Eliminating Crossings in Ordered Graphs

TCS Colloquium @ UJ — SWAT 2024

Akanksha Agrawal, Sergio Cabello, Michael Kaufmann, Saket Saurabh, Roohani Sharma, Yushi Uno, Alexander Wolff
arxiv.org/abs/2404.09771

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the drawing of a graph.

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the drawing of a graph. Reduce number of crossings in drawings!

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of vertices or edges s.t. the remaining graph can be drawn without crossings.

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of vertices or edges s.t. the remaining graph can be drawn without crossings.

Our setting: book embedding with fixed vertex order

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of vertices or edges s.t. the remaining graph can be drawn without crossings.

Our setting: book embedding with fixed vertex order

Our aim:
fast parametrized exact algorithms

Graph Drawing: How to Deal with Crossings?

Many crossings typically make it hard to understand the drawing of a graph. Reduce number of crossings in drawings!

Another option: Remove smallest subset of vertices or edges s.t. the remaining graph can be drawn without crossings.

Our setting: book embedding with fixed vertex order

Our aim:
fast parametrized exact algorithms

Yet another option: Remove part of every edge (e.g., middle half) \rightarrow partial edge drawings (not today).

The Problem

Edge Deletion to p-Page d-Planar
Input: ordered graph (G, σ), positive integers k, p, d.
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G such that $(G-S, \sigma)$ is p-page d-planar?

The Problem

Edge Deletion to p-Page d-Planar
Input: ordered graph (G, σ), positive integers k, p, d.
Parameters: $\quad k, p, d$
Question: Does there exist a set S of at most k edges of G such that $(G-S, \sigma)$ is p-page d-planar?

Disclaimer: We view p and d, though they appear in the problem name, not as constants, but as parameters.

The Problem

Edge Deletion to p-Page d-Planar
Input: ordered graph (G, σ), positive integers k, p, d.
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G such that $(G-S, \sigma)$ is p-page d-planar?

Disclaimer: We view p and d, though they appear in the problem name, not as constants, but as parameters.

Examples: - What is the page number of K_{5} ?

The Problem

Edge Deletion to p-Page d-Planar
Input: ordered graph (G, σ), positive integers k, p, d.
Parameters: $\quad k, p, d$
Question: Does there exist a set S of at most k edges of G such that $(G-S, \sigma)$ is p-page d-planar?

Disclaimer: We view p and d, though they appear in the problem name, not as constants, but as parameters.

Examples: - What is the page number of K_{5} ?
How many edges must we remove

- for a planar drawing of K_{5} on 2 pages?

The Problem

Edge Deletion to p-Page d-Planar
Input: ordered graph (G, σ), positive integers k, p, d.
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G such that $(G-S, \sigma)$ is p-page d-planar?

Disclaimer: We view p and d, though they appear in the problem name, not as constants, but as parameters.

Examples: - What is the page number of K_{5} ?
How many edges must we remove

- for a planar drawing of K_{5} on 2 pages?
- for a 1-planar drawing of K_{5} on 2 pages?

The Problem

Edge Deletion to p-Page d-Planar
Input: ordered graph (G, σ), positive integers k, p, d.
Parameters: k, p, d
Question: Does there exist a set S of at most k edges of G such that $(G-S, \sigma)$ is p-page d-planar?

Disclaimer: We view p and d, though they appear in the problem name, not as constants, but as parameters.

Examples: - What is the page number of K_{5} ?
How many edges must we remove

- for a planar drawing of K_{5} on 2 pages?
- for a 1-planar drawing of K_{5} on 2 pages?
- for a 2-planar drawing of K_{5} on 1 page?

Another Way to See Things: Conflict Graph

Given an ordered graph (G, σ), its conflict graph $H_{(G, \sigma)}$ is the graph that has a vertex for each edge of G and an edge for each pair of crossing edges of G.

Another Way to See Things: Conflict Graph

Given an ordered graph (G, σ), its conflict graph $H_{(G, \sigma)}$ is the graph that has a vertex for each edge of G and an edge for each pair of crossing edges of G.

Another Way to See Things: Conflict Graph

 Given an ordered graph (G, σ), its conflict graph $H_{(G, \sigma)}$ is the graph that has a vertex for each edge of G and an edge for each pair of crossing edges of G.
$H_{(G, \sigma)}$ is a circle graph, that is, the intersection graph of chords of a circle.

