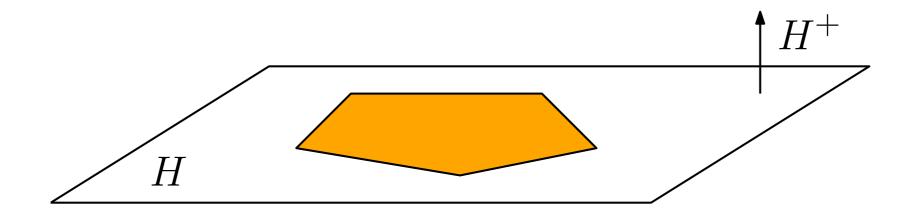
The dual of a 3-connected planar graph is again a 3-connected planar graph.

All planar graphs have a representation!

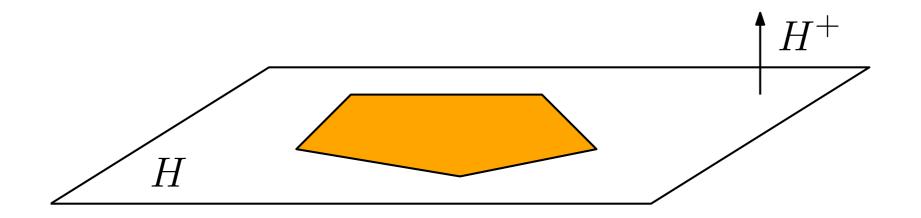




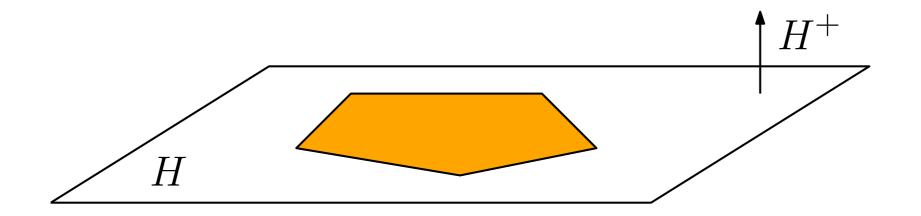
• All other polygons have to touch and thus can w.l.o.g. only lie in \mathcal{H}^+ .



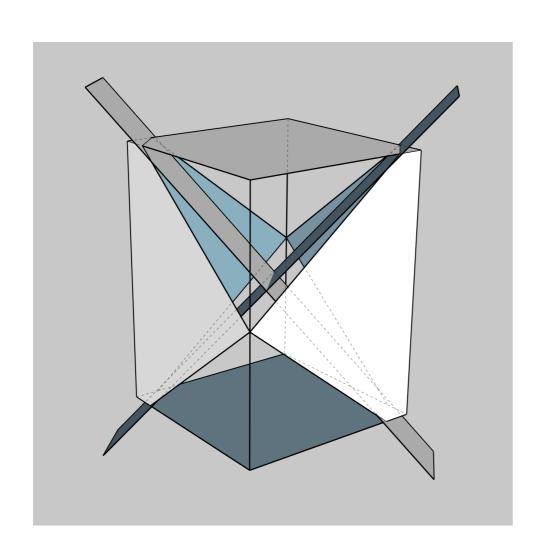
- All other polygons have to touch and thus can w.l.o.g. only lie in \mathcal{H}^+ .
- The supporting planes of the polygons define a polyhedron, which has all polygons (partially) as faces.

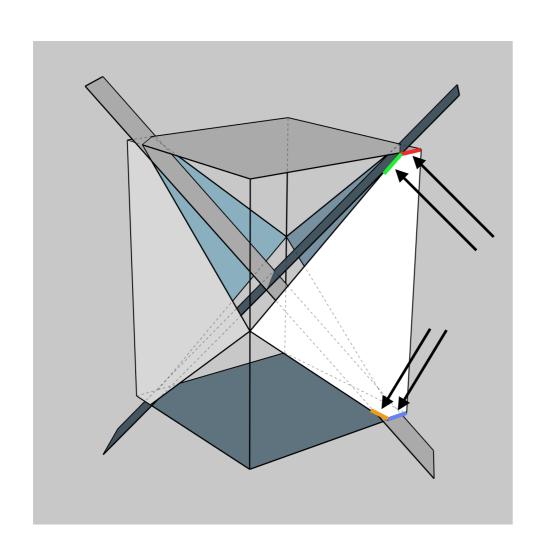


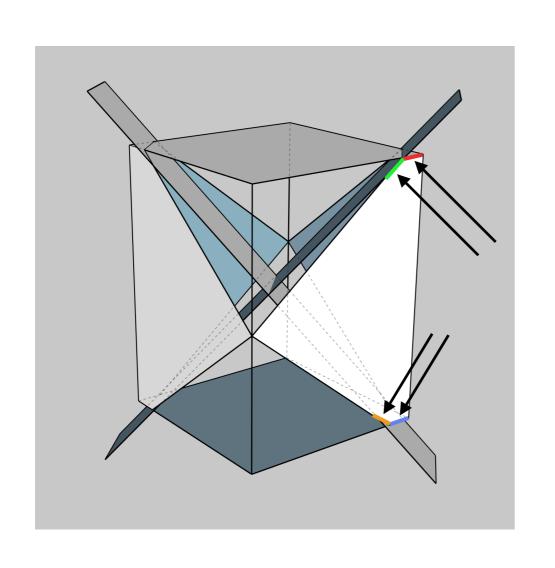
- All other polygons have to touch and thus can w.l.o.g. only lie in \mathcal{H}^+ .
- The supporting planes of the polygons define a polyhedron, which has all polygons (partially) as faces.
- The dual graph needs to be planar (Steinitz), and hence K_n for $n \geq 5$ is not possible.

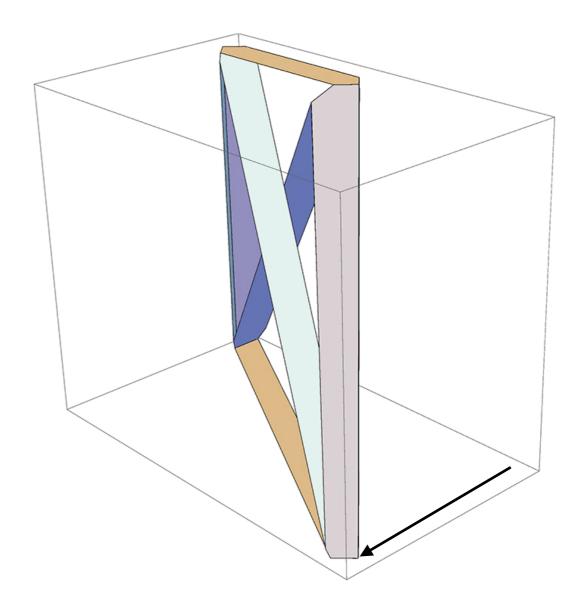


- All other polygons have to touch and thus can w.l.o.g. only lie in \mathcal{H}^+ .
- The supporting planes of the polygons define a polyhedron, which has all polygons (partially) as faces.
- The dual graph needs to be planar (Steinitz), and hence K_n for $n \geq 5$ is not possible.









