Eliminating Crossings in Ordered Graphs

TCS Colloquium ©@ UJ — SWAT 2024

Akanksha Agrawal, Sergio Cabello, Michael Kaufmann,
Saket Saurabh, Roohani Sharma, Yushi Uno, Alexander Wolff

arxiv.org/abs/2404.09771

https://arxiv.org/abs/2404.09771

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the
drawing of a graph.

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the
drawing of a graph. Reduce number of crossings in drawings!

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the
drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of edges
s.t. the remaining graph can be drawn without crossings.

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the
drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of edges
s.t. the remaining graph can be drawn without crossings.

Our setting: | p1
book embedding P3 /_\

with fixed vertex order

spine

P2

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the
drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of edges
s.t. the remaining graph can be drawn without crossings.

Our setting: | p1
book embedding P3 /_\

with fixed vertex order

spine

Our aim:
fast parametrized
exact algorithms P2

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the
drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of edges
s.t. the remaining graph can be drawn without crossings.

Our setting: | p1
book embedding P3 /\

with fixed vertex order

spine

Our aim:
fast parametrized
exact algorithms P2

partial edge drawings

The Problem

EDGE DELETION TO p-PAGE d-PLANAR

nput: ordered graph (G, o), positive integers k, p, d.
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G

such that (G — S, o) is p-page d-planar?

The Problem

EDGE DELETION TO p-PAGE d-PLANAR

nput: ordered graph (G, o), positive integers k, p, d.
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G

such that (G — S, o) is p-page d-planar?

The Problem

EDGE DELETION TO p-PAGE d-PLANAR

nput: ordered graph (G, o), positive integers k, p, d.
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G

such that (G — S, o) is p-page d-planar?

Examples: — What is the page number of Ks?

The Problem

EDGE DELETION TO p-PAGE d-PLANAR

nput: ordered graph (G, o), positive integers k, p, d.
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G

such that (G — S, o) is p-page d-planar?

Examples: — What is the page number of Ks?

How many edges must we remove
— for a planar drawing of K5 on 2 pages?

The Problem

EDGE DELETION TO p-PAGE d-PLANAR

nput: ordered graph (G, o), positive integers k, p, d.
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G

such that (G — S, o) is p-page d-planar?

Examples: — What is the page number of Ks?

How many edges must we remove
— for a planar drawing of K5 on 2 pages?
— for a 1-planar drawing

The Problem

EDGE DELETION TO p-PAGE d-PLANAR

nput: ordered graph (G, o), positive integers k, p, d.
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G

such that (G — S, o) is p-page d-planar?

Examples: — What is the page number of Ks?

How many edges must we remove
— for a planar drawing of K5 on 2 pages?
— for a 1-planar drawing

— for a 2-planar drawing of K5 on 1 page?

Another Way to See Things: Conflict Graph

Given an ordered graph (G, o), its conflict graph H(G o) is the
graph that has a vertex for each edge of G and an edge for
each pair of crossing edges of G.

daan

H(G o)

Another Way to See Things: Conflict Graph

Given an ordered graph (G, o), its conflict graph H(G o) is the
graph that has a vertex for each edge of G and an edge for
each pair of crossing edges of G.

daan

H(G o)

Another Way to See Things: Conflict Graph

Given an ordered graph (G, o), its conflict graph H(G o) is the
graph that has a vertex for each edge of G and an edge for
each pair of crossing edges of G.

G
H(c,s) is a circle graph, that is, the intersection graph of
chords of a circle.

H(G o)

Another Way to See Things: Conflict Graph

Given an ordered graph (G, o), its conflict graph H(G o) is the
graph that has a vertex for each edge of G and an edge for
each pair of crossing edges of G.

/A Ly $

H(c,s) is a circle graph, that is, the intersection graph of
chords of a circle.

Another Way to See Things: Conflict Graph

Given an ordered graph (G, o), its conflict graph H(G o) is the
graph that has a vertex for each edge of G and an edge for
each pair of crossing edges of G.

/A Ly $

H(c,s) is a circle graph, that is, the intersection graph of
chords of a circle.

So EDGE DELETION TO 1-PAGE d-PLANAR is the same as
VERTEX DELETION TO DEGREE-d (in circle graphs).

Another Way to See Things: Conflict Graph

Given an ordered graph (G, o), its conflict graph H(G o) is the
graph that has a vertex for each edge of G and an edge for
each pair of crossing edges of G.

/A Ly $

H(c,s) is a circle graph, that is, the intersection graph of
chords of a circle.

So EDGE DELETION TO 1-PAGE d-PLANAR is the same as
VERTEX DELETION TO DEGREE-d (in circle graphs).

For general graphs, this admits a quadratic kernel.

Related Work (1)

Testing whether (G, o) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to

Related Work (1)

Testing whether (G, o) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(g ..

Related Work (1)

Testing whether (G, o) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(g ..

Related Work (1)

Testing whether (G, o) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(g ..

For p = 4, Unger showed that the problem is NP-hard.

Related Work (1)

Testing whether (G, o) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(g ..

For p = 4, Unger showed that the problem is NP-hard.

For p = 3, he claimed an efficient solution, but his
approach is incomplete.

Related Work (1)

Testing whether (G, o) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(g ..

For p = 4, Unger showed that the problem is NP-hard.

For p = 3, he claimed an efficient solution, but his
approach is incomplete.

EDGE DELETION TO p-PAGE PLANAR: special case d = 0.

Related Work (1)

Testing whether (G, o) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(g ..

For p = 4, Unger showed that the problem is NP-hard.

For p = 3, he claimed an efficient solution, but his
approach is incomplete.

EDGE DELETION TO p-PAGE PLANAR: special case d = 0.
This Is In H(G,J).

Related Work (1)

Testing whether (G, o) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(g ..

For p = 4, Unger showed that the problem is NP-hard.

For p = 3, he claimed an efficient solution, but his
approach is incomplete.

EDGE DELETION TO p-PAGE PLANAR: special case d = 0.
This is VERTEX DELETION TO p-COLORABILITY in Hig).

Related Work (1)

Testing whether (G, o) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of H(g ..

For p = 4, Unger showed that the problem is NP-hard.

For p = 3, he claimed an efficient solution, but his
approach is incomplete.

EDGE DELETION TO p-PAGE PLANAR: special case d = 0.
This is VERTEX DELETION TO p-COLORABILITY in Hig).

p = 1. MIS in circle graphs — quadratic time.

Related Work (1)

Testing whether (G, o) has (fixed-vertex-order) page number p
(without edge deletions) is equivalent to p-colorability of Hi¢).

For p = 4, Unger showed that the problem is NP-hard.

For p = 3, he claimed an efficient solution, but his
approach is incomplete.