Another Way to See Things: Conflict Graph

 Given an ordered graph (G, σ), its conflict graph $H_{(G, \sigma)}$ is the graph that has a vertex for each edge of G and an edge for each pair of crossing edges of G.
$H_{(G, \sigma)}$ is a circle graph, that is, the intersection graph of chords of a circle.

Another Way to See Things: Conflict Graph

Given an ordered graph (G, σ), its conflict graph $H_{(G, \sigma)}$ is the graph that has a vertex for each edge of G and an edge for each pair of crossing edges of G.

$H_{(G, \sigma)}$ is a circle graph, that is, the intersection graph of chords of a circle.

So Edge Deletion to 1-Page d-Planar is the same as Vertex Deletion to Degree-d (in circle graphs).

Another Way to See Things: Conflict Graph

Given an ordered graph (G, σ), its conflict graph $H_{(G, \sigma)}$ is the graph that has a vertex for each edge of G and an edge for each pair of crossing edges of G.

$H_{(G, \sigma)}$ is a circle graph, that is, the intersection graph of chords of a circle.

So Edge Deletion to 1-Page d-Planar is the same as Vertex Deletion to Degree-d (in circle graphs).
For general graphs, this admits a quadratic kernel. [Xiao, 2017]

Related Work (I)

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to

Related Work (I)

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G, \sigma)}$.

Related Work (I)

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G, \sigma)}$. So for $p=2$, it suffices to test whether $H_{(G, \sigma)}$ is bipartite.

Related Work (I)

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G, \sigma)}$.
So for $p=2$, it suffices to test whether $H_{(G, \sigma)}$ is bipartite.
For $p=4$, Unger [1988] showed that the problem is NP-hard.

Related Work (I)

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G, \sigma)}$. So for $p=2$, it suffices to test whether $H_{(G, \sigma)}$ is bipartite.
For $p=4$, Unger [1988] showed that the problem is NP-hard.
For $p=3$, he [1992] claimed an efficient solution, but his approach is incomplete.
[Bachmann et al., GD 2023]

Related Work (I)

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G, \sigma)}$. So for $p=2$, it suffices to test whether $H_{(G, \sigma)}$ is bipartite.
For $p=4$, Unger [1988] showed that the problem is NP-hard.
For $p=3$, he [1992] claimed an efficient solution, but his approach is incomplete. [Bachmann et al., GD 2023]

Edge Deletion to p-Page Planar: special case $d=0$.

Related Work (I)

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G, \sigma)}$. So for $p=2$, it suffices to test whether $H_{(G, \sigma)}$ is bipartite.

For $p=4$, Unger [1988] showed that the problem is NP-hard.
For $p=3$, he [1992] claimed an efficient solution, but his approach is incomplete. [Bachmann et al., GD 2023]

Edge Deletion to p-Page Planar: special case $d=0$. This is in $H_{(G, \sigma)}$.

Related Work (I)

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G, \sigma)}$.
So for $p=2$, it suffices to test whether $H_{(G, \sigma)}$ is bipartite.
For $p=4$, Unger [1988] showed that the problem is NP-hard.
For $p=3$, he [1992] claimed an efficient solution, but his approach is incomplete. [Bachmann et al., GD 2023]

Edge Deletion to p-Page Planar: special case $d=0$. This is Vertex Deletion to p-Colorability in $H_{(G, \sigma)}$.

Related Work (I)

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G, \sigma)}$.
So for $p=2$, it suffices to test whether $H_{(G, \sigma)}$ is bipartite.
For $p=4$, Unger [1988] showed that the problem is NP-hard.
For $p=3$, he [1992] claimed an efficient solution, but his approach is incomplete. [Bachmann et al., GD 2023]

Edge Deletion to p-Page Planar: special case $d=0$. This is Vertex Deletion to p-Colorability in $H_{(G, \sigma)}$.
$p=1:$ MIS in circle graphs - quadratic time. [Valiante 2003]

Related Work (I)

Testing whether (G, σ) has (fixed-vertex-order) page number p (without edge deletions) is equivalent to p-colorability of $H_{(G, \sigma)}$.
So for $p=2$, it suffices to test whether $H_{(G, \sigma)}$ is bipartite.
For $p=4$, Unger [1988] showed that the problem is NP-hard.
For $p=3$, he [1992] claimed an efficient solution, but his approach is incomplete. [Bachmann et al., GD 2023]

Edge Deletion to p-Page Planar: special case $d=0$. This is Vertex Deletion to p-Colorability in $H_{(G, \sigma)}$.
$p=1:$ MIS in circle graphs - quadratic time. [Valiante 2003]
$p=2:$ Odd Cycle Transversal in circle graphs - FPT
[Reed, Smith, Vetta, 2004]

