Eliminating Crossings in Ordered Graphs

TCS Colloquium @ UJ — SWAT 2024

Akanksha Agrawal, Sergio Cabello, Michael Kaufmann, Saket Saurabh, Roohani Sharma, Yushi Uno, **Alexander Wolff**

arxiv.org/abs/2404.09771

Many crossings typically make it hard to understand the drawing of a graph.

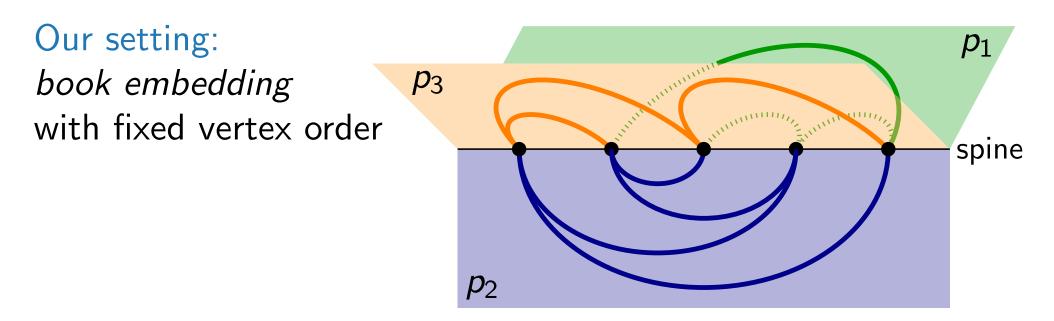
Many crossings typically make it hard to understand the drawing of a graph. Reduce number of crossings in drawings!

Many crossings typically make it hard to understand the drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of vertices or edges s.t. the remaining graph can be drawn *without* crossings.

Many crossings typically make it hard to understand the drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of vertices or edges s.t. the remaining graph can be drawn *without* crossings.



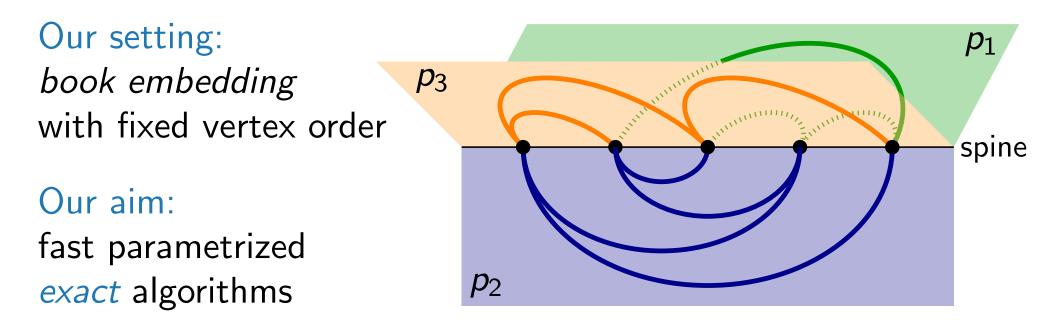
Many crossings typically make it hard to understand the drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of vertices or edges s.t. the remaining graph can be drawn *without* crossings.

Our setting: book embedding with fixed vertex order Our aim: fast parametrized exact algorithms p_1 p_3 p_2 p_1 p_1 p_2 p_1 p_2 p_1 p_1 p_2 p_1 p_2 p_1 p_1 p_2 p_1 p_1 p_1 p_1 p_1 p_1 p_2 p_1 p_1 p_2 p_1 p_1 p_2 p_1 p_1 p_2 p_1 p_2 p_1 p_1 p_2 p_1 p_2 p_1 p_2 p_1 p_2 p_2 p_1 p_2 p_2 p_1 p_2 p_2 p_1 p_2 p_2 p_2 p_2 p_1 p_2 p_2 p_2 p_2 p_2 p_1 p_2 p_2 p_1 p_2 p_3 p_2 p_2 p_3 p_2 p_3 p_2 p_3 p_2 p_3 p_2 p_3 p_3 p_2 p_3 p_2 p_3 p_2 p_3 p_3 p_3

Many crossings typically make it hard to understand the drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of vertices or edges s.t. the remaining graph can be drawn *without* crossings.



Yet another option: Remove part of every edge (e.g., middle half) \rightarrow *partial edge drawings* (not today).

EDGE DELETION TO *p*-PAGE *d*-PLANAR

Input: ordered graph (G, σ) , positive integers k, p, d. Parameters: k, p, dQuestion: Does there exist a set S of at most k edges of G.

Question: Does there exist a set S of at most k edges of G such that $(G - S, \sigma)$ is p-page d-planar?

EDGE DELETION TO *p*-PAGE *d*-PLANAR

Input: ordered graph (G, σ) , positive integers k, p, d. Parameters: k, p, d

Question: Does there exist a set S of at most k edges of G such that $(G - S, \sigma)$ is p-page d-planar?

Disclaimer: We view *p* and *d*, though they appear in the problem name, not as constants, but as parameters.

EDGE DELETION TO *p*-PAGE *d*-PLANAR

Input: ordered graph (G, σ) , positive integers k, p, d. Parameters: k, p, d

Question: Does there exist a set S of at most k edges of G such that $(G - S, \sigma)$ is p-page d-planar?

Disclaimer: We view *p* and *d*, though they appear in the problem name, not as constants, but as parameters.

Examples: – What is the page number of K_5 ?

EDGE DELETION TO *p*-PAGE *d*-PLANAR

Input: ordered graph (G, σ) , positive integers k, p, d. Parameters: k, p, d

Question: Does there exist a set S of at most k edges of G such that $(G - S, \sigma)$ is p-page d-planar?

Disclaimer: We view *p* and *d*, though they appear in the problem name, not as constants, but as parameters.

Examples: – What is the page number of K_5 ? How many edges must we remove – for a planar drawing of K_5 on 2 pages?

EDGE DELETION TO *p*-PAGE *d*-PLANAR

Input: ordered graph (G, σ) , positive integers k, p, d. Parameters: k, p, d

Question: Does there exist a set S of at most k edges of G such that $(G - S, \sigma)$ is p-page d-planar?

Disclaimer: We view *p* and *d*, though they appear in the problem name, not as constants, but as parameters.

Examples: – What is the page number of K_5 ?

How many edges must we remove - for a planar drawing of K_5 on 2 pages?

- for a 1-planar drawing of K_5 on 2 pages?

EDGE DELETION TO *p*-PAGE *d*-PLANAR

Input: ordered graph (G, σ) , positive integers k, p, d. Parameters: k, p, d

Question: Does there exist a set S of at most k edges of G such that $(G - S, \sigma)$ is p-page d-planar?

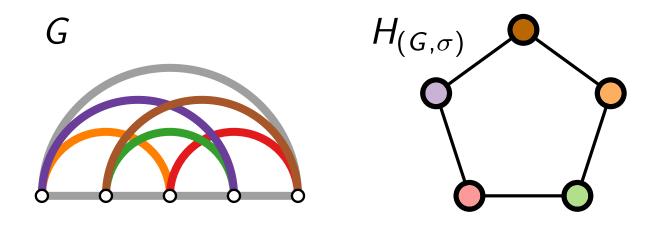
Disclaimer: We view *p* and *d*, though they appear in the problem name, not as constants, but as parameters.

Examples: – What is the page number of K_5 ?

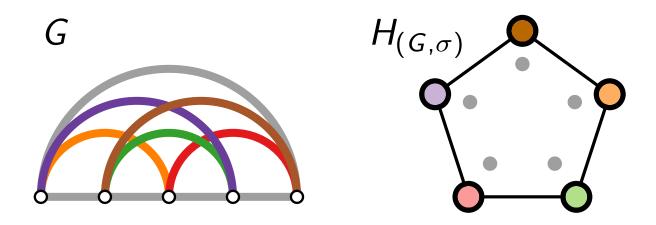
How many edges must we remove

- for a planar drawing of K_5 on 2 pages?
- for a 1-planar drawing of K_5 on 2 pages?
- for a 2-planar drawing of K_5 on 1 page?

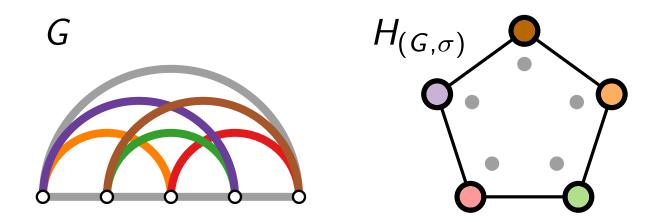
Given an ordered graph (G, σ) , its conflict graph $H_{(G,\sigma)}$ is the graph that has a vertex for each edge of G and an edge for each pair of crossing edges of G.



Given an ordered graph (G, σ) , its conflict graph $H_{(G,\sigma)}$ is the graph that has a vertex for each edge of G and an edge for each pair of crossing edges of G.

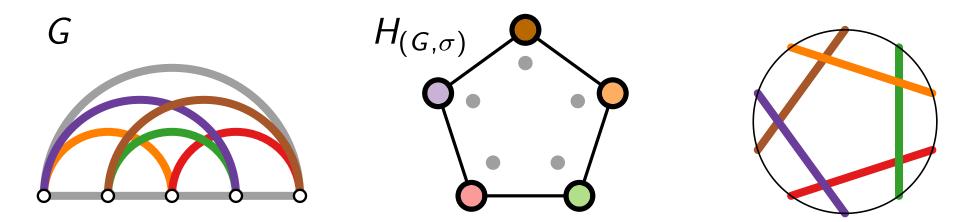


Given an ordered graph (G, σ) , its conflict graph $H_{(G,\sigma)}$ is the graph that has a vertex for each edge of G and an edge for each pair of crossing edges of G.



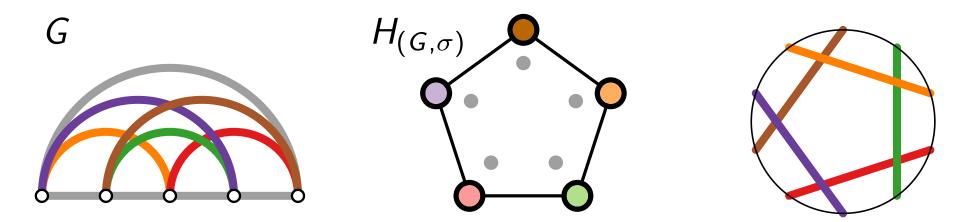
 $H_{(G,\sigma)}$ is a *circle graph*, that is, the intersection graph of chords of a circle.

Given an ordered graph (G, σ) , its conflict graph $H_{(G,\sigma)}$ is the graph that has a vertex for each edge of G and an edge for each pair of crossing edges of G.



 $H_{(G,\sigma)}$ is a *circle graph*, that is, the intersection graph of chords of a circle.

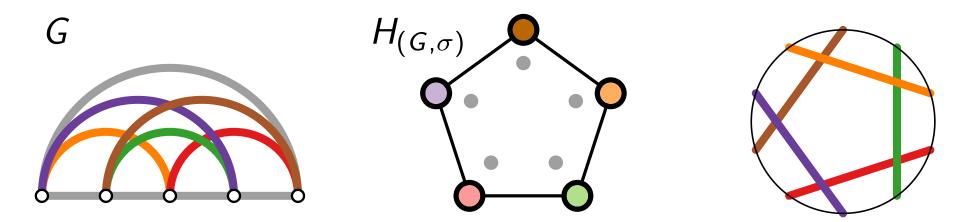
Given an ordered graph (G, σ) , its conflict graph $H_{(G,\sigma)}$ is the graph that has a vertex for each edge of G and an edge for each pair of crossing edges of G.



 $H_{(G,\sigma)}$ is a *circle graph*, that is, the intersection graph of chords of a circle.

So Edge Deletion to 1-Page d-Planar is the same as Vertex Deletion to Degree-d (in circle graphs).

Given an ordered graph (G, σ) , its conflict graph $H_{(G,\sigma)}$ is the graph that has a vertex for each edge of G and an edge for each pair of crossing edges of G.



 $H_{(G,\sigma)}$ is a *circle graph*, that is, the intersection graph of chords of a circle.

So EDGE DELETION TO **1**-PAGE d-PLANAR is the same as VERTEX DELETION TO DEGREE-d (in circle graphs). For general graphs, this admits a quadratic kernel. [Xiao, 2017]

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G,\sigma)}$.

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G,\sigma)}$.

So for p = 2, it suffices to test whether $H_{(G,\sigma)}$ is bipartite.

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G,\sigma)}$.

So for p = 2, it suffices to test whether $H_{(G,\sigma)}$ is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G,\sigma)}$.

So for p = 2, it suffices to test whether $H_{(G,\sigma)}$ is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

For p = 3, he [1992] claimed an efficient solution, but his approach is incomplete. [Bachmann et al., GD 2023]

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G,\sigma)}$.

So for p = 2, it suffices to test whether $H_{(G,\sigma)}$ is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

For p = 3, he [1992] claimed an efficient solution, but his approach is incomplete. [Bachmann et al., GD 2023]

EDGE DELETION TO *p*-PAGE PLANAR: special case d = 0.

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G,\sigma)}$.

So for p = 2, it suffices to test whether $H_{(G,\sigma)}$ is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

For p = 3, he [1992] claimed an efficient solution, but his approach is incomplete. [Bachmann et al., GD 2023]

EDGE DELETION TO *p*-PAGE PLANAR: special case d = 0. This is in $H_{(G,\sigma)}$.

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G,\sigma)}$.

So for p = 2, it suffices to test whether $H_{(G,\sigma)}$ is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

For p = 3, he [1992] claimed an efficient solution, but his approach is incomplete. [Bachmann et al., GD 2023]

EDGE DELETION TO *p*-PAGE PLANAR: special case d = 0. This is VERTEX DELETION TO *p*-COLORABILITY in $H_{(G,\sigma)}$.

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G,\sigma)}$.

So for p = 2, it suffices to test whether $H_{(G,\sigma)}$ is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

For p = 3, he [1992] claimed an efficient solution, but his approach is incomplete. [Bachmann et al., GD 2023]

EDGE DELETION TO *p*-PAGE PLANAR: special case d = 0. This is VERTEX DELETION TO *p*-COLORABILITY in $H_{(G,\sigma)}$.

p = 1: MIS in circle graphs – quadratic time. [Valiante 2003]

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G,\sigma)}$.

So for p = 2, it suffices to test whether $H_{(G,\sigma)}$ is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

For p = 3, he [1992] claimed an efficient solution, but his approach is incomplete. [Bachmann et al., GD 2023]

EDGE DELETION TO *p*-PAGE PLANAR: special case d = 0. This is VERTEX DELETION TO *p*-COLORABILITY in $H_{(G,\sigma)}$.

 p = 1: MIS in circle graphs – quadratic time. [Valiante 2003]
 p = 2: ODD CYCLE TRANSVERSAL in circle graphs – FPT [Reed, Smith, Vetta, 2004]

FIXED-ORDER PAGE NUMBER

FIXED-ORDER PAGE NUMBER can be solved in 2^{O(vc³)}*n* time [Bhore, Ganian, Montecchiani, Nöllenburg, 2020]

FIXED-ORDER PAGE NUMBER can be solved in $2^{O(vc^3)}n$ time [Bhore, Ganian, Montecchiani, Nöllenburg, 2020] and in $2^{O(pw^2)}n$ time, where pw is the pathwidth of the *ordered* graph, which is not bounded by vc.