Hypercubes

Every graph of a *d*-hypercube has a realization with convex polygons.

by a construction of McMullen, Schulz, Wills 1983

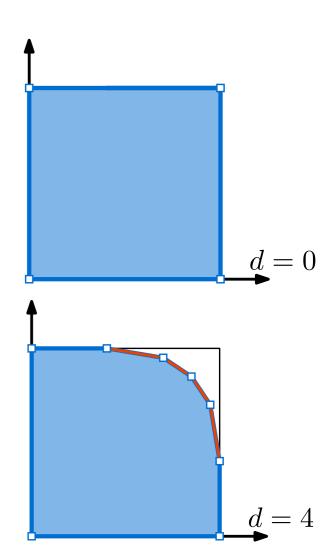
Hypercubes

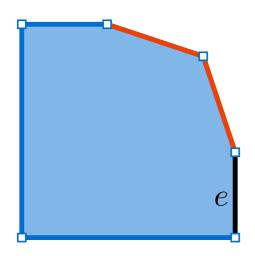
Every graph of a *d*-hypercube has a realization with convex polygons.

by a construction of McMullen, Schulz, Wills 1983

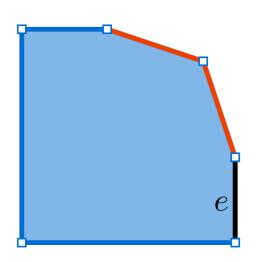
Incremental Construction with these invariants

- every face is a convex (d+4)-gon
- the projection in the xy-plane looks almost the same (only the convex chains differ)
- red edges have already 2 incident faces

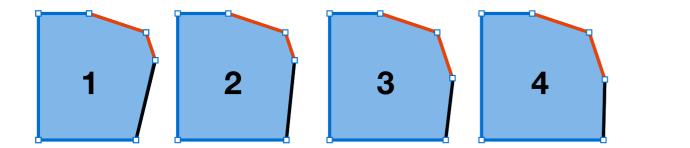




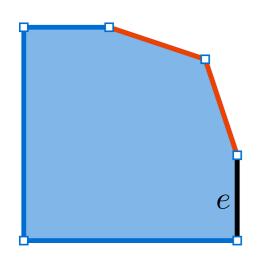
shear and translate such that for all polygons only the edge *e* lies below the xy-plane



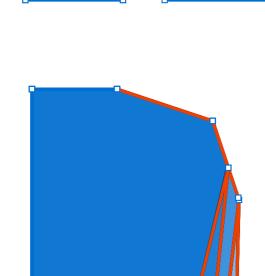
shear and translate such that for all polygons only the edge *e* lies below the xy-plane



cut with xy-plane



shear and translate such that for all polygons only the edge e lies below the xy-plane



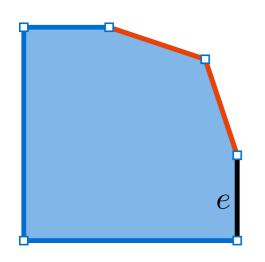
2

3 4

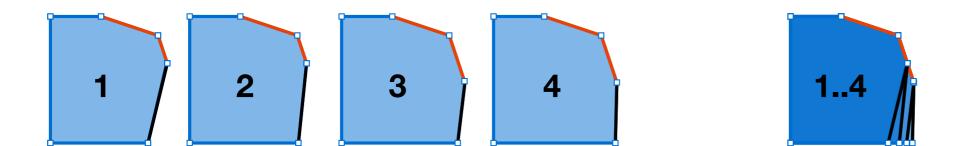


cut with xy-plane

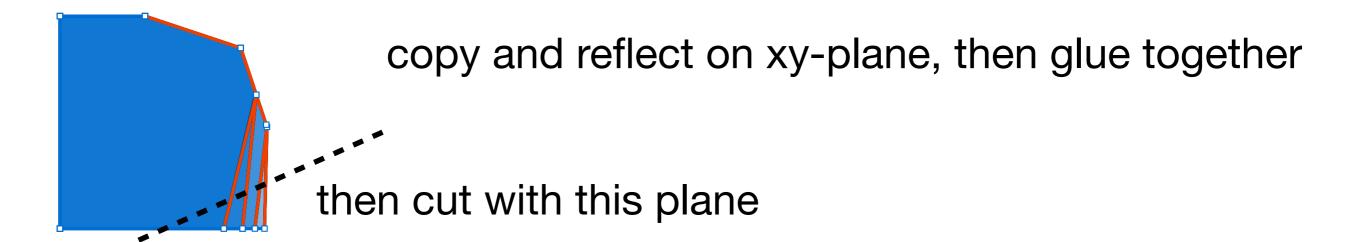
copy and reflect on xy-plane, then glue together



shear and translate such that for all polygons only the edge e lies below the xy-plane

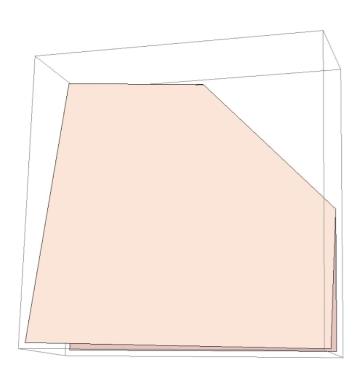


cut with xy-plane

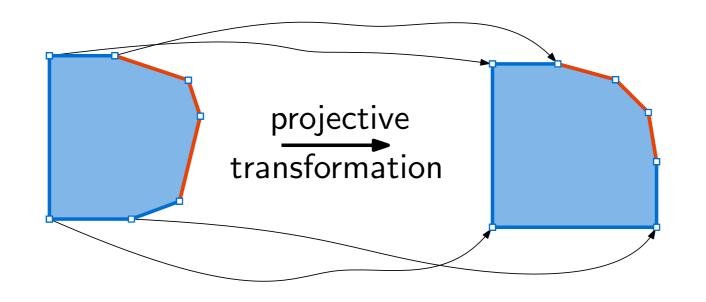


current shape projective transformation required shape

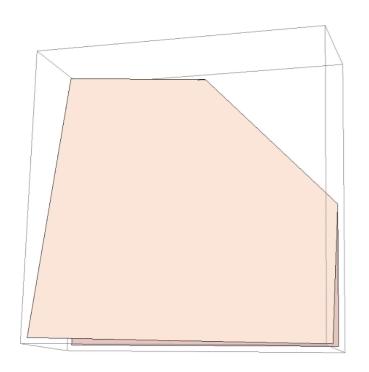
current shape projective transformation required shape

