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H(c,s) is a circle graph, that is, the intersection graph of
chords of a circle.

So EDGE DELETION TO 1-PAGE d-PLANAR is the same as
VERTEX DELETION TO DEGREE-d (in circle graphs).

For general graphs, this admits a quadratic kernel.
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graph, which is not bounded by vc.

FIXED-ORDER BOOK DRAWING — testing if there is a p-page
d-planar drawing of (G, o) — can be solved in (d 4 2)°0<)n or

in (d +2)°")n time.

Bhore et al. also study the flexible vertex-order case:
. O(vc .
They solve PAGE NUMBER In 2¥¢ " 1 ve log vc - n time.



Our Contribution

e \We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2™ - n°1) time.
Alternatively, given a budget p of pages, we can compute a
p-page book embedding with the min. number of crossings.



Our Contribution

e We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2™ - n°1) time.

e We obtain an O((d + 1) log n)-approximation algorithm for
the fixed-vertex-order d-planar page number.



Our Contribution

e We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2™ - n°1) time.

e We obtain an O((d + 1) log n)-approximation algorithm for
the fixed-vertex-order d-planar page number.

e We show how to decide in 20(cVklog(c+k)) . nO(1) time

whether deleting k edges of an ordered graph suffices to
obtain a d-planar layout on one page.



Our Contribution

e We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2™ - n°1) time.

e We obtain an O((d + 1) log n)-approximation algorithm for
the fixed-vertex-order d-planar page number.

e We show how to decide in 20(cVklog(c+k)) . nO(1) time

whether deleting k edges of an ordered graph suffices to
obtain a d-planar layout on one page.

o Let h be the size of a hitting set. 8
h = 1: We can efficiently compute the smallest set of edges
whose deletion yields fixed-vertex-order page number p.
h > 1. XP algorithm with respect to h + p.



Our Contribution

e \We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2™ - n°1) time.

Alternatively, given a budget p of pages, we can compute a
p-page book embedding with the min. number of crossings.

e We obtain an O((d + 1) log n)-approximation algorithm for
the

o We show how to decide in 20(cVklog(c+k)) . nO) time

whether deleting k edges of an ordered graph suffices to
obtain a d-planar layout on

e lLet h be the size of a |
h = 1: We can efficiently compute the smallest set of edges
whose deletion yields fixed-vertex-order page number p.
h > 1: XP algorithm with respect to h + p.



Minimizing Crossings (or Pages)
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Our Contribution

e \We can compute the fixed-vertex-order page number of an
ordered graph with m edges & n vertices in 2™ . n©(1) time.\/

e We obtain an O((d + 1) log n)-approximation algorithm for
the fixed-vertex-order d-planar page number. \/

e We show how to decide in 20(cVklog(c+k)) . hO(1) time
whether deleting k edges of an ordered graph suffices to
obtain a d-planar layout on one page.

o Let h be the size of a hitting set. 8
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Hitting Set of Size 1

Theorem. Given an ordered graph (G, o) with n vertices,
m edges, and h(G,o0) =1,
EDGE DELETION TO p-PAGE PLANAR can be
solved in O(m? log nloglog p) time.

Proof.

— Define directed graph.
— Find p directed paths.

— Define flow network.

— Find min-cost max flow.

Such a flow has value p
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The General Case

et, \ = f}
{bc} — {bc}
Here h =3 bridges {b,c} C H

— Split in (h = 1)-type instances  — Adjust flow network
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Where Is the Ditticulty?

For E C E(G) and g € [p], let E9 be the edges on page q.
Let X9 be the family of subsets of H bridged by edges in E9.

laminar

E9={(X,e}, )| X € X9} is the partial encoding of E on
page g and (€1, ..., EP) is the encoding of E.

If X C H is bridged only on, say, page 1 of an optimal drawing,
then we just have to select as many edges as possible (without
crossing) from those contained between ey and fy.

Let Qx = {q € [p]: X € X9}

Challenge: 1If |Qx| > 1, the choices of which edges are drawn
on which of these pages are not independent.
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The Main Lemma

Lemma 2: Let E C E(G) be a solution with encod. (£, ..., EP).
For every X C H with Qx # 0, let
—ex = {ex [ g € Qx},

- fx ={f{ | g € Qx}, and
— Sx C Ex from applying Lemma 1 w.r.t. ex, fx, p’ = |Qx].
Then S = J Sx is a solution for p pages and |S| > |E].

Proof. Let X C H with Qx # 0.
For g € Qx, let 57 be the edges in Sx that appear on

the same page as ey, € ex when applying Lemma 1.
Let 0: Qx — Rx be the permutation
s.t. f)?(q) is the unique element of fx in Sy.

We make a drawing of £ := (E \ Ex) U Sx on p pages
by assigning edges to pages, as follows.
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edges of E! containing fy edges of E2() containing g\

X
edges of E? containing £ edges of E?(®) containing f)?(Q)
For g € [p] \ Qx, set E9 = E9. E N E, is a feasible sol. of Lem. 1.
For g € Qx, construct E9 from E°(@). |~ EN EX‘AS |5x|.
~ |E| < |E

— remove the edges contained in f)?(q),
— add the edges of S, and Iterate this for each X C H.

— add the edges of E9 contained in ey. Finally, E = Ux Sx . []
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Theorem.

Proof.

EDGE DELETION TO p-PAGE PLANAR is in XP
with respect to h + p.

Recall: For g € [p], X9 is the family of subsets of
H that are bridged on page q.

Then\Xp\SQh—l. X] XXX X< XX [ x [X
= partial encod. £9 chooses < 4h — 2 edges e} /1.
= 4 encodings (€1, ..., EPY < mP:(4h=2)

For each X C H, we apply Lem. 1 in O(|Ex|?) time.
If X # X', then Ex N Exr = 0.

= Per encoding, we spend O(m3) time (for flows).

= Total running time is @(mp'(4h_2)+3). O
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Open Problems
e |Is EDGE DELETION TO PAGE-p PLANAR even in FPT?

e Is EDGE DELETION TO 1-PAGE d-PLANAR W!/[1]-hard
w.r.t. the natural parameter k if d is part of the input?

Can we reduce from INDEPENDENT SET?

Note that DELETION TO DEGREE-d is W/|1]-hard with
respect to treewidth

and that outer d-planar graphs have
treewidth O(d)

e (Can the fixed-order crossing number be computed in
27n91) instead of 27n°M) time?

e What is the parameterized complexity of EDGE DELETION
TO OUTER d-PLANARITY ?
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