Related Work (II)

Fixed-Order Page Number

Related Work (II)

Fixed-Order Page Number can be solved in $2^{O\left(v c^{3}\right)} n$ time [Bhore, Ganian, Montecchiani, Nöllenburg, 2020]

Related Work (II)

Fixed-Order Page Number can be solved in $2^{O\left(v c^{3}\right)} n$ time [Bhore, Ganian, Montecchiani, Nöllenburg, 2020] and in $2^{O\left(\mathrm{pw}^{2}\right)} n$ time, where pw is the pathwidth of the ordered graph, which is not bounded by vc.
[Liu, Chen, Huang, Wang, 2021]

Related Work (II)

Fixed-Order Page Number can be solved in $2^{O\left(\mathrm{vc}^{3}\right)} n$ time [Bhore, Ganian, Montecchiani, Nöllenburg, 2020] and in $2^{O\left(\mathrm{pw}^{2}\right)} n$ time, where pw is the pathwidth of the ordered graph, which is not bounded by vc.
[Liu, Chen, Huang, Wang, 2021]
Fixed-Order Book Drawing - testing if there is a p-page d-planar drawing of (G, σ)

Related Work (II)

Fixed-Order Page Number can be solved in $2^{O\left(v^{3}\right)} n$ time [Bhore, Ganian, Montecchiani, Nöllenburg, 2020] and in $2^{O\left(\mathrm{pw}^{2}\right)} n$ time, where pw is the pathwidth of the ordered graph, which is not bounded by vc.
[Liu, Chen, Huang, Wang, 2021]
Fixed-Order Book Drawing - testing if there is a p-page d-planar drawing of (G, σ) - can be solved in $(d+2)^{O\left(v c^{3}\right)} n$ or in $(d+2)^{O\left(\mathrm{pw}^{2}\right)} n$ time.
[Liu, Chen, Huang, 2020]

Related Work (II)

Fixed-Order Page Number can be solved in $2^{O\left(v^{3}\right)} n$ time [Bhore, Ganian, Montecchiani, Nöllenburg, 2020] and in $2^{O\left(\mathrm{pw}^{2}\right)^{n}} n$ time, where pw is the pathwidth of the ordered graph, which is not bounded by vc.
[Liu, Chen, Huang, Wang, 2021]
Fixed-Order Book Drawing - testing if there is a p-page d-planar drawing of (G, σ) - can be solved in $(d+2)^{O\left(\mathrm{vc}^{3}\right)} n$ or in $(d+2)^{O\left(\mathrm{pw}^{2}\right)} n$ time.
[Liu, Chen, Huang, 2020]
Bhore et al. [2020] also study the flexible vertex-order case: They solve Page Number in $2^{\mathrm{vc}^{\mathrm{O}(\mathrm{vc})}}+\mathrm{vc} \log \mathrm{vc} \cdot n$ time.

Our Contribution

- We can compute the fixed-vertex-order page number of an ordered graph with m edges $\& n$ vertices in $2^{m} \cdot n^{O(1)}$ time. Alternatively, given a budget p of pages, we can compute a p-page book embedding with the min. number of crossings.

Our Contribution

- We can compute the fixed-vertex-order page number of an ordered graph with m edges $\& n$ vertices in $2^{m} \cdot n^{O(1)}$ time. Alternatively, given a budget p of pages, we can compute a p-page book embedding with the min. number of crossings.
- We obtain an $O((d+1) \log n)$-approximation algorithm for the fixed-vertex-order d-planar page number.

Our Contribution

- We can compute the fixed-vertex-order page number of an ordered graph with m edges $\& n$ vertices in $2^{m} \cdot n^{O(1)}$ time. Alternatively, given a budget p of pages, we can compute a p-page book embedding with the min. number of crossings.
- We obtain an $O((d+1) \log n)$-approximation algorithm for the fixed-vertex-order d-planar page number.
- We show how to decide in $2^{O(c \sqrt{k} \log (c+k))} \cdot n^{O(1)}$ time whether deleting k edges of an ordered graph suffices to obtain a d-planar layout on one page.