EDGE DELETION TO p-PAGE PLANAR: special case d = 0.
This is VERTEX DELETION TO p-COLORABILITY in Hig).

p = 1. MIS in circle graphs — quadratic time.
p = 2: ObD CYCLE TRANSVERSAL in circle graphs — FPT

Related Work (I1)

FIXED-ORDER PAGE NUMBER

Related Work (I1)

FIXED-ORDER PAGE NUMBER can be solved in 2°00¢) p time
[Bhore, Ganian, Montecchiani, Nollenburg, 2020]

Related Work (I1)

. 3 .
FIxED-ORDER PAGE NUMBER can be solved in 2°0¢) g time

and in 2°(P%) 5 time, where pw is the pathwidth of the ordered
graph, which is not bounded by vc.

Related Work (I1)

. 3 .
FIxED-ORDER PAGE NUMBER can be solved in 2°0¢) g time

and in 2°(P%) 5 time, where pw is the pathwidth of the ordered
graph, which is not bounded by vc.

FIXED-ORDER BOOK DRAWING — testing if there is a p-page
d-planar drawing of (G, o)

Related Work (I1)

. 3 .
FIxED-ORDER PAGE NUMBER can be solved in 2°0¢) g time

and in 20(PW) time, where pw is the pathwidth of the ordered
graph, which is not bounded by vc.

FIXED-ORDER BOOK DRAWING — testing if there is a p-page
d-planar drawing of (G, o) — can be solved in (d 4 2)°0<)n or

in (d +2)°")n time.

Related Work (I1)

. 3 .
FIxED-ORDER PAGE NUMBER can be solved in 2°0¢) g time

and in 20(PW) time, where pw is the pathwidth of the ordered
graph, which is not bounded by vc.

FIXED-ORDER BOOK DRAWING — testing if there is a p-page
d-planar drawing of (G, o) — can be solved in (d 4 2)°0<)n or

in (d +2)°")n time.

Bhore et al. also study the flexible vertex-order case:
. O(vc .
They solve PAGE NUMBER In 2¥¢ " 1 ve log vc - n time.

Our Contribution

e \We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2™ - n°1) time.
Alternatively, given a budget p of pages, we can compute a
p-page book embedding with the min. number of crossings.

Our Contribution

e We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2™ - n°1) time.

e We obtain an O((d + 1) log n)-approximation algorithm for
the fixed-vertex-order d-planar page number.

Our Contribution

e We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2™ - n°1) time.

e We obtain an O((d + 1) log n)-approximation algorithm for
the fixed-vertex-order d-planar page number.

e We show how to decide in 20(cVklog(c+k)) . nO(1) time

whether deleting k edges of an ordered graph suffices to
obtain a d-planar layout on one page.

Our Contribution

e We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2™ - n°1) time.

e We obtain an O((d + 1) log n)-approximation algorithm for
the fixed-vertex-order d-planar page number.

e We show how to decide in 20(cVklog(c+k)) . nO(1) time

whether deleting k edges of an ordered graph suffices to
obtain a d-planar layout on one page.

o Let h be the size of a hitting set. 8
h = 1: We can efficiently compute the smallest set of edges
whose deletion yields fixed-vertex-order page number p.
h > 1. XP algorithm with respect to h + p.

Our Contribution

e \We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2™ - n°1) time.

Alternatively, given a budget p of pages, we can compute a
p-page book embedding with the min. number of crossings.

e We obtain an O((d + 1) log n)-approximation algorithm for
the

o We show how to decide in 20(cVklog(c+k)) . nO) time

whether deleting k edges of an ordered graph suffices to
obtain a d-planar layout on

e lLet h be the size of a |
h = 1: We can efficiently compute the smallest set of edges
whose deletion yields fixed-vertex-order page number p.
h > 1: XP algorithm with respect to h + p.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in
(cr+ 2)O(pW2)n time whether a graph with n vertices and pathwidth pw
can be drawn on a given number of pages with < cr crossings in total.

Minimizing Crossings (or Pages)
(cr+ 2)O(pw2)n time

Given an ordered graph (G, o), let crp(G, o) be the smallest number of
crossings over all possible assignments of the edges of G to p pages.

Minimizing Crossings (or Pages)
(cr+ 2)O(pw2)n time

Given an ordered graph (G, o), let crp(G, o) be the smallest number of
crossings over all possible assignments of the edges of G to p pages.

Theorem. Given p > 1 and an ordered graph (G, o) with
n vertices and m edges, we can compute the values

cri(G,0),...,crp(G, o) in 2™ n%W) time.

Minimizing Crossings (or Pages)
(cr+ 2)O(pW2)n time

Given an ordered graph (G, o), let crp(G, o) be the smallest number of
crossings over all possible assignments of the edges of G to p pages.

Theorem. Given p > 1 and an ordered graph (G, o) with
n vertices and m edges, we can compute the values

cri(G,0),...,crp(G, o) in 2™ n%W) time.

e In other words, given a budget p of pages, we can compute a p-page
book embedding with the minimum number of crossings in ... time.

Minimizing Crossings (or Pages)
(cr+ 2)O(pw2)n time

Given an ordered graph (G, o), let crp(G, o) be the smallest number of
crossings over all possible assignments of the edges of G to p pages.

Theorem. Given p > 1 and an ordered graph (G, o) with
n vertices and m edges, we can compute the values

cri(G,0),...,crp(G, o) in 2™ n%W) time.

e In other words, given a budget p of pages, we can compute a p-page
book embedding with the minimum number of crossings in ... time.

e \We can compute the fixed-vertex-order page number in ... time.

Minimizing Crossings (or Pages)
(cr+ 2)O(pW2)n time

Given an ordered graph (G, o), let crp(G, o) be the smallest number of
crossings over all possible assignments of the edges of G to p pages.

Theorem. Given p > 1 and an ordered graph (G, o) with
n vertices and m edges, we can compute the values

cri(G,0),...,crp(G, o) in 2™ n%W) time.

e In other words, given a budget p of pages, we can compute a p-page
book embedding with the minimum number of crossings in ... time.

e \We can compute the fixed-vertex-order page number in ... time.

Minimizing Crossings (or Pages)
(cr+ 2)O(pW2)n time

Given an ordered graph (G, o), let crp(G, o) be the smallest number of
crossings over all possible assignments of the edges of G to p pages.

Theorem. Given p > 1 and an ordered graph (G, o) with
n vertices and m edges, we can compute the values

cri(G,0),...,crp(G, o) in 2™ n%W) time.

e In other words, given a budget p of pages, we can compute a p-page
book embedding with the minimum number of crossings in ... time.

e \We can compute the fixed-vertex-order page number in ... time.

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F],0) =

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F],0) = H{e, f} C F: e crosses f}‘

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.

Can compute cri(G[F], o) in O(|F|) time:
©O 0000 O O O0O

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.