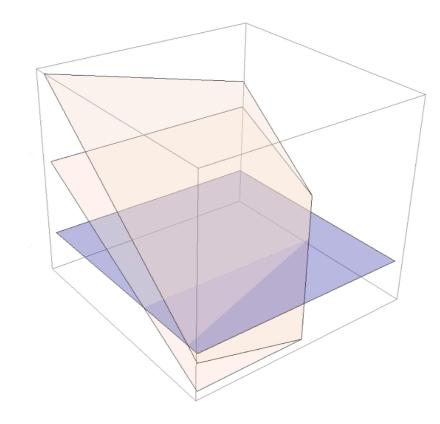


current shape

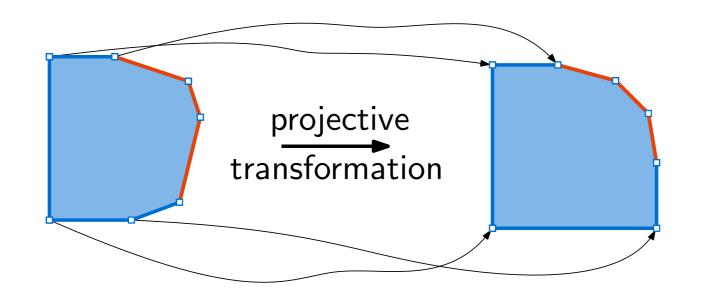


required shape

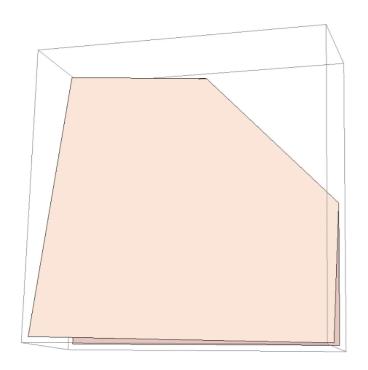


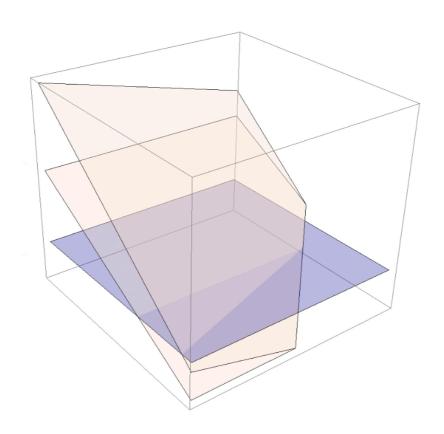


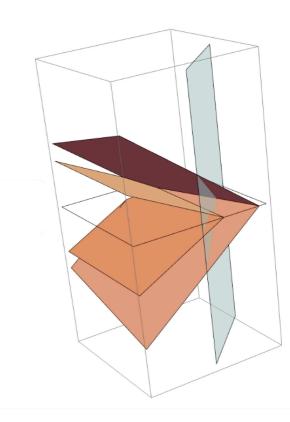
current shape



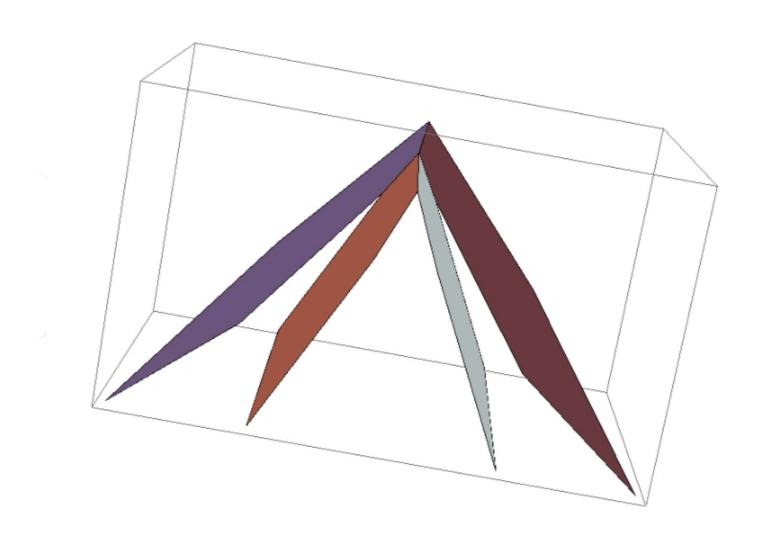
required shape

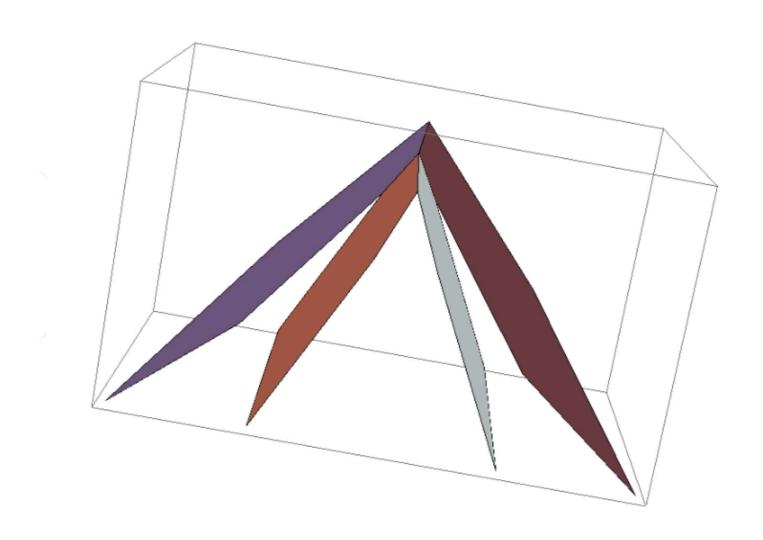


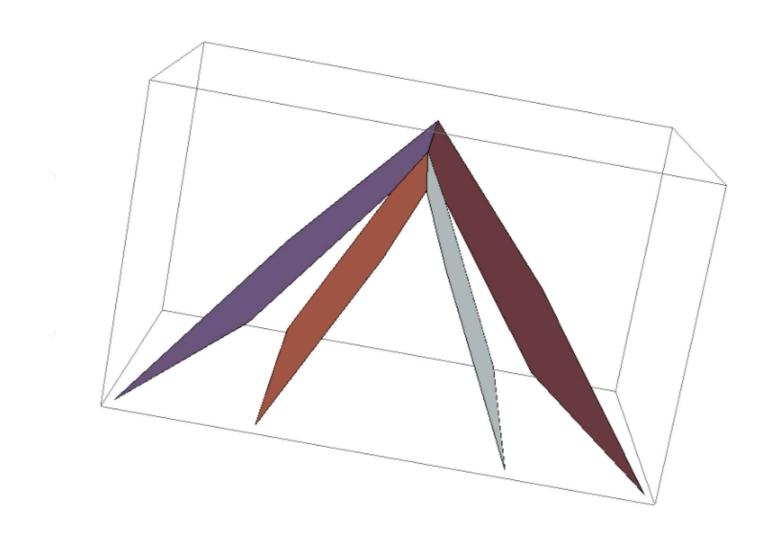


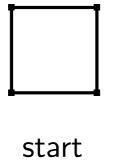


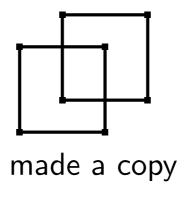
Example for d=2

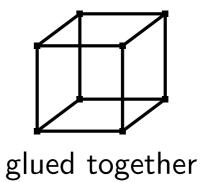


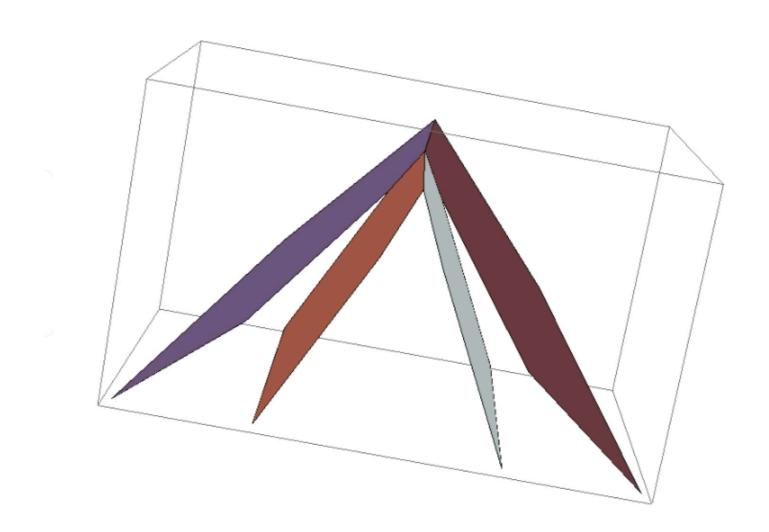




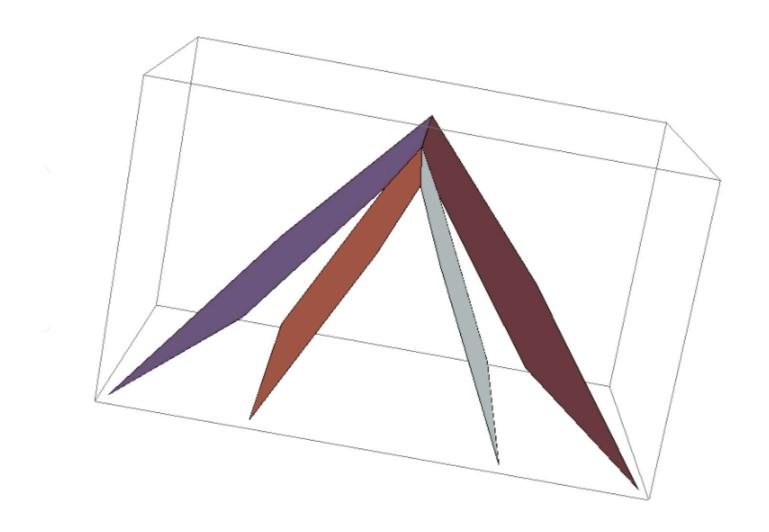








The $K_{5,81}$ has no realization with convex polygons



The $K_{5,81}$ has no realization with convex polygons

by the Kövari–Sós–Turán Theorem, the maximum edge density for a realizable graph is $O(n^{1.8})$

 What is the maximum edge density of adjacency graphs of polyhedral surfaces?