Our Contribution

- We can compute the fixed-vertex-order page number of an ordered graph with m edges $\& n$ vertices in $2^{m} \cdot n^{O(1)}$ time. Alternatively, given a budget p of pages, we can compute a p-page book embedding with the min. number of crossings.
- We obtain an $O((d+1) \log n)$-approximation algorithm for the fixed-vertex-order d-planar page number.
- We show how to decide in $2^{O(c \sqrt{k} \log (c+k))} \cdot n^{O(1)}$ time whether deleting k edges of an ordered graph suffices to obtain a d-planar layout on one page.
- Let h be the size of a hitting set.
 $h=1$: We can efficiently compute the smallest set of edges whose deletion yields fixed-vertex-order page number p. $h>1$: XP algorithm with respect to $h+p$.

Our Contribution

- We can compute the fixed-vertex-order page number of an ordered graph with m edges $\& n$ vertices in $2^{m} \cdot n^{O(1)}$ time. Alternatively, given a budget p of pages, we can compute a p-page book embedding with the min. number of crossings.
- We obtain an $O((d+1) \log n)$-approximation algorithm for the fixed-vertex-order d-planar page number.
- We show how to decide in $2^{O(c \sqrt{k} \log (c+k))} \cdot n^{O(1)}$ time whether deleting k edges of an ordered graph suffices to obtain a d-planar layout on one page.
- Let h be the size of a hitting set.

$h=1$: We can efficiently compute the smallest set of edges whose deletion yields fixed-vertex-order page number p. $h>1$: XP algorithm with respect to $h+p$.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in $(\mathrm{cr}+2)^{O\left(\mathrm{pw}^{2}\right)} n$ time whether a graph with n vertices and pathwidth pw can be drawn on a given number of pages with $\leq \mathrm{cr}$ crossings in total.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in $(\mathrm{cr}+2)^{O\left(\mathrm{pw}^{2}\right)} n$ time whether a graph with n vertices and pathwidth pw can be drawn on a given number of pages with $\leq \mathrm{cr}$ crossings in total.

Given an ordered graph (G, σ), let $\operatorname{cr}_{p}(G, \sigma)$ be the smallest number of crossings over all possible assignments of the edges of G to p pages.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in $(\mathrm{cr}+2)^{O\left(\mathrm{pw}^{2}\right)} n$ time whether a graph with n vertices and pathwidth pw can be drawn on a given number of pages with $\leq \mathrm{cr}$ crossings in total.

Given an ordered graph (G, σ), let $\mathrm{cr}_{p}(G, \sigma)$ be the smallest number of crossings over all possible assignments of the edges of G to p pages.

Theorem. Given $p \geq 1$ and an ordered graph (G, σ) with n vertices and m edges, we can compute the values $\operatorname{cr}_{1}(G, \sigma), \ldots, \operatorname{cr}_{p}(G, \sigma)$ in $2^{m} \cdot n^{O(1)}$ time.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in $(\mathrm{cr}+2)^{O\left(\mathrm{pw}^{2}\right)} n$ time whether a graph with n vertices and pathwidth pw can be drawn on a given number of pages with $\leq \mathrm{cr}$ crossings in total.

Given an ordered graph (G, σ), let $\operatorname{cr}_{p}(G, \sigma)$ be the smallest number of crossings over all possible assignments of the edges of G to p pages.

Theorem. Given $p \geq 1$ and an ordered graph (G, σ) with n vertices and m edges, we can compute the values $\operatorname{cr}_{1}(G, \sigma), \ldots, \operatorname{cr}_{p}(G, \sigma)$ in $2^{m} \cdot n^{O(1)}$ time.

- In other words, given a budget p of pages, we can compute a p-page book embedding with the minimum number of crossings in ... time.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in $(\mathrm{cr}+2)^{O\left(\mathrm{pw}^{2}\right)} n$ time whether a graph with n vertices and pathwidth pw can be drawn on a given number of pages with $\leq \mathrm{cr}$ crossings in total.

Given an ordered graph (G, σ), let $\operatorname{cr}_{p}(G, \sigma)$ be the smallest number of crossings over all possible assignments of the edges of G to p pages.

Theorem. Given $p \geq 1$ and an ordered graph (G, σ) with n vertices and m edges, we can compute the values $\mathrm{cr}_{1}(G, \sigma), \ldots, \mathrm{cr}_{p}(G, \sigma)$ in $2^{m} \cdot n^{O(1)}$ time.

- In other words, given a budget p of pages, we can compute a p-page book embedding with the minimum number of crossings in ... time.
- We can compute the fixed-vertex-order page number in ... time.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in $(\mathrm{cr}+2)^{O\left(\mathrm{pw}^{2}\right)} n$ time whether a graph with n vertices and pathwidth pw can be drawn on a given number of pages with $\leq \mathrm{cr}$ crossings in total.