Can compute cri(G[F], o) in O(|F|) time:
©O 00000 O O0O

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e. f} C F: e crosses f}‘

Can compute cri(G[F], o) in O(|F|) time:
©O 00000 O O0O

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e. f} C F: e crosses f}‘

Can compute cri(G[F], o) in O(|F|) time:
© 0 oo o oo oo

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e. f} C F: e crosses f}‘

Can compute cri(G[F], o) in O(|F|) time:
© 0 oo o oo oo

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e. f} C F: e crosses f}‘
Can compute cri(G[F], o) in O(|F|) time:

O 0O 0O 6 O 0O 0 O O

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.
Can compute cri(G[F], o) in O(|F|) time:

O 0O 0O 6 O 0O 0 O O

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.

Can compute cri(G[F], o) in O(|F|) time:
© 0 0o ofo oo oo

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.

Can compute cri(G[F], o) in O(|F|) time:
©O 00000 O O0O

So we can compute cr(G[F], o) for all F C E(G) in total time.

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.

Can compute cri(G[F], o) in O(|F|) time:
©O 00000 O O0O

So we can compute cri(G[F], o) for all F C E(G) in O(m2™) total time.

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.
Can compute cri(G[F], o) in O(|F|) time:

O 0O 0O 0O 0O 0O 0 O O

So we can compute cri(G[F], o) for all F C E(G) in O(m2™) total time.

For g > 1 and F C E(G), we have the recurrence

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.
Can compute cri(G[F], o) in O(|F|) time:

O 0O 0O 0O 0O 0O 0 O O

So we can compute cri(G[F], o) for all F C E(G) in O(m2™) total time.

For g > 1 and F C E(G), we have the recurrence
crq(G[F],0) = min { }.

F'CF

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.
Can compute cri(G[F], o) in O(|F|) time:

O 0O 0O 0O 0O 0O 0 O O

So we can compute cri(G[F], o) for all F C E(G) in O(m2™) total time.

For g > 1 and F C E(G), we have the recurrence

crg(GIFL,0) = min {enn(G[F'],0) + crg-a(GIF\ F].0) }.

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.
Can compute cri(G[F], o) in O(|F|) time:

O 0O 0O 0O 0O 0O 0 O O

So we can compute cri(G[F], o) for all F C E(G) in O(m2™) total time.

For g > 1 and F C E(G), we have the recurrence

crg(GIFL,0) = min {enn(G[F'],0) + crg-a(GIF\ F].0) }.

Brute-force computation takes time O(m) - >, (T)Zi =

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.
Can compute cri(G[F], o) in O(|F|) time:

O 0O 0O 0O 0O 0O 0 O O

So we can compute cri(G[F], o) for all F C E(G) in O(m2™) total time.

For g > 1 and F C E(G), we have the recurrence

crg(GIFL,0) = min {enn(G[F'],0) + crg-a(GIF\ F].0) }.

Brute-force computation takes time O(m)- > "7, (7)2' = O(m3™).

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.
Can compute cri(G[F], o) in O(|F|) time:

O 0O 0O 0O 0O 0O 0 O O

So we can compute cri(G[F], o) for all F C E(G) in O(m2™) total time.

For g > 1 and F C E(G), we have the recurrence

crg(GIFL,0) = min {enn(G[F'],0) + crg-a(GIF\ F].0) }.

Brute-force computation takes time O(m)- > "7, (7)2' = O(m3™).

Instead, do subset convolution!

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.
Can compute cri(G[F], o) in O(|F|) time:

O 0O 0O 0O 0O 0O 0 O O

So we can compute cri(G[F], o) for all F C E(G) in O(m2™) total time.

For g > 1 and F C E(G), we have the recurrence

crg(GIFL,0) = min {enn(G[F'],0) + crg-a(GIF\ F].0) }.

Brute-force computation takes time O(m)- > "7, (7)2' = O(m3™).
Instead, do subset convolution!
Define two functions f, g: 2E(G) s R to the (min, +)-ring R:

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.
Can compute cri(G[F], o) in O(|F|) time:

O 0O 0O 0O 0O 0O 0 O O

So we can compute cri(G[F], o) for all F C E(G) in O(m2™) total time.

For g > 1 and F C E(G), we have the recurrence

crq(GlF], o) = g‘g}:{crl(G[F’],U) + crg-1(G[F\ F'],0) }.

Brute-force computation takes time O(m)- > "7, (7)2' = O(m3™).
Instead, do subset convolution!
Define two functions f, g: 2E(G) s R to the (min, +)-ring R:

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.
Can compute cri(G[F], o) in O(|F|) time:

O 0O 0O 0O 0O 0O 0 O O

So we can compute cri(G[F], o) for all F C E(G) in O(m2™) total time.

For g > 1 and F C E(G), we have the recurrence

crq(GlF], o) = g‘g}:{crl(G[F’],U) + crg-1(G[F\ F'],0) }.

Brute-force computation takes time O(m)- > "7, (7)2' = O(m3™).
Instead, do subset convolution!
Define two functions f, g: 2E(G) s R to the (min, +)-ring R:

f: F—cri(G[F],0) and g: F+— cry_1(G[F], o)

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.
Can compute cri(G[F], o) in O(|F|) time:

O 0O 0O 0O 0O 0O 0 O O

So we can compute cri(G[F], o) for all F C E(G) in O(m2™) total time.

For g > 1 and F C E(G), we have the recurrence

cro(GIFl.0) = i { cri(GIF'],) % cro-1(G[F \ F.0) }

Brute-force computation takes time O(m)- > "7, (7)2' = O(m3™).
Instead, do subset convolution!
Define two functions f, g: 2E(G) s R to the (min, +)-ring R:

f F|—>cr1(G[F] o) and g: F—cr,_1(G[F],0)

Then (f * g)(F Z f(F')-g(F\ F") can be computed in O(m?2™).
FICF

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.
Can compute cri(G[F], o) in O(|F|) time:

O 0O 0O 0O 0O 0O 0 O O

So we can compute cri(G[F], o) for all F C E(G) in O(m2™) total time.

For g > 1 and F C E(G), we have the recurrence

cro(GIFl.0) = i { cri(GIF'],) % cro-1(G[F \ F.0) }

Brute-force computation takes time O(m)- > "7, (7)2' = O(m3™).
Instead, do subset convolution!
Define two functions f, g: 2E(G) s R to the (min, +)-ring R:

f F|—>cr1(G[F] o) and g: F—cr,_1(G[F],0)

Then (f * g)(F Z f(F'Yog(F\ F") can be computed in O(m?2™).
FICF

A Nice Tool: Subset Convolution

Let p=1and F C E(G). Then cri(G[F], o) = |{{e.f} C F: e crosses f}|.
Can compute cri(G[F], o) in O(|F|) time:

O 0O 0O 0O 0O 0O 0 O O

So we can compute cri(G[F], o) for all F C E(G) in O(m2™) total time.