[Liu, Chen, Huang, Wang, 2021]

FIXED-ORDER PAGE NUMBER can be solved in $2^{O(vc^3)}n$ time [Bhore, Ganian, Montecchiani, Nöllenburg, 2020] and in $2^{O(pw^2)}n$ time, where pw is the pathwidth of the *ordered* graph, which is not bounded by vc.

[Liu, Chen, Huang, Wang, 2021]

FIXED-ORDER BOOK DRAWING – testing if there is a p-page d-planar drawing of (G, σ)

FIXED-ORDER PAGE NUMBER can be solved in $2^{O(vc^3)}n$ time [Bhore, Ganian, Montecchiani, Nöllenburg, 2020] and in $2^{O(pw^2)}n$ time, where pw is the pathwidth of the *ordered* graph, which is not bounded by vc.

[Liu, Chen, Huang, Wang, 2021]

FIXED-ORDER BOOK DRAWING – testing if there is a *p*-page *d*-planar drawing of (G, σ) – can be solved in $(d + 2)^{O(vc^3)}n$ or in $(d + 2)^{O(pw^2)}n$ time. [Liu, Chen, Huang, 2020]

FIXED-ORDER PAGE NUMBER can be solved in $2^{O(vc^3)}n$ time [Bhore, Ganian, Montecchiani, Nöllenburg, 2020] and in $2^{O(pw^2)}n$ time, where pw is the pathwidth of the *ordered* graph, which is not bounded by vc.

[Liu, Chen, Huang, Wang, 2021]

FIXED-ORDER BOOK DRAWING – testing if there is a *p*-page *d*-planar drawing of (G, σ) – can be solved in $(d + 2)^{O(vc^3)}n$ or in $(d + 2)^{O(pw^2)}n$ time. [Liu, Chen, Huang, 2020]

Bhore et al. [2020] also study the flexible vertex-order case: They solve PAGE NUMBER in $2^{vc^{O(vc)}} + vc \log vc \cdot n$ time.

Our Contribution

We can compute the fixed-vertex-order page number of an ordered graph with *m* edges & *n* vertices in 2^m · n^{O(1)} time. Alternatively, given a budget *p* of pages, we can compute a *p*-page book embedding with the min. number of crossings.

- We can compute the fixed-vertex-order page number of an ordered graph with *m* edges & *n* vertices in 2^m · n^{O(1)} time. Alternatively, given a budget *p* of pages, we can compute a *p*-page book embedding with the min. number of crossings.
- We obtain an O((d + 1) log n)-approximation algorithm for the fixed-vertex-order d-planar page number.

- We can compute the fixed-vertex-order page number of an ordered graph with *m* edges & *n* vertices in 2^m · n^{O(1)} time. Alternatively, given a budget *p* of pages, we can compute a *p*-page book embedding with the min. number of crossings.
- We obtain an O((d + 1) log n)-approximation algorithm for the fixed-vertex-order d-planar page number.
- We show how to decide in 2^{O(c√k log(c+k))} · n^{O(1)} time whether deleting k edges of an ordered graph suffices to obtain a d-planar layout on one page.

- We can compute the fixed-vertex-order page number of an ordered graph with *m* edges & *n* vertices in 2^m · n^{O(1)} time. Alternatively, given a budget *p* of pages, we can compute a *p*-page book embedding with the min. number of crossings.
- We obtain an O((d + 1) log n)-approximation algorithm for the fixed-vertex-order d-planar page number.
- We show how to decide in $2^{O(c\sqrt{k}\log(c+k))} \cdot n^{O(1)}$ time whether deleting k edges of an ordered graph suffices to obtain a d-planar layout on one page.
- Let h be the size of a hitting set.
 h = 1: We can efficiently compute the smallest set of edges whose deletion yields fixed-vertex-order page number p.
 h > 1: XP algorithm with respect to h + p.

- We can compute the fixed-vertex-order page number of an ordered graph with *m* edges & *n* vertices in 2^m · n^{O(1)} time. Alternatively, given a budget *p* of pages, we can compute a *p*-page book embedding with the min. number of crossings.
- We obtain an $O((d + 1) \log n)$ -approximation algorithm for the fixed-vertex-order *d*-planar page number.
- We show how to decide in 2^{O(c√k log(c+k))} · n^{O(1)} time whether deleting k edges of an ordered graph suffices to obtain a d-planar layout on one page.
- Let h be the size of a hitting set.
 h = 1: We can efficiently compute the smallest set of edges whose deletion yields fixed-vertex-order page number p.
 h > 1: XP algorithm with respect to h + p.

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in $(cr+2)^{O(pw^2)}n$ time whether a graph with *n* vertices and pathwidth pw can be drawn on a given number of pages with \leq cr crossings in total.

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in $(cr+2)^{O(pw^2)}n$ time whether a graph with *n* vertices and pathwidth pw can be drawn on a given number of pages with \leq cr crossings in total.

Given an ordered graph (G, σ) , let $cr_p(G, \sigma)$ be the smallest number of crossings over all possible assignments of the edges of G to p pages.

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in $(cr+2)^{O(pw^2)}n$ time whether a graph with *n* vertices and pathwidth pw can be drawn on a given number of pages with \leq cr crossings in total.

Given an ordered graph (G, σ) , let $cr_p(G, \sigma)$ be the smallest number of crossings over all possible assignments of the edges of G to p pages.

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in $(cr+2)^{O(pw^2)}n$ time whether a graph with *n* vertices and pathwidth pw can be drawn on a given number of pages with \leq cr crossings in total.

Given an ordered graph (G, σ) , let $cr_p(G, \sigma)$ be the smallest number of crossings over all possible assignments of the edges of G to p pages.

Theorem. Given $p \ge 1$ and an ordered graph (G, σ) with n vertices and m edges, we can compute the values $\operatorname{cr}_1(G, \sigma), \ldots, \operatorname{cr}_p(G, \sigma)$ in $2^m \cdot n^{O(1)}$ time.

• In other words, given a budget *p* of pages, we can compute a *p*-page book embedding with the minimum number of crossings in ... time.

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in $(cr+2)^{O(pw^2)}n$ time whether a graph with *n* vertices and pathwidth pw can be drawn on a given number of pages with \leq cr crossings in total.

Given an ordered graph (G, σ) , let $cr_p(G, \sigma)$ be the smallest number of crossings over all possible assignments of the edges of G to p pages.

- In other words, given a budget *p* of pages, we can compute a *p*-page book embedding with the minimum number of crossings in ... time.
- We can compute the *fixed-vertex-order page* number in ... time.

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in $(cr+2)^{O(pw^2)}n$ time whether a graph with *n* vertices and pathwidth pw can be drawn on a given number of pages with \leq cr crossings in total.

Given an ordered graph (G, σ) , let $cr_p(G, \sigma)$ be the smallest number of crossings over all possible assignments of the edges of G to p pages.

- In other words, given a budget *p* of pages, we can compute a *p*-page book embedding with the minimum number of crossings in ... time.
- We can compute the *fixed-vertex-order page* number in ... time.
 Find the smallest q such that cr_q(G, σ) = 0.

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in $(cr+2)^{O(pw^2)}n$ time whether a graph with *n* vertices and pathwidth pw can be drawn on a given number of pages with \leq cr crossings in total.

Given an ordered graph (G, σ) , let $cr_p(G, \sigma)$ be the smallest number of crossings over all possible assignments of the edges of G to p pages.

- In other words, given a budget *p* of pages, we can compute a *p*-page book embedding with the minimum number of crossings in ... time.
- We can compute the *fixed-vertex-order page* number in ... time. Find the smallest q such that $cr_q(G, \sigma) = 0$. Note that $q \le m$.

Let p = 1 and $F \subseteq E(G)$. Then $cr_1(G[F], \sigma) =$

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$.

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = \left| \{\{e, f\} \subseteq F : e \text{ crosses } f\} \right|$. Can compute $\operatorname{cr}_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$. Can compute $\operatorname{cr}_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$. Can compute $\operatorname{cr}_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time: $\operatorname{cr} = 0; B = \text{empty BST for edges (right endpt)}$

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$. Can compute $cr_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time: $egin{array}{ccc} \mathbf{o} & \mathbf{o} & \mathbf{o} \\ V_1 \end{array}$ 0 0 0 0 cr = 0; B = empty BST for edges (right endpt) Vi For i = 1 to n:

0

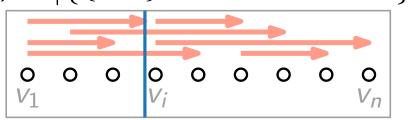
Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$.

Can compute $cr_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:

cr = 0; B = empty BST for edges (right endpt)

For i = 1 to n:

remove $in(v_i)$ from *B*;



Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$.

 $\begin{array}{ccc} \mathbf{O} & \mathbf{O} & \mathbf{O} \\ V_1 \end{array}$

0

0

0

0

Can compute $cr_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:

cr = 0; B = empty BST for edges (right endpt)

remove in(v_i) from B; for each $e \in out(v_i)$:

For i = 1 to n:

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$.

 $\begin{array}{ccc} \mathbf{O} & \mathbf{O} & \mathbf{O} \\ V_1 \end{array}$

0

0

0

0

Can compute $cr_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:

cr = 0; B = empty BST for edges (right endpt)

For i = 1 to n:

remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr + B.rank(e);

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$.

Can compute $cr_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:

cr = 0; B = empty BST for edges (right endpt)

For i = 1 to n:

) V_1 V_i V_n

remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr + B.rank(e); B.add(e)

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$.

Can compute $cr_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:

cr = 0; B = empty BST for edges (right endpt)

For i = 1 to n:

remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr +B.rank(e); B.add(e)

o o o V1

0 0

0

0

So we can compute $cr_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in total time.

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$.

Can compute $cr_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:

cr = 0; B = empty BST for edges (right endpt)

For i = 1 to n:

remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr + B.rank(e); B.add(e)

o o o V1

0 0

0

0

So we can compute $cr_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}(m2^m)$ total time.

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$.

Can compute $cr_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:

cr = 0; B = empty BST for edges (right endpt)

For i = 1 to n:

remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr + B.rank(e); B.add(e)

 $\begin{array}{cccccccc} \circ & \circ & \circ & \circ & \circ \\ v_1 & & v_i \end{array}$

0

0

So we can compute $cr_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}(m2^m)$ total time.

For q > 1 and $F \subseteq E(G)$, we have the recurrence

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$.

Can compute $cr_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:

For i = 1 to n:

cr = 0; B = empty BST for edges (right endpt) $\begin{vmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ V_1 & V_i \end{vmatrix}$

}.

remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr +B.rank(e); B.add(e)

So we can compute $cr_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}(m2^m)$ total time.

For q > 1 and $F \subseteq E(G)$, we have the recurrence $\operatorname{cr}_q(G[F], \sigma) = \min_{F' \subseteq F} \{$

For i = 1 to n:

remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr + B.rank(e); B.add(e)

So we can compute $cr_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}(m2^m)$ total time.

For q > 1 and $F \subseteq E(G)$, we have the recurrence $\operatorname{cr}_q(G[F], \sigma) = \min_{F' \subseteq F} \{\operatorname{cr}_1(G[F'], \sigma) + \operatorname{cr}_{q-1}(G[F \setminus F'], \sigma)\}.$

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$. Can compute $cr_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time: cr = 0; B = empty BST for edges (right endpt) $\begin{vmatrix} 0 & 0 & 0 & 0 \\ V_1 & V_i & V_i \end{vmatrix}$ 0 0 0 0 For i = 1 to n: remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr + B.rank(e); B.add(e) So we can compute $cr_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}(m2^m)$ total time. For q > 1 and $F \subseteq E(G)$, we have the recurrence $\operatorname{cr}_{q}(G[F], \sigma) = \min_{F' \subseteq F} \left\{ \operatorname{cr}_{1}(G[F'], \sigma) + \operatorname{cr}_{q-1}(G[F \setminus F'], \sigma) \right\}.$ Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m} {m \choose i} 2^{i} = 1$

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$. Can compute $cr_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time: cr = 0; B = empty BST for edges (right endpt) $\begin{vmatrix} 0 & 0 & 0 & 0 \\ V_1 & V_i & V_i \end{vmatrix}$ 0 0 0 0 For i = 1 to n: remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr + B.rank(e); B.add(e) So we can compute $cr_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}(m2^m)$ total time. For q > 1 and $F \subseteq E(G)$, we have the recurrence $\operatorname{cr}_{q}(G[F], \sigma) = \min_{F' \subseteq F} \left\{ \operatorname{cr}_{1}(G[F'], \sigma) + \operatorname{cr}_{q-1}(G[F \setminus F'], \sigma) \right\}.$ Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m} {m \choose i} 2^{i} = \tilde{O}(m3^{m})$.

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$. Can compute $cr_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time: cr = 0; B = empty BST for edges (right endpt) $\begin{vmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ V_1 & V_i & V_i \end{vmatrix}$ For i = 1 to n: remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr + B.rank(e); B.add(e) So we can compute $cr_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}(m2^m)$ total time. For q > 1 and $F \subseteq E(G)$, we have the recurrence $\operatorname{cr}_{q}(G[F], \sigma) = \min_{F' \subseteq F} \left\{ \operatorname{cr}_{1}(G[F'], \sigma) + \operatorname{cr}_{q-1}(G[F \setminus F'], \sigma) \right\}.$ Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m} {m \choose i} 2^{i} = \tilde{O}(m3^{m})$. Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, '07]

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$. Can compute $cr_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time: cr = 0; B = empty BST for edges (right endpt) $\begin{vmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ V_1 & V_i & V_i \end{vmatrix}$ For i = 1 to n: remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr + B.rank(e); B.add(e) So we can compute $cr_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}(m2^m)$ total time. For q > 1 and $F \subseteq E(G)$, we have the recurrence $\operatorname{cr}_{q}(G[F], \sigma) = \min_{F' \subseteq F} \left\{ \operatorname{cr}_{1}(G[F'], \sigma) + \operatorname{cr}_{q-1}(G[F \setminus F'], \sigma) \right\}.$ Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m} {m \choose i} 2^{i} = \tilde{O}(m3^{m})$. Instead, do *subset convolution*! [Björklund, Husfeldt, Kaski, Koivisto, '07] Define two functions $f, g: 2^{E(G)} \to R$ to the (min, +)-ring R:

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$. Can compute $cr_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time: cr = 0; B = empty BST for edges (right endpt) $\begin{vmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ V_1 & V_i & V_i \end{vmatrix}$ For i = 1 to n: remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr + B.rank(e); B.add(e) So we can compute $cr_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}(m2^m)$ total time. For q > 1 and $F \subseteq E(G)$, we have the recurrence $\operatorname{cr}_{q}(G[F], \sigma) = \min_{F' \subseteq F} \left\{ \operatorname{cr}_{1}(G[F'], \sigma) + \operatorname{cr}_{q-1}(G[F \setminus F'], \sigma) \right\}.$ Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m} {m \choose i} 2^{i} = \tilde{O}(m3^{m})$. Instead, do *subset convolution*! [Björklund, Husfeldt, Kaski, Koivisto, '07] Define two functions $f, g: 2^{E(G)} \to R$ to the $(\min, +)$ -ring R:

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$. Can compute $\operatorname{cr}_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time: cr = 0; B = empty BST for edges (right endpt) $\begin{vmatrix} 0 & 0 & 0 & 0 \\ V_1 & V_i \end{vmatrix}$ 0 0 0 0 For i = 1 to n: remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr + B.rank(e); B.add(e) So we can compute $\operatorname{cr}_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}(m2^m)$ total time. For q > 1 and $F \subseteq E(G)$, we have the recurrence $\operatorname{cr}_{q}(G[F], \sigma) = \min_{F' \subseteq F} \left\{ \operatorname{cr}_{1}(G[F'], \sigma) + \operatorname{cr}_{q-1}(G[F \setminus F'], \sigma) \right\}.$ Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m} {m \choose i} 2^{i} = \tilde{O}(m3^{m})$. Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, '07] Define two functions $f, g: 2^{E(G)} \to R$ to the $(\min, +)$ -ring R: $f: F \mapsto \operatorname{cr}_1(G[F], \sigma)$ and $g: F \mapsto \operatorname{cr}_{g-1}(G[F], \sigma)$ with $f, g(\cdot) \leq m^2$

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$. Can compute $\operatorname{cr}_1(G[F], \sigma)$ in $\widetilde{O}(|F|)$ time: cr = 0; B = empty BST for edges (right endpt) $\begin{vmatrix} 0 & 0 & 0 & 0 \\ V_1 & V_i \end{vmatrix}$ 0 0 0 For i = 1 to n: remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr + B.rank(e); B.add(e) So we can compute $cr_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}(m2^m)$ total time. For q > 1 and $F \subseteq E(G)$, we have the recurrence $\operatorname{cr}_q(G[F], \sigma) = \min_{F' \subset F} \left\{ \operatorname{cr}_1(G[F'], \sigma) + \operatorname{cr}_{q-1}(G[F \setminus F'], \sigma) \right\}.$ Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m} {m \choose i} 2^{i} = \tilde{O}(m3^{m})$. Instead, do *subset convolution*! [Björklund, Husfeldt, Kaski, Koivisto, '07] Define two functions $f, g: 2^{E(G)} \to R$ to the $(\min, +)$ -ring R: $f: F \mapsto \operatorname{cr}_1(G[F], \sigma)$ and $g: F \mapsto \operatorname{cr}_{q-1}(G[F], \sigma)$ with $f, g(\cdot) \leq m^2$ Then $(f * g)(F) = \sum f(F') \cdot g(F \setminus F')$ can be computed in $\tilde{O}(m^2 2^m)$. $F' \subset F$

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$. Can compute $\operatorname{cr}_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time: cr = 0; B = empty BST for edges (right endpt) $\begin{vmatrix} 0 & 0 & 0 & 0 \\ V_1 & V_i \end{vmatrix}$ 0 0 0 For i = 1 to n: remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr + B.rank(e); B.add(e) So we can compute $cr_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}(m2^m)$ total time. For q > 1 and $F \subseteq E(G)$, we have the recurrence $\operatorname{cr}_{q}(G[F], \sigma) = \min_{F' \subseteq F} \left\{ \operatorname{cr}_{1}(G[F'], \sigma) + \operatorname{cr}_{q-1}(G[F \setminus F'], \sigma) \right\}.$ Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m} {m \choose i} 2^{i} = \tilde{O}(m3^{m})$. Instead, do *subset convolution*! [Björklund, Husfeldt, Kaski, Koivisto, '07] Define two functions $f, g: 2^{E(G)} \to R$ to the $(\min, +)$ -ring R: $f: F \mapsto \operatorname{cr}_1(G[F], \sigma)$ and $g: F \mapsto \operatorname{cr}_{q-1}(G[F], \sigma)$ with $f, g(\cdot) \leq m^2$ Then $(f * g)(F) = \sum f(F') \cdot g(F \setminus F')$ can be computed in $\tilde{O}(m^2 2^m)$.

Let p = 1 and $F \subseteq E(G)$. Then $\operatorname{cr}_1(G[F], \sigma) = |\{\{e, f\} \subseteq F : e \text{ crosses } f\}|$. Can compute $\operatorname{cr}_1(G[F], \sigma)$ in $\tilde{O}(|F|)$ time: cr = 0; B = empty BST for edges (right endpt) $\begin{vmatrix} 0 & 0 & 0 & 0 \\ V_1 & V_i \end{vmatrix}$ 0 0 0 For i = 1 to n: remove in(v_i) from B; for each $e \in out(v_i)$: cr = cr + B.rank(e); B.add(e) So we can compute $cr_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}(m2^m)$ total time. For q > 1 and $F \subseteq E(G)$, we have the recurrence $\operatorname{cr}_{q}(G[F], \sigma) = \min_{F' \subseteq F} \left\{ \operatorname{cr}_{1}(G[F'], \sigma) + \operatorname{cr}_{q-1}(G[F \setminus F'], \sigma) \right\}.$ Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m} {m \choose i} 2^{i} = \tilde{O}(m3^{m})$. Instead, do *subset convolution*! [Björklund, Husfeldt, Kaski, Koivisto, '07] Define two functions $f, g: 2^{E(G)} \to R$ to the $(\min, +)$ -ring R: $f: F \mapsto \operatorname{cr}_1(G[F], \sigma)$ and $g: F \mapsto \operatorname{cr}_{q-1}(G[F], \sigma)$ with $f, g(\cdot) \leq m^2$ Then $(f * g)(F) = \sum f(F') \cdot g(F \setminus F')$ can be computed in $\tilde{O}(m^2 2^m)$.

Theorem. Given $p \ge 1$ and an ordered graph (G, σ) with *n* vertices and *m* edges, we can compute the values $cr_1(G, \sigma), \ldots, cr_p(G, \sigma)$ in $\tilde{O}(p \cdot m^2 2^m)$ time.

So we can compute $cr_1(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}(m2^m)$ total time. For q > 1 and $F \subseteq E(G)$, we have the recurrence $\operatorname{cr}_{q}(G[F], \sigma) = \min_{F' \subseteq F} \left\{ \operatorname{cr}_{1}(G[F'], \sigma) + \operatorname{cr}_{q-1}(G[F \setminus F'], \sigma) \right\}.$ Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m} {m \choose i} 2^{i} = \tilde{O}(m3^{m})$. Instead, do *subset convolution*! [Björklund, Husfeldt, Kaski, Koivisto, '07] Define two functions $f, g: 2^{E(G)} \to R$ to the $(\min, +)$ -ring R: $f: F \mapsto \operatorname{cr}_1(G[F], \sigma)$ and $g: F \mapsto \operatorname{cr}_{q-1}(G[F], \sigma)$ with $f, g(\cdot) \leq m^2$ Then $(f * g)(F) = \sum f(F') \cdot g(F \setminus F')$ can be computed in $\tilde{O}(m^2 2^m)$.

Lemma.

Given (G, σ) , we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $cr_1(G - S, \sigma) = 0$.

Lemma.

Given (G, σ) , we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $cr_1(G - S, \sigma) = 0$. Via max. indep. set in circle graphs. [Valiente 2003]

Lemma. Given (G, σ) , we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $cr_1(G - S, \sigma) = 0$. Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an $O(\log n)$ -approximation to the fixed-vertex-order page number of an *n*-vertex graph.

Lemma. Given (G, σ) , we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $cr_1(G - S, \sigma) = 0$. Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an $O(\log n)$ -approximation to the fixed-vertex-order page number of an *n*-vertex graph.

Proof. Let $\mathcal{F} = \{F \subseteq E(G) : \operatorname{cr}_1(G[F], \sigma) = 0\}.$

Lemma. Given (G, σ) , we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $cr_1(G - S, \sigma) = 0$. Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an $O(\log n)$ -approximation to the fixed-vertex-order page number of an *n*-vertex graph.

Let
$$\mathcal{F} = \{F \subseteq E(G) : \operatorname{cr}_1(G[F], \sigma) = 0\}$$
.
 $\mathcal{F}' \subseteq \mathcal{F}$ is a feasible solution of the SET COVER
instance $(E(G), \mathcal{F})$ if $\bigcup \mathcal{F}' = E(G)$.

Lemma. Given (G, σ) , we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $cr_1(G - S, \sigma) = 0$. Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an $O(\log n)$ -approximation to the fixed-vertex-order page number of an *n*-vertex graph.

Proof.

Let
$$\mathcal{F} = \{F \subseteq E(G) \colon \mathsf{cr}_1(G[F], \sigma) = 0\}.$$

 $\mathcal{F}' \subseteq \mathcal{F}$ is a feasible solution of the SET COVER instance $(E(G), \mathcal{F})$ if $\bigcup \mathcal{F}' = E(G)$.

 \mathcal{F}' yields a crossing-free drawing of G on $|\mathcal{F}'|$ pages.

Lemma. Given (G, σ) , we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $cr_1(G - S, \sigma) = 0$. Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an $O(\log n)$ -approximation to the fixed-vertex-order page number of an *n*-vertex graph.

Proof.

Let
$$\mathcal{F} = \{F \subseteq E(G) \colon \operatorname{cr}_1(G[F], \sigma) = 0\}.$$

 $\mathcal{F}' \subseteq \mathcal{F}$ is a feasible solution of the SET COVER instance $(E(G), \mathcal{F})$ if $\bigcup \mathcal{F}' = E(G)$.

 \mathcal{F}' yields a crossing-free drawing of G on $|\mathcal{F}'|$ pages. An opt/app. set cover yields an opt/app. page nmb.

Lemma. Given (G, σ) , we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $cr_1(G - S, \sigma) = 0$. Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an $O(\log n)$ -approximation to the fixed-vertex-order page number of an *n*-vertex graph.

Proof.

Let
$$\mathcal{F} = \{F \subseteq E(G) \colon \operatorname{cr}_1(G[F], \sigma) = 0\}.$$

 $\mathcal{F}' \subseteq \mathcal{F}$ is a feasible solution of the SET COVER instance $(E(G), \mathcal{F})$ if $\bigcup \mathcal{F}' = E(G)$.

 \mathcal{F}' yields a crossing-free drawing of G on $|\mathcal{F}'|$ pages. An opt/app. set cover yields an opt/app. page nmb. Compute solution S by greedily adding the set F in \mathcal{F} that maximizes $|F \setminus \bigcup S|$.

Lemma. Given (G, σ) , we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $cr_1(G - S, \sigma) = 0$. Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an $O(\log n)$ -approximation to the fixed-vertex-order page number of an *n*-vertex graph.

Proof.

Let
$$\mathcal{F} = \{F \subseteq E(G) \colon \operatorname{cr}_1(G[F], \sigma) = 0\}.$$

 $\mathcal{F}' \subseteq \mathcal{F}$ is a feasible solution of the SET COVER instance $(E(G), \mathcal{F})$ if $\bigcup \mathcal{F}' = E(G)$.

 \mathcal{F}' yields a crossing-free drawing of G on $|\mathcal{F}'|$ pages. An opt/app. set cover yields an opt/app. page nmb. Compute solution S by greedily adding the set F in \mathcal{F} that maximizes $|F \setminus \bigcup S|$. Apply lemma to $G - \bigcup S$.

Our Contribution

- We can compute the fixed-vertex-order page number of an ordered graph with *m* edges & *n* vertices in 2^m · n^{O(1)} time. Alternatively, given a budget *p* of pages, we can compute a *p*-page book embedding with the min. number of crossings.
- We obtain an O((d + 1) log n)-approximation algorithm for the fixed-vertex-order d-planar page number.
- We show how to decide in 2^{O(c√k log(c+k))} · n^{O(1)} time whether deleting k edges of an ordered graph suffices to obtain a d-planar layout on one page.
- Let h be the size of a hitting set.
 h = 1: We can efficiently compute the smallest set of edges whose deletion yields fixed-vertex-order page number p.
 h > 1: XP algorithm with respect to h + p.

Our Contribution

- We can compute the fixed-vertex-order page number of an ordered graph with *m* edges & *n* vertices in 2^m · n^{O(1)} time. Alternatively, given a budget *p* of pages, we can compute a *p*-page book embedding with the min. number of crossings.
- We obtain an O((d + 1) log n)-approximation algorithm for the fixed-vertex-order d-planar page number.
- We show how to decide in 2^{O(c√k log(c+k))} · n^{O(1)} time whether deleting k edges of an ordered graph suffices to obtain a d-planar layout on one page.
- Let h be the size of a hitting set.
 h = 1: We can efficiently compute the smallest set of edges whose deletion yields fixed-vertex-order page number p.
 h > 1: XP algorithm with respect to h + p.

no crossings

Brute-force solution?

no crossings

Brute-force solution?

For each mapping of the *m* edges to the *p* pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph.

no crossings

Brute-force solution?

For each mapping of the *m* edges to the *p* pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O(n(p+1)^m)$ time

no crossings

Brute-force solution?

For each mapping of the *m* edges to the *p* pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O(n(p+1)^m)$ time

New parameter:

no crossings

Brute-force solution?

For each mapping of the *m* edges to the *p* pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O(n(p+1)^m)$ time

New parameter: h = size of hitting set

no crossings

Brute-force solution?

For each mapping of the *m* edges to the *p* pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O(n(p+1)^m)$ time

New parameter: h = size of hitting set

• A hitting set can be much smaller than a vertex cover :-)

no crossings

Brute-force solution?

For each mapping of the *m* edges to the *p* pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O(n(p+1)^m)$ time

New parameter: h = size of hitting set

- A hitting set can be much smaller than a vertex cover :-)
- Given *m* open intervals, a minimum-size hitting set can be found in $O(m \log m)$ time (greedily).

no crossings

Brute-force solution?

For each mapping of the *m* edges to the *p* pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O(n(p+1)^m)$ time

New parameter: h = size of hitting set

X

- A hitting set can be much smaller than a vertex cover :-)
- Given *m* open intervals, a minimum-size hitting set can be found in $O(m \log m)$ time (greedily).

Brute-force solution?

For each mapping of the *m* edges to the *p* pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O(n(p+1)^m)$ time

no crossings

New parameter: h = size of hitting set

X

- A hitting set can be much smaller than a vertex cover :-)
- Given *m* open intervals, a minimum-size hitting set can be found in $O(m \log m)$ time (greedily).

Brute-force solution?

For each mapping of the *m* edges to the *p* pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O(n(p+1)^m)$ time

no crossings

New parameter: h = size of hitting set

- A hitting set can be much smaller than a vertex cover :-)
- Given *m* open intervals, a minimum-size hitting set can be found in O(m log m) time (greedily).

→ × ×

Brute-force solution?

For each mapping of the *m* edges to the *p* pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O(n(p+1)^m)$ time

no crossings

New parameter: h = size of hitting set

X

- A hitting set can be much smaller than a vertex cover :-)
- Given *m* open intervals, a minimum-size hitting set can be found in O(m log m) time (greedily).

X

Brute-force solution?

For each mapping of the *m* edges to the *p* pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O(n(p+1)^m)$ time

no crossings

New parameter: h = size of hitting set

- A hitting set can be much smaller than a vertex cover :-)
- Given *m* open intervals, a minimum-size hitting set can be found in $O(m \log m)$ time (greedily).

Brute-force solution?

For each mapping of the *m* edges to the *p* pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O(n(p+1)^m)$ time

no crossings

New parameter: h = size of hitting set

- A hitting set can be much smaller than a vertex cover :-)
- Given *m* open intervals, a minimum-size hitting set can be found in $O(m \log m)$ time (greedily).

