
Eliminating Crossings in Ordered Graphs

TCS Colloquium @ UJ — SWAT 2024

Akanksha Agrawal, Sergio Cabello, Michael Kaufmann,
Saket Saurabh, Roohani Sharma, Yushi Uno, Alexander Wolff

arxiv.org/abs/2404.09771

https://arxiv.org/abs/2404.09771

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the
drawing of a graph.

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the
drawing of a graph. Reduce number of crossings in drawings!

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the
drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of vertices or edges
s.t. the remaining graph can be drawn without crossings.

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the
drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of vertices or edges
s.t. the remaining graph can be drawn without crossings.

Our setting:
book embedding
with fixed vertex order

spine

p1

p2

p3

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the
drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of vertices or edges
s.t. the remaining graph can be drawn without crossings.

Our setting:
book embedding
with fixed vertex order

spine

p1

p2

p3

Our aim:
fast parametrized
exact algorithms

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the
drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of vertices or edges
s.t. the remaining graph can be drawn without crossings.

Our setting:
book embedding
with fixed vertex order

spine

p1

p2

p3

Our aim:
fast parametrized
exact algorithms

Yet another option: Remove part of every edge (e.g., middle
half) → partial edge drawings (not today).

The Problem

Edge Deletion to p-Page d-Planar

Input: ordered graph (G ,σ), positive integers k, p, d .
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G

such that (G − S ,σ) is p-page d-planar?

The Problem

Edge Deletion to p-Page d-Planar

Input: ordered graph (G ,σ), positive integers k, p, d .
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G

such that (G − S ,σ) is p-page d-planar?

We view p and d , though they appear in the prob-
lem name, not as constants, but as parameters.

Disclaimer:

The Problem

Edge Deletion to p-Page d-Planar

Input: ordered graph (G ,σ), positive integers k, p, d .
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G

such that (G − S ,σ) is p-page d-planar?

We view p and d , though they appear in the prob-
lem name, not as constants, but as parameters.

Disclaimer:

– What is the page number of K5?Examples:

The Problem

Edge Deletion to p-Page d-Planar

Input: ordered graph (G ,σ), positive integers k, p, d .
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G

such that (G − S ,σ) is p-page d-planar?

We view p and d , though they appear in the prob-
lem name, not as constants, but as parameters.

Disclaimer:

– What is the page number of K5?Examples:

How many edges must we remove
– for a planar drawing of K5 on 2 pages?

The Problem

Edge Deletion to p-Page d-Planar

Input: ordered graph (G ,σ), positive integers k, p, d .
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G

such that (G − S ,σ) is p-page d-planar?

We view p and d , though they appear in the prob-
lem name, not as constants, but as parameters.

Disclaimer:

– What is the page number of K5?Examples:

How many edges must we remove
– for a planar drawing of K5 on 2 pages?
– for a 1-planar drawing of K5 on 2 pages?

The Problem

Edge Deletion to p-Page d-Planar

Input: ordered graph (G ,σ), positive integers k, p, d .
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G

such that (G − S ,σ) is p-page d-planar?

We view p and d , though they appear in the prob-
lem name, not as constants, but as parameters.

Disclaimer:

– What is the page number of K5?Examples:

How many edges must we remove
– for a planar drawing of K5 on 2 pages?
– for a 1-planar drawing of K5 on 2 pages?

– for a 2-planar drawing of K5 on 1 page?

Another Way to See Things: Conflict Graph

Given an ordered graph (G ,σ), its conflict graph H(G ,σ) is the
graph that has a vertex for each edge of G and an edge for
each pair of crossing edges of G .

G H(G ,σ)

Another Way to See Things: Conflict Graph

Given an ordered graph (G ,σ), its conflict graph H(G ,σ) is the
graph that has a vertex for each edge of G and an edge for
each pair of crossing edges of G .

G H(G ,σ)

Another Way to See Things: Conflict Graph

Given an ordered graph (G ,σ), its conflict graph H(G ,σ) is the
graph that has a vertex for each edge of G and an edge for
each pair of crossing edges of G .

H(G ,σ) is a circle graph, that is, the intersection graph of
chords of a circle.

G H(G ,σ)

Another Way to See Things: Conflict Graph

Given an ordered graph (G ,σ), its conflict graph H(G ,σ) is the
graph that has a vertex for each edge of G and an edge for
each pair of crossing edges of G .

H(G ,σ) is a circle graph, that is, the intersection graph of
chords of a circle.

G H(G ,σ)

Another Way to See Things: Conflict Graph

Given an ordered graph (G ,σ), its conflict graph H(G ,σ) is the
graph that has a vertex for each edge of G and an edge for
each pair of crossing edges of G .

H(G ,σ) is a circle graph, that is, the intersection graph of
chords of a circle.

G H(G ,σ)

So Edge Deletion to 1-Page d-Planar is the same as
Vertex Deletion to Degree-d (in circle graphs).

Another Way to See Things: Conflict Graph

Given an ordered graph (G ,σ), its conflict graph H(G ,σ) is the
graph that has a vertex for each edge of G and an edge for
each pair of crossing edges of G .

H(G ,σ) is a circle graph, that is, the intersection graph of
chords of a circle.

G H(G ,σ)

So Edge Deletion to 1-Page d-Planar is the same as
Vertex Deletion to Degree-d (in circle graphs).

For general graphs, this admits a quadratic kernel. [Xiao, 2017]

Related Work (I)

Testing whether (G ,σ) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(G ,σ).

Related Work (I)

Testing whether (G ,σ) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(G ,σ).

Related Work (I)

Testing whether (G ,σ) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(G ,σ).

So for p = 2, it suffices to test whether H(G ,σ) is bipartite.

Related Work (I)

Testing whether (G ,σ) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(G ,σ).

So for p = 2, it suffices to test whether H(G ,σ) is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

Related Work (I)

Testing whether (G ,σ) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(G ,σ).

So for p = 2, it suffices to test whether H(G ,σ) is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

For p = 3, he [1992] claimed an efficient solution, but his
approach is incomplete. [Bachmann et al., GD 2023]

Related Work (I)

Testing whether (G ,σ) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(G ,σ).

So for p = 2, it suffices to test whether H(G ,σ) is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

For p = 3, he [1992] claimed an efficient solution, but his
approach is incomplete. [Bachmann et al., GD 2023]

Edge Deletion to p-Page Planar: special case d = 0.

Related Work (I)

Testing whether (G ,σ) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(G ,σ).

So for p = 2, it suffices to test whether H(G ,σ) is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

For p = 3, he [1992] claimed an efficient solution, but his
approach is incomplete. [Bachmann et al., GD 2023]

Edge Deletion to p-Page Planar: special case d = 0.
This is Vertex Deletion to p-Colorability in H(G ,σ).

Related Work (I)

Testing whether (G ,σ) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(G ,σ).

So for p = 2, it suffices to test whether H(G ,σ) is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

For p = 3, he [1992] claimed an efficient solution, but his
approach is incomplete. [Bachmann et al., GD 2023]

Edge Deletion to p-Page Planar: special case d = 0.
This is Vertex Deletion to p-Colorability in H(G ,σ).

Related Work (I)

Testing whether (G ,σ) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(G ,σ).

So for p = 2, it suffices to test whether H(G ,σ) is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

For p = 3, he [1992] claimed an efficient solution, but his
approach is incomplete. [Bachmann et al., GD 2023]

Edge Deletion to p-Page Planar: special case d = 0.
This is Vertex Deletion to p-Colorability in H(G ,σ).

p = 1: MIS in circle graphs – quadratic time. [Valiante 2003]

Related Work (I)

Testing whether (G ,σ) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(G ,σ).

So for p = 2, it suffices to test whether H(G ,σ) is bipartite.