For g > 1 and F C E(G), we have the recurrence

cro(GIFl.0) = i { cri(GIF'],) % cro-1(G[F \ F.0) }

Brute-force computation takes time O(m)- > "7, (7)2' = O(m3™).
Instead, do subset convolution!
Define two functions f, g: 2E(G) s R to the (min, +)-ring R:

f F|—>cr1(G[F] o) and g: F—cr,_1(G[F],0)

Then (f * g)(F Z f(F'Yog(F\ F") can be computed in O(m?2™).
FICF

A Nice Tool: Subset Convolution

Theorem. Given p > 1 and an ordered graph (G, o) with

n vertices and m edges, we can compute the values
cri(G,a),...,crp(G, o) in O(p- m?2™) time.

So we can compute cri(G[F], o) for all F C E(G) in O(m2™) total time.

For g > 1 and F C E(G), we have the recurrence

cro(GIFl.0) = i { cri(GIF'],) % cro-1(G[F \ F.0) }

Brute-force computation takes time O(m)- > "7, (7)2' = O(m3™).
Instead, do subset convolution!
Define two functions f, g: 2E(G) s R to the (min, +)-ring R:

f F|—>cr1(G[F] o) and g: F—cr,_1(G[F],0)

Then (f * g)(F Z f(F'Yog(F\ F") can be computed in O(m?2™).
FICF

Need the Fixed-Order Page Numbe

Need the Fixed-Order Page Numbe

Lemma. Given (G, o), we can compute in quadratic time a
smallest set S C E(G) such that cri(G — S,0) = 0.

Need the Fixed-Order Page Numbe

Lemma. Given (G, o), we can compute in quadratic time a
smallest set S C E(G) such that cri(G — S,0) = 0.

Need the Fixed-Order Page Numbe

Lemma. Given (G, o), we can compute in quadratic time a
smallest set S C E(G) such that cri(G — S,0) =0.

Theorem. We can compute an O(log n)-approximation to the
fixed-vertex-order page number of an n-vertex graph.

Need the Fixed-Order Page Numbe

Lemma. Given (G, o), we can compute in quadratic time a
smallest set S C E(G) such that cri(G — S,0) =0.

Theorem. We can compute an O(log n)-approximation to the
fixed-vertex-order page number of an n-vertex graph.

Proof. Let F = {F C E(G): cri(G[F],o) = 0}.

Need the Fixed-Order Page Numbe

Lemma. Given (G, o), we can compute in quadratic time a
smallest set S C E(G) such that cri(G — S,0) =0.

Theorem. We can compute an O(log n)-approximation to the
fixed-vertex-order page number of an n-vertex graph.

Proof. Let F = {F C E(G): cri(G[F],o) = 0}.

F' C F is a feasible solution of the SET COVER
instance (E(G), F) if JF' = E(G).

Need the Fixed-Order Page Numbe

Lemma. Given (G, o), we can compute in quadratic time a
smallest set S C E(G) such that cri(G — S,0) =0.

Theorem. We can compute an O(log n)-approximation to the
fixed-vertex-order page number of an n-vertex graph.

Proof. Let F = {F C E(G): cri(G[F],o) = 0}.

F' C F is a feasible solution of the SET COVER
instance (E(G), F) if JF' = E(G).

JF' yields a crossing-free drawing of G on |F’| pages.

Need the Fixed-Order Page Numbe

Lemma. Given (G, o), we can compute in quadratic time a
smallest set S C E(G) such that cri(G — S,0) =0.

Theorem. We can compute an O(log n)-approximation to the
fixed-vertex-order page number of an n-vertex graph.

Proof. Let F = {F C E(G): cri(G[F],o) = 0}.
F' C F is a feasible solution of the SET COVER
instance (E(G), F) if JF' = E(G).

JF' yields a crossing-free drawing of G on |F’| pages.
An opt/app. set cover yields an opt/app. page nmb.

Need the Fixed-Order Page Numbe

Lemma. Given (G, o), we can compute in quadratic time a
smallest set S C E(G) such that cri(G — S,0) =0.

Theorem. We can compute an O(log n)-approximation to the
fixed-vertex-order page number of an n-vertex graph.

Proof. Let F = {F C E(G): cri(G[F],o) =0}
F' C F is a feasible solution of the SET COVER
instance (E(G), F) if JF' = E(G).
JF' yields a crossing-free drawing of G on |F’| pages.
An opt/app. set cover yields an opt/app. page nmb.

Compute solution § by greedily adding the set F in
F that maximizes |F \ | JS|.

Need the Fixed-Order Page Numbe

Lemma. Given (G, o), we can compute in quadratic time a
smallest set S C E(G) such that cri(G — S,0) =0.

Theorem. We can compute an O(log n)-approximation to the
fixed-vertex-order page number of an n-vertex graph.

Proof. Let F = {F C E(G): cri(G[F],o) =0}
F' C F is a feasible solution of the SET COVER
instance (E(G), F) if JF' = E(G).
JF' yields a crossing-free drawing of G on |F’| pages.
An opt/app. set cover yields an opt/app. page nmb.

Compute solution § by greedily adding the set F in
F that maximizes |F \ | JS|.

Our Contribution

e \We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2™ . n©(1) time.\/

e We obtain an O((d + 1) log n)-approximation algorithm for
the fixed-vertex-order d-planar page number. \/

e We show how to decide in 20(cVklog(c+k)) . hO(1) time
whether deleting k edges of an ordered graph suffices to
obtain a d-planar layout on one page.

o Let h be the size of a hitting set. 8
h = 1: We can efficiently compute the smallest set of edges
whose deletion yields fixed-vertex-order page number p.
h > 1: XP algorithm with respect to h + p.

Our Contribution

e Let h be the size of a hitting set.

*

h = 1. We can efficiently compute the smallest set of edges
whose deletion yields fixed-vertex-order page number p.
h > 1. XP algorithm with respect to h + p.

EDGE D

Brute-force solution?

L

LETION TO p-PAGE PLANAR

EDGE D)

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges

assigned to it form an outerplanar graph.

LETION TO p-PAGE PLANAR

L

EDGE D)

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. — O(n(p + 1)™) time

LETION TO p-PAGE PLANAR

L

EDGE D)

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. — O(n(p + 1)™) time

LETION TO p-PAGE PLANAR

L

New parameter:

EDGE D)

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. — O(n(p + 1)™) time

LETION TO p-PAGE PLANAR

L

New parameter: h = size of hitting set

EDGE D)

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. — O(n(p + 1)™) time

L

LETION TO p-PAGE PLANAR

New parameter: h = size of hitting set

e A hitting set can be much smaller than a vertex cover :-)

EDGE D)

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. — O(n(p + 1)™) time

LETION TO p-PAGE PLANAR

L

New parameter: h = size of hitting set
e A hitting set can be much smaller than a vertex cover :-)

e Given m open intervals, a minimum-size hitting set can be
found in O(mlog m) time (greedily).