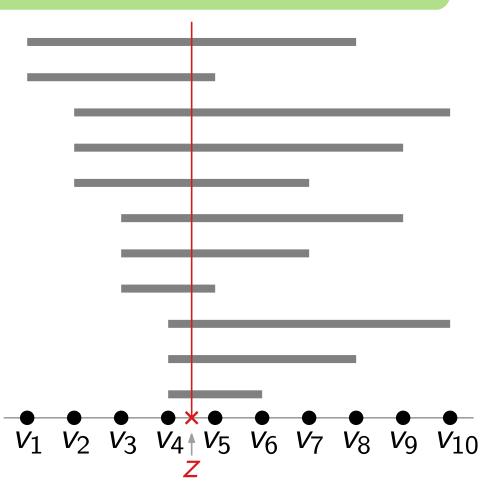
→ × × ×

Theorem. Given an ordered graph (G, σ) with *n* vertices, *m* edges, and $h(G, \sigma) = 1$, EDGE DELETION TO *p*-PAGE PLANAR can be solved in $O(m^3 \log n \log \log p)$ time.

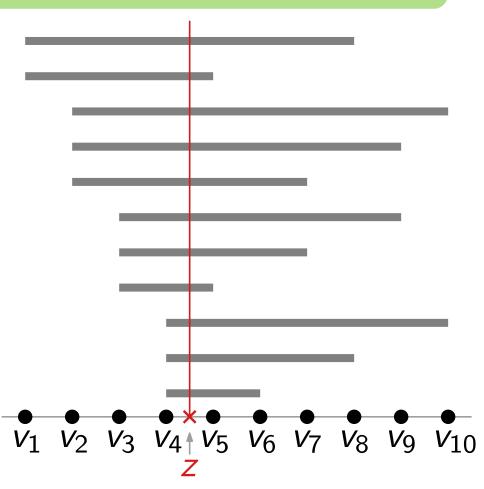
Theorem. Given an ordered graph (G, σ) with *n* vertices, *m* edges, and $h(G, \sigma) = 1$, EDGE DELETION TO *p*-PAGE PLANAR can be solved in $O(m^3 \log n \log \log p)$ time.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Theorem. Given an ordered graph (G, σ) with *n* vertices, *m* edges, and $h(G, \sigma) = 1$, EDGE DELETION TO *p*-PAGE PLANAR can be solved in $O(m^3 \log n \log \log p)$ time.



Theorem. Given an ordered graph (G, σ) with *n* vertices, *m* edges, and $h(G, \sigma) = 1$, EDGE DELETION TO *p*-PAGE PLANAR can be solved in $O(m^3 \log n \log \log p)$ time.



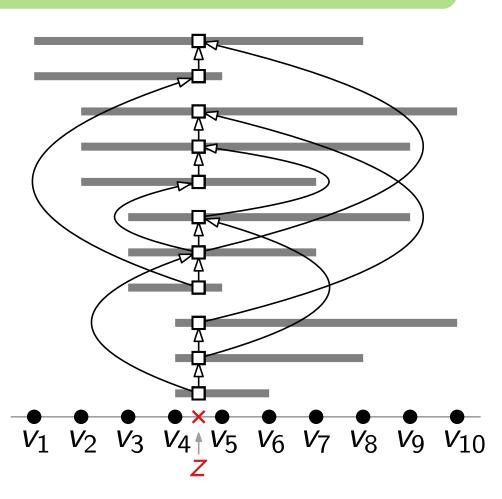
Theorem. Given an ordered graph (G, σ) with *n* vertices, *m* edges, and $h(G, \sigma) = 1$, EDGE DELETION TO *p*-PAGE PLANAR can be solved in $O(m^3 \log n \log \log p)$ time.

Proof. V_1 V_2 V_3 V_4 V_5 V_6 V_7 V_8 V_9 V_{10}

Theorem. Given an ordered graph (G, σ) with *n* vertices, *m* edges, and $h(G, \sigma) = 1$, EDGE DELETION TO *p*-PAGE PLANAR can be solved in $O(m^3 \log n \log \log p)$ time.

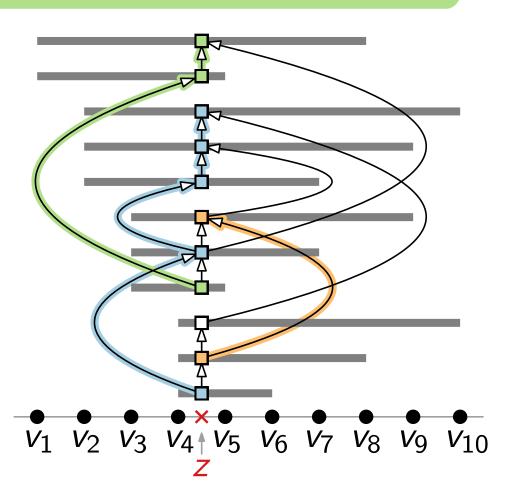
Proof.

- Define directed graph.



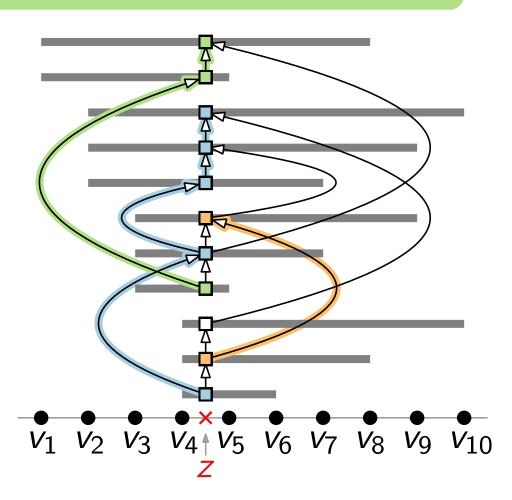
Theorem. Given an ordered graph (G, σ) with *n* vertices, *m* edges, and $h(G, \sigma) = 1$, EDGE DELETION TO *p*-PAGE PLANAR can be solved in $O(m^3 \log n \log \log p)$ time.

- Define directed graph.
- Find *p* directed paths.



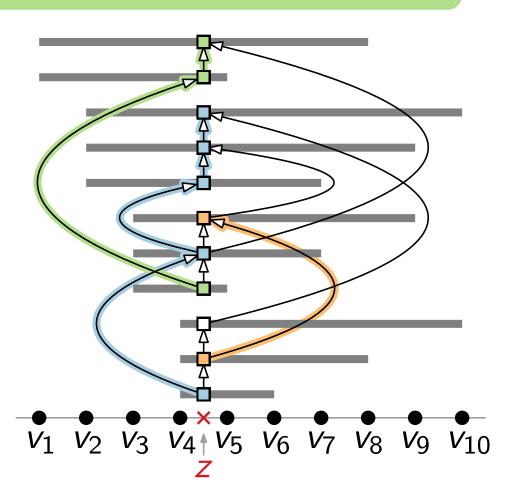
Theorem. Given an ordered graph (G, σ) with *n* vertices, *m* edges, and $h(G, \sigma) = 1$, EDGE DELETION TO *p*-PAGE PLANAR can be solved in $O(m^3 \log n \log \log p)$ time.

- Define directed graph.
- Find *p* directed paths.
- Define flow network.



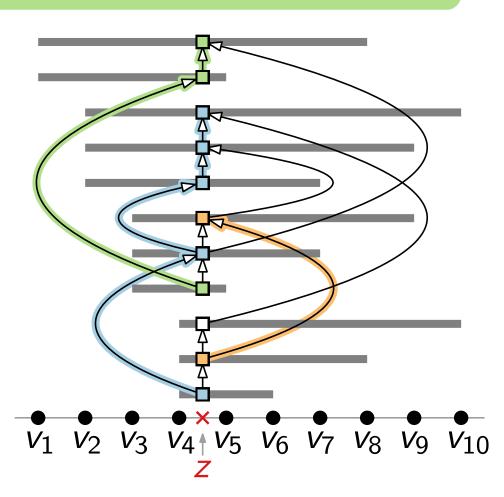
Theorem. Given an ordered graph (G, σ) with *n* vertices, *m* edges, and $h(G, \sigma) = 1$, EDGE DELETION TO *p*-PAGE PLANAR can be solved in $O(m^3 \log n \log \log p)$ time.

- Define directed graph.
- Find *p* directed paths.
- Define flow network.
- Find min-cost max flow.



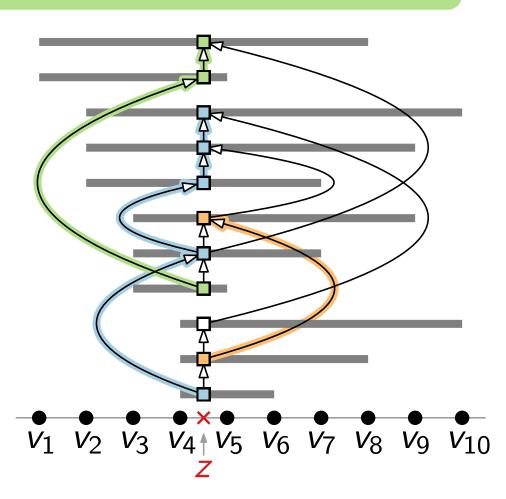
Theorem. Given an ordered graph (G, σ) with *n* vertices, *m* edges, and $h(G, \sigma) = 1$, EDGE DELETION TO *p*-PAGE PLANAR can be solved in $O(m^3 \log n \log \log p)$ time.

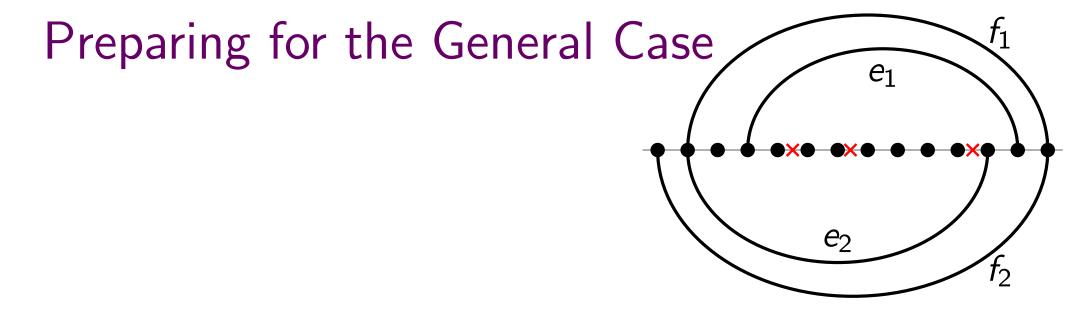
- Define directed graph.
- Find *p* directed paths.
- Define flow network.
- Find min-cost max flow.
 Such a flow has value p



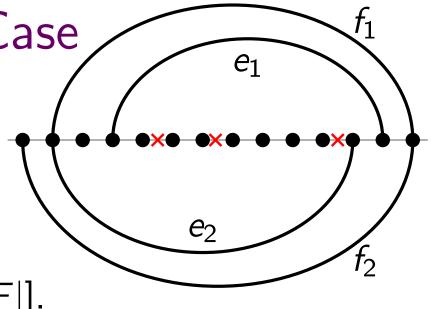
Theorem. Given an ordered graph (G, σ) with *n* vertices, *m* edges, and $h(G, \sigma) = 1$, EDGE DELETION TO *p*-PAGE PLANAR can be solved in $O(m^3 \log n \log \log p)$ time.

- Define directed graph.
- Find *p* directed paths.
- Define flow network.
- Find min-cost max flow.
 Such a flow has value p and max. total path length.





Two subsets $E, F \subseteq E(G)$ are *compatible* if |E| = |F| and there is an enumeration $e_1, \ldots, e_{|F|}$ of E and an enumeration $f_1, \ldots, f_{|F|}$ of Fs.t. e_i is contained in f_i for each $i \in [|F|]$.



Two subsets $E, F \subseteq E(G)$ are *compatible* if |E| = |F| and there is an enumeration $e_1, \ldots, e_{|F|}$ of E and an enumeration $f_1, \ldots, f_{|F|}$ of Fs.t. e_i is contained in f_i for each $i \in [|F|]$.

Lemma 1. Given an ordered graph (G, σ) with $h(G, \sigma) = 1$ and two subsets $E, F \subseteq E(G)$ of size p, we can decide in $\tilde{O}(m^3)$ time whether E and F are compatible and, if so, solve a version of EDGE DELETION TO p-PAGE PLANAR s.t:

 e_1

 e_2

Two subsets $E, F \subseteq E(G)$ are *compatible* if |E| = |F| and there is an enumeration $e_1, \ldots, e_{|F|}$ of E and an enumeration $f_1, \ldots, f_{|F|}$ of Fs.t. e_i is contained in f_i for each $i \in [|F|]$.

Lemma 1. Given an ordered graph (G, σ) with $h(G, \sigma) = 1$ and two subsets $E, F \subseteq E(G)$ of size p, we can decide in $\tilde{O}(m^3)$ time whether E and F are compatible and, if so, solve a version of EDGE DELETION TO p-PAGE PLANAR s.t:

 e_1

 e_2

• on each page, one edge of *E* is contained in all other edges and one edge of *F* contains all other edges on that page.

Two subsets $E, F \subseteq E(G)$ are *compatible* if |E| = |F| and there is an enumeration $e_1, \ldots, e_{|F|}$ of E and an enumeration $f_1, \ldots, f_{|F|}$ of Fs.t. e_i is contained in f_i for each $i \in [|F|]$.

Lemma 1. Given an ordered graph (G, σ) with $h(G, \sigma) = 1$ and two subsets $E, F \subseteq E(G)$ of size p, we can decide in $\tilde{O}(m^3)$ time whether E and F are compatible and, if so, solve a version of EDGE DELETION TO p-PAGE PLANAR s.t:

 e_1

 e_2

• on each page, one edge of *E* is contained in all other edges and one edge of *F* contains all other edges on that page.

Proof.

Two subsets $E, F \subseteq E(G)$ are *compatible* if |E| = |F| and there is an enumeration $e_1, \ldots, e_{|F|}$ of E and an enumeration $f_1, \ldots, f_{|F|}$ of Fs.t. e_i is contained in f_i for each $i \in [|F|]$.

Lemma 1. Given an ordered graph (G, σ) with $h(G, \sigma) = 1$ and two subsets $E, F \subseteq E(G)$ of size p, we can decide in $\tilde{O}(m^3)$ time whether E and F are compatible and, if so, solve a version of EDGE DELETION TO p-PAGE PLANAR s.t:

 e_1

 e_2

• on each page, one edge of *E* is contained in all other edges and one edge of *F* contains all other edges on that page.

Proof. Modify flow network:

Two subsets $E, F \subseteq E(G)$ are *compatible* if |E| = |F| and there is an enumeration $e_1, \ldots, e_{|F|}$ of E and an enumeration $f_1, \ldots, f_{|F|}$ of Fs.t. e_i is contained in f_i for each $i \in [|F|]$.

Lemma 1. Given an ordered graph (G, σ) with $h(G, \sigma) = 1$ and two subsets $E, F \subseteq E(G)$ of size p, we can decide in $\tilde{O}(m^3)$ time whether E and F are compatible and, if so, solve a version of EDGE DELETION TO p-PAGE PLANAR s.t:

 e_1

 e_2

• on each page, one edge of *E* is contained in all other edges and one edge of *F* contains all other edges on that page.