Given an ordered graph (G, σ), let $\mathrm{cr}_{p}(G, \sigma)$ be the smallest number of crossings over all possible assignments of the edges of G to p pages.

Theorem. Given $p \geq 1$ and an ordered graph (G, σ) with n vertices and m edges, we can compute the values $\mathrm{Cr}_{1}(G, \sigma), \ldots, \mathrm{cr}_{p}(G, \sigma)$ in $2^{m} \cdot n^{O(1)}$ time.

- In other words, given a budget p of pages, we can compute a p-page book embedding with the minimum number of crossings in ... time.
- We can compute the fixed-vertex-order page number in ... time.

Find the smallest q such that $\operatorname{cr}_{q}(G, \sigma)=0$.

Minimizing Crossings (or Pages)

Liu, Chen, Huang, and Wang [2021] gave an algorithm that checks in $(\mathrm{cr}+2)^{O\left(\mathrm{pw}^{2}\right)} n$ time whether a graph with n vertices and pathwidth pw can be drawn on a given number of pages with $\leq \mathrm{cr}$ crossings in total.

Given an ordered graph (G, σ), let $\mathrm{cr}_{p}(G, \sigma)$ be the smallest number of crossings over all possible assignments of the edges of G to p pages.

Theorem. Given $p \geq 1$ and an ordered graph (G, σ) with n vertices and m edges, we can compute the values $\mathrm{Cr}_{1}(G, \sigma), \ldots, \mathrm{cr}_{p}(G, \sigma)$ in $2^{m} \cdot n^{O(1)}$ time.

- In other words, given a budget p of pages, we can compute a p-page book embedding with the minimum number of crossings in ... time.
- We can compute the fixed-vertex-order page number in ... time.

Find the smallest q such that $\operatorname{cr}_{q}(G, \sigma)=0$. Note that $q \leq m$.

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=$

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\operatorname{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\operatorname{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$. Can compute $\operatorname{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt) $\left\lvert\, \begin{array}{ccccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ V_{1} & & & v_{i} & & & & & V_{n}\end{array}\right.$

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$. Can compute $\operatorname{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt) For $i=1$ to n :

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$. Can compute $\operatorname{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt) For $i=1$ to n :

remove $\operatorname{in}\left(v_{i}\right)$ from B;

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$. Can compute $\operatorname{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt) For $i=1$ to n :

remove in $\left(v_{i}\right)$ from B; for each $e \in \operatorname{out}\left(v_{i}\right)$:

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$. Can compute $\operatorname{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt) For $i=1$ to n :

remove in $\left(v_{i}\right)$ from B; for each $e \in \operatorname{out}\left(v_{i}\right)$: cr $=c r+B \cdot \operatorname{rank}(e)$;

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$. Can compute $\operatorname{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt) For $i=1$ to n :

remove in $\left(v_{i}\right)$ from $B ;$ for each $e \in \operatorname{out}\left(v_{i}\right): c r=c r+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$. Can compute $\operatorname{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt) For $i=1$ to n :

remove in $\left(v_{i}\right)$ from $B ;$ for each $e \in \operatorname{out}\left(v_{i}\right): c r=c r+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$
So we can compute $\operatorname{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in total time.

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\operatorname{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt) For $i=1$ to n :

remove in $\left(v_{i}\right)$ from $B ;$ for each $e \in \operatorname{out}\left(v_{i}\right): c r=c r+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$
So we can compute $\mathrm{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}\left(m 2^{m}\right)$ total time.

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\operatorname{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt)
For $i=1$ to n :

remove in $\left(v_{i}\right)$ from B; for each $e \in \operatorname{out}\left(v_{i}\right)$: $\mathrm{cr}=\mathrm{cr}+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$
So we can compute $\mathrm{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}\left(m 2^{m}\right)$ total time.
For $q>1$ and $F \subseteq E(G)$, we have the recurrence