EDGE D)

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. — O(n(p + 1)™) time

LETION TO p-PAGE PLANAR

L

New parameter: h = size of hitting set
e A hitting set can be much smaller than a vertex cover :-)

e Given m open intervals, a minimum-size hitting set can be
found in O(mlog m) time (greedily).

EDGE D)

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. — O(n(p + 1)™) time

LETION TO p-PAGE PLANAR

L

New parameter: h = size of hitting set
e A hitting set can be much smaller than a vertex cover :-)

e Given m open intervals, a minimum-size hitting set can be
found in O(mlog m) time (greedily).

EDGE D)

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. — O(n(p + 1)™) time

LETION TO p-PAGE PLANAR

L

New parameter: h = size of hitting set
e A hitting set can be much smaller than a vertex cover :-)

e Given m open intervals, a minimum-size hitting set can be
found in O(mlog m) time (greedily).

EDGE D)

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. — O(n(p + 1)™) time

LETION TO p-PAGE PLANAR

L

New parameter: h = size of hitting set
e A hitting set can be much smaller than a vertex cover :-)

e Given m open intervals, a minimum-size hitting set can be
found in O(mlog m) time (greedily).

EDGE D)

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. — O(n(p + 1)™) time

LETION TO p-PAGE PLANAR

L

New parameter: h = size of hitting set
e A hitting set can be much smaller than a vertex cover :-)

e Given m open intervals, a minimum-size hitting set can be
found in O(mlog m) time (greedily).

EDGE D)

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also
for edge deletion), check for each page whether the edges
assigned to it form an outerplanar graph. — O(n(p + 1)™) time

LETION TO p-PAGE PLANAR

L

New parameter: h = size of hitting set
e A hitting set can be much smaller than a vertex cover :-)

e Given m open intervals, a minimum-size hitting set can be
found in O(mlog m) time (greedily).

Hitting Set of Size 1

Theorem. Given an ordered graph (G, o) with n vertices,
m edges, and h(G,o0) =1,
EDGE DELETION TO p-PAGE PLANAR can be
solved in O(m? log nloglog p) time.

Hitting Set of Size 1

Theorem. Given an ordered graph (G, o) with n vertices,
m edges, and h(G,o0) =1,
EDGE DELETION TO p-PAGE PLANAR can be
solved in O(m? log nloglog p) time.

@00 0 0 0 0 0 0 0 0
Vi V2 V3 V4 V5 Vg V7 Vg Vo Vig

Hitting Set of Size 1

Theorem. Given an ordered graph (G, o) with n vertices,
m edges, and h(G,o0) =1,
EDGE DELETION TO p-PAGE PLANAR can be
solved in O(m? log nloglog p) time.

*

—.O..—JH_..Q..—

Vi Vo V3 VatVs Vg V7 VB Vg Vig
z

Hitting Set of Size 1

Theorem. Given an ordered graph (G, o) with n vertices,
m edges, and h(G,o0) =1,
EDGE DELETION TO p-PAGE PLANAR can be
solved in O(m? log nloglog p) time.

*
Proof.

—.O..—JH_..Q..—

Vi Vo V3 VatVs Vg V7 VB Vg Vig
z

Hitting Set of Size 1

Theorem. Given an ordered graph (G, o) with n vertices,
m edges, and h(G,o0) =1,
EDGE DELETION TO p-PAGE PLANAR can be
solved in O(m? log nloglog p) time.

Proof.

s jee——
| e
e
s
e je—
e jesssss—
e jesss—
e Jem
e
[eeessss——
[Je—

o O O 0 X0 o o o o o
Vi V2 V3 V4tVs Vg V7 Vg Vo Vig
V4

Hitting Set of Size 1

Theorem. Given an ordered graph (G, o) with n vertices,
m edges, and h(G,o0) =1,
EDGE DELETION TO p-PAGE PLANAR can be
solved in O(m? log nloglog p) time.

Proof.

— Detine directed graph.

o O O 0 X0 o o o o o
Vi V2 V3 V4tVs Vg V7 Vg Vo Vig
V4

Hitting Set of Size 1

Theorem. Given an ordered graph (G, o) with n vertices,
m edges, and h(G,o0) =1,
EDGE DELETION TO p-PAGE PLANAR can be
solved in O(m? log nloglog p) time.

Proof.

— Detine directed graph.
— Find p directed paths.

o O O 0 X0 o o o o o
Vi V2 V3 V4tVs Vg V7 Vg Vo Vig
V4

Hitting Set of Size 1

Theorem. Given an ordered graph (G, o) with n vertices,
m edges, and h(G,o0) =1,
EDGE DELETION TO p-PAGE PLANAR can be
solved in O(m? log nloglog p) time.

Proof.

— Detine directed graph.
— Find p directed paths.

— Define flow network.

o O O 0 X0 o o o o o
Vi V2 V3 V4tVs Vg V7 Vg Vo Vig
V4

Hitting Set of Size 1

Theorem. Given an ordered graph (G, o) with n vertices,
m edges, and h(G,o0) =1,
EDGE DELETION TO p-PAGE PLANAR can be
solved in O(m? log nloglog p) time.

Proof.

— Detine directed graph.
— Find p directed paths.

— Define flow network.

— Find min-cost max flow.

o O O 0 X0 o o o o o
Vi V2 V3 V4tVs Vg V7 Vg Vo Vig
V4

Hitting Set of Size 1

Theorem. Given an ordered graph (G, o) with n vertices,
m edges, and h(G,o0) =1,
EDGE DELETION TO p-PAGE PLANAR can be
solved in O(m? log nloglog p) time.

Proof.

— Detine directed graph.
— Find p directed paths.

— Define flow network.

— Find min-cost max flow.
Such a flow has value p

@0 0 0 X0 0 0 0 0 0
Vi Vo V3 VatVs Vg V7 VB Vg Vig
z

Hitting Set of Size 1

Theorem. Given an ordered graph (G, o) with n vertices,
m edges, and h(G,o0) =1,
EDGE DELETION TO p-PAGE PLANAR can be
solved in O(m? log nloglog p) time.

Proof.

— Define directed graph.
— Find p directed paths.

— Define flow network.

— Find min-cost max flow.

Such a flow has value p

and max. total path length. -~e-e e exe e o o o o
Vi V2 V3 V4tVs Vg V7 Vg Vo Vig

Z

Preparing for the General Case

0X0 0X0 0 0 0X0

Preparing for the General Case

Preparing for the General Case

Two subsets E, F C E(G) are
compatible if |E| = |F| and there is
an enumeration ey, ..., € of E and
an enumeration fq, ..., f|,:| of F

s.t. ¢ is contained in f; for each i € [|F]].