Proof. Modify flow network: Connect only $s' \to E$ and $F \to t$.

Two subsets $E, F \subseteq E(G)$ are *compatible* if |E| = |F| and there is an enumeration $e_1, \ldots, e_{|F|}$ of E and an enumeration $f_1, \ldots, f_{|F|}$ of Fs.t. e_i is contained in f_i for each $i \in [|F|]$.

Lemma 1. Given an ordered graph (G, σ) with $h(G, \sigma) = 1$ and two subsets $E, F \subseteq E(G)$ of size p, we can decide in $\tilde{O}(m^3)$ time whether E and F are compatible and, if so, solve a version of EDGE DELETION TO p-PAGE PLANAR s.t:

 e_1

 e_2

• on each page, one edge of *E* is contained in all other edges and one edge of *F* contains all other edges on that page.

Proof. Modify flow network: Connect only $s' \to E$ and $F \to t$. *E* and *E* compatible \Leftrightarrow

Two subsets $E, F \subseteq E(G)$ are *compatible* if |E| = |F| and there is an enumeration $e_1, \ldots, e_{|F|}$ of E and an enumeration $f_1, \ldots, f_{|F|}$ of Fs.t. e_i is contained in f_i for each $i \in [|F|]$.

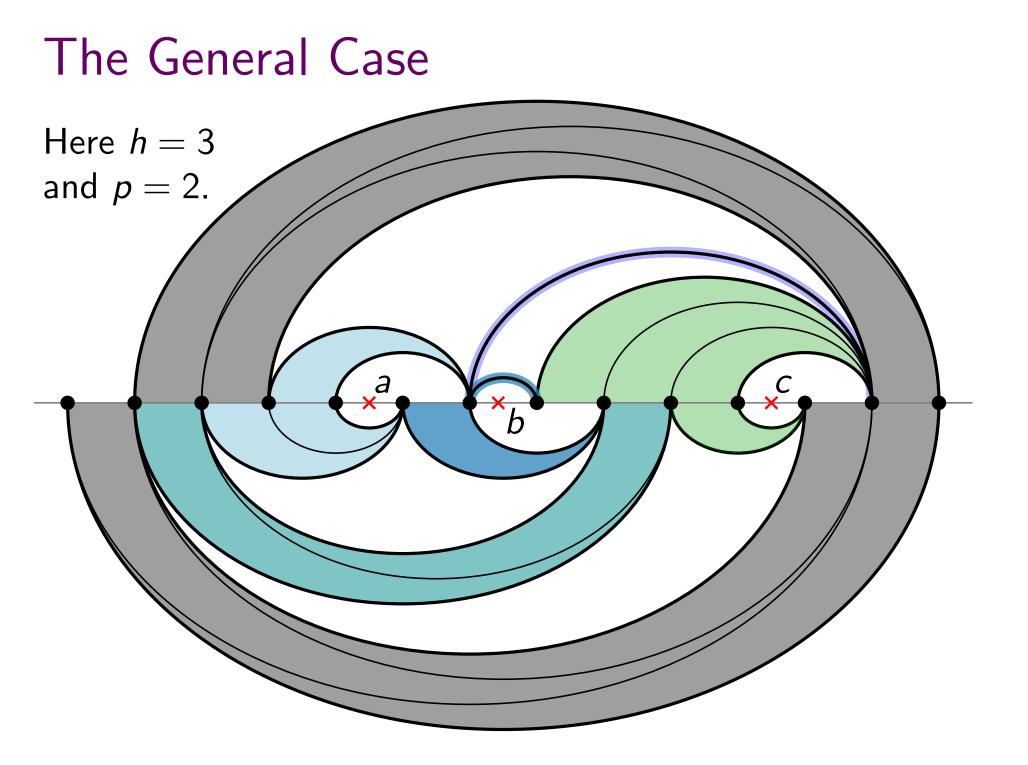
Lemma 1. Given an ordered graph (G, σ) with $h(G, \sigma) = 1$ and two subsets $E, F \subseteq E(G)$ of size p, we can decide in $\tilde{O}(m^3)$ time whether E and F are compatible and, if so, solve a version of EDGE DELETION TO p-PAGE PLANAR s.t:

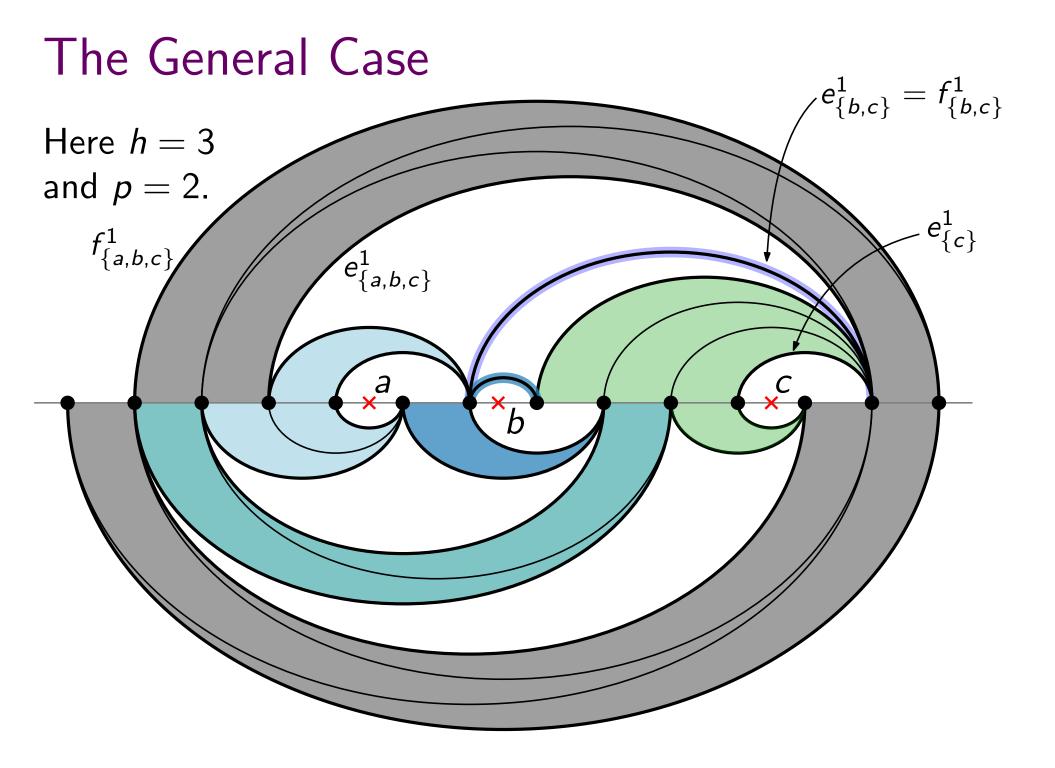
 e_1

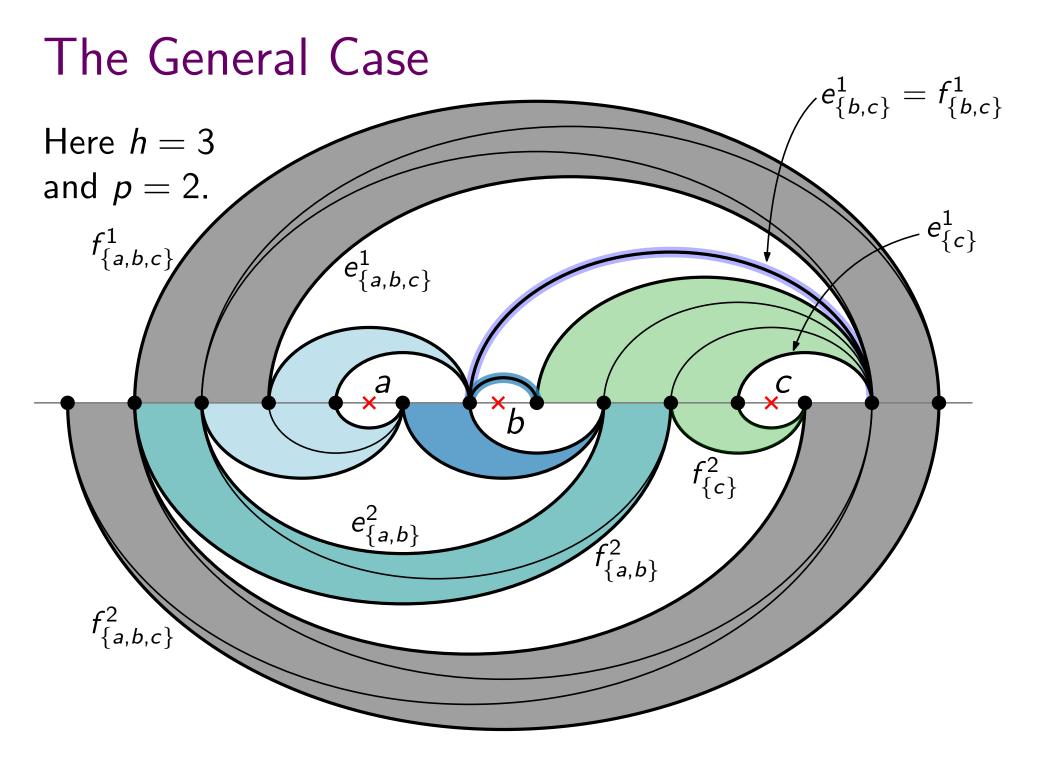
 e_2

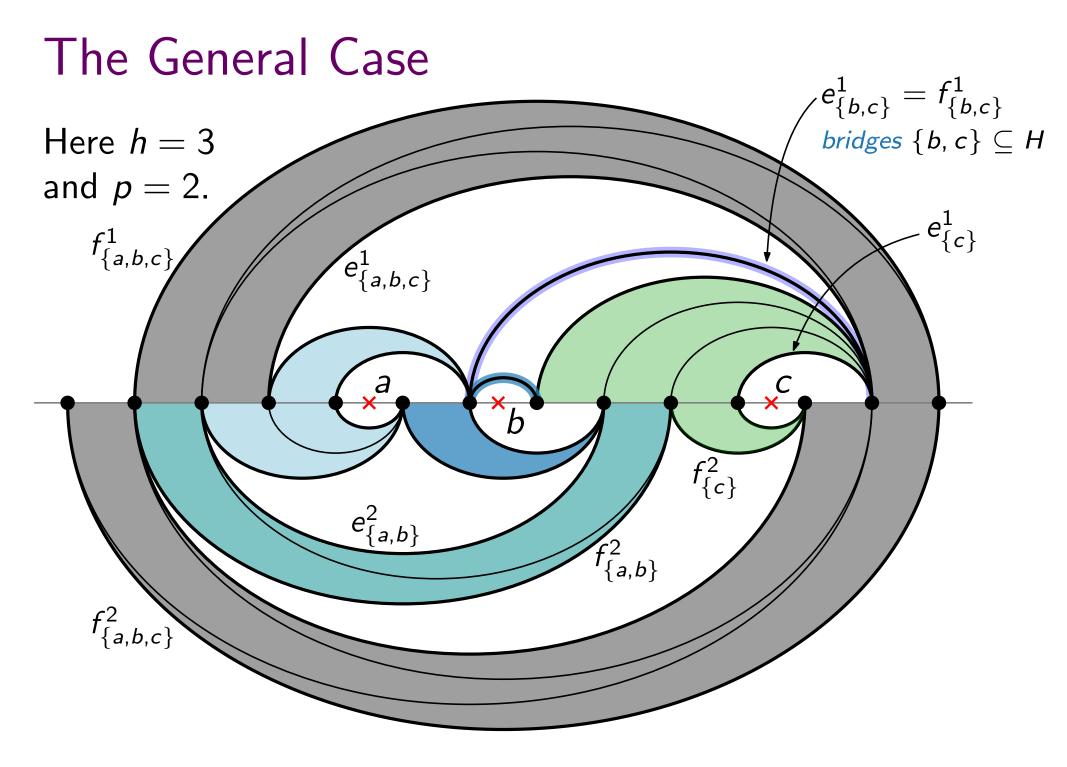
• on each page, one edge of *E* is contained in all other edges and one edge of *F* contains all other edges on that page.

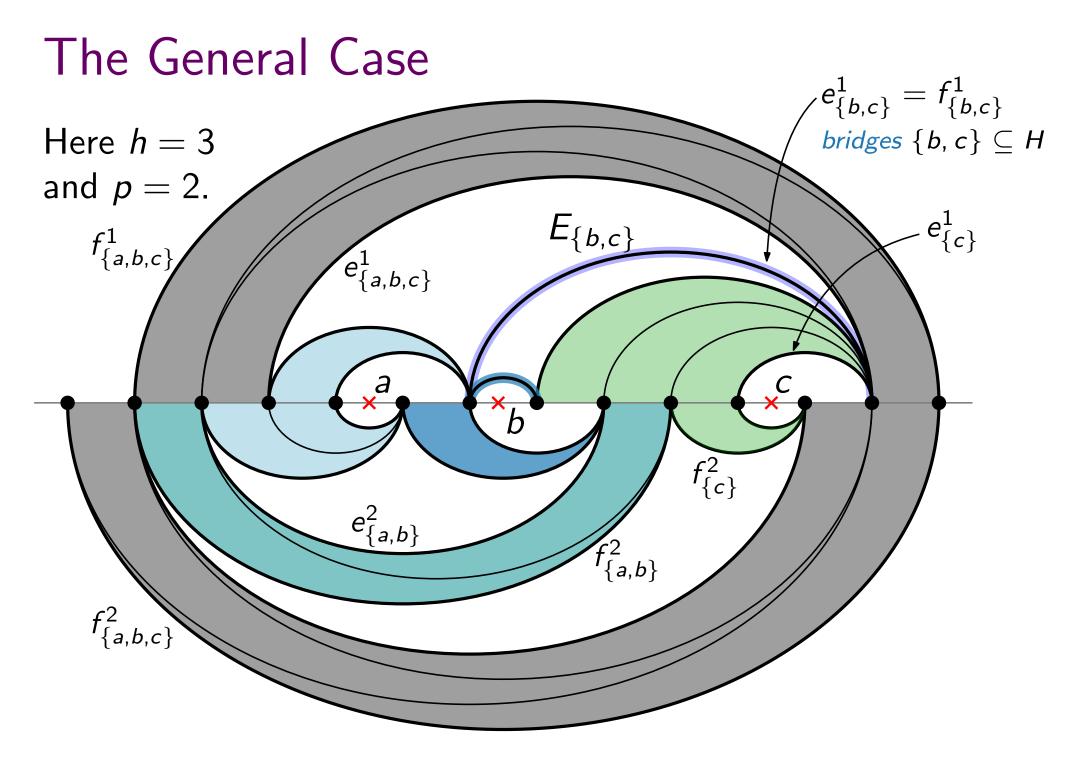
Proof. Modify flow network: Connect only $s' \to E$ and $F \to t$. E and E compatible \Leftrightarrow maximum flow has value p.