For p = 4, Unger [1988] showed that the problem is NP-hard.

For p = 3, he [1992] claimed an efficient solution, but his
approach is incomplete. [Bachmann et al., GD 2023]

Edge Deletion to p-Page Planar: special case d = 0.
This is Vertex Deletion to p-Colorability in H(G ,σ).

p = 1: MIS in circle graphs – quadratic time. [Valiante 2003]

p = 2: Odd Cycle Transversal in circle graphs – FPT
[Reed, Smith, Vetta, 2004]

Related Work (II)

Fixed-Order Page Number can be solved in 2O(vc3)n time
[Bhore, Ganian, Montecchiani, Nöllenburg, 2020]

Related Work (II)

Fixed-Order Page Number can be solved in 2O(vc3)n time
[Bhore, Ganian, Montecchiani, Nöllenburg, 2020]

Related Work (II)

Fixed-Order Page Number can be solved in 2O(vc3)n time
[Bhore, Ganian, Montecchiani, Nöllenburg, 2020]

and in 2O(pw2)n time, where pw is the pathwidth of the ordered
graph, which is not bounded by vc.

[Liu, Chen, Huang, Wang, 2021]

Related Work (II)

Fixed-Order Page Number can be solved in 2O(vc3)n time
[Bhore, Ganian, Montecchiani, Nöllenburg, 2020]

and in 2O(pw2)n time, where pw is the pathwidth of the ordered
graph, which is not bounded by vc.

[Liu, Chen, Huang, Wang, 2021]

Fixed-Order Book Drawing – testing if there is a p-page
d-planar drawing of (G ,σ) – can be solved in (d + 2)O(vc3)n or

in (d + 2)O(pw2)n time. [Liu, Chen, Huang, 2020]

Related Work (II)

Fixed-Order Page Number can be solved in 2O(vc3)n time
[Bhore, Ganian, Montecchiani, Nöllenburg, 2020]

and in 2O(pw2)n time, where pw is the pathwidth of the ordered
graph, which is not bounded by vc.

[Liu, Chen, Huang, Wang, 2021]

Fixed-Order Book Drawing – testing if there is a p-page
d-planar drawing of (G ,σ) – can be solved in (d + 2)O(vc3)n or

in (d + 2)O(pw2)n time. [Liu, Chen, Huang, 2020]

Related Work (II)

Fixed-Order Page Number can be solved in 2O(vc3)n time
[Bhore, Ganian, Montecchiani, Nöllenburg, 2020]

and in 2O(pw2)n time, where pw is the pathwidth of the ordered
graph, which is not bounded by vc.

[Liu, Chen, Huang, Wang, 2021]

Fixed-Order Book Drawing – testing if there is a p-page
d-planar drawing of (G ,σ) – can be solved in (d + 2)O(vc3)n or

in (d + 2)O(pw2)n time. [Liu, Chen, Huang, 2020]

Bhore et al. [2020] also study the flexible vertex-order case:

They solve Page Number in 2vc
O(vc)

+ vc log vc · n time.

Our Contribution

• We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2m · nO(1) time.
Alternatively, given a budget p of pages, we can compute a
p-page book embedding with the min. number of crossings.

Our Contribution

• We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2m · nO(1) time.
Alternatively, given a budget p of pages, we can compute a
p-page book embedding with the min. number of crossings.

• We obtain an O((d + 1) log n)-approximation algorithm for
the fixed-vertex-order d-planar page number.

Our Contribution

• We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2m · nO(1) time.
Alternatively, given a budget p of pages, we can compute a
p-page book embedding with the min. number of crossings.

• We obtain an O((d + 1) log n)-approximation algorithm for
the fixed-vertex-order d-planar page number.

• We show how to decide in 2O(c
√
k log(c+k)) · nO(1) time

whether deleting k edges of an ordered graph suffices to
obtain a d-planar layout on one page.

Our Contribution

• We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2m · nO(1) time.
Alternatively, given a budget p of pages, we can compute a
p-page book embedding with the min. number of crossings.

• We obtain an O((d + 1) log n)-approximation algorithm for
the fixed-vertex-order d-planar page number.

• We show how to decide in 2O(c
√
k log(c+k)) · nO(1) time

whether deleting k edges of an ordered graph suffices to
obtain a d-planar layout on one page.

• Let h be the size of a hitting set.
h = 1: We can efficiently compute the smallest set of edges
whose deletion yields fixed-vertex-order page number p.
h > 1: XP algorithm with respect to h + p.

Our Contribution

• We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2m · nO(1) time.
Alternatively, given a budget p of pages, we can compute a
p-page book embedding with the min. number of crossings.

• We obtain an O((d + 1) log n)-approximation algorithm for
the fixed-vertex-order d-planar page number.

• We show how to decide in 2O(c
√
k log(c+k)) · nO(1) time

whether deleting k edges of an ordered graph suffices to
obtain a d-planar layout on one page.

• Let h be the size of a hitting set.
h = 1: We can efficiently compute the smallest set of edges
whose deletion yields fixed-vertex-order page number p.
h > 1: XP algorithm with respect to h + p.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in

(cr + 2)O(pw2)n time whether a graph with n vertices and pathwidth pw
can be drawn on a given number of pages with ≤ cr crossings in total.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in

(cr + 2)O(pw2)n time whether a graph with n vertices and pathwidth pw
can be drawn on a given number of pages with ≤ cr crossings in total.

Given an ordered graph (G ,σ), let crp(G ,σ) be the smallest number of
crossings over all possible assignments of the edges of G to p pages.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in

(cr + 2)O(pw2)n time whether a graph with n vertices and pathwidth pw
can be drawn on a given number of pages with ≤ cr crossings in total.

Given an ordered graph (G ,σ), let crp(G ,σ) be the smallest number of
crossings over all possible assignments of the edges of G to p pages.

Theorem. Given p ≥ 1 and an ordered graph (G ,σ) with
n vertices and m edges, we can compute the values
cr1(G ,σ), . . . , crp(G ,σ) in 2m · nO(1) time.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in

(cr + 2)O(pw2)n time whether a graph with n vertices and pathwidth pw
can be drawn on a given number of pages with ≤ cr crossings in total.

Given an ordered graph (G ,σ), let crp(G ,σ) be the smallest number of
crossings over all possible assignments of the edges of G to p pages.

• In other words, given a budget p of pages, we can compute a p-page
book embedding with the minimum number of crossings in . . . time.

Theorem. Given p ≥ 1 and an ordered graph (G ,σ) with
n vertices and m edges, we can compute the values
cr1(G ,σ), . . . , crp(G ,σ) in 2m · nO(1) time.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in

(cr + 2)O(pw2)n time whether a graph with n vertices and pathwidth pw
can be drawn on a given number of pages with ≤ cr crossings in total.

Given an ordered graph (G ,σ), let crp(G ,σ) be the smallest number of
crossings over all possible assignments of the edges of G to p pages.

• In other words, given a budget p of pages, we can compute a p-page
book embedding with the minimum number of crossings in . . . time.

• We can compute the fixed-vertex-order page number in . . . time.

Theorem. Given p ≥ 1 and an ordered graph (G ,σ) with
n vertices and m edges, we can compute the values
cr1(G ,σ), . . . , crp(G ,σ) in 2m · nO(1) time.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in

(cr + 2)O(pw2)n time whether a graph with n vertices and pathwidth pw
can be drawn on a given number of pages with ≤ cr crossings in total.

Given an ordered graph (G ,σ), let crp(G ,σ) be the smallest number of
crossings over all possible assignments of the edges of G to p pages.

• In other words, given a budget p of pages, we can compute a p-page
book embedding with the minimum number of crossings in . . . time.

• We can compute the fixed-vertex-order page number in . . . time.