- What is the maximum edge density of adjacency graphs of polyhedral surfaces?
 - lower bound $\Omega(n \log n)$ hypercubes

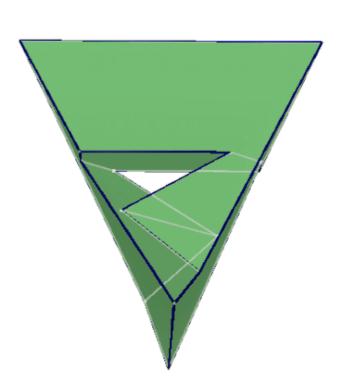
- What is the maximum edge density of adjacency graphs of polyhedral surfaces?
 - lower bound $\Omega(n \log n)$ hypercubes
 - upper bound $O(n^{1.8})$ $K_{5,81}$

- What is the maximum edge density of adjacency graphs of polyhedral surfaces?
 - lower bound $\Omega(n \log n)$ hypercubes
 - upper bound $O(n^{1.8})$ $K_{5,81}$
- Which complete bipartite graphs have a realization? (the paper contains realizations of $K_{4,4}$ and $K_{3,5}$)

- What is the maximum edge density of adjacency graphs of polyhedral surfaces?
 - lower bound $\Omega(n \log n)$ hypercubes
 - upper bound $O(n^{1.8})$ $K_{5,81}$
- Which complete bipartite graphs have a realization? (the paper contains realizations of $K_{4,4}$ and $K_{3,5}$)
- other graph classes (3-trees see paper)

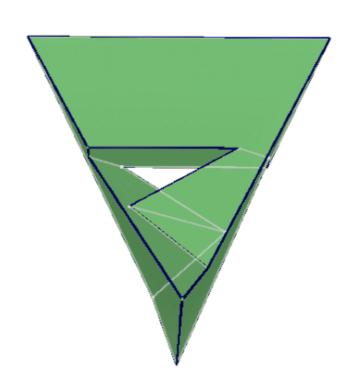
- What is the maximum edge density of adjacency graphs of polyhedral surfaces?
 - lower bound $\Omega(n \log n)$ hypercubes
 - upper bound $O(n^{1.8})$ $K_{5,81}$
- Which complete bipartite graphs have a realization? (the paper contains realizations of $K_{4,4}$ and $K_{3,5}$)
- other graph classes (3-trees see paper)
- hardness of recognition

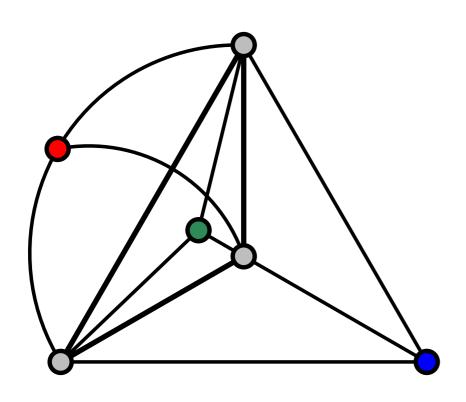
- What is the maximum edge density of adjacency graphs of polyhedral surfaces?
 - lower bound $\Omega(n \log n)$ hypercubes
 - upper bound $O(n^{1.8})$ $K_{5,81}$
- Which complete bipartite graphs have a realization? (the paper contains realizations of $K_{4,4}$ and $K_{3,5}$)
- other graph classes (3-trees see paper)
- hardness of recognition
- What about closed surfaces (nonconvex polygons)?

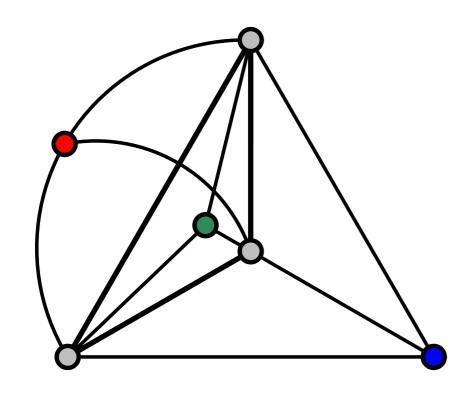


- What is the maximum edge density of adjacency graphs of polyhedral surfaces?
 - lower bound $\Omega(n \log n)$ hypercubes
 - upper bound $O(n^{1.8})$ $K_{5,81}$
- Which complete bipartite graphs have a realization? (the paper contains realizations of $K_{4,4}$ and $K_{3,5}$)
- other graph classes (3-trees see paper)
- hardness of recognition
- What about closed surfaces (nonconvex polygons)?

