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Yet another option: Remove part of every edge (e.g., middle
half) → partial edge drawings (not today).
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So Edge Deletion to 1-Page d-Planar is the same as
Vertex Deletion to Degree-d (in circle graphs).

For general graphs, this admits a quadratic kernel. [Xiao, 2017]
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So for p = 2, it suffices to test whether H(G ,σ) is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

For p = 3, he [1992] claimed an efficient solution, but his
approach is incomplete. [Bachmann et al., GD 2023]

Edge Deletion to p-Page Planar: special case d = 0.
This is Vertex Deletion to p-Colorability in H(G ,σ).

p = 1: MIS in circle graphs – quadratic time. [Valiante 2003]

p = 2: Odd Cycle Transversal in circle graphs – FPT
[Reed, Smith, Vetta, 2004]
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graph, which is not bounded by vc.

[Liu, Chen, Huang, Wang, 2021]

Fixed-Order Book Drawing – testing if there is a p-page
d-planar drawing of (G ,σ) – can be solved in (d + 2)O(vc3)n or

in (d + 2)O(pw2)n time. [Liu, Chen, Huang, 2020]

Bhore et al. [2020] also study the flexible vertex-order case:

They solve Page Number in 2vc
O(vc)

+ vc log vc · n time.
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For i = 1 to n:

remove in(vi ) from B; for each e ∈ out(vi ): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F ],σ) for all F ⊆ E (G ) in Õ(m2m) total time.
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crq(G [F ],σ) = min
F ′⊆F

{
cr1(G [F ′],σ) + crq−1(G [F \ F ′],σ)

}
.

For q > 1 and F ⊆ E (G ), we have the recurrence

Brute-force computation takes time O(m) ·
∑m

i=1

(
m
i

)
2i = Õ(m3m).
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Theorem. Given p ≥ 1 and an ordered graph (G ,σ) with
n vertices and m edges, we can compute the values
cr1(G ,σ), . . . , crp(G ,σ) in Õ(p ·m22m) time.
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– Define directed graph.

– Find p directed paths.

– Define flow network.

– Find min-cost max flow.
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Lemma 1. Given an ordered graph (G ,σ) with h(G ,σ) = 1 and
two subsets E ,F ⊆ E (G ) of size p, we can decide in Õ(m3)
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• on each page, one edge of E is contained in all other edges
and one edge of F contains all other edges on that page.

Proof. Modify flow network: Connect only s ′ → E and F → t.

E and E compatible ⇔ maximum flow has value p.
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Where Is the Difficulty?

For E ⊆ E (G ) and q ∈ [p], let E q be the edges on page q.

Let X q be the family of subsets of H bridged by edges in E q.

If page q is crossing-free, the set family X q is laminar.

Eq = {(X , eqX , f
q
X ) | X ∈ X q} is the partial encoding of E on

page q and ⟨E1, . . . , Ep⟩ is the encoding of E .

If X ⊆ H is bridged only on, say, page 1 of an optimal drawing,

If |QX | > 1, the choices of which edges are drawn
on which of these pages are not independent.

Let QX = {q ∈ [p] : X ∈ X q}.

then we just have to select as many edges as possible (without
crossing) from those contained between e1X and f 1X .

Challenge:
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The Main Lemma

Lemma 2: Let E ⊆ E (G ) be a solution with encod. ⟨E1, ..., Ep⟩.

Proof. Let X ⊆ H with QX ̸= ∅.

Let σ : QX → QX be the permutation

s.t. f
σ(q)
X is the unique element of fX in Sq

X .

We make a drawing of Ê := (E \ EX ) ∪ SX on p pages
by assigning edges to pages, as follows.

For every X ⊆ H with QX ̸= ∅, let
– eX = {eqX | q ∈ QX},
– fX = {f qX | q ∈ QX}, and
– SX ⊆ EX from applying Lemma 1 w.r.t. eX , fX , p
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⋃
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For q ∈ QX , let S
q
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q = E q.

For q ∈ QX , construct Ê
q from Eσ(q):

– remove the edges contained in f
σ(q)
X ,

– add the edges of Sq
X , and

– add the edges of E q contained in eqX .

E ∩ Ex is a feasible sol. of Lem. 1.
⇒ |E ∩ Ex | ≤ |SX |.
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Iterate this for each X ⊆ H.

Finally, Ê =
⋃

X SX = S . □
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(
m3

)
time (for flows).

mp·(4h−2)

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.



An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

2h − 1.

⇒ partial encod. Eq chooses ≤ 4h − 2 edges eqX/f
q
X .

⇒ # encodings ⟨E1, . . . , Ep⟩ ≤
For each X ⊆ H, we apply Lem. 1 in Õ
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Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

2h − 1.

⇒ partial encod. Eq chooses ≤ 4h − 2 edges eqX/f
q
X .

⇒ # encodings ⟨E1, . . . , Ep⟩ ≤
For each X ⊆ H, we apply Lem. 1 in Õ

(
|EX |3

)
time.

If X ̸= X ′, then EX ∩ EX ′ = ∅.
⇒ Per encoding, we spend Õ

(
m3

)
time (for flows).

⇒ Total running time is Õ
(
mp·(4h−2)+3

)
.

mp·(4h−2)

□
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Open Problems

• Is Edge Deletion to Page-p Planar even in FPT?

• Is Edge Deletion to 1-Page d-Planar W [1]-hard
w.r.t. the natural parameter k if d is part of the input?

• What is the parameterized complexity of Edge Deletion
to Outer d-Planarity (that is, for unordered graphs)?

• Can the fixed-order crossing number be computed in
2nnO(1) instead of 2mnO(1) time?

Can we reduce from Independent Set?

Note that Deletion to Degree-d is W [1]-hard with
respect to treewidth [Betzler, Bredereck, Niedermeier,
Uhlmann 2012] and that outer d-planar graphs have
treewidth O(d) [Wood & Telle, 2007]
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