Find the smallest q such that crq(G ,σ) = 0.

Theorem. Given p ≥ 1 and an ordered graph (G ,σ) with
n vertices and m edges, we can compute the values
cr1(G ,σ), . . . , crp(G ,σ) in 2m · nO(1) time.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in

(cr + 2)O(pw2)n time whether a graph with n vertices and pathwidth pw
can be drawn on a given number of pages with ≤ cr crossings in total.

Given an ordered graph (G ,σ), let crp(G ,σ) be the smallest number of
crossings over all possible assignments of the edges of G to p pages.

• In other words, given a budget p of pages, we can compute a p-page
book embedding with the minimum number of crossings in . . . time.

• We can compute the fixed-vertex-order page number in . . . time.

Find the smallest q such that crq(G ,σ) = 0.

Theorem. Given p ≥ 1 and an ordered graph (G ,σ) with
n vertices and m edges, we can compute the values
cr1(G ,σ), . . . , crp(G ,σ) in 2m · nO(1) time.

Note that q ≤ m.

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

v1 vnvi

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

v1 vnvi

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

v1 vnvi
cr = 0; B = empty BST for edges (right endpt)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:
v1 vnvi

cr = 0; B = empty BST for edges (right endpt)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B;

v1 vnvi
cr = 0; B = empty BST for edges (right endpt)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi):

v1 vnvi
cr = 0; B = empty BST for edges (right endpt)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi
cr = 0; B = empty BST for edges (right endpt)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi
cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

For q > 1 and F ⊆ E (G), we have the recurrence

cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

crq(G [F],σ) = min
F ′⊆F

{
cr1(G [F ′],σ) + crq−1(G [F \ F ′],σ)

}
.

For q > 1 and F ⊆ E (G), we have the recurrence

cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

crq(G [F],σ) = min
F ′⊆F

{
cr1(G [F ′],σ) + crq−1(G [F \ F ′],σ)

}
.

For q > 1 and F ⊆ E (G), we have the recurrence

cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

crq(G [F],σ) = min
F ′⊆F

{
cr1(G [F ′],σ) + crq−1(G [F \ F ′],σ)

}
.

For q > 1 and F ⊆ E (G), we have the recurrence

Brute-force computation takes time O(m) ·
∑m

i=1

(
m
i

)
2i =

cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

crq(G [F],σ) = min
F ′⊆F

{
cr1(G [F ′],σ) + crq−1(G [F \ F ′],σ)

}
.

For q > 1 and F ⊆ E (G), we have the recurrence

Brute-force computation takes time O(m) ·
∑m

i=1

(
m
i

)
2i = Õ(m3m).

cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

crq(G [F],σ) = min
F ′⊆F

{
cr1(G [F ′],σ) + crq−1(G [F \ F ′],σ)

}
.

For q > 1 and F ⊆ E (G), we have the recurrence

Brute-force computation takes time O(m) ·
∑m

i=1

(
m
i

)
2i = Õ(m3m).

Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, ’07]

cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

crq(G [F],σ) = min
F ′⊆F

{
cr1(G [F ′],σ) + crq−1(G [F \ F ′],σ)

}
.

For q > 1 and F ⊆ E (G), we have the recurrence

Brute-force computation takes time O(m) ·
∑m

i=1

(
m
i

)
2i = Õ(m3m).

Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, ’07]

Define two functions f , g : 2E(G) → R to the (min,+)-ring R:

cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

crq(G [F],σ) = min
F ′⊆F

{
cr1(G [F ′],σ) + crq−1(G [F \ F ′],σ)

}
.

For q > 1 and F ⊆ E (G), we have the recurrence

Brute-force computation takes time O(m) ·
∑m

i=1

(
m
i

)
2i = Õ(m3m).

Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, ’07]

Define two functions f , g : 2E(G) → R to the (min,+)-ring R:

cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

crq(G [F],σ) = min
F ′⊆F

{
cr1(G [F ′],σ) + crq−1(G [F \ F ′],σ)

}
.

For q > 1 and F ⊆ E (G), we have the recurrence

Brute-force computation takes time O(m) ·
∑m

i=1

(
m
i

)
2i = Õ(m3m).

Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, ’07]

Define two functions f , g : 2E(G) → R to the (min,+)-ring R:

f : F 7→ cr1(G [F],σ) and g : F 7→ crq−1(G [F],σ) with f , g(·) ≤ m2

cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

crq(G [F],σ) = min
F ′⊆F

{
cr1(G [F ′],σ) + crq−1(G [F \ F ′],σ)

}
.

For q > 1 and F ⊆ E (G), we have the recurrence

Brute-force computation takes time O(m) ·
∑m

i=1

(
m
i

)
2i = Õ(m3m).

Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, ’07]

Define two functions f , g : 2E(G) → R to the (min,+)-ring R:

f : F 7→ cr1(G [F],σ) and g : F 7→ crq−1(G [F],σ) with f , g(·) ≤ m2

Then (f ∗ g)(F) =
∑
F ′⊆F

f (F ′) · g(F \ F ′) can be computed in Õ(m22m).

cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

crq(G [F],σ) = min
F ′⊆F

{
cr1(G [F ′],σ) + crq−1(G [F \ F ′],σ)

}
.

For q > 1 and F ⊆ E (G), we have the recurrence

Brute-force computation takes time O(m) ·
∑m

i=1

(
m
i

)
2i = Õ(m3m).

Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, ’07]

Define two functions f , g : 2E(G) → R to the (min,+)-ring R:

f : F 7→ cr1(G [F],σ) and g : F 7→ crq−1(G [F],σ) with f , g(·) ≤ m2

Then (f ∗ g)(F) =
∑
F ′⊆F

f (F ′) · g(F \ F ′) can be computed in Õ(m22m).

cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

Let p = 1 and F ⊆ E (G). Then cr1(G [F],σ) =
∣∣{{e, f } ⊆ F : e crosses f

}∣∣.
Can compute cr1(G [F],σ) in Õ(|F |) time:

For i = 1 to n:

remove in(vi) from B; for each e ∈ out(vi): cr = cr +B.rank(e);

v1 vnvi

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

crq(G [F],σ) = min
F ′⊆F

{
cr1(G [F ′],σ) + crq−1(G [F \ F ′],σ)

}
.

For q > 1 and F ⊆ E (G), we have the recurrence

Brute-force computation takes time O(m) ·
∑m

i=1

(
m
i

)
2i = Õ(m3m).

Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, ’07]

Define two functions f , g : 2E(G) → R to the (min,+)-ring R:

f : F 7→ cr1(G [F],σ) and g : F 7→ crq−1(G [F],σ) with f , g(·) ≤ m2

Then (f ∗ g)(F) =
∑
F ′⊆F

f (F ′) · g(F \ F ′) can be computed in Õ(m22m).

cr = 0; B = empty BST for edges (right endpt)

B.add(e)

A Nice Tool: Subset Convolution

So we can compute cr1(G [F],σ) for all F ⊆ E (G) in Õ(m2m) total time.

crq(G [F],σ) = min
F ′⊆F

{
cr1(G [F ′],σ) + crq−1(G [F \ F ′],σ)

}
.

For q > 1 and F ⊆ E (G), we have the recurrence

Brute-force computation takes time O(m) ·
∑m

i=1

(
m
i

)
2i = Õ(m3m).

Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, ’07]

Define two functions f , g : 2E(G) → R to the (min,+)-ring R:

f : F 7→ cr1(G [F],σ) and g : F 7→ crq−1(G [F],σ) with f , g(·) ≤ m2

Then (f ∗ g)(F) =
∑
F ′⊆F

f (F ′) · g(F \ F ′) can be computed in Õ(m22m).