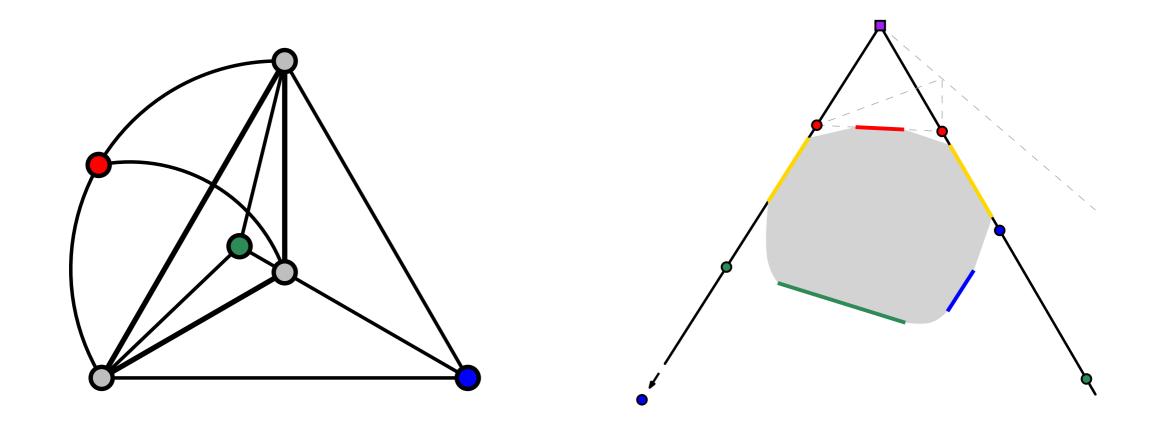
Thank you



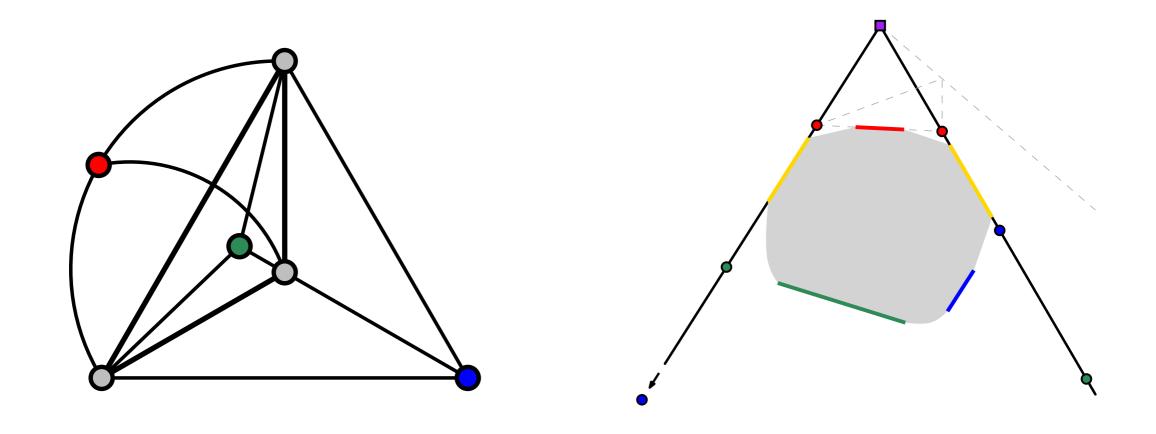




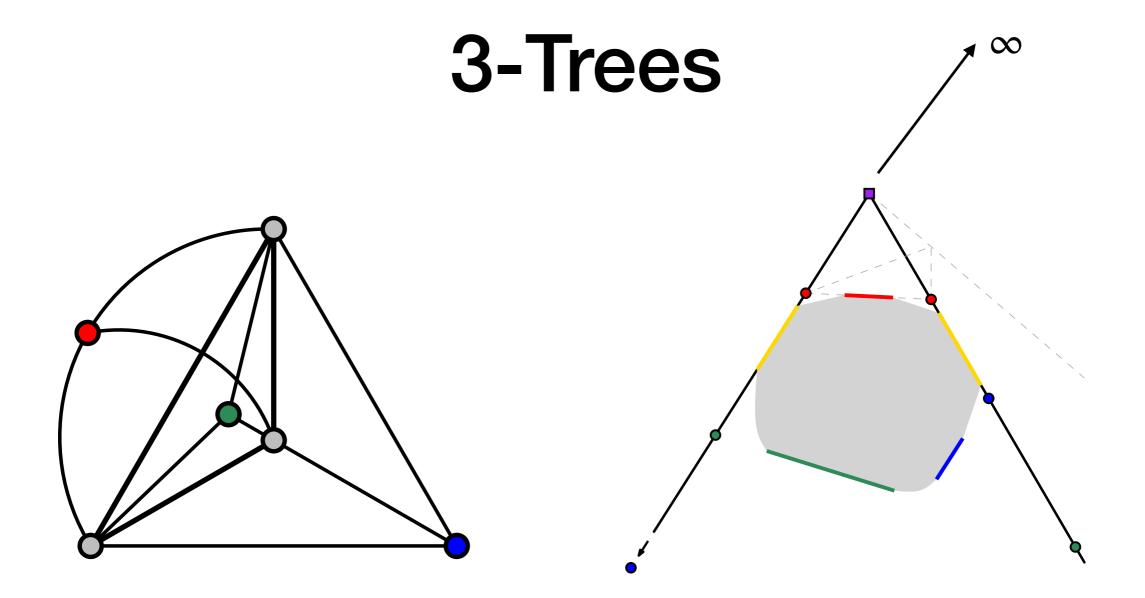
• the 3 supporting planes of the gray vertices form a cone



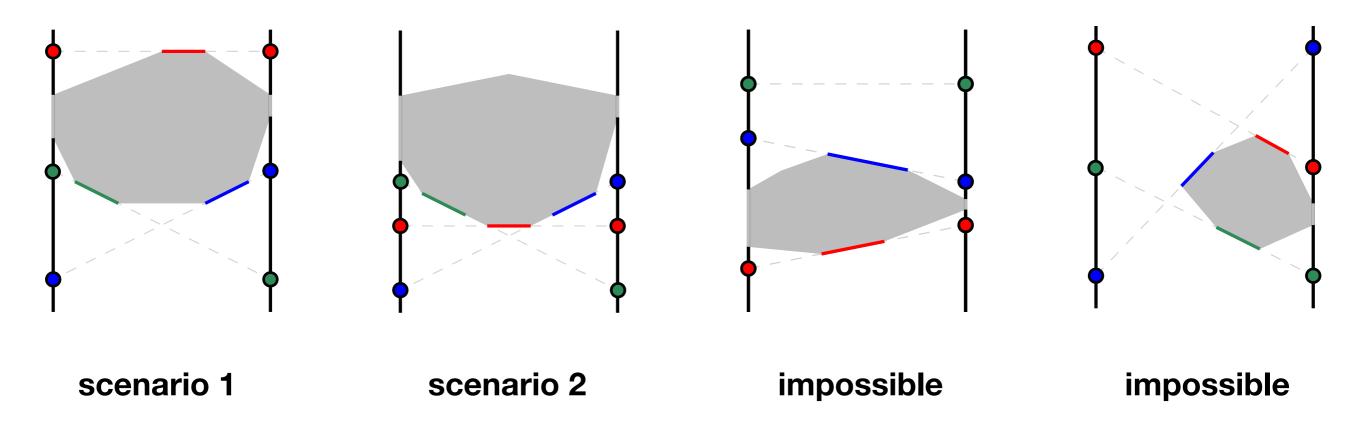
• the 3 supporting planes of the gray vertices form a cone

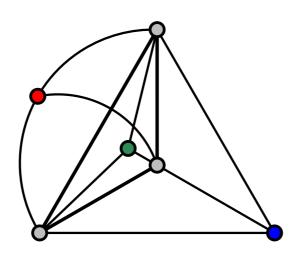


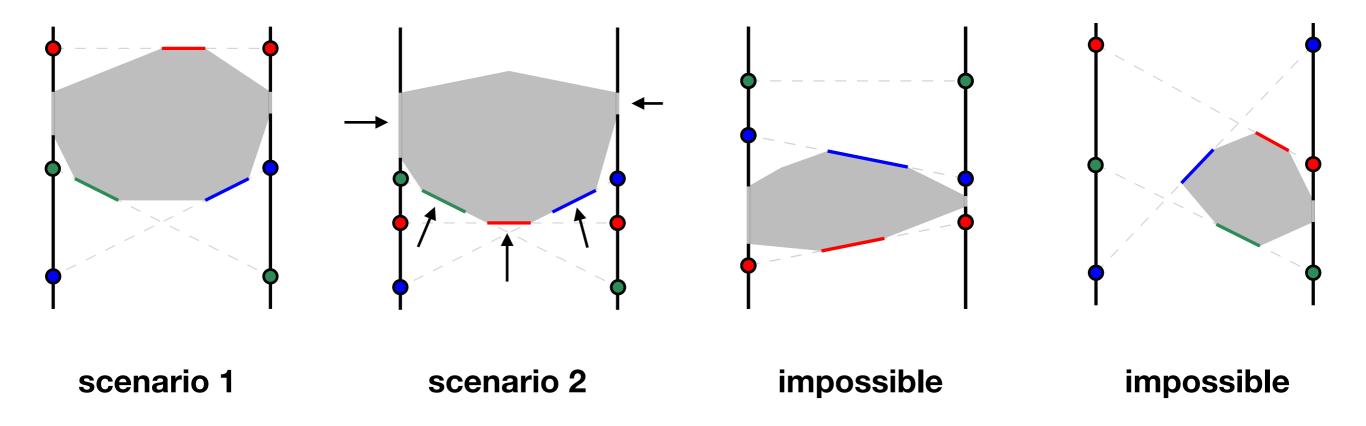
- the 3 supporting planes of the gray vertices form a cone
- the other faces have to lie inside the cone

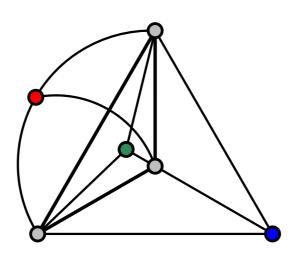


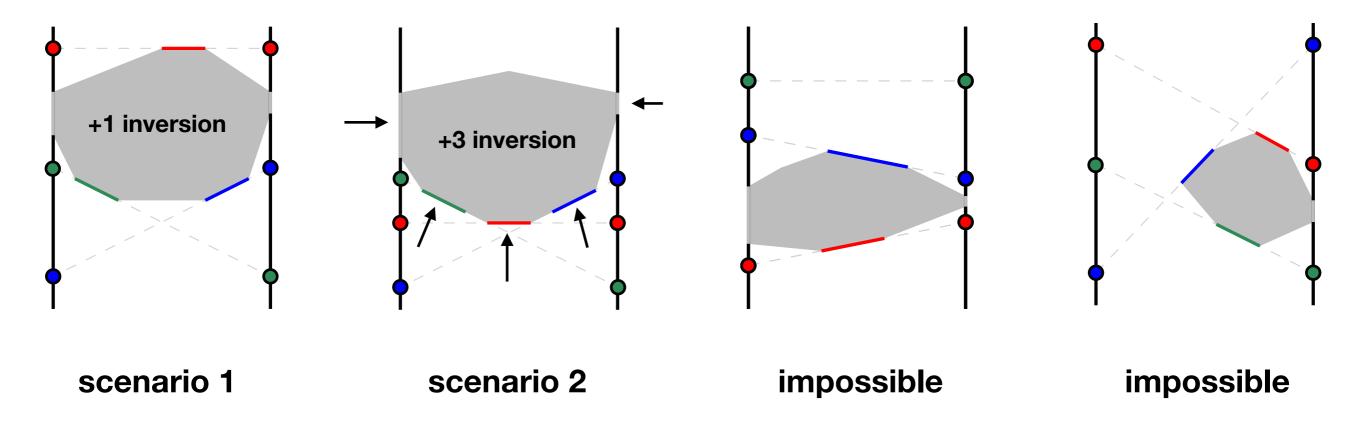
- the 3 supporting planes of the gray vertices form a cone
- the other faces have to lie inside the cone
- apply projective transformation and move the apex to the point at infinity