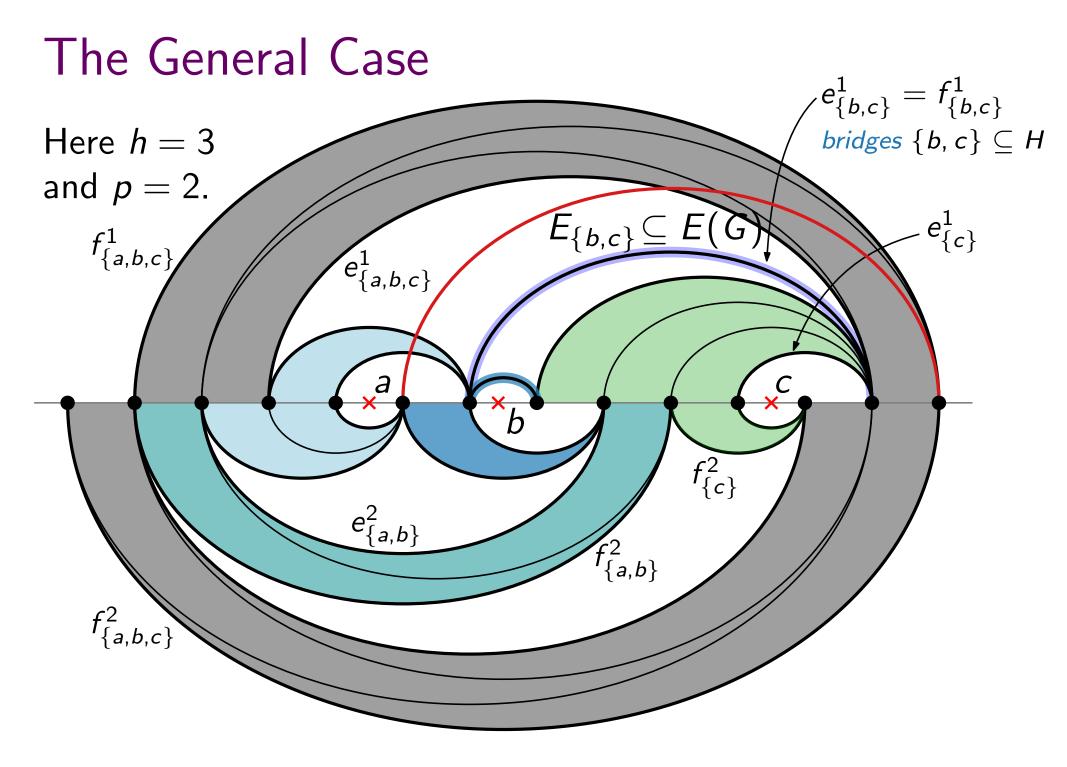


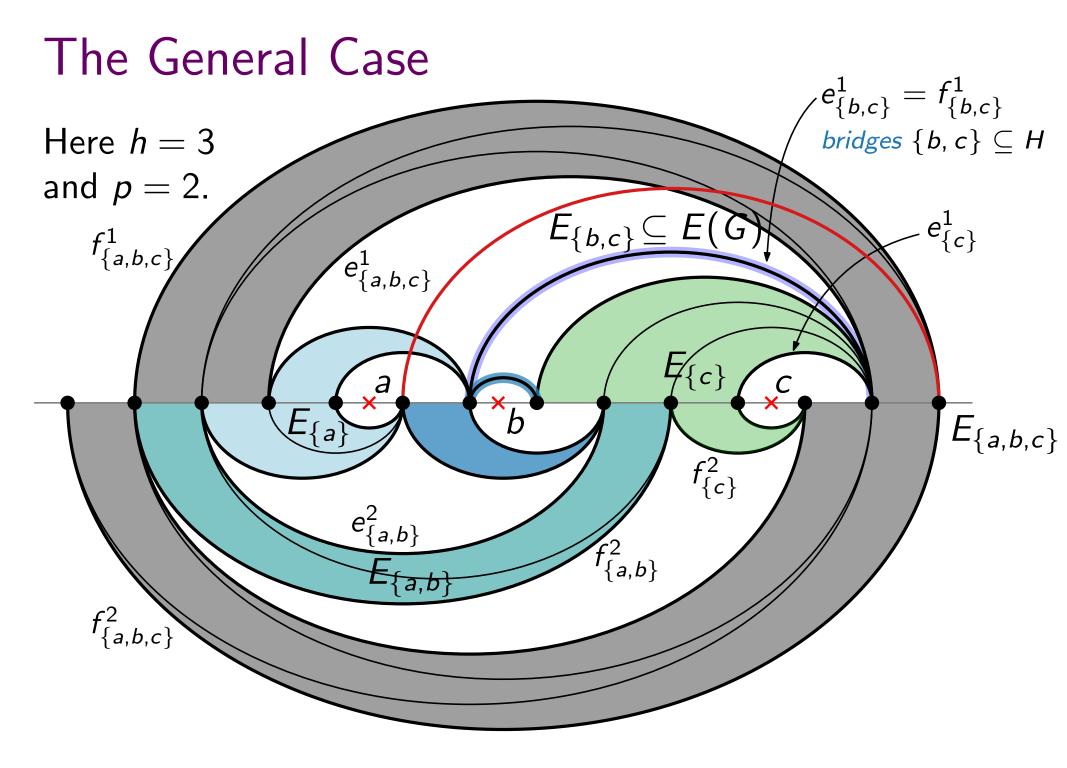


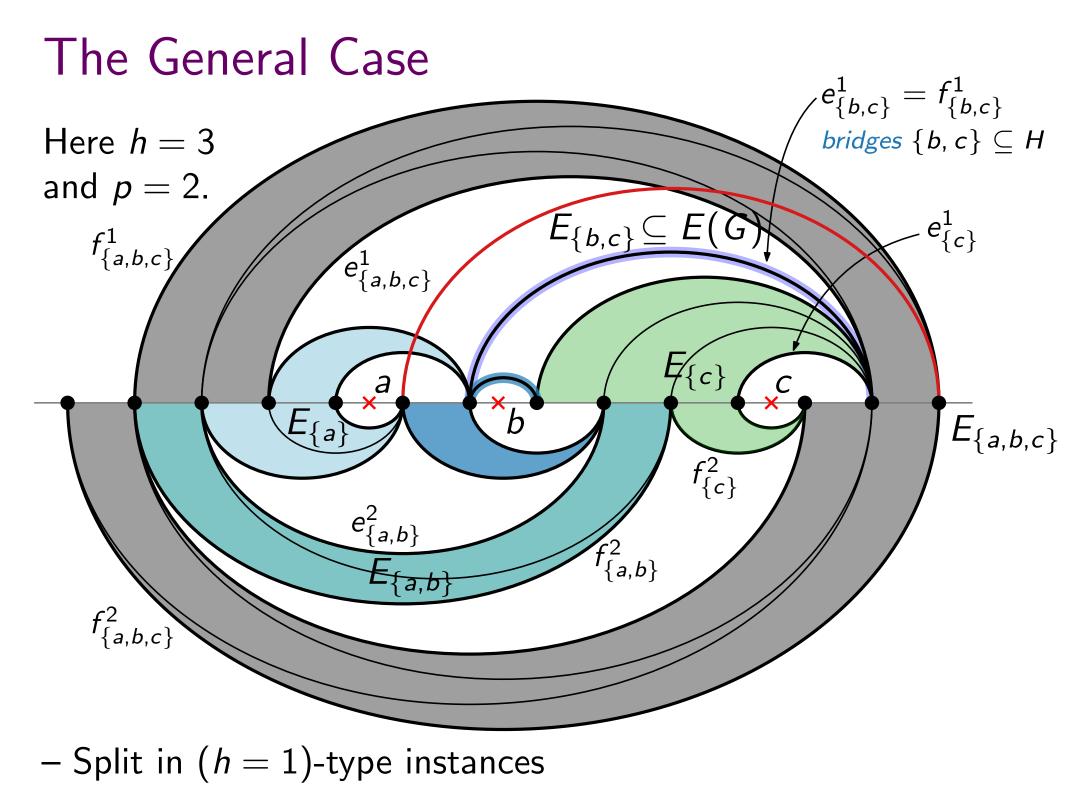


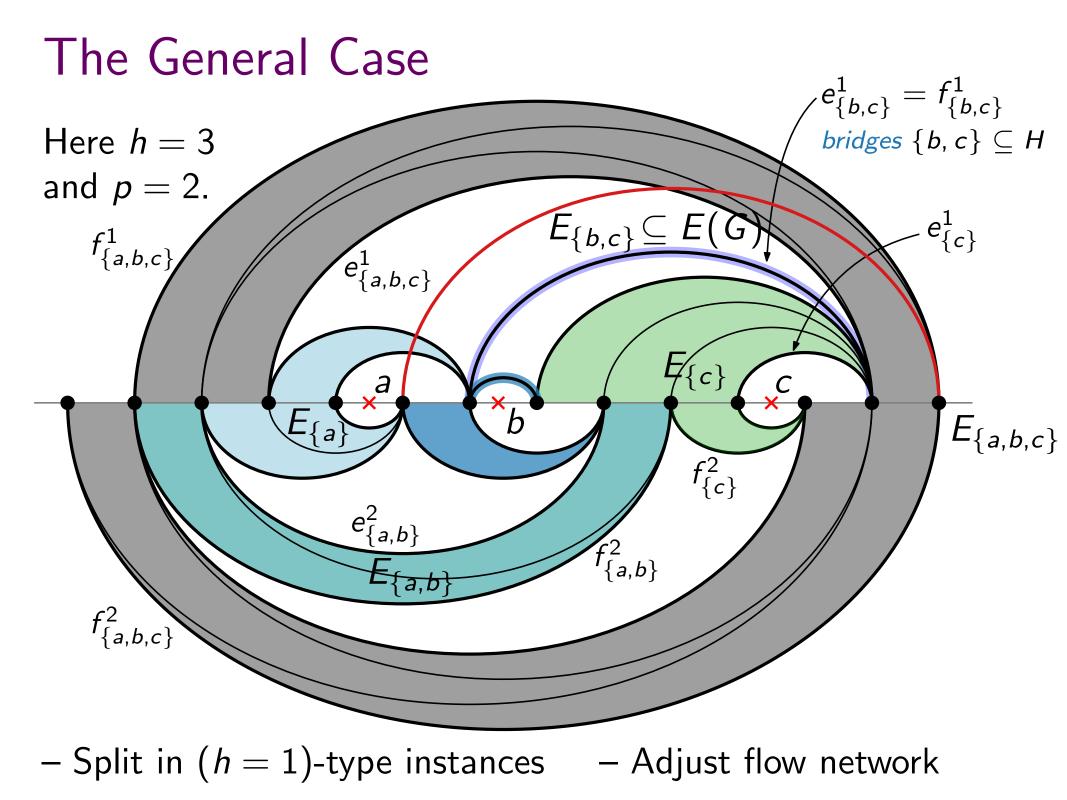












For $E \subseteq E(G)$ and $q \in [p]$, let E^q be the edges on page q.

For $E \subseteq E(G)$ and $q \in [p]$, let E^q be the edges on page q.

Let \mathcal{X}^q be the family of subsets of H bridged by edges in E^q .

For $E \subseteq E(G)$ and $q \in [p]$, let E^q be the edges on page q.

Let \mathcal{X}^q be the family of subsets of H bridged by edges in E^q .

If page q is crossing-free, the set family \mathcal{X}^q is *laminar*.

For $E \subseteq E(G)$ and $q \in [p]$, let E^q be the edges on page q. Let \mathcal{X}^q be the family of subsets of H bridged by edges in E^q . If page q is crossing-free, the set family \mathcal{X}^q is *laminar*. $\mathcal{E}^q = \{(X, e_X^q, f_X^q) \mid X \in \mathcal{X}^q\}$ is the *partial encoding* of E on page q

For $E \subseteq E(G)$ and $q \in [p]$, let E^q be the edges on page q. Let \mathcal{X}^q be the family of subsets of H bridged by edges in E^q . If page q is crossing-free, the set family \mathcal{X}^q is *laminar*. $\mathcal{E}^q = \{(X, e_X^q, f_X^q) \mid X \in \mathcal{X}^q\}$ is the *partial encoding* of E on page q and $\langle \mathcal{E}^1, \ldots, \mathcal{E}^p \rangle$ is the *encoding* of E.

For $E \subseteq E(G)$ and $q \in [p]$, let E^q be the edges on page q. Let \mathcal{X}^q be the family of subsets of H bridged by edges in E^q . If page q is crossing-free, the set family \mathcal{X}^q is *laminar*. $\mathcal{E}^q = \{(X, e_X^q, f_X^q) \mid X \in \mathcal{X}^q\}$ is the *partial encoding* of E on page q and $\langle \mathcal{E}^1, \ldots, \mathcal{E}^p \rangle$ is the *encoding* of E. If $X \subseteq H$ is bridged only on, say, page 1 of an optimal drawing,

For $E \subseteq E(G)$ and $q \in [p]$, let E^q be the edges on page q. Let \mathcal{X}^q be the family of subsets of H bridged by edges in E^q . If page q is crossing-free, the set family \mathcal{X}^q is *laminar*. $\mathcal{E}^q = \{(X, e_X^q, f_X^q) \mid X \in \mathcal{X}^q\}$ is the *partial encoding* of E on page q and $\langle \mathcal{E}^1, \ldots, \mathcal{E}^p \rangle$ is the *encoding* of E. If $X \subseteq H$ is bridged only on, say, page 1 of an optimal drawing, then we just have to select as many edges as possible (without

crossing) from those contained between e_X^1 and f_X^1 .

For $E \subseteq E(G)$ and $q \in [p]$, let E^q be the edges on page q. Let \mathcal{X}^q be the family of subsets of H bridged by edges in E^q . If page q is crossing-free, the set family \mathcal{X}^q is *laminar*. $\mathcal{E}^q = \{(X, e_X^q, f_X^q) \mid X \in \mathcal{X}^q\}$ is the *partial encoding* of E on page q and $\langle \mathcal{E}^1, \ldots, \mathcal{E}^p \rangle$ is the *encoding* of E. If $X \subseteq H$ is bridged only on, say, page 1 of an optimal drawing, then we just have to select as many edges as possible (without crossing) from those contained between e_X^1 and f_X^1 .

Let $Q_X = \{q \in [p] \colon X \in \mathcal{X}^q\}.$

For $E \subseteq E(G)$ and $q \in [p]$, let E^q be the edges on page q. Let \mathcal{X}^q be the family of subsets of H bridged by edges in E^q . If page q is crossing-free, the set family \mathcal{X}^q is *laminar*. $\mathcal{E}^q = \{(X, e_X^q, f_X^q) \mid X \in \mathcal{X}^q\}$ is the *partial encoding* of E on page q and $\langle \mathcal{E}^1, \ldots, \mathcal{E}^p \rangle$ is the *encoding* of E. If $X \subseteq H$ is bridged only on, say, page 1 of an optimal drawing, then we just have to select as many edges as possible (without

crossing) from those contained between e_X^1 and f_X^1 .

Let $Q_X = \{q \in [p] \colon X \in \mathcal{X}^q\}.$

Challenge: If $|Q_X| > 1$, the choices of which edges are drawn on which of these pages are not independent.

Lemma 2: Let $E \subseteq E(G)$ be a solution with encod. $\langle \mathcal{E}^1, ..., \mathcal{E}^p \rangle$.