Theorem. Given p ≥ 1 and an ordered graph (G ,σ) with
n vertices and m edges, we can compute the values
cr1(G ,σ), . . . , crp(G ,σ) in Õ(p ·m22m) time.

Need the Fixed-Order Page Number Faster?

Need the Fixed-Order Page Number Faster?

Lemma. Given (G ,σ), we can compute in quadratic time a
smallest set S ⊆ E (G) such that cr1(G − S ,σ) = 0.

Need the Fixed-Order Page Number Faster?

Lemma. Given (G ,σ), we can compute in quadratic time a
smallest set S ⊆ E (G) such that cr1(G − S ,σ) = 0.

Via max. indep. set in circle graphs. [Valiente 2003]

Need the Fixed-Order Page Number Faster?

Lemma. Given (G ,σ), we can compute in quadratic time a
smallest set S ⊆ E (G) such that cr1(G − S ,σ) = 0.

Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an O(log n)-approximation to the
fixed-vertex-order page number of an n-vertex graph.

Need the Fixed-Order Page Number Faster?

Lemma. Given (G ,σ), we can compute in quadratic time a
smallest set S ⊆ E (G) such that cr1(G − S ,σ) = 0.

Via max. indep. set in circle graphs. [Valiente 2003]

Proof. Let F = {F ⊆ E (G) : cr1(G [F],σ) = 0}.

Theorem. We can compute an O(log n)-approximation to the
fixed-vertex-order page number of an n-vertex graph.

Need the Fixed-Order Page Number Faster?

Lemma. Given (G ,σ), we can compute in quadratic time a
smallest set S ⊆ E (G) such that cr1(G − S ,σ) = 0.

Via max. indep. set in circle graphs. [Valiente 2003]

Proof. Let F = {F ⊆ E (G) : cr1(G [F],σ) = 0}.
F ′ ⊆ F is a feasible solution of the Set Cover
instance (E (G),F) if

⋃
F ′ = E (G).

Theorem. We can compute an O(log n)-approximation to the
fixed-vertex-order page number of an n-vertex graph.

Need the Fixed-Order Page Number Faster?

Lemma. Given (G ,σ), we can compute in quadratic time a
smallest set S ⊆ E (G) such that cr1(G − S ,σ) = 0.

Via max. indep. set in circle graphs. [Valiente 2003]

Proof. Let F = {F ⊆ E (G) : cr1(G [F],σ) = 0}.
F ′ ⊆ F is a feasible solution of the Set Cover
instance (E (G),F) if

⋃
F ′ = E (G).

F ′ yields a crossing-free drawing of G on |F ′| pages.

Theorem. We can compute an O(log n)-approximation to the
fixed-vertex-order page number of an n-vertex graph.

Need the Fixed-Order Page Number Faster?

Lemma. Given (G ,σ), we can compute in quadratic time a
smallest set S ⊆ E (G) such that cr1(G − S ,σ) = 0.

Via max. indep. set in circle graphs. [Valiente 2003]

Proof. Let F = {F ⊆ E (G) : cr1(G [F],σ) = 0}.
F ′ ⊆ F is a feasible solution of the Set Cover
instance (E (G),F) if

⋃
F ′ = E (G).

F ′ yields a crossing-free drawing of G on |F ′| pages.

Theorem. We can compute an O(log n)-approximation to the
fixed-vertex-order page number of an n-vertex graph.

An opt/app. set cover yields an opt/app. page nmb.

Need the Fixed-Order Page Number Faster?

Lemma. Given (G ,σ), we can compute in quadratic time a
smallest set S ⊆ E (G) such that cr1(G − S ,σ) = 0.

Via max. indep. set in circle graphs. [Valiente 2003]

Proof. Let F = {F ⊆ E (G) : cr1(G [F],σ) = 0}.
F ′ ⊆ F is a feasible solution of the Set Cover
instance (E (G),F) if

⋃
F ′ = E (G).

F ′ yields a crossing-free drawing of G on |F ′| pages.

Compute solution S by greedily adding the set F in
F that maximizes |F \

⋃
S|.

Theorem. We can compute an O(log n)-approximation to the
fixed-vertex-order page number of an n-vertex graph.

An opt/app. set cover yields an opt/app. page nmb.

Need the Fixed-Order Page Number Faster?

Lemma. Given (G ,σ), we can compute in quadratic time a
smallest set S ⊆ E (G) such that cr1(G − S ,σ) = 0.

Via max. indep. set in circle graphs. [Valiente 2003]

Proof. Let F = {F ⊆ E (G) : cr1(G [F],σ) = 0}.
F ′ ⊆ F is a feasible solution of the Set Cover
instance (E (G),F) if

⋃
F ′ = E (G).

F ′ yields a crossing-free drawing of G on |F ′| pages.

Compute solution S by greedily adding the set F in
F that maximizes |F \

⋃
S|. Apply lemma to G −

⋃
S.

Theorem. We can compute an O(log n)-approximation to the
fixed-vertex-order page number of an n-vertex graph.

An opt/app. set cover yields an opt/app. page nmb.

Our Contribution

✓

✓

• We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2m · nO(1) time.
Alternatively, given a budget p of pages, we can compute a
p-page book embedding with the min. number of crossings.

• We obtain an O((d + 1) log n)-approximation algorithm for
the fixed-vertex-order d-planar page number.

• We show how to decide in 2O(c
√
k log(c+k)) · nO(1) time

whether deleting k edges of an ordered graph suffices to
obtain a d-planar layout on one page.

• Let h be the size of a hitting set.
h = 1: We can efficiently compute the smallest set of edges
whose deletion yields fixed-vertex-order page number p.
h > 1: XP algorithm with respect to h + p.

Our Contribution

✓

✓

• We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2m · nO(1) time.
Alternatively, given a budget p of pages, we can compute a
p-page book embedding with the min. number of crossings.

• We obtain an O((d + 1) log n)-approximation algorithm for
the fixed-vertex-order d-planar page number.

• We show how to decide in 2O(c
√
k log(c+k)) · nO(1) time

whether deleting k edges of an ordered graph suffices to
obtain a d-planar layout on one page.

• Let h be the size of a hitting set.
h = 1: We can efficiently compute the smallest set of edges
whose deletion yields fixed-vertex-order page number p.
h > 1: XP algorithm with respect to h + p.

Edge Deletion to p-Page Planar

Brute-force solution?
no crossings

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph.

no crossings

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. → O(n(p + 1)m) time

no crossings

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. → O(n(p + 1)m) time

New parameter:

no crossings

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. → O(n(p + 1)m) time

New parameter: h = size of hitting set

no crossings

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. → O(n(p + 1)m) time

New parameter:

• A hitting set can be much smaller than a vertex cover :-)

h = size of hitting set

no crossings

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. → O(n(p + 1)m) time

New parameter:

• A hitting set can be much smaller than a vertex cover :-)

• Given m open intervals, a minimum-size hitting set can be
found in O(m logm) time (greedily).

h = size of hitting set

no crossings

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. → O(n(p + 1)m) time

New parameter:

• A hitting set can be much smaller than a vertex cover :-)

• Given m open intervals, a minimum-size hitting set can be
found in O(m logm) time (greedily).

h = size of hitting set

no crossings

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. → O(n(p + 1)m) time

New parameter:

• A hitting set can be much smaller than a vertex cover :-)

• Given m open intervals, a minimum-size hitting set can be
found in O(m logm) time (greedily).

h = size of hitting set

no crossings

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. → O(n(p + 1)m) time

New parameter:

• A hitting set can be much smaller than a vertex cover :-)

• Given m open intervals, a minimum-size hitting set can be
found in O(m logm) time (greedily).

h = size of hitting set

no crossings

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. → O(n(p + 1)m) time

New parameter:

• A hitting set can be much smaller than a vertex cover :-)

• Given m open intervals, a minimum-size hitting set can be
found in O(m logm) time (greedily).

h = size of hitting set

no crossings

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. → O(n(p + 1)m) time

New parameter:

• A hitting set can be much smaller than a vertex cover :-)

• Given m open intervals, a minimum-size hitting set can be
found in O(m logm) time (greedily).

h = size of hitting set

no crossings

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. → O(n(p + 1)m) time

New parameter:

• A hitting set can be much smaller than a vertex cover :-)

• Given m open intervals, a minimum-size hitting set can be
found in O(m logm) time (greedily).

h = size of hitting set

no crossings

Hitting Set of Size 1

Theorem. Given an ordered graph (G ,σ) with n vertices,
m edges, and h(G ,σ) = 1,
Edge Deletion to p-Page Planar can be
solved in O(m3 log n log log p) time.

