Universal Point Sets for Planar Graph Drawings with Circular Arcs

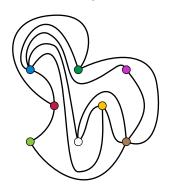
Patrizio Angelini, **David Eppstein**, Fabrizio Frati, Michael Kaufmann, Sylvain Lazard, Tamara Mchedlidze, Monique Teillaud, and Alexander Wolff

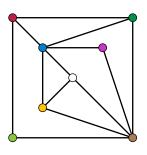
25th Canadian Conference on Computational Geometry Waterloo, Ontario, August 2013

Fáry's theorem

Graphs that can be drawn with non-crossing curved edges can also be drawn with non-crossing straight edges

[Wagner 1936; Fáry 1948; Stein 1951]



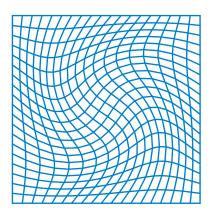


...but not necessarily with the same vertex positions!

The set of points in \mathbb{R}^2 is **universal** for straight drawings: it can be used to form the vertex set of any planar graph

Smaller universal sets than the whole plane?

Every set of *n* points is universal for topological drawings (edges drawn as arbitrary curves) of *n*-vertex graphs

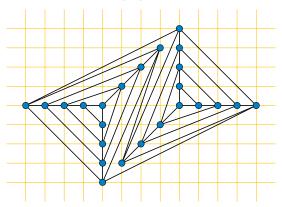


Simply deform the plane to move the vertices where you want them, moving the edges along with them

Universal grids for straight line drawings

 $O(n) \times O(n)$ square grids are universal [de Fraysseix et al. 1988; Schnyder 1990]

Some graphs require $\Omega(n^2)$ area when drawn in grids



Big gap for universal sets for straight line drawings

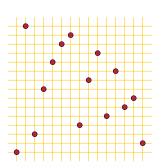
Best upper bound on universal point sets for straight-line drawing:

$$n^2/4 - O(n)$$

Based on permutation patterns [Bannister et al. 2013]

This 15-element permutation contains all 6-element 213-avoiding permutations

Exponential stretching produces an 18-point universal set for 9-vertex straight line drawings



Best lower bound: 1.098n - o(n) [Chrobak and Karloff 1989]

Two paths to perfection

Perfect universal set: exactly *n* points

Don't exist for straight drawings, $n \ge 15$ [Cardinal et al. 2012] so have to relax either "straight" or "planar".

Every *n*-point set in general position is universal for

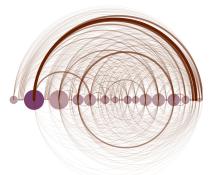
- paths (connect in coordinate order)
- trees
- ▶ outerplanar graphs [Gritzmann et al. 1991]

What about drawing all planar graphs but relaxing straightness?

Arc diagrams

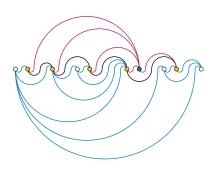
Vertices placed on a line; edges drawn on one or more semicircles
Initially used for drawing nonplanar graphs with few crossings
[Saaty 1964; Nicholson 1968]

Later named and popularized in information visualization
[Wattenberg 2002]



Monotone topological 2-page book embeddings

Every planar graph has a planar arc diagram with each edge drawn as a two-semicircle "S" curve [Giordano et al. 2007; Bekos et al. 2013]



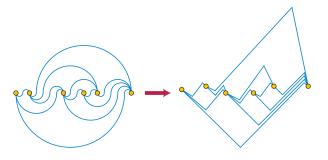
- Add edges to make the graph maximal
- Find canonical order (each vertex above earlier ones, neighbors form contiguous path on upper boundary)
- Add each vertex to the right of its penultimate neighbor

(Useful property: $\leq n-1$ inflections between consecutive vertices)

Perfect universal sets from monotone embeddings

Every *n* points on a line are universal for drawings in which edges are smooth curves formed from two circular arcs

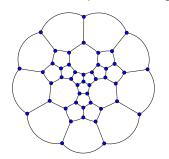
Every set of *n* points is universal for polyline drawings with two bends per edge (mimic semicircles with steep zigzags)



Every smooth convex curve contains n points that are universal for polyline drawings with **one** bend per edge [Everett et al. 2010]

Drawings with no bends and no inflections

What if we require each edge to be a single circular arc?