Lemma 2: Let $E \subseteq E(G)$ be a solution with encod. $\langle \mathcal{E}^1, ..., \mathcal{E}^p \rangle$. For every $X \subseteq H$ with $Q_X \neq \emptyset$, let

$$-e_X=\{e_X^q\mid q\in Q_X\},$$

$$-f_X = \{f_X^q \mid q \in Q_X\}, \text{ and }$$

 $-S_X \subseteq E_X$ from applying Lemma 1 w.r.t. e_X , f_X , $p' = |Q_X|$.

Lemma 2: Let $E \subseteq E(G)$ be a solution with encod. $\langle \mathcal{E}^1, ..., \mathcal{E}^p \rangle$. For every $X \subseteq H$ with $Q_X \neq \emptyset$, let $-e_X = \{e_X^q \mid q \in Q_X\}$, $-f_X = \{f_X^q \mid q \in Q_X\}$, and $-S_X \subseteq E_X$ from applying Lemma 1 w.r.t. e_X , f_X , $p' = |Q_X|$. Then $S = \bigcup_X S_X$ is a solution for p pages and $|S| \ge |E|$.

Lemma 2: Let $E \subseteq E(G)$ be a solution with encod. $\langle \mathcal{E}^1, ..., \mathcal{E}^p \rangle$. For every $X \subseteq H$ with $Q_X \neq \emptyset$, let $-e_X = \{e_X^q \mid q \in Q_X\}$, $-f_X = \{f_X^q \mid q \in Q_X\}$, and $-S_X \subseteq E_X$ from applying Lemma 1 w.r.t. e_X , f_X , $p' = |Q_X|$. Then $S = \bigcup_X S_X$ is a solution for p pages and $|S| \ge |E|$.

Proof. Let $X \subseteq H$ with $Q_X \neq \emptyset$.

Lemma 2: Let $E \subseteq E(G)$ be a solution with encod. $\langle \mathcal{E}^1, ..., \mathcal{E}^p \rangle$. For every $X \subseteq H$ with $Q_X \neq \emptyset$, let $-e_X = \{e_X^q \mid q \in Q_X\},$ $-f_X = \{f_X^q \mid q \in Q_X\},$ and $-S_X \subseteq E_X$ from applying Lemma 1 w.r.t. e_X , f_X , $p' = |Q_X|$. Then $S = \bigcup_X S_X$ is a solution for p pages and $|S| \ge |E|$.

Proof. Let $X \subseteq H$ with $Q_X \neq \emptyset$. For $q \in Q_X$, let S_X^q be the edges in S_X that appear on the same page as $e_X^q \in e_X$ when applying Lemma 1.

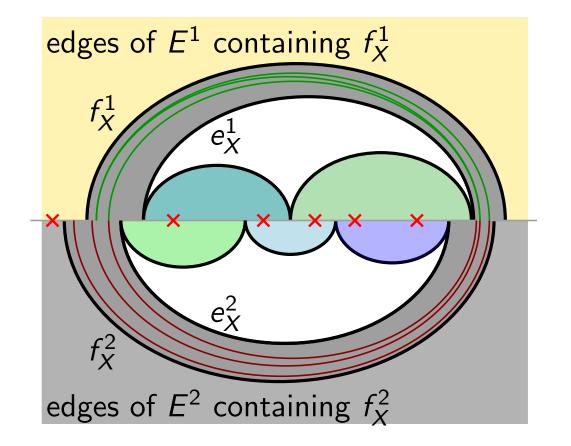
Lemma 2: Let $E \subseteq E(G)$ be a solution with encod. $\langle \mathcal{E}^1, ..., \mathcal{E}^p \rangle$. For every $X \subseteq H$ with $Q_X \neq \emptyset$, let $-e_X = \{e_X^q \mid q \in Q_X\},$ $-f_X = \{f_X^q \mid q \in Q_X\},$ and $-S_X \subseteq E_X$ from applying Lemma 1 w.r.t. e_X , f_X , $p' = |Q_X|$. Then $S = \bigcup_X S_X$ is a solution for p pages and $|S| \ge |E|$.

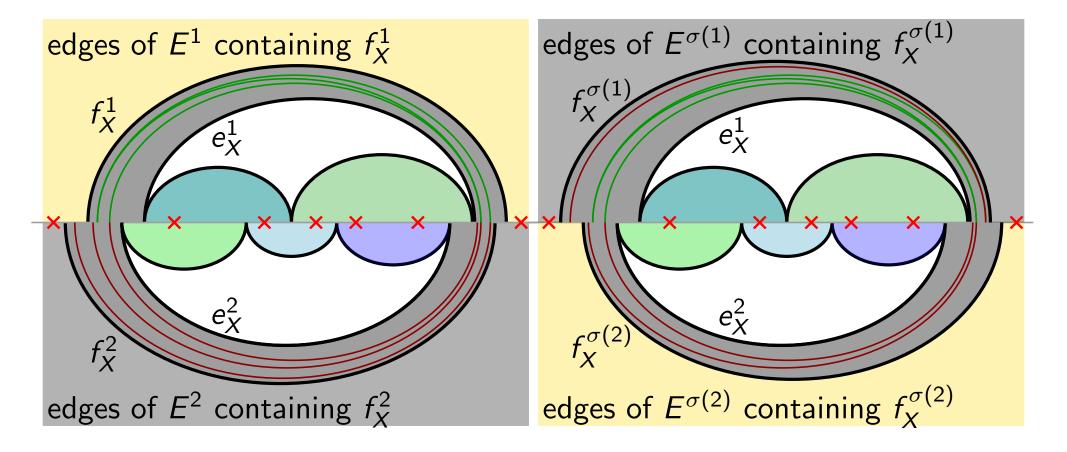
Proof. Let $X \subseteq H$ with $Q_X \neq \emptyset$. For $q \in Q_X$, let S_X^q be the edges in S_X that appear on the same page as $e_X^q \in e_X$ when applying Lemma 1. Let $\sigma \colon Q_X \to Q_X$ be the permutation s.t. $f_X^{\sigma(q)}$ is the unique element of f_X in S_X^q .

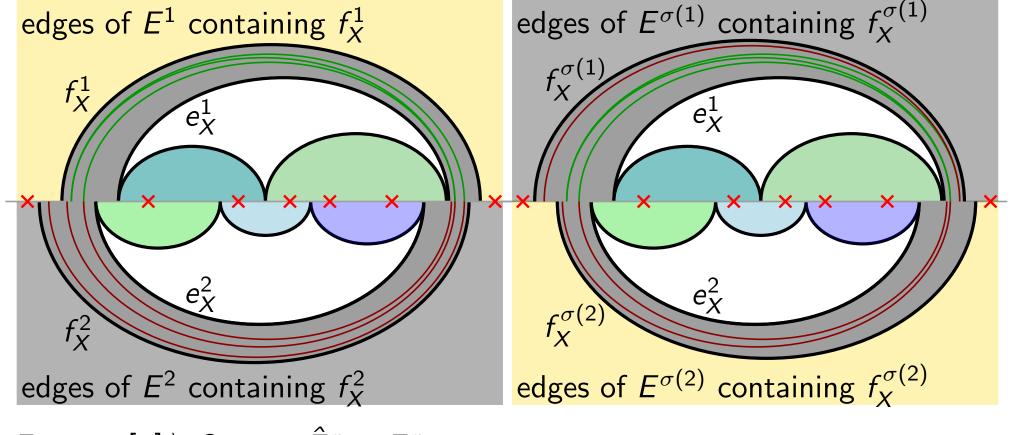
Lemma 2: Let $E \subseteq E(G)$ be a solution with encod. $\langle \mathcal{E}^1, ..., \mathcal{E}^p \rangle$. For every $X \subseteq H$ with $Q_X \neq \emptyset$, let $-e_X = \{e_X^q \mid q \in Q_X\},$ $-f_X = \{f_X^q \mid q \in Q_X\},$ and $-S_X \subseteq E_X$ from applying Lemma 1 w.r.t. e_X , f_X , $p' = |Q_X|$. Then $S = \bigcup_X S_X$ is a solution for p pages and $|S| \ge |E|$. *Proof.* Let $X \subseteq H$ with $Q_X \neq \emptyset$.

For $q \in Q_X$, let S_X^q be the edges in S_X that appear on the same page as $e_X^q \in e_X$ when applying Lemma 1. Let $\sigma: Q_X \to Q_X$ be the permutation s.t. $f_X^{\sigma(q)}$ is the unique element of f_X in S_X^q . We make a drawing of $\hat{E} := (E \setminus E_X) \cup S_X$ on p pages by assigning edges to pages, as follows.

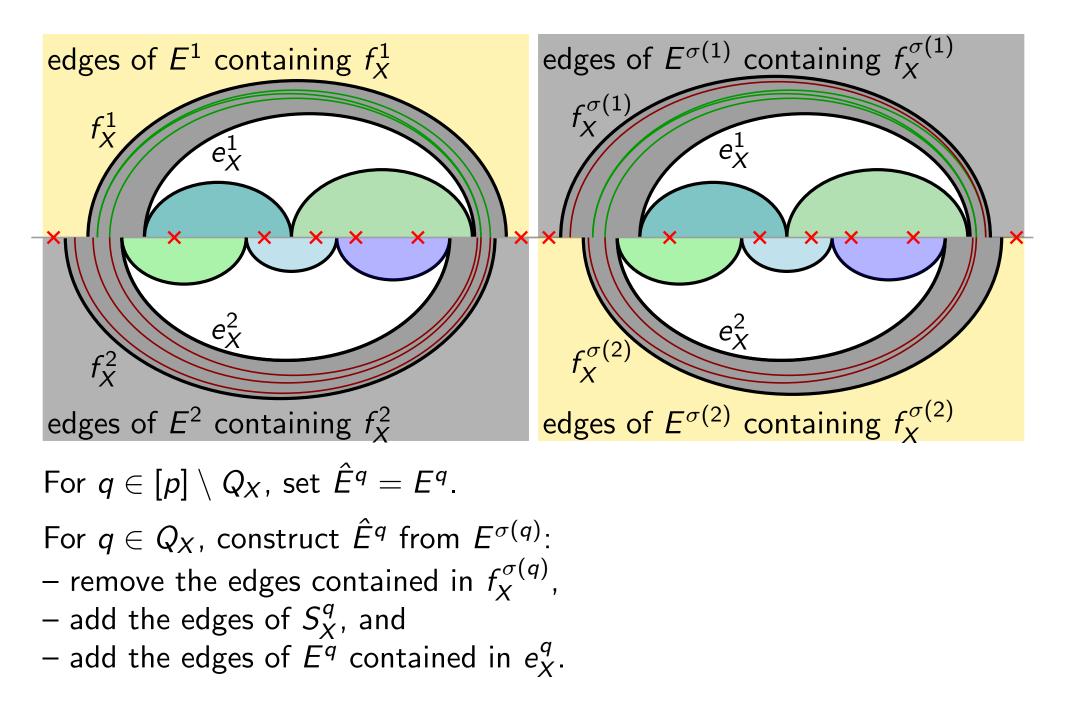
Converting Solution E via \hat{E} into S