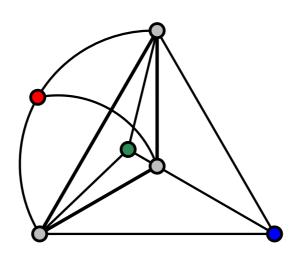


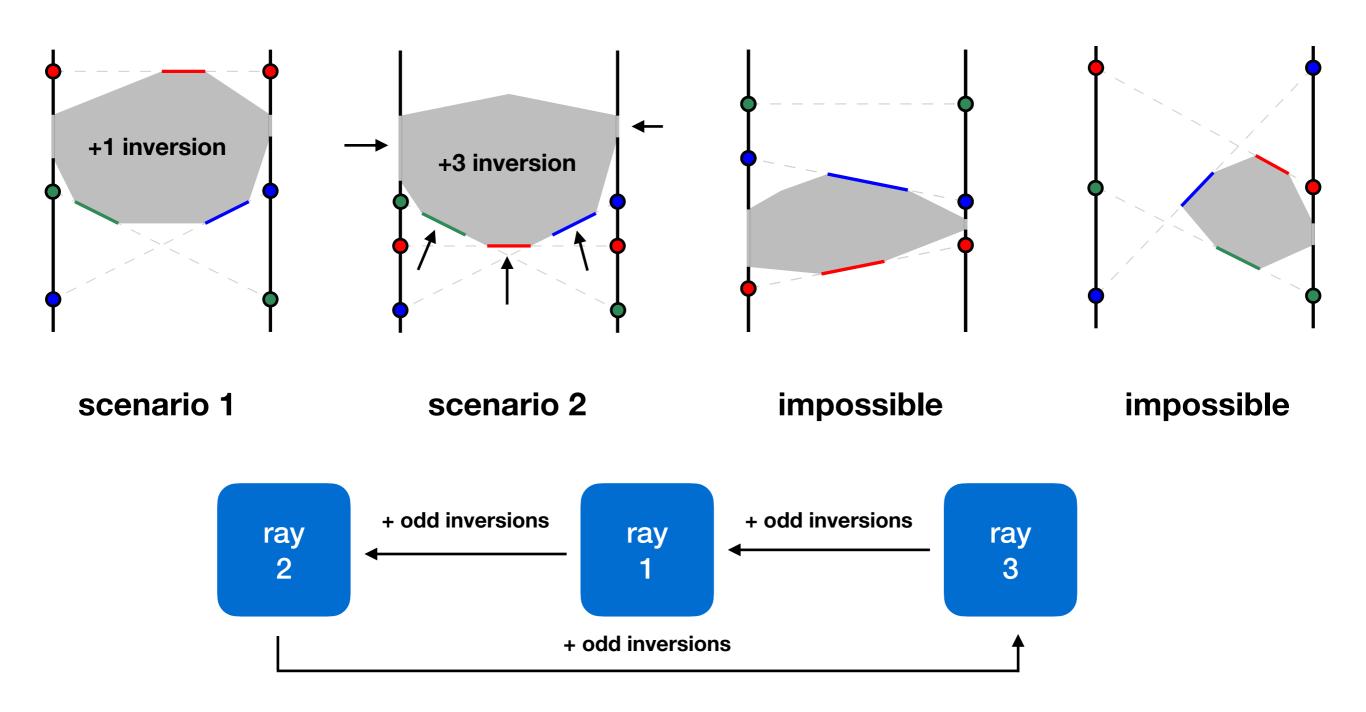


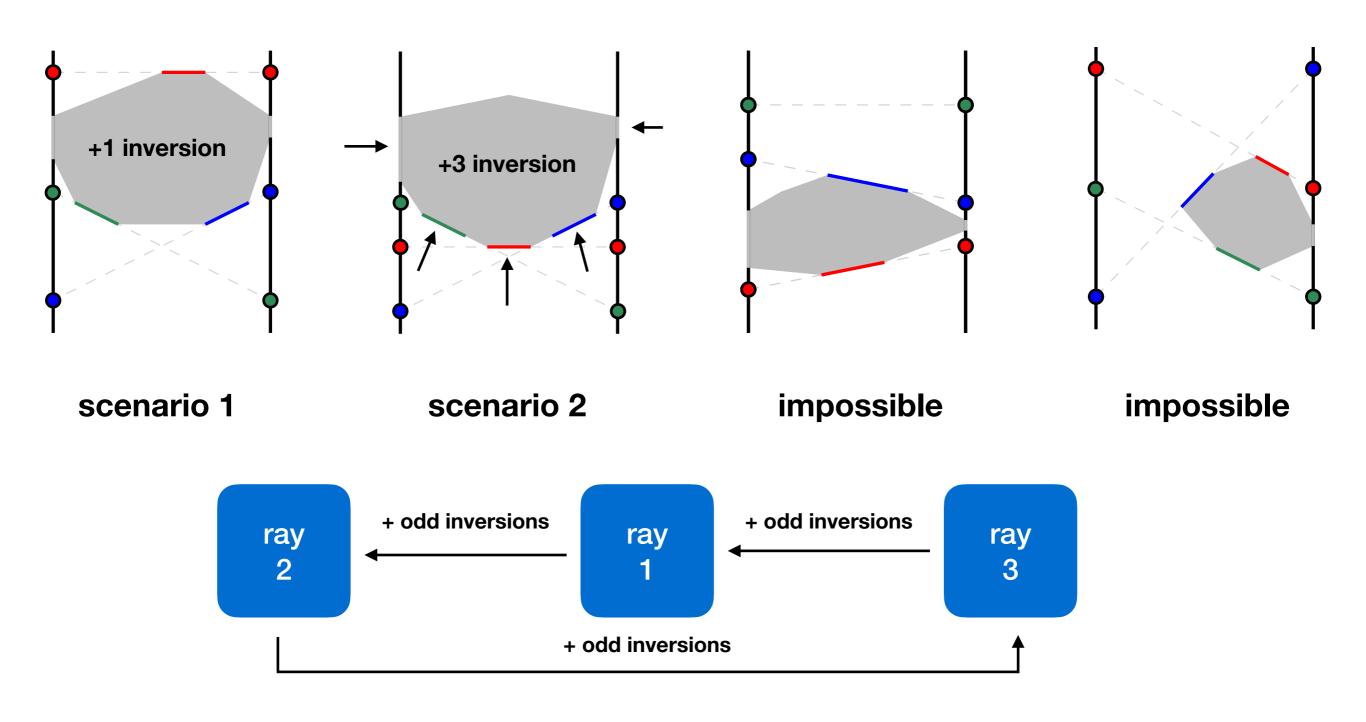






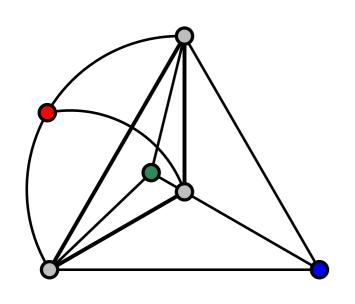






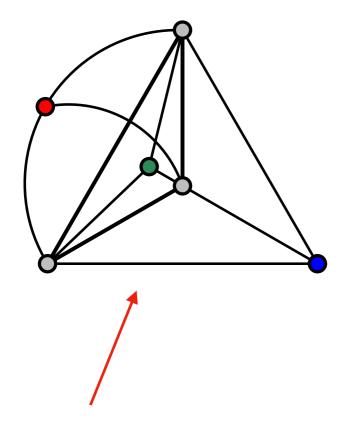
3 odd inversions cannot give identity!

3-Tree Summary



A 3-tree has representation with convex polygons, if and only if it is planar.