Preparing for the General Case

Two subsets E, F C E(G) are
compatible if |E| = |F| and there is
an enumeration ey, ..., € of E and
an enumeration fq, ..., f|,:| of F

s.t. ¢ is contained in f; for each i € [|F]].

Lemma 1. Given an ordered graph (G, o) with h(G, o) =1 and
two subsets E, F C E(G) of size p, we can decide in O(m®)
time whether E and F are compatible and, if so, solve a version
of EDGE DELETION TO p-PAGE PLANAR s.t:

Preparing for the General Case

Two subsets E, F C E(G) are
compatible if |E| = |F| and there is
an enumeration ey, ..., € of E and
an enumeration fq, ..., f|,:| of F

s.t. ¢ is contained in f; for each i € [|F]].

Lemma 1. Given an ordered graph (G, o) with h(G,o) =1 and
two subsets E, F C E(G) of size p, we can decide in O(m®)
time whether E and F are compatible and, if so, solve a version
of EDGE DELETION TO p-PAGE PLANAR s.t:

e on each page, one edge of E is contained in all other edges
and one edge of F contains all other edges on that page.

Preparing for the General Case

Two subsets E, F C E(G) are
compatible if |E| = |F| and there is
an enumeration ey, ..., € of E and
an enumeration fq, ..., f|,:| of F

s.t. ¢ is contained in f; for each i € [|F]].

Lemma 1. Given an ordered graph (G, o) with h(G,0) =1 and
two subsets E, F C E(G) of size p, we can decide in O(m?)

time whether E and F are compatible and, if so, solve a version
of EDGE DELETION TO p-PAGE PLANAR s.t:

e on each page, one edge of E is contained in all other edges
and one edge of F contains all other edges on that page.

Proof.

Preparing for the General Case

Two subsets E, F C E(G) are
compatible if |E| = |F| and there is
an enumeration ey, ..., € of E and
an enumeration fq, ..., f|,:| of F

s.t. ¢ is contained in f; for each i € [|F]].

Lemma 1. Given an ordered graph (G, o) with h(G,0) =1 and
two subsets E, F C E(G) of size p, we can decide in O(m?)

time whether E and F are compatible and, if so, solve a version
of EDGE DELETION TO p-PAGE PLANAR s.t:

e on each page, one edge of E is contained in all other edges
and one edge of F contains all other edges on that page.

Proof. Modify flow network:

Preparing for the General Case

Two subsets E, F C E(G) are
compatible if |E| = |F| and there is
an enumeration ey, ..., € of E and
an enumeration fq, ..., f|,:| of F

s.t. ¢ is contained in f; for each i € [|F]].

Lemma 1. Given an ordered graph (G, o) with h(G,0) =1 and
two subsets E, F C E(G) of size p, we can decide in O(m?)

time whether E and F are compatible and, if so, solve a version
of EDGE DELETION TO p-PAGE PLANAR s.t:

e on each page, one edge of E is contained in all other edges
and one edge of F contains all other edges on that page.

Proof. Modify flow network: Connect only s" — E and F — t.

Preparing for the General Case

Two subsets E, F C E(G) are
compatible if |E| = |F| and there is
an enumeration ey, ..., € of E and
an enumeration fq, ..., f|,:| of F

s.t. ¢ is contained in f; for each i € [|F]].

Lemma 1. Given an ordered graph (G, o) with h(G,0) =1 and
two subsets E, F C E(G) of size p, we can decide in O(m?)

time whether E and F are compatible and, if so, solve a version
of EDGE DELETION TO p-PAGE PLANAR s.t:

e on each page, one edge of E is contained in all other edges
and one edge of F contains all other edges on that page.

Proof. Modify flow network: Connect only s" — E and F — t.
E and E compatible <

Preparing for the General Case

Two subsets E, F C E(G) are
compatible if |E| = |F| and there is
an enumeration ey, ..., € of E and
an enumeration fq, ..., f|,:| of F

s.t. ¢ is contained in f; for each i € [|F]].

Lemma 1. Given an ordered graph (G, o) with h(G,0) =1 and
two subsets E, F C E(G) of size p, we can decide in O(m?)

time whether E and F are compatible and, if so, solve a version
of EDGE DELETION TO p-PAGE PLANAR s.t:

e on each page, one edge of E is contained in all other edges
and one edge of F contains all other edges on that page.

Proof. Modify flow network: Connect only s" — E and F — t.
E and E compatible < maximum flow has value p.

| Case

The

The General Case

Here h =3

The General Case

Here h =3

The General Case

Here h =3

The General Case

et, \ = f}
{bc} — {bc}
Here h =3 bridges {b,c} C H

The General Case

Here h =3

The General Case

Here h =3

The General Case

Here h =3

— Split in (h = 1)-type instances

The General Case

et, \ = f}
{bc} — {bc}
Here h =3 bridges {b,c} C H

— Split in (h = 1)-type instances — Adjust flow network

Where Is the Ditticulty?

For E C E(G) and g € [p], let E9 be the edges on page q.

Where Is the Ditticulty?

For E C E(G) and g € [p], let E9 be the edges on page q.
Let X9 be the family of subsets of H bridged by edges in E9.

Where Is the Ditticulty?

For E C E(G) and g € [p], let E9 be the edges on page q.
Let X9 be the family of subsets of H bridged by edges in E9.

laminar

Where Is the Ditticulty?

For E C E(G) and g € [p], let E9 be the edges on page q.
Let X9 be the family of subsets of H bridged by edges in E9.

laminar

E9={(X,e},)| X € X9} is the partial encoding of E on
pPage q

Where Is the Ditticulty?

For E C E(G) and g € [p], let E9 be the edges on page q.
Let X9 be the family of subsets of H bridged by edges in E9.

laminar

E9={(X,e},)| X € X9} is the partial encoding of E on
page g and (€1, ..., EP) is the encoding of E.

Where Is the Ditticulty?

For E C E(G) and g € [p], let E9 be the edges on page q.
Let X9 be the family of subsets of H bridged by edges in E9.

laminar

E9={(X,e},)| X € X9} is the partial encoding of E on
page g and (€1, ..., EP) is the encoding of E.

If X C H is bridged only on, say, page 1 of an optimal drawing,

Where Is the Ditticulty?

For E C E(G) and g € [p], let E9 be the edges on page q.
Let X9 be the family of subsets of H bridged by edges in E9.

laminar

E9={(X,e},)| X € X9} is the partial encoding of E on
page g and (€1, ..., EP) is the encoding of E.

If X C H is bridged only on, say, page 1 of an optimal drawing,
then we just have to select as many edges as possible (without
crossing) from those contained between ey and fy.