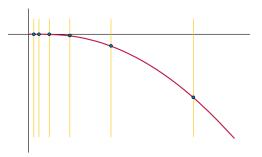
Lombardi drawing of a 46-vertex non-Hamiltonian graph with cyclic edge connectivity five [Grinberg 1968; Eppstein 2013]

Arc diagrams don't always exist and are NP-complete to find

Much recent interest in *Lombardi drawings* (evenly spaced edges at each vertex) [Duncan et al. 2012; Eppstein 2013] and *smooth orthogonal layouts* (axis-aligned arcs) [Bekos et al. 2013]

Our result

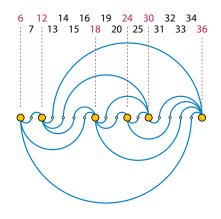
For every *n*, there exists a perfect universal point set for drawings with circular-arc edges



Construction:

Choose *n* points on the parabola $y = -x^2$ at *x*-coordinates 2^n , 2^{2n} , 2^{3n} , ... 2^{n^2}

How to draw a graph on this universal set

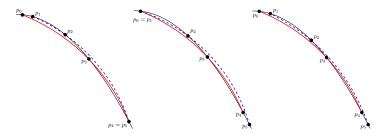


- Draw monotone topological book embedding
- Number vertices and inflection points from left to right, rounding vertex numbers up to multiples of n
- Map point *i* to point on parabola with $x = 2^i$
- Draw each edge as an arc through its three points

Why is the resulting drawing planar?

Key properties, proved with some algebra:

Arc through any three points on parabola crosses it once from below to above \Rightarrow edges pass above/below vertices correctly



For six points $x_0 \le x_1 < x_2 < x_3 < x_4 \le x_5$, spaced exponentially, arcs $x_0x_3x_4$ and $x_1x_2x_5$ are disjoint \Rightarrow edges do not cross

Conclusions

Perfect universal sets for circular-arc drawings

Purely a theoretical result—drawings are not usable

- Vertex placement requires exponential area
- Edges have very small angular resolution

In contrast, arc diagrams (with one arc per edge) are very usable and practical but can only handle a subset of planar graphs

Maybe some way of combining the advantages of both?

References, I

- Michael J. Bannister, Zhanpeng Cheng, William E. Devanny, and David Eppstein. Superpatterns and universal point sets. In *Graph Drawing*, 2013. To appear.
- Michael A. Bekos, Michael Kaufmann, Stephen G. Kobourov, and Antonios Symvonis. Smooth orthogonal layouts. In *Graph Drawing* 2012, volume 7704 of *LNCS*, pages 150–161. Springer, 2013.
- Jean Cardinal, Michael Hoffmann, and Vincent Kusters. On Universal Point Sets for Planar Graphs. Electronic preprint arxiv:1209.3594, 2012.
- M. Chrobak and H. Karloff. A lower bound on the size of universal sets for planar graphs. *SIGACT News*, 20:83–86, 1989.
- Hubert de Fraysseix, János Pach, and Richard Pollack. Small sets supporting Fary embeddings of planar graphs. In *20th ACM Symp. Theory of Computing*, pages 426–433, 1988.
- Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov, and Martin Nöllenburg. Lombardi drawings of graphs. *J. Graph Algorithms and Applications*, 16(1):85–108, 2012.

References, II

- David Eppstein. Planar Lombardi drawings for subcubic graphs. In *Graph Drawing 2012*, volume 7704 of *LNCS*, pages 126–137. Springer, 2013.
- Hazel Everett, Sylvain Lazard, Giuseppe Liotta, and Stephen Wismath. Universal Sets of *n* Points for One-Bend Drawings of Planar Graphs with *n* Vertices. *Discrete Comput. Geom.*, 43(2):272–288, 2010.
- István Fáry. On straight-line representation of planar graphs. *Acta Sci. Math. (Szeged)*, 11:229–233, 1948.
- Francesco Giordano, Giuseppe Liotta, Tamara Mchedlidze, and Antonios Symvonis. Computing upward topological book embeddings of upward planar digraphs. In *Algorithms and Computation (ISAAC 2007)*, volume 4835 of *LNCS*, pages 172–183. Springer, 2007.
- È. Ja. Grinberg. Plane homogeneous graphs of degree three without Hamiltonian circuits. In *Latvian Math. Yearbook 4*, pages 51–58. Izdat. "Zinatne", Riga, 1968.
- P. Gritzmann, B. Mohar, János Pach, and Richard Pollack. Embedding a planar triangulation with vertices at specified positions. *Amer. Math. Monthly*, 98(2):165–166, 1991.

References, III

- T. A. J. Nicholson. Permutation procedure for minimising the number of crossings in a network. *Proc. IEE*, 115:21–26, 1968.
- Thomas L. Saaty. The minimum number of intersections in complete graphs. *Proc. National Academy of Sciences*, 52:688–690, 1964.
- Walter Schnyder. Embedding planar graphs on the grid. In 1st ACM/SIAM Symp. Disc. Alg. (SODA), pages 138–148, 1990.
- S. K. Stein. Convex maps. Proc. AMS, 2(3):464-466, 1951.
- Klaus Wagner. Bemerkungen zum Vierfarbenproblem. *Jahresbericht der Deutschen Mathematiker-Vereinigung*, 46:26–32, 1936.
- M. Wattenberg. Arc diagrams: visualizing structure in strings. In *IEEE Symp. InfoVis*, pages 110–116, 2002.