3-Tree Summary



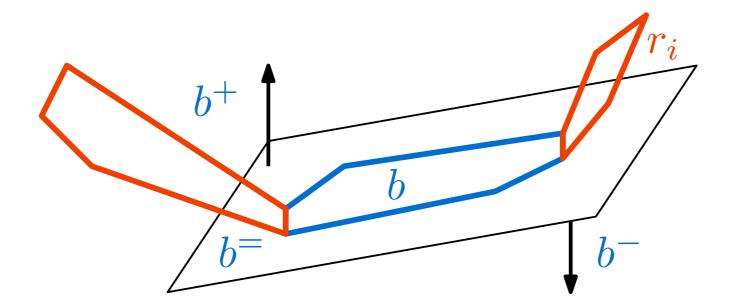
A 3-tree has representation with convex polygons, if and only if it is planar.

this is a subgraph in all nonplanar 3-trees

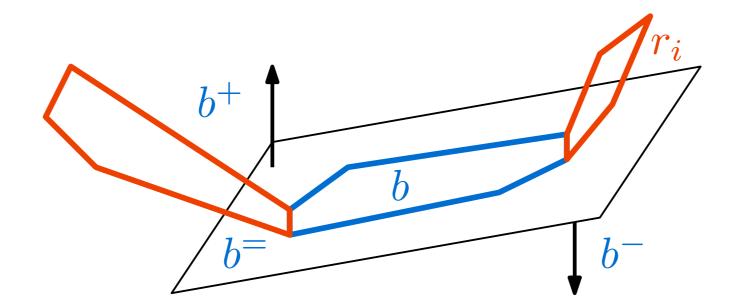
• The polygons in the partition classes of the $K_{n,m}$ are colored red and blue.

- The polygons in the partition classes of the $K_{n,m}$ are colored red and blue.
- We first study 1-sided realizations: for every blue polygon all red polygons have to lie on the same side of its supporting plane.

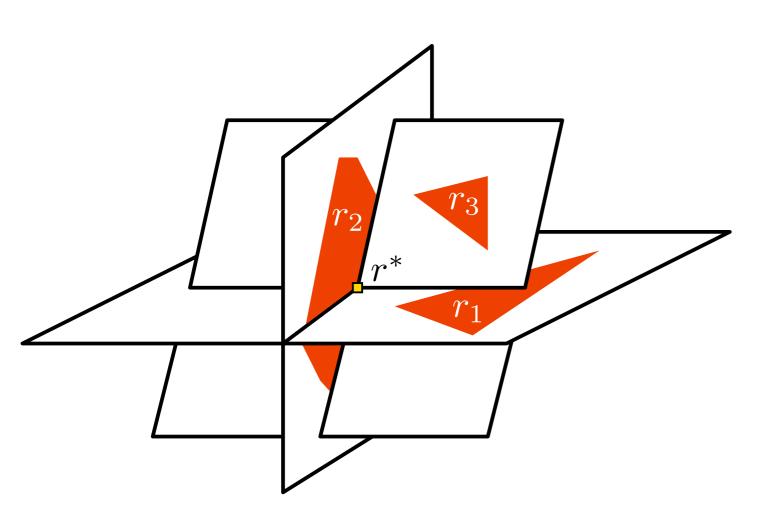
- The polygons in the partition classes of the $K_{n,m}$ are colored red and blue.
- We first study 1-sided realizations: for every blue polygon all red polygons have to lie on the same side of its supporting plane.

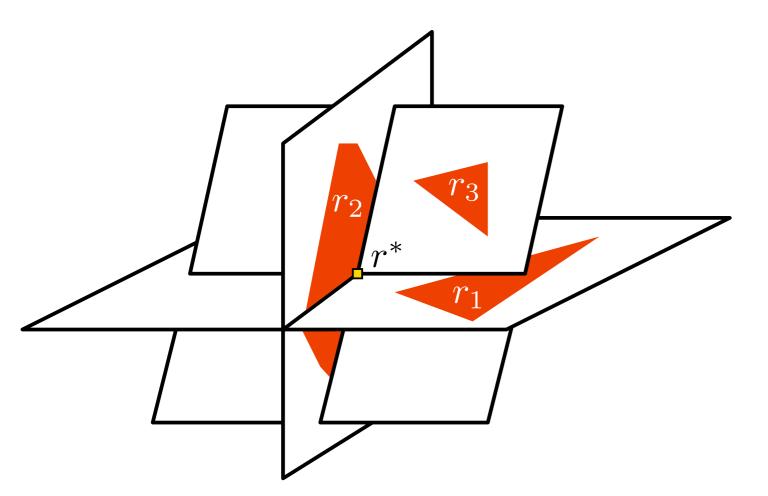


- The polygons in the partition classes of the $K_{n,m}$ are colored red and blue.
- We first study 1-sided realizations: for every blue polygon all red polygons have to lie on the same side of its supporting plane.

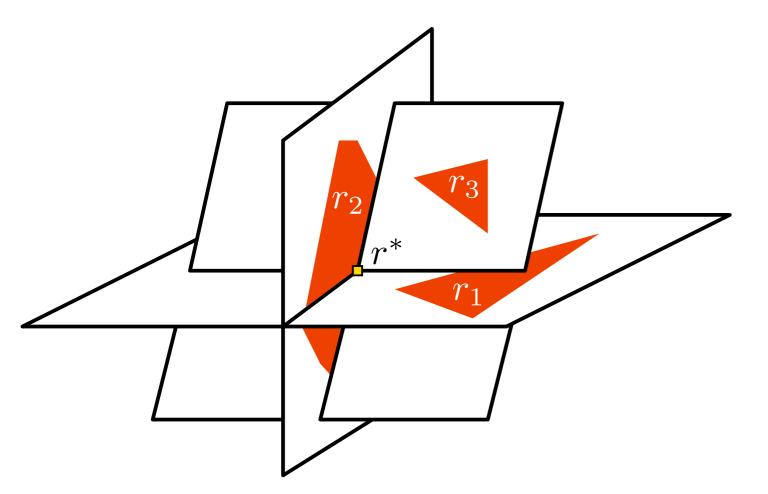


Assume that we have 3 red polygons.

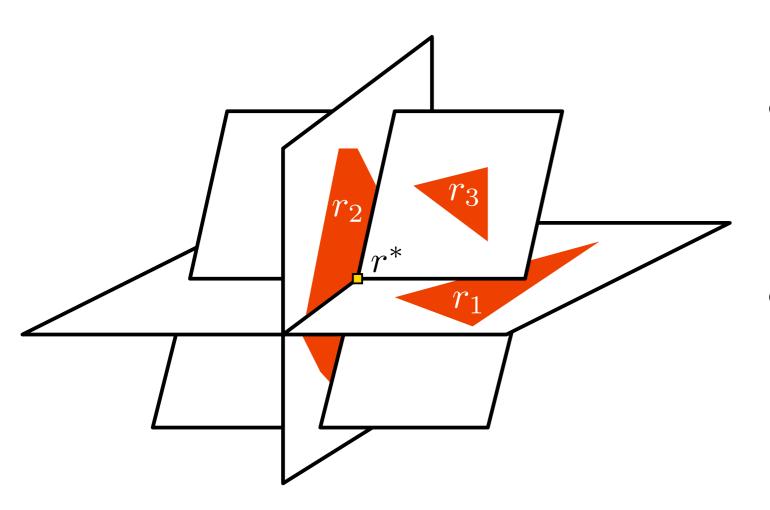




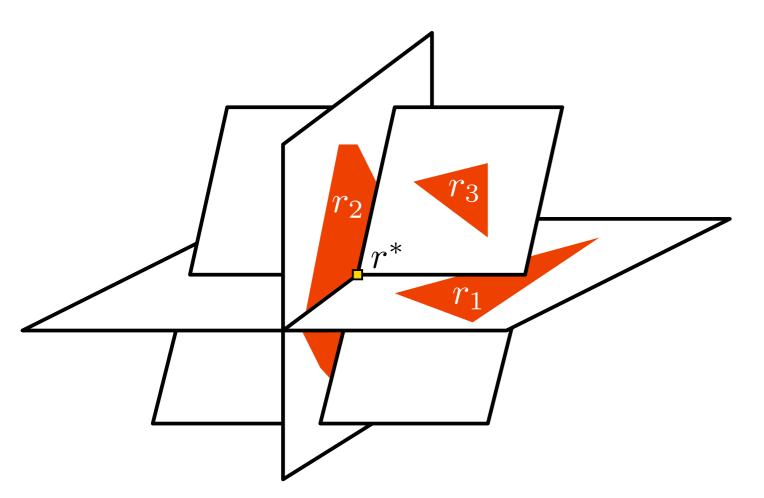
• arrangement of $\{r_1^=, r_2^=, r_3^=\}$ defines 8 octants (general case)