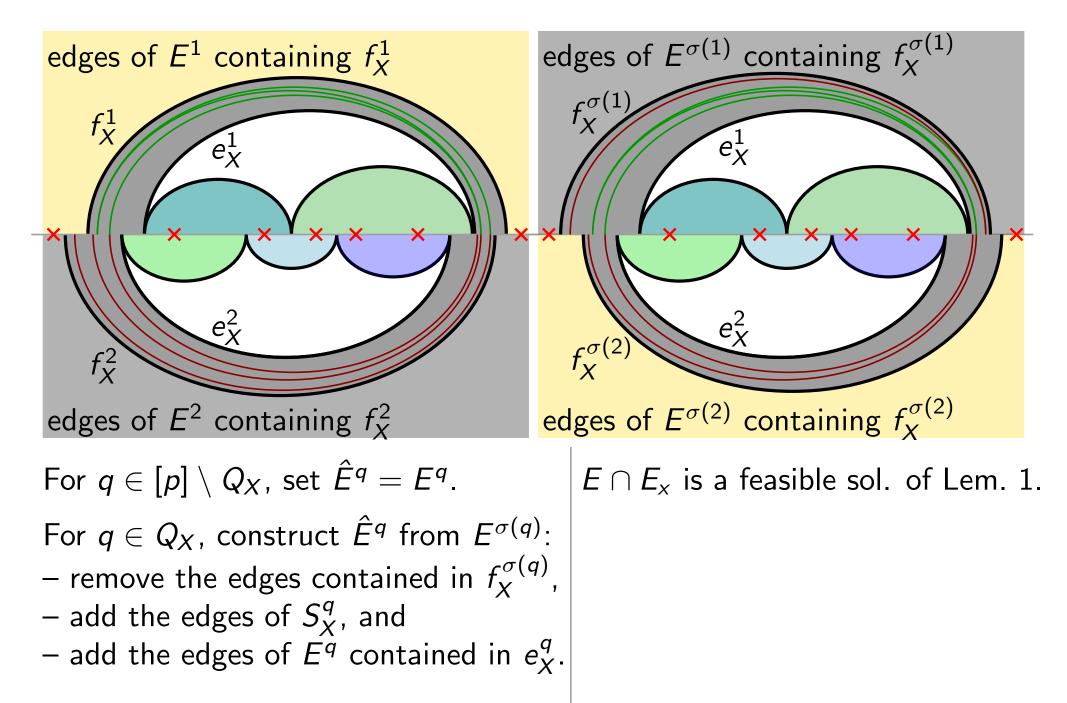


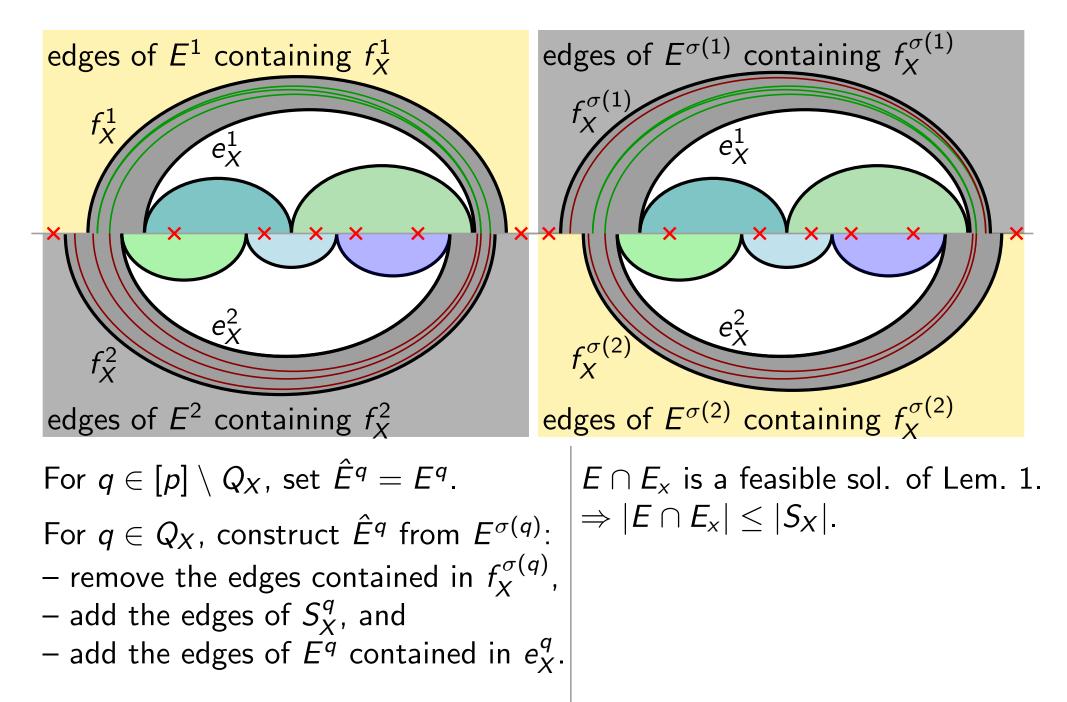


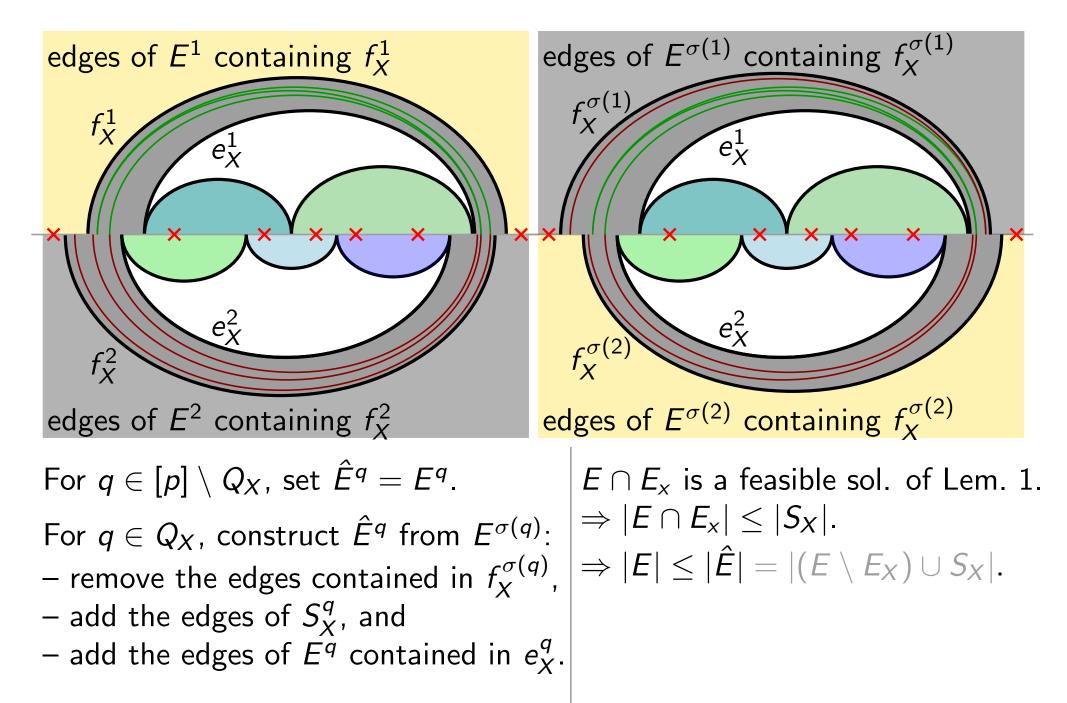


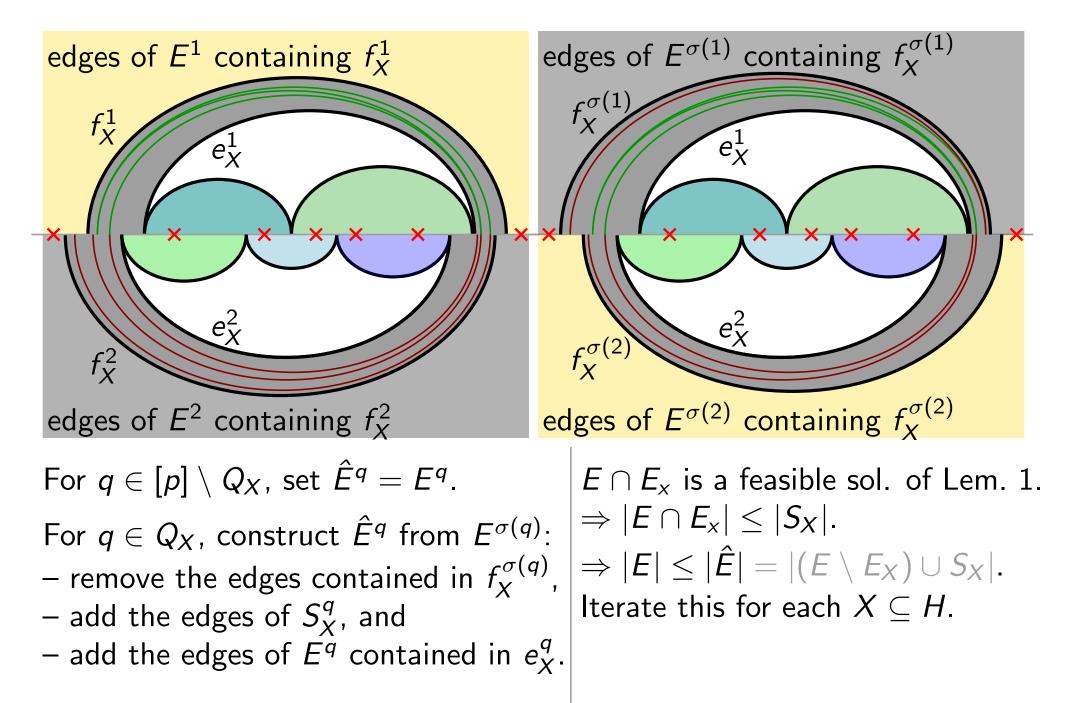
For $q \in [p] \setminus Q_X$, set $\hat{E}^q = E^q$.

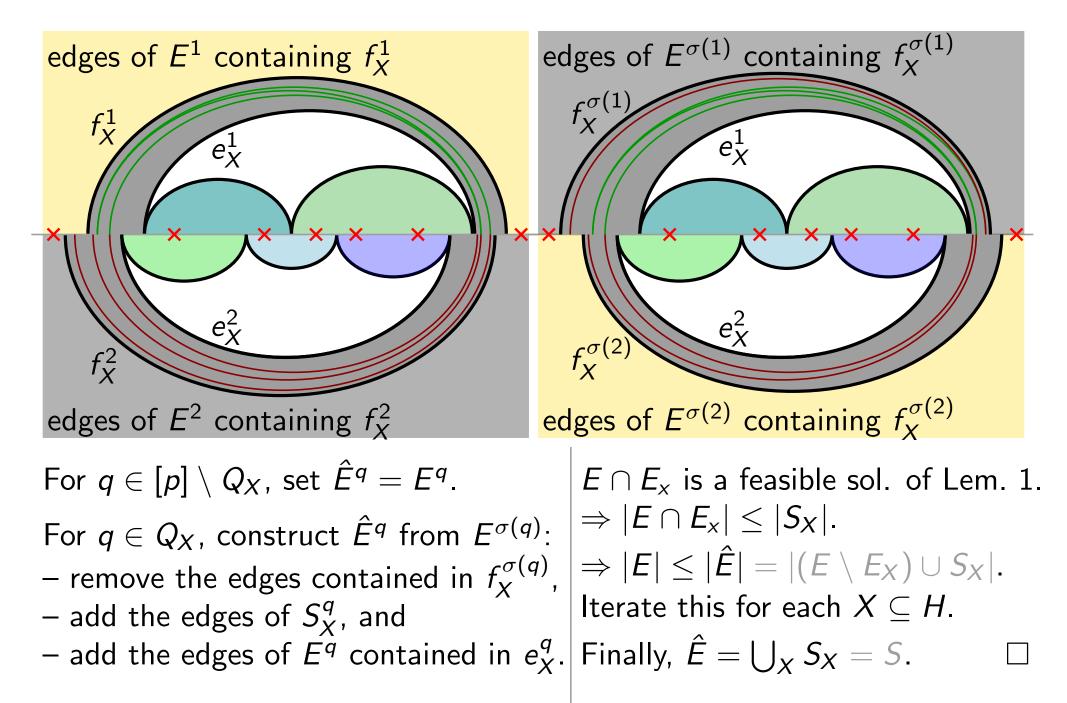












Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Proof. Recall: For $q \in [p]$, \mathcal{X}^q is the family of subsets of H that are bridged on page q.

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Proof.Recall: For $q \in [p]$, \mathcal{X}^q is the family of subsets ofH that are bridged on page q.Then $|\mathcal{X}^p| \leq$

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Proof.Recall: For $q \in [p]$, \mathcal{X}^q is the family of subsets ofH that are bridged on page q.Then $|\mathcal{X}^p| \leq$ $\mathbb{X} \times \mathbb{X} \times \mathbb{X} \times \mathbb{X}$

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Proof. Recall: For $q \in [p]$, \mathcal{X}^q is the family of subsets of H that are bridged on page q.

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Proof.

Recall: For $q \in [p]$, \mathcal{X}^q is the family of subsets of H that are bridged on page q. Then $|\mathcal{X}^p| \leq 2h - 1$. $\boxed{\mathbb{X} \times \mathbb{X} \times \mathbb{X} \times \mathbb{X}}$

 \Rightarrow partial encod. \mathcal{E}^q chooses $\leq 4h-2$ edges e_X^q/f_X^q .

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Proof.

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Proof.

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Proof.

Recall: For $q \in [p]$, \mathcal{X}^q is the family of subsets of H that are bridged on page q. Then $|\mathcal{X}^p| \leq 2h - 1$. $X \times X \times X \times X \times X$ \Rightarrow partial encod. \mathcal{E}^q chooses $\leq 4h - 2$ edges e_X^q/f_X^q . $\Rightarrow \#$ encodings $\langle \mathcal{E}^1, \ldots, \mathcal{E}^p \rangle \leq m^{p \cdot (4h-2)}$ For each $X \subseteq H$, we apply Lem. 1 in $\tilde{O}(|\mathcal{E}_X|^3)$ time.

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Proof.

Recall: For $q \in [p]$, \mathcal{X}^q is the family of subsets of H that are bridged on page q. Then $|\mathcal{X}^p| \leq 2h - 1$. $X \times X \times X \times X \times X$ \Rightarrow partial encod. \mathcal{E}^q chooses $\leq 4h - 2$ edges e_X^q/f_X^q . $\Rightarrow \#$ encodings $\langle \mathcal{E}^1, \ldots, \mathcal{E}^p \rangle \leq m^{p \cdot (4h - 2)}$ For each $X \subseteq H$, we apply Lem. 1 in $\tilde{O}(|E_X|^3)$ time. If $X \neq X'$, then $E_X \cap E_{X'} = \emptyset$.

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Proof.

Recall: For $q \in [p]$, \mathcal{X}^q is the family of subsets of H that are bridged on page q. \Rightarrow partial encod. \mathcal{E}^q chooses $\leq 4h-2$ edges e_x^q/f_x^q . \Rightarrow # encodings $\langle \mathcal{E}^1, \ldots, \mathcal{E}^p \rangle \leq m^{p \cdot (4h-2)}$ For each $X \subseteq H$, we apply Lem. 1 in $\tilde{O}(|E_X|^3)$ time. If $X \neq X'$, then $E_X \cap E_{X'} = \emptyset$. \Rightarrow Per encoding, we spend $\tilde{O}(m^3)$ time (for flows).

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Proof.

Recall: For $q \in [p]$, \mathcal{X}^q is the family of subsets of H that are bridged on page q. \Rightarrow partial encod. \mathcal{E}^q chooses $\leq 4h-2$ edges e_x^q/f_x^q . \Rightarrow # encodings $\langle \mathcal{E}^1, \ldots, \mathcal{E}^p \rangle \leq m^{p \cdot (4h-2)}$ For each $X \subseteq H$, we apply Lem. 1 in $\tilde{O}(|E_X|^3)$ time. If $X \neq X'$, then $E_X \cap E_{X'} = \emptyset$. \Rightarrow Per encoding, we spend $\tilde{O}(m^3)$ time (for flows).

Theorem. EDGE DELETION TO *p*-PAGE PLANAR is in XP with respect to h + p.

Proof.

Recall: For $q \in [p]$, \mathcal{X}^q is the family of subsets of H that are bridged on page q. \Rightarrow partial encod. \mathcal{E}^q chooses $\leq 4h-2$ edges e_x^q/f_x^q . \Rightarrow # encodings $\langle \mathcal{E}^1, \ldots, \mathcal{E}^p \rangle \leq m^{p \cdot (4h-2)}$ For each $X \subseteq H$, we apply Lem. 1 in $\tilde{O}(|E_X|^3)$ time. If $X \neq X'$, then $E_X \cap E_{X'} = \emptyset$. \Rightarrow Per encoding, we spend $\tilde{O}(m^3)$ time (for flows). \Rightarrow Total running time is $\tilde{O}(m^{p\cdot(4h-2)+3})$.

• Is Edge Deletion to Page-*p* Planar even in FPT?

- Is Edge Deletion to Page-*p* Planar even in FPT?
- Is EDGE DELETION TO 1-PAGE *d*-PLANAR *W*[1]-hard w.r.t. the natural parameter *k* if *d* is part of the input?

- Is Edge Deletion to Page-*p* Planar even in FPT?
- Is EDGE DELETION TO 1-PAGE d-PLANAR W[1]-hard w.r.t. the natural parameter k if d is part of the input?
 Can we reduce from INDEPENDENT SET?

- Is Edge Deletion to Page-*p* Planar even in FPT?
- Is EDGE DELETION TO 1-PAGE d-PLANAR W[1]-hard w.r.t. the natural parameter k if d is part of the input? Can we reduce from INDEPENDENT SET?
 Note that DELETION TO DEGREE-d is W[1]-hard with respect to treewidth [Betzler, Bredereck, Niedermeier, Uhlmann 2012] and that outer d-planar graphs have treewidth O(d) [Wood & Telle, 2007]

- Is Edge Deletion to Page-*p* Planar even in FPT?
- Is EDGE DELETION TO 1-PAGE d-PLANAR W[1]-hard w.r.t. the natural parameter k if d is part of the input? Can we reduce from INDEPENDENT SET?
 Note that DELETION TO DEGREE-d is W[1]-hard with respect to treewidth [Betzler, Bredereck, Niedermeier, Uhlmann 2012] and that outer d-planar graphs have treewidth O(d) [Wood & Telle, 2007]
- Can the fixed-order crossing number be computed in 2ⁿn^{O(1)} instead of 2^mn^{O(1)} time?

- Is Edge Deletion to Page-*p* Planar even in FPT?
- Is EDGE DELETION TO 1-PAGE d-PLANAR W[1]-hard w.r.t. the natural parameter k if d is part of the input? Can we reduce from INDEPENDENT SET?
 Note that DELETION TO DEGREE-d is W[1]-hard with respect to treewidth [Betzler, Bredereck, Niedermeier, Uhlmann 2012] and that outer d-planar graphs have treewidth O(d) [Wood & Telle, 2007]
- Can the fixed-order crossing number be computed in $2^n n^{O(1)}$ instead of $2^m n^{O(1)}$ time?
- What is the parameterized complexity of EDGE DELETION TO OUTER *d*-PLANARITY (that is, for unordered graphs)?