Where Is the Ditticulty?

For E C E(G) and g € [p], let E9 be the edges on page q.
Let X9 be the family of subsets of H bridged by edges in E9.

laminar

E9={(X,e},)| X € X9} is the partial encoding of E on
page g and (€1, ..., EP) is the encoding of E.

If X C H is bridged only on, say, page 1 of an optimal drawing,
then we just have to select as many edges as possible (without
crossing) from those contained between ey and fy.

Let Qx = {q € [p]: X € X9}

Where Is the Ditticulty?

For E C E(G) and g € [p], let E9 be the edges on page q.
Let X9 be the family of subsets of H bridged by edges in E9.

laminar

E9={(X,e},)| X € X9} is the partial encoding of E on
page g and (€1, ..., EP) is the encoding of E.

If X C H is bridged only on, say, page 1 of an optimal drawing,
then we just have to select as many edges as possible (without
crossing) from those contained between ey and fy.

Let Qx = {q € [p]: X € X9}

Challenge: 1If |Qx| > 1, the choices of which edges are drawn
on which of these pages are not independent.

The Main Lemma

Lemma 2: Let E C E(G) be a solution with encod. (€%, ..., EP).

The Main Lemma

Lemma 2: Let E C E(G) be a solution with encod. (£, ..., EP).
For every X C H with Qx # 0, let
- ex = {ex | g € Qx},
- fx ={f{ | g € Qx}, and
— Sx C Ex from applying Lemma 1 w.r.t. ex, fx, p’ = |Qx].

The Main Lemma

Lemma 2: Let E C E(G) be a solution with encod. (£, ..., EP).
For every X C H with Qx # 0, let
- ex = {ex [g € Qx},
- fx ={f{ | g € Qx}, and
— Sx C Ex from applying Lemma 1 w.r.t. ex, fx, p’ = |Qx].
Then S = J Sx is a solution for p pages and |S| > |E].

The Main Lemma

Lemma 2: Let E C E(G) be a solution with encod. (£, ..., EP).
For every X C H with Qx # 0, let
- ex = {ex [g € Qx},
- fx ={f{ | g € Qx}, and
— Sx C Ex from applying Lemma 1 w.r.t. ex, fx, p’ = |Qx].
Then S = J Sx is a solution for p pages and |S| > |E].

Proof. Let X C H with Qx # 0.

The Main Lemma

Lemma 2: Let E C E(G) be a solution with encod. (£, ..., EP).
For every X C H with Qx # 0, let
- ex = {ex [g € Qx},
- fx ={f{ | g € Qx}, and
— Sx C Ex from applying Lemma 1 w.r.t. ex, fx, p’ = |Qx].
Then S = J Sx is a solution for p pages and |S| > |E].

Proof. Let X C H with Qx # 0.

For g € Qx, let 57 be the edges in Sx that appear on
the same page as ey, € ex when applying Lemma 1.

The Main Lemma

Lemma 2: Let E C E(G) be a solution with encod. (£, ..., EP).
For every X C H with Qx # 0, let
- ex ={ex | g € Qx},
- fx ={f{ | g € Qx}, and
— Sx C Ex from applying Lemma 1 w.r.t. ex, fx, p’ = |Qx].
Then S = J Sx is a solution for p pages and |S| > |E].

Proof. Let X C H with Qx # 0.
For g € Qx, let 57 be the edges in Sx that appear on

the same page as ey, € ex when applying Lemma 1.
Let 0: Qx — Rx be the permutation
s.t. f)?(q) is the unique element of fx in Sy.

The Main Lemma

Lemma 2: Let E C E(G) be a solution with encod. (£, ..., EP).
For every X C H with Qx # 0, let
—ex = {ex [g € Qx},

- fx ={f{ | g € Qx}, and
— Sx C Ex from applying Lemma 1 w.r.t. ex, fx, p’ = |Qx].
Then S = J Sx is a solution for p pages and |S| > |E].

Proof. Let X C H with Qx # 0.
For g € Qx, let 57 be the edges in Sx that appear on

the same page as ey, € ex when applying Lemma 1.
Let 0: Qx — Rx be the permutation
s.t. f)?(q) is the unique element of fx in Sy.

We make a drawing of £ := (E \ Ex) U Sx on p pages
by assigning edges to pages, as follows.

Converting Solution E via E into S

edges of E! containing fy

Converting Solution E via E into S

edges of E! containing fy

edges of E?(?) containing f;(z)

Converting Solution E via E into S

edges of E! containing fy

edges of E?(?) containing f;(z)

For g € [p] \ Qx, set £E9 = E9.

Converting Solution E via E into S

edges of E! containing fy edges of E2() containing g\

edges of E? containing £ edges of E?() containing f;(f(2)
For g € [p] \ Qx, set E9 = E9.

For g € Qx, construct E9 from E°(a):

— remove the edges contained in f)?(q),
— add the edges of Sy, and
— add the edges of E9 contained in ey .

Converting Solution E via E into S

edges of E! containing fy edges of E2() containing g\

X
edges of E? containing £ edges of E?() containing f;(f(2)
For g € [p] \ Qx, set E9 = E9. E N E, is a feasible sol. of Lem. 1.

For g € Qx, construct E9 from E°(a):

— remove the edges contained in f)?(q),
— add the edges of Sy, and
— add the edges of E9 contained in ey .

Converting Solution E via E into S

edges of E! containing fy edges of E2() containing g\

X
edges of E? containing £ edges of E?() containing f;(f(2)
For g € [p] \ Qx, set E9 = E9. E N E, is a feasible sol. of Lem. 1.

For g € Ux, construct E9 from E°(9): = |ENE] = [5x:

— remove the edges contained in f)?(q),
— add the edges of Sy, and
— add the edges of E9 contained in ey .

Converting Solution E via E into S

edges of E! containing fy edges of E2() containing g\

X
edges of E? containing £ edges of E?(®) containing f)?(Q)
For g € [p] \ Qx, set E9 = E9. E N E, is a feasible sol. of Lem. 1.
For g € Qx, construct E9 from E°(@). |~ EN EX‘AS |5x|.
~ |E| < |E

— remove the edges contained in f)?(q),
— add the edges of Sy, and
— add the edges of E9 contained in ey .

Converting Solution E via E into S

edges of E! containing fy edges of E2() containing g\

X
edges of E? containing £ edges of E?(®) containing f)?(Q)
For g € [p] \ Qx, set E9 = E9. E N E, is a feasible sol. of Lem. 1.
For g € Qx, construct E9 from E°(@). |~ EN EX‘AS |5x|.
~ |E| < |E

— remove the edges contained in f)?(q),

— add the edges of Sy, and
— add the edges of E9 contained in ey .

Iterate this for each X C H.