- arrangement of $\{r_1^-, r_2^-, r_3^-\}$ defines 8 octants (general case)
- blue polygons can only lie in an octant that has a piece of r₁, r₂, r₃ each

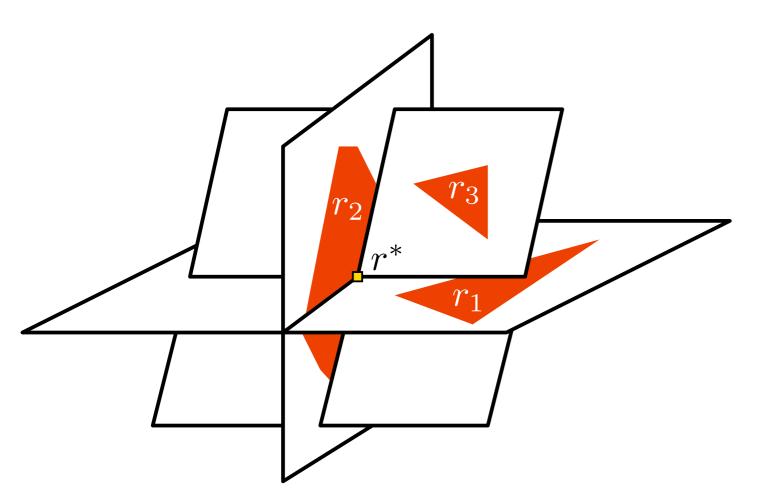


- arrangement of $\{r_1^=, r_2^=, r_3^=\}$ defines 8 octants (general case)
- blue polygons can only lie in an octant that has a piece of r₁, r₂, r₃ each (called complete octant)

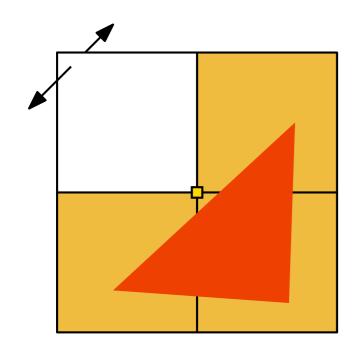


- arrangement of $\{r_1^-, r_2^-, r_3^-\}$ defines 8 octants (general case)
- blue polygons can only lie in an octant that has a piece of r₁, r₂, r₃ each (called complete octant)

• if $r^* \in r_i$ we have at most 5 complete octants, otherwise 4

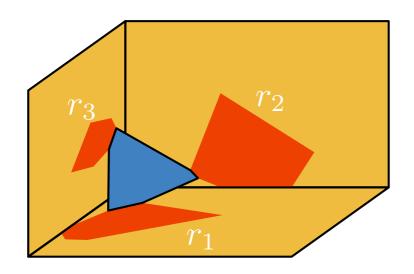


- arrangement of $\{r_1^-, r_2^-, r_3^-\}$ defines 8 octants (general case)
- blue polygons can only lie in an octant that has a piece of r₁, r₂, r₃ each (called complete octant)
- if $r^* \in r_i$ we have at most 5 complete octants, otherwise 4

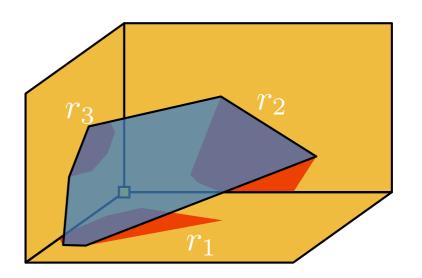


• every plane with $r^* \not\in r_i$ rules out at least 2 adjacent octants as complete

Placing a blue polygon inside a complete octant

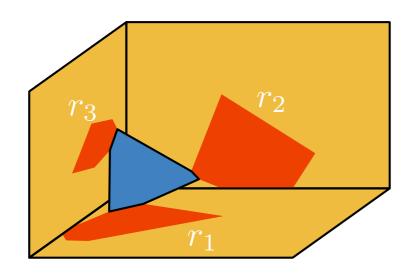


possible if $r_* \notin r_i$

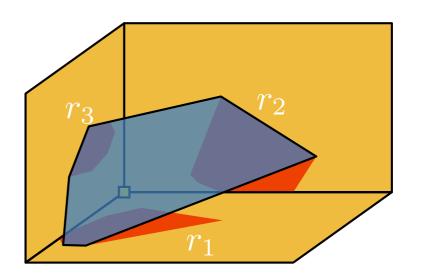


always possible

Placing a blue polygon inside a complete octant



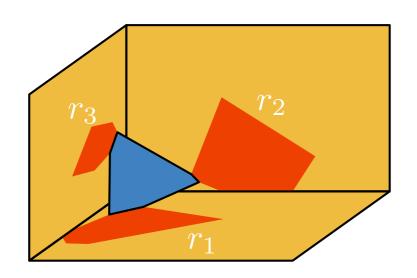
possible if $r_* \notin r_i$



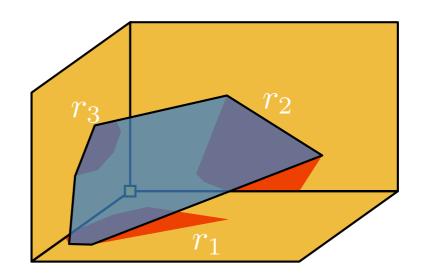
always possible

- if $r^* \in r_i$: at most 5 complete octants with 1 blue polygon
- if $r^* \notin r_i$: at most 4 complete octants with 2 blue polygon

Placing a blue polygon inside a complete octant



possible if $r_* \notin r_i$



always possible

- if $r^* \in r_i$: at most 5 complete octants with 1 blue polygon
- if $r^* \notin r_i$: at most 4 complete octants with 2 blue polygon
- → at most 8 blue polygons
- $ightharpoonup K_{3.9}$ has no **1-sided realization.**

 $K_{5,81}$ has no realization with convex polygons.

 $K_{5,81}$ has no realization with convex polygons.

Proof.

 Each of the 81 blue polygons is adjacent to one of the 5 red polygons.

 $K_{5,81}$ has no realization with convex polygons.

- Each of the 81 blue polygons is adjacent to one of the 5 red polygons.
- For each blue polygon b, we find a set of at least 3 red polygons on one side: assign b to this triplet.

 $K_{5,81}$ has no realization with convex polygons.

- Each of the 81 blue polygons is adjacent to one of the 5 red polygons.
- For each blue polygon b, we find a set of at least 3 red polygons on one side: assign b to this triplet.
- We have only 10 red triplets, hence one is assigned with at least $\lceil 81/10 \rceil = 9$ blue polygons.

 $K_{5,81}$ has no realization with convex polygons.

- Each of the 81 blue polygons is adjacent to one of the 5 red polygons.
- For each blue polygon b, we find a set of at least 3 red polygons on one side: assign b to this triplet.
- We have only 10 red triplets, hence one is assigned with at least $\lceil 81/10 \rceil = 9$ blue polygons.
- ullet a realization of $K_{5,81}$ would imply an 1-sided realization of $K_{3,9}$

 $K_{5,81}$ has no realization with convex polygons.

- Each of the 81 blue polygons is adjacent to one of the 5 red polygons.
- For each blue polygon b, we find a set of at least 3 red polygons on one side: assign b to this triplet.
- We have only 10 red triplets, hence one is assigned with at least $\lceil 81/10 \rceil = 9$ blue polygons.
- ullet a realization of $K_{5,81}$ would imply an 1-sided realization of $K_{3,9}$
- By the Kövari–Sós–Turán theorem, the maximum edge density for a realizable graph is $O(n^{1.8n})$.