Hitting Set of Size 1

v10v9v8v7v1 v2 v3 v4 v5 v6

Theorem. Given an ordered graph (G ,σ) with n vertices,
m edges, and h(G ,σ) = 1,
Edge Deletion to p-Page Planar can be
solved in O(m3 log n log log p) time.

Hitting Set of Size 1

z
v10v9v8v7v1 v2 v3 v4 v5 v6

Theorem. Given an ordered graph (G ,σ) with n vertices,
m edges, and h(G ,σ) = 1,
Edge Deletion to p-Page Planar can be
solved in O(m3 log n log log p) time.

Hitting Set of Size 1

z
v10v9v8v7v1 v2 v3 v4 v5 v6

Proof.

Theorem. Given an ordered graph (G ,σ) with n vertices,
m edges, and h(G ,σ) = 1,
Edge Deletion to p-Page Planar can be
solved in O(m3 log n log log p) time.

Hitting Set of Size 1

z
v10v9v8v7v1 v2 v3 v4 v5 v6

Proof.

Theorem. Given an ordered graph (G ,σ) with n vertices,
m edges, and h(G ,σ) = 1,
Edge Deletion to p-Page Planar can be
solved in O(m3 log n log log p) time.

Hitting Set of Size 1

z
v10v9v8v7v1 v2 v3 v4 v5 v6

Proof.

– Define directed graph.

Theorem. Given an ordered graph (G ,σ) with n vertices,
m edges, and h(G ,σ) = 1,
Edge Deletion to p-Page Planar can be
solved in O(m3 log n log log p) time.

Hitting Set of Size 1

z
v10v9v8v7v1 v2 v3 v4 v5 v6

Proof.

– Define directed graph.

– Find p directed paths.

Theorem. Given an ordered graph (G ,σ) with n vertices,
m edges, and h(G ,σ) = 1,
Edge Deletion to p-Page Planar can be
solved in O(m3 log n log log p) time.

Hitting Set of Size 1

z
v10v9v8v7v1 v2 v3 v4 v5 v6

Proof.

– Define directed graph.

– Find p directed paths.

– Define flow network.

Theorem. Given an ordered graph (G ,σ) with n vertices,
m edges, and h(G ,σ) = 1,
Edge Deletion to p-Page Planar can be
solved in O(m3 log n log log p) time.

Hitting Set of Size 1

z
v10v9v8v7v1 v2 v3 v4 v5 v6

Proof.

– Define directed graph.

– Find p directed paths.

– Define flow network.

– Find min-cost max flow.

Theorem. Given an ordered graph (G ,σ) with n vertices,
m edges, and h(G ,σ) = 1,
Edge Deletion to p-Page Planar can be
solved in O(m3 log n log log p) time.

Hitting Set of Size 1

z
v10v9v8v7v1 v2 v3 v4 v5 v6

Proof.

– Define directed graph.

– Find p directed paths.

– Define flow network.

– Find min-cost max flow.
Such a flow has value p

Theorem. Given an ordered graph (G ,σ) with n vertices,
m edges, and h(G ,σ) = 1,
Edge Deletion to p-Page Planar can be
solved in O(m3 log n log log p) time.

Hitting Set of Size 1

z
v10v9v8v7v1 v2 v3 v4 v5 v6

Proof.

– Define directed graph.

– Find p directed paths.

– Define flow network.

– Find min-cost max flow.
Such a flow has value p
and max. total path length.

Theorem. Given an ordered graph (G ,σ) with n vertices,
m edges, and h(G ,σ) = 1,
Edge Deletion to p-Page Planar can be
solved in O(m3 log n log log p) time.

Preparing for the General Case
e1

f1

Preparing for the General Case
e1

f1

e2
f2

Preparing for the General Case

Two subsets E ,F ⊆ E (G) are
compatible if |E | = |F | and there is
an enumeration e1, . . . , e|F | of E and
an enumeration f1, . . . , f|F | of F
s.t. ei is contained in fi for each i ∈ [|F |].

e1
f1

e2
f2

Preparing for the General Case

Lemma 1. Given an ordered graph (G ,σ) with h(G ,σ) = 1 and
two subsets E ,F ⊆ E (G) of size p, we can decide in Õ(m3)
time whether E and F are compatible and, if so, solve a version
of Edge Deletion to p-Page Planar s.t:

Two subsets E ,F ⊆ E (G) are
compatible if |E | = |F | and there is
an enumeration e1, . . . , e|F | of E and
an enumeration f1, . . . , f|F | of F
s.t. ei is contained in fi for each i ∈ [|F |].

e1
f1

e2
f2

Preparing for the General Case

Lemma 1. Given an ordered graph (G ,σ) with h(G ,σ) = 1 and
two subsets E ,F ⊆ E (G) of size p, we can decide in Õ(m3)
time whether E and F are compatible and, if so, solve a version
of Edge Deletion to p-Page Planar s.t:

Two subsets E ,F ⊆ E (G) are
compatible if |E | = |F | and there is
an enumeration e1, . . . , e|F | of E and
an enumeration f1, . . . , f|F | of F
s.t. ei is contained in fi for each i ∈ [|F |].

e1
f1

e2
f2

• on each page, one edge of E is contained in all other edges
and one edge of F contains all other edges on that page.

Preparing for the General Case

Lemma 1. Given an ordered graph (G ,σ) with h(G ,σ) = 1 and
two subsets E ,F ⊆ E (G) of size p, we can decide in Õ(m3)
time whether E and F are compatible and, if so, solve a version
of Edge Deletion to p-Page Planar s.t:

Two subsets E ,F ⊆ E (G) are
compatible if |E | = |F | and there is
an enumeration e1, . . . , e|F | of E and
an enumeration f1, . . . , f|F | of F
s.t. ei is contained in fi for each i ∈ [|F |].

e1
f1

e2
f2

• on each page, one edge of E is contained in all other edges
and one edge of F contains all other edges on that page.

Proof.

Preparing for the General Case

Lemma 1. Given an ordered graph (G ,σ) with h(G ,σ) = 1 and
two subsets E ,F ⊆ E (G) of size p, we can decide in Õ(m3)
time whether E and F are compatible and, if so, solve a version
of Edge Deletion to p-Page Planar s.t:

Two subsets E ,F ⊆ E (G) are
compatible if |E | = |F | and there is
an enumeration e1, . . . , e|F | of E and
an enumeration f1, . . . , f|F | of F
s.t. ei is contained in fi for each i ∈ [|F |].

e1
f1

e2
f2

• on each page, one edge of E is contained in all other edges
and one edge of F contains all other edges on that page.