Converting Solution E via E into S

edges of E! containing fy edges of E2() containing g\

X
edges of E? containing £ edges of E?(®) containing f)?(Q)
For g € [p] \ Qx, set E9 = E9. E N E, is a feasible sol. of Lem. 1.
For g € Qx, construct E9 from E°(@). |~ EN EX‘AS |5x|.
~ |E| < |E

— remove the edges contained in f)?(q),
— add the edges of S, and Iterate this for each X C H.

— add the edges of E9 contained in ey. Finally, E = Ux Sx . []

An XP Algorithm

An XP Algorithm

Theorem. EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Proof. Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

An XP Algorithm

Theorem. EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Proof. Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then |XP| <

An XP Algorithm

Theorem. EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Proof. Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then |XP| < X X X X X X X X X X

An XP Algorithm

Theorem. EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Proof. Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then |XP| < X X K K x X X x [X

An XP Algorithm

Theorem. EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Proof. Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then |XP| < X XK K x XX |[x X

An XP Algorithm

Theorem. EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Proof. Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then |XP| < x] XK K x XX [x X

An XP Algorithm

Theorem. EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Proof. Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then |XP| <2h—1. |X¥ K XX x_x x|(x [x [

An XP Algorithm

Theorem. EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Proof. Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then |XP| <2h—1. X K ||X X _x x||X [x [

= partial encod. £9 chooses < 4h — 2 edges e} /1.

An XP Algorithm

Theorem. EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Proof. Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then |XP| <2h—1. X K ||X X _x x||X [x [
= partial encod. £9 chooses < 4h — 2 edges e} /1.
= 4 encodings (€1, ..., EP) <

An XP Algorithm

Theorem. EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Proof. Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then |XP| <2h—1. X K ||X X _x x||X [x [
= partial encod. £9 chooses < 4h — 2 edges e} /1.
= # encodings (€1, ..., EPY < mp (4h=2)

An XP Algorithm

Theorem.

Proof.

EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then |XP| <2h—1. K E K K x XX |[x [X
= partial encod. £9 chooses < 4h — 2 edges e} /1.
= 4 encodings (€1, ..., EPY < mp(4h=2)

For each X C H, we apply Lem. 1 in O(|Ex|?) time.

An XP Algorithm

Theorem. EDGE DELETION TO p-PAGE PLANAR is in XP

Proof.

with respect to h + p.

Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then\Xp\SQh—l. X] XXX X< XX [x [X
= partial encod. £9 chooses < 4h — 2 edges e} /1.
= # encodings (£, ..., EPY < mp(4h=2)

For each X C H, we apply Lem. 1 in O(|Ex|?) time.
If X £ X/, then Ex N Ex, = (.

An XP Algorithm

Theorem.

Proof.

EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then\Xp\SQh—l. X] XXX X< XX [x [X
= partial encod. £9 chooses < 4h — 2 edges e} /1.
= # encodings (£, ..., EPY < mp(4h=2)

For each X C H, we apply Lem. 1 in O(|Ex|?) time.
If X £ X', then Ex N Ex: = 0.

= Per encoding, we spend O(m?) time (for flows).

An XP Algorithm

Theorem.

Proof.

EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then\Xp\SQh—l. X] XXX X< XX [x [X
= partial encod. £9 chooses < 4h — 2 edges e} /1.
= 4 encodings (€1, ..., EPY < mP:(4h=2)

For each X C H, we apply Lem. 1 in O(|Ex|?) time.
If X £ X', then Ex N Ex/ = 0.

= Per encoding, we spend O(m3) time (for flows).

An XP Algorithm

Theorem.

Proof.

EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then\Xp\SQh—l. X] XXX X< XX [x [X
= partial encod. £9 chooses < 4h — 2 edges e} /1.
= 4 encodings (€1, ..., EPY < mP:(4h=2)

For each X C H, we apply Lem. 1 in O(|Ex|?) time.
If X # X', then Ex N Exr = 0.

= Per encoding, we spend O(m3) time (for flows).

= Total running time is @(mp'(4h_2)+3). O

Open Problems

e |Is EDGE DELETION TO PAGE-p PLANAR even in FPT?

Open Problems
e |Is EDGE DELETION TO PAGE-p PLANAR even in FPT?

e Is EDGE DELETION TO 1-PAGE d-PLANAR W!/[1]-hard
w.r.t. the natural parameter k if d is part of the input?

Open Problems
e |Is EDGE DELETION TO PAGE-p PLANAR even in FPT?

e Is EDGE DELETION TO 1-PAGE d-PLANAR W!/[1]-hard
w.r.t. the natural parameter k if d is part of the input?

Can we reduce from INDEPENDENT SET?

Open Problems

e |Is EDGE DELETION TO PAGE-p PLANAR even in FPT?

e Is EDGE DELETION TO 1-PAGE d-PLANAR W!/[1]-hard
w.r.t. the natural parameter k if d is part of the input?

Can we reduce from INDEPENDENT SET?

Note that DELETION TO DEGREE-d is W/|1]-hard with
respect to treewidth

and that outer d-planar graphs have
treewidth O(d)

Open Problems
e |Is EDGE DELETION TO PAGE-p PLANAR even in FPT?

e Is EDGE DELETION TO 1-PAGE d-PLANAR W!/[1]-hard
w.r.t. the natural parameter k if d is part of the input?

Can we reduce from INDEPENDENT SET?

Note that DELETION TO DEGREE-d is W/|1]-hard with
respect to treewidth

and that outer d-planar graphs have
treewidth O(d)

e (Can the fixed-order crossing number be computed in
27n91) instead of 27n°M) time?

Open Problems
e |Is EDGE DELETION TO PAGE-p PLANAR even in FPT?

e Is EDGE DELETION TO 1-PAGE d-PLANAR W!/[1]-hard
w.r.t. the natural parameter k if d is part of the input?

Can we reduce from INDEPENDENT SET?

Note that DELETION TO DEGREE-d is W/|1]-hard with
respect to treewidth

and that outer d-planar graphs have
treewidth O(d)

e (Can the fixed-order crossing number be computed in
27n91) instead of 27n°M) time?

e What is the parameterized complexity of EDGE DELETION
TO OUTER d-PLANARITY ?

	Graph Drawing: How to Deal with Crossings?
	The Problem
	Another Way to See Things: Conflict Graph
	Related Work (I)
	Related Work (II)
	Our Contribution
	Minimizing Crossings (or Pages)
	A Nice Tool: Subset Convolution
	Need the Fixed-Order Page Number Faster?
	Our Contribution
	\sc Edge Deletion to p-Page Planar

	Hitting Set of Size 1
	Preparing for the General Case
	The General Case
	Where Is the Difficulty?
	The Main Lemma
	Converting Solution E via $\hat E$ into S
	An XP Algorithm
	Open Problems