Proof. Modify flow network:

Preparing for the General Case

Lemma 1. Given an ordered graph (G ,σ) with h(G ,σ) = 1 and
two subsets E ,F ⊆ E (G) of size p, we can decide in Õ(m3)
time whether E and F are compatible and, if so, solve a version
of Edge Deletion to p-Page Planar s.t:

Two subsets E ,F ⊆ E (G) are
compatible if |E | = |F | and there is
an enumeration e1, . . . , e|F | of E and
an enumeration f1, . . . , f|F | of F
s.t. ei is contained in fi for each i ∈ [|F |].

e1
f1

e2
f2

• on each page, one edge of E is contained in all other edges
and one edge of F contains all other edges on that page.

Proof. Modify flow network: Connect only s ′ → E and F → t.

Preparing for the General Case

Lemma 1. Given an ordered graph (G ,σ) with h(G ,σ) = 1 and
two subsets E ,F ⊆ E (G) of size p, we can decide in Õ(m3)
time whether E and F are compatible and, if so, solve a version
of Edge Deletion to p-Page Planar s.t:

Two subsets E ,F ⊆ E (G) are
compatible if |E | = |F | and there is
an enumeration e1, . . . , e|F | of E and
an enumeration f1, . . . , f|F | of F
s.t. ei is contained in fi for each i ∈ [|F |].

e1
f1

e2
f2

• on each page, one edge of E is contained in all other edges
and one edge of F contains all other edges on that page.

Proof. Modify flow network: Connect only s ′ → E and F → t.

E and E compatible ⇔

Preparing for the General Case

Lemma 1. Given an ordered graph (G ,σ) with h(G ,σ) = 1 and
two subsets E ,F ⊆ E (G) of size p, we can decide in Õ(m3)
time whether E and F are compatible and, if so, solve a version
of Edge Deletion to p-Page Planar s.t:

Two subsets E ,F ⊆ E (G) are
compatible if |E | = |F | and there is
an enumeration e1, . . . , e|F | of E and
an enumeration f1, . . . , f|F | of F
s.t. ei is contained in fi for each i ∈ [|F |].

e1
f1

e2
f2

• on each page, one edge of E is contained in all other edges
and one edge of F contains all other edges on that page.

Proof. Modify flow network: Connect only s ′ → E and F → t.

E and E compatible ⇔ maximum flow has value p.

The General Case

a
b

c

and p = 2.
Here h = 3

The General Case
e1{b,c} = f 1{b,c}

a
b

c

e1{a,b,c}
f 1{a,b,c}

e1{c}

and p = 2.
Here h = 3

The General Case
e1{b,c} = f 1{b,c}

a
b

c

e1{a,b,c}
f 1{a,b,c}

f 2{a,b}

e2{a,b}

f 2{a,b,c}

f 2{c}

e1{c}

and p = 2.
Here h = 3

The General Case
e1{b,c} = f 1{b,c}

a
b

c

e1{a,b,c}
f 1{a,b,c}

f 2{a,b}

e2{a,b}

f 2{a,b,c}

f 2{c}

e1{c}

and p = 2.
Here h = 3 bridges {b, c} ⊆ H

The General Case
e1{b,c} = f 1{b,c}

a
b

c

e1{a,b,c}
f 1{a,b,c}

f 2{a,b}

e2{a,b}

f 2{a,b,c}

f 2{c}

e1{c}

and p = 2.
Here h = 3 bridges {b, c} ⊆ H

E{b,c}

The General Case
e1{b,c} = f 1{b,c}

a
b

c

e1{a,b,c}
f 1{a,b,c}

f 2{a,b}

e2{a,b}

f 2{a,b,c}

f 2{c}

e1{c}

and p = 2.
Here h = 3 bridges {b, c} ⊆ H

E{b,c}⊆ E (G)

The General Case
e1{b,c} = f 1{b,c}

a
b

c

e1{a,b,c}
f 1{a,b,c}

f 2{a,b}

e2{a,b}

f 2{a,b,c}

f 2{c}

e1{c}

and p = 2.
Here h = 3

E{a,b,c}

E{c}

E{a,b}

E{a}

bridges {b, c} ⊆ H

E{b,c}⊆ E (G)

The General Case
e1{b,c} = f 1{b,c}

a
b

c

e1{a,b,c}
f 1{a,b,c}

f 2{a,b}

e2{a,b}

f 2{a,b,c}

f 2{c}

e1{c}

and p = 2.
Here h = 3

– Split in (h = 1)-type instances

E{a,b,c}

E{c}

E{a,b}

E{a}

bridges {b, c} ⊆ H

E{b,c}⊆ E (G)

The General Case
e1{b,c} = f 1{b,c}

a
b

c

e1{a,b,c}
f 1{a,b,c}

f 2{a,b}

e2{a,b}

f 2{a,b,c}

f 2{c}

e1{c}

and p = 2.
Here h = 3

– Split in (h = 1)-type instances – Adjust flow network

E{a,b,c}

E{c}

E{a,b}

E{a}

bridges {b, c} ⊆ H

E{b,c}⊆ E (G)

Where Is the Difficulty?

For E ⊆ E (G) and q ∈ [p], let E q be the edges on page q.

Where Is the Difficulty?

For E ⊆ E (G) and q ∈ [p], let E q be the edges on page q.

Let X q be the family of subsets of H bridged by edges in E q.

Where Is the Difficulty?

For E ⊆ E (G) and q ∈ [p], let E q be the edges on page q.

Let X q be the family of subsets of H bridged by edges in E q.

If page q is crossing-free, the set family X q is laminar.

Where Is the Difficulty?

For E ⊆ E (G) and q ∈ [p], let E q be the edges on page q.

Let X q be the family of subsets of H bridged by edges in E q.

If page q is crossing-free, the set family X q is laminar.

Eq = {(X , eqX , f
q
X) | X ∈ X q} is the partial encoding of E on

page q

Where Is the Difficulty?

For E ⊆ E (G) and q ∈ [p], let E q be the edges on page q.

Let X q be the family of subsets of H bridged by edges in E q.

If page q is crossing-free, the set family X q is laminar.

Eq = {(X , eqX , f
q
X) | X ∈ X q} is the partial encoding of E on

page q and ⟨E1, . . . , Ep⟩ is the encoding of E .

Where Is the Difficulty?

For E ⊆ E (G) and q ∈ [p], let E q be the edges on page q.

Let X q be the family of subsets of H bridged by edges in E q.

If page q is crossing-free, the set family X q is laminar.

Eq = {(X , eqX , f
q
X) | X ∈ X q} is the partial encoding of E on

page q and ⟨E1, . . . , Ep⟩ is the encoding of E .

If X ⊆ H is bridged only on, say, page 1 of an optimal drawing,

Where Is the Difficulty?

For E ⊆ E (G) and q ∈ [p], let E q be the edges on page q.

Let X q be the family of subsets of H bridged by edges in E q.

If page q is crossing-free, the set family X q is laminar.

Eq = {(X , eqX , f
q
X) | X ∈ X q} is the partial encoding of E on

page q and ⟨E1, . . . , Ep⟩ is the encoding of E .

If X ⊆ H is bridged only on, say, page 1 of an optimal drawing,
then we just have to select as many edges as possible (without
crossing) from those contained between e1X and f 1X .

Where Is the Difficulty?

For E ⊆ E (G) and q ∈ [p], let E q be the edges on page q.

Let X q be the family of subsets of H bridged by edges in E q.

If page q is crossing-free, the set family X q is laminar.

Eq = {(X , eqX , f
q
X) | X ∈ X q} is the partial encoding of E on

page q and ⟨E1, . . . , Ep⟩ is the encoding of E .

If X ⊆ H is bridged only on, say, page 1 of an optimal drawing,

Let QX = {q ∈ [p] : X ∈ X q}.

then we just have to select as many edges as possible (without
crossing) from those contained between e1X and f 1X .

Where Is the Difficulty?

For E ⊆ E (G) and q ∈ [p], let E q be the edges on page q.

Let X q be the family of subsets of H bridged by edges in E q.

If page q is crossing-free, the set family X q is laminar.

Eq = {(X , eqX , f
q
X) | X ∈ X q} is the partial encoding of E on

page q and ⟨E1, . . . , Ep⟩ is the encoding of E .

If X ⊆ H is bridged only on, say, page 1 of an optimal drawing,

If |QX | > 1, the choices of which edges are drawn
on which of these pages are not independent.

Let QX = {q ∈ [p] : X ∈ X q}.

then we just have to select as many edges as possible (without
crossing) from those contained between e1X and f 1X .

Challenge:

The Main Lemma

Lemma 2: Let E ⊆ E (G) be a solution with encod. ⟨E1, ..., Ep⟩.

The Main Lemma

Lemma 2: Let E ⊆ E (G) be a solution with encod. ⟨E1, ..., Ep⟩.
For every X ⊆ H with QX ̸= ∅, let
– eX = {eqX | q ∈ QX},
– fX = {f qX | q ∈ QX}, and
– SX ⊆ EX from applying Lemma 1 w.r.t. eX , fX , p

′ = |QX |.

The Main Lemma

Lemma 2: Let E ⊆ E (G) be a solution with encod. ⟨E1, ..., Ep⟩.
For every X ⊆ H with QX ̸= ∅, let
– eX = {eqX | q ∈ QX},
– fX = {f qX | q ∈ QX}, and
– SX ⊆ EX from applying Lemma 1 w.r.t. eX , fX , p

′ = |QX |.
Then S =

⋃
X SX is a solution for p pages and |S | ≥ |E |.

The Main Lemma

Lemma 2: Let E ⊆ E (G) be a solution with encod. ⟨E1, ..., Ep⟩.

Proof. Let X ⊆ H with QX ̸= ∅.

For every X ⊆ H with QX ̸= ∅, let
– eX = {eqX | q ∈ QX},
– fX = {f qX | q ∈ QX}, and
– SX ⊆ EX from applying Lemma 1 w.r.t. eX , fX , p

′ = |QX |.
Then S =

⋃
X SX is a solution for p pages and |S | ≥ |E |.

The Main Lemma

Lemma 2: Let E ⊆ E (G) be a solution with encod. ⟨E1, ..., Ep⟩.

Proof. Let X ⊆ H with QX ̸= ∅.

For every X ⊆ H with QX ̸= ∅, let
– eX = {eqX | q ∈ QX},
– fX = {f qX | q ∈ QX}, and
– SX ⊆ EX from applying Lemma 1 w.r.t. eX , fX , p

′ = |QX |.
Then S =

⋃
X SX is a solution for p pages and |S | ≥ |E |.

For q ∈ QX , let S
q
X be the edges in SX that appear on

the same page as eqX ∈ eX when applying Lemma 1.

The Main Lemma

Lemma 2: Let E ⊆ E (G) be a solution with encod. ⟨E1, ..., Ep⟩.

Proof. Let X ⊆ H with QX ̸= ∅.

Let σ : QX → QX be the permutation

s.t. f
σ(q)
X is the unique element of fX in Sq

X .

For every X ⊆ H with QX ̸= ∅, let
– eX = {eqX | q ∈ QX},
– fX = {f qX | q ∈ QX}, and
– SX ⊆ EX from applying Lemma 1 w.r.t. eX , fX , p

′ = |QX |.
Then S =

⋃
X SX is a solution for p pages and |S | ≥ |E |.

For q ∈ QX , let S
q
X be the edges in SX that appear on

the same page as eqX ∈ eX when applying Lemma 1.

The Main Lemma

Lemma 2: Let E ⊆ E (G) be a solution with encod. ⟨E1, ..., Ep⟩.

Proof. Let X ⊆ H with QX ̸= ∅.

Let σ : QX → QX be the permutation

s.t. f
σ(q)
X is the unique element of fX in Sq

X .

We make a drawing of Ê := (E \ EX) ∪ SX on p pages
by assigning edges to pages, as follows.

For every X ⊆ H with QX ̸= ∅, let
– eX = {eqX | q ∈ QX},
– fX = {f qX | q ∈ QX}, and
– SX ⊆ EX from applying Lemma 1 w.r.t. eX , fX , p

′ = |QX |.
Then S =

⋃
X SX is a solution for p pages and |S | ≥ |E |.

For q ∈ QX , let S
q
X be the edges in SX that appear on

the same page as eqX ∈ eX when applying Lemma 1.

Converting Solution E via Ê into S

f 1X e1X

e2X
f 2X

edges of E 2 containing f 2X

edges of E 1 containing f 1X

Converting Solution E via Ê into S

f 1X e1X

e2X
f 2X

e1X

e2X

f
σ(1)
X

f
σ(2)
X

edges of E 2 containing f 2X

edges of E 1 containing f 1X edges of Eσ(1) containing f
σ(1)
X

edges of Eσ(2) containing f
σ(2)
X

Converting Solution E via Ê into S

f 1X e1X

e2X
f 2X

e1X

e2X

f
σ(1)
X

f
σ(2)
X

edges of E 2 containing f 2X

edges of E 1 containing f 1X edges of Eσ(1) containing f
σ(1)
X

edges of Eσ(2) containing f
σ(2)
X

For q ∈ [p] \ QX , set Ê
q = E q.

Converting Solution E via Ê into S

f 1X e1X

e2X
f 2X

e1X

e2X

f
σ(1)
X

f
σ(2)
X

edges of E 2 containing f 2X

edges of E 1 containing f 1X edges of Eσ(1) containing f
σ(1)
X

edges of Eσ(2) containing f
σ(2)
X

For q ∈ [p] \ QX , set Ê
q = E q.

For q ∈ QX , construct Ê
q from Eσ(q):

– remove the edges contained in f
σ(q)
X ,

– add the edges of Sq
X , and

– add the edges of E q contained in eqX .

Converting Solution E via Ê into S

f 1X e1X

e2X
f 2X

e1X

e2X

f
σ(1)
X

f
σ(2)
X

edges of E 2 containing f 2X

edges of E 1 containing f 1X edges of Eσ(1) containing f
σ(1)
X

edges of Eσ(2) containing f
σ(2)
X

For q ∈ [p] \ QX , set Ê
q = E q.

For q ∈ QX , construct Ê
q from Eσ(q):

– remove the edges contained in f
σ(q)
X ,

– add the edges of Sq
X , and

– add the edges of E q contained in eqX .

E ∩ Ex is a feasible sol. of Lem. 1.

Converting Solution E via Ê into S

f 1X e1X

e2X
f 2X

e1X

e2X

f
σ(1)
X

f
σ(2)
X

edges of E 2 containing f 2X

edges of E 1 containing f 1X edges of Eσ(1) containing f
σ(1)
X

edges of Eσ(2) containing f
σ(2)
X

For q ∈ [p] \ QX , set Ê
q = E q.

For q ∈ QX , construct Ê
q from Eσ(q):

– remove the edges contained in f
σ(q)
X ,

– add the edges of Sq
X , and

– add the edges of E q contained in eqX .

E ∩ Ex is a feasible sol. of Lem. 1.
⇒ |E ∩ Ex | ≤ |SX |.

Converting Solution E via Ê into S

f 1X e1X

e2X
f 2X

e1X

e2X

f
σ(1)
X

f
σ(2)
X

edges of E 2 containing f 2X

edges of E 1 containing f 1X edges of Eσ(1) containing f
σ(1)
X

edges of Eσ(2) containing f
σ(2)
X

For q ∈ [p] \ QX , set Ê
q = E q.

For q ∈ QX , construct Ê
q from Eσ(q):

– remove the edges contained in f
σ(q)
X ,

– add the edges of Sq
X , and

– add the edges of E q contained in eqX .

E ∩ Ex is a feasible sol. of Lem. 1.
⇒ |E ∩ Ex | ≤ |SX |.
⇒ |E | ≤ |Ê | = |(E \ EX) ∪ SX |.

Converting Solution E via Ê into S

f 1X e1X

e2X
f 2X

e1X

e2X

f
σ(1)
X

f
σ(2)
X

edges of E 2 containing f 2X

edges of E 1 containing f 1X edges of Eσ(1) containing f
σ(1)
X

edges of Eσ(2) containing f
σ(2)
X

For q ∈ [p] \ QX , set Ê
q = E q.

For q ∈ QX , construct Ê
q from Eσ(q):

– remove the edges contained in f
σ(q)
X ,

– add the edges of Sq
X , and

– add the edges of E q contained in eqX .

E ∩ Ex is a feasible sol. of Lem. 1.
⇒ |E ∩ Ex | ≤ |SX |.
⇒ |E | ≤ |Ê | = |(E \ EX) ∪ SX |.
Iterate this for each X ⊆ H.

Converting Solution E via Ê into S

f 1X e1X

e2X
f 2X

e1X

e2X

f
σ(1)
X

f
σ(2)
X

edges of E 2 containing f 2X

edges of E 1 containing f 1X edges of Eσ(1) containing f
σ(1)
X

edges of Eσ(2) containing f
σ(2)
X

For q ∈ [p] \ QX , set Ê
q = E q.

For q ∈ QX , construct Ê
q from Eσ(q):

– remove the edges contained in f
σ(q)
X ,

– add the edges of Sq
X , and

– add the edges of E q contained in eqX .

E ∩ Ex is a feasible sol. of Lem. 1.
⇒ |E ∩ Ex | ≤ |SX |.
⇒ |E | ≤ |Ê | = |(E \ EX) ∪ SX |.
Iterate this for each X ⊆ H.

Finally, Ê =
⋃

X SX = S . □

An XP Algorithm

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof. Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

2h − 1.

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

2h − 1.

⇒ partial encod. Eq chooses ≤ 4h − 2 edges eqX/f
q
X .

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

2h − 1.

⇒ partial encod. Eq chooses ≤ 4h − 2 edges eqX/f
q
X .

⇒ # encodings ⟨E1, . . . , Ep⟩ ≤

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

2h − 1.

⇒ partial encod. Eq chooses ≤ 4h − 2 edges eqX/f
q
X .

⇒ # encodings ⟨E1, . . . , Ep⟩ ≤ mp·(4h−2)

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

2h − 1.

⇒ partial encod. Eq chooses ≤ 4h − 2 edges eqX/f
q
X .

⇒ # encodings ⟨E1, . . . , Ep⟩ ≤
For each X ⊆ H, we apply Lem. 1 in Õ

(
|EX |3

)
time.

mp·(4h−2)

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

2h − 1.

⇒ partial encod. Eq chooses ≤ 4h − 2 edges eqX/f
q
X .

⇒ # encodings ⟨E1, . . . , Ep⟩ ≤
For each X ⊆ H, we apply Lem. 1 in Õ

(
|EX |3

)
time.

If X ̸= X ′, then EX ∩ EX ′ = ∅.

mp·(4h−2)

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

2h − 1.

⇒ partial encod. Eq chooses ≤ 4h − 2 edges eqX/f
q
X .

⇒ # encodings ⟨E1, . . . , Ep⟩ ≤
For each X ⊆ H, we apply Lem. 1 in Õ

(
|EX |3

)
time.

If X ̸= X ′, then EX ∩ EX ′ = ∅.
⇒ Per encoding, we spend Õ

(
m3

)
time (for flows).

mp·(4h−2)

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

2h − 1.

⇒ partial encod. Eq chooses ≤ 4h − 2 edges eqX/f
q
X .

⇒ # encodings ⟨E1, . . . , Ep⟩ ≤
For each X ⊆ H, we apply Lem. 1 in Õ

(
|EX |3

)
time.

If X ̸= X ′, then EX ∩ EX ′ = ∅.
⇒ Per encoding, we spend Õ

(
m3

)
time (for flows).

mp·(4h−2)

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

An XP Algorithm

Proof.

Then |X p| ≤

Recall: For q ∈ [p], X q is the family of subsets of
H that are bridged on page q.

2h − 1.

⇒ partial encod. Eq chooses ≤ 4h − 2 edges eqX/f
q
X .

⇒ # encodings ⟨E1, . . . , Ep⟩ ≤
For each X ⊆ H, we apply Lem. 1 in Õ

(
|EX |3

)
time.

If X ̸= X ′, then EX ∩ EX ′ = ∅.
⇒ Per encoding, we spend Õ

(
m3

)
time (for flows).

⇒ Total running time is Õ
(
mp·(4h−2)+3

)
.

mp·(4h−2)

□

Theorem. Edge Deletion to p-Page Planar is in XP
with respect to h + p.

Open Problems

• Is Edge Deletion to Page-p Planar even in FPT?

Open Problems

• Is Edge Deletion to Page-p Planar even in FPT?

• Is Edge Deletion to 1-Page d-Planar W [1]-hard
w.r.t. the natural parameter k if d is part of the input?

Open Problems

• Is Edge Deletion to Page-p Planar even in FPT?

• Is Edge Deletion to 1-Page d-Planar W [1]-hard
w.r.t. the natural parameter k if d is part of the input?

Can we reduce from Independent Set?

Open Problems

• Is Edge Deletion to Page-p Planar even in FPT?

• Is Edge Deletion to 1-Page d-Planar W [1]-hard
w.r.t. the natural parameter k if d is part of the input?

Can we reduce from Independent Set?

Note that Deletion to Degree-d is W [1]-hard with
respect to treewidth [Betzler, Bredereck, Niedermeier,
Uhlmann 2012] and that outer d-planar graphs have
treewidth O(d) [Wood & Telle, 2007]

Open Problems

• Is Edge Deletion to Page-p Planar even in FPT?

• Is Edge Deletion to 1-Page d-Planar W [1]-hard
w.r.t. the natural parameter k if d is part of the input?

• Can the fixed-order crossing number be computed in
2nnO(1) instead of 2mnO(1) time?

Can we reduce from Independent Set?

Note that Deletion to Degree-d is W [1]-hard with
respect to treewidth [Betzler, Bredereck, Niedermeier,
Uhlmann 2012] and that outer d-planar graphs have
treewidth O(d) [Wood & Telle, 2007]

Open Problems

• Is Edge Deletion to Page-p Planar even in FPT?

• Is Edge Deletion to 1-Page d-Planar W [1]-hard
w.r.t. the natural parameter k if d is part of the input?

• What is the parameterized complexity of Edge Deletion
to Outer d-Planarity (that is, for unordered graphs)?

• Can the fixed-order crossing number be computed in
2nnO(1) instead of 2mnO(1) time?

Can we reduce from Independent Set?

Note that Deletion to Degree-d is W [1]-hard with
respect to treewidth [Betzler, Bredereck, Niedermeier,
Uhlmann 2012] and that outer d-planar graphs have
treewidth O(d) [Wood & Telle, 2007]

	Graph Drawing: How to Deal with Crossings?
	The Problem
	Another Way to See Things: Conflict Graph
	Related Work (I)
	Related Work (II)
	Our Contribution
	Minimizing Crossings (or Pages)
	A Nice Tool: Subset Convolution
	Need the Fixed-Order Page Number Faster?
	Our Contribution
	\sc Edge Deletion to p-Page Planar

	Hitting Set of Size 1
	Preparing for the General Case
	The General Case
	Where Is the Difficulty?
	The Main Lemma
	Converting Solution E via $\hat E$ into S
	An XP Algorithm
	Open Problems