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\operatorname{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt)
For $i=1$ to n :

remove in $\left(v_{i}\right)$ from B; for each $e \in$ out $\left(v_{i}\right)$: $\mathrm{cr}=\mathrm{cr}+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$
So we can compute $\mathrm{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}\left(m 2^{m}\right)$ total time.
For $q>1$ and $F \subseteq E(G)$, we have the recurrence

$$
\operatorname{cr}_{q}(G[F], \sigma)=\min _{F^{\prime} \subseteq F}\{
$$

$$
\} .
$$

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\mathrm{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt)
For $i=1$ to n :

remove in $\left(v_{i}\right)$ from B; for each $e \in \operatorname{out}\left(v_{i}\right): c r=c r+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$
So we can compute $\mathrm{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}\left(m 2^{m}\right)$ total time.
For $q>1$ and $F \subseteq E(G)$, we have the recurrence

$$
\operatorname{cr}_{q}(G[F], \sigma)=\min _{F^{\prime} \subseteq F}\left\{\operatorname{cr}_{1}\left(G\left[F^{\prime}\right], \sigma\right)+\mathrm{cr}_{q-1}\left(G\left[F \backslash F^{\prime}\right], \sigma\right)\right\} .
$$

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\mathrm{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt)
For $i=1$ to n :
remove in $\left(v_{i}\right)$ from $B ;$ for each $e \in \operatorname{out}\left(v_{i}\right): c r=c r+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$
So we can compute $\mathrm{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}\left(m 2^{m}\right)$ total time.
For $q>1$ and $F \subseteq E(G)$, we have the recurrence

$$
\operatorname{cr}_{q}(G[F], \sigma)=\min _{F^{\prime} \subseteq F}\left\{\operatorname{cr}_{1}\left(G\left[F^{\prime}\right], \sigma\right)+\operatorname{cr}_{q-1}\left(G\left[F \backslash F^{\prime}\right], \sigma\right)\right\}
$$

Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m}\binom{m}{i} 2^{i}=$

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\mathrm{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt)
For $i=1$ to n :
remove in $\left(v_{i}\right)$ from $B ;$ for each $e \in \operatorname{out}\left(v_{i}\right): c r=c r+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$
So we can compute $\mathrm{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}\left(m 2^{m}\right)$ total time.
For $q>1$ and $F \subseteq E(G)$, we have the recurrence

$$
\operatorname{cr}_{q}(G[F], \sigma)=\min _{F^{\prime} \subseteq F}\left\{\operatorname{cr}_{1}\left(G\left[F^{\prime}\right], \sigma\right)+\operatorname{cr}_{q-1}\left(G\left[F \backslash F^{\prime}\right], \sigma\right)\right\} .
$$

Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m}\binom{m}{i} 2^{i}=\tilde{O}\left(m 3^{m}\right)$.

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\mathrm{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt)
For $i=1$ to n :

remove in $\left(v_{i}\right)$ from B; for each $e \in$ out $\left(v_{i}\right)$: $\mathrm{cr}=\mathrm{cr}+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$
So we can compute $\mathrm{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}\left(m 2^{m}\right)$ total time.
For $q>1$ and $F \subseteq E(G)$, we have the recurrence

$$
\operatorname{cr}_{q}(G[F], \sigma)=\min _{F^{\prime} \subseteq F}\left\{\operatorname{cr}_{1}\left(G\left[F^{\prime}\right], \sigma\right)+\operatorname{cr}_{q-1}\left(G\left[F \backslash F^{\prime}\right], \sigma\right)\right\} .
$$

Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m}\binom{m}{i} 2^{i}=\tilde{O}\left(m 3^{m}\right)$. Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, '07]

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\mathrm{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt)

For $i=1$ to n :

remove in $\left(v_{i}\right)$ from B; for each $e \in$ out $\left(v_{i}\right): c r=\mathrm{cr}+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$
So we can compute $\mathrm{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}\left(m 2^{m}\right)$ total time.
For $q>1$ and $F \subseteq E(G)$, we have the recurrence

$$
\operatorname{cr}_{q}(G[F], \sigma)=\min _{F^{\prime} \subseteq F}\left\{\operatorname{cr}_{1}\left(G\left[F^{\prime}\right], \sigma\right)+\operatorname{cr}_{q-1}\left(G\left[F \backslash F^{\prime}\right], \sigma\right)\right\} .
$$

Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m}\binom{m}{i} 2^{i}=\tilde{O}\left(m 3^{m}\right)$. Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, '07] Define two functions $f, g: 2^{E(G)} \rightarrow R$ to the ($\mathrm{min},+$)-ring R :

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\mathrm{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt)

For $i=1$ to n :

remove in $\left(v_{i}\right)$ from B; for each $e \in$ out $\left(v_{i}\right): c r=\mathrm{cr}+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$
So we can compute $\mathrm{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}\left(m 2^{m}\right)$ total time.
For $q>1$ and $F \subseteq E(G)$, we have the recurrence

$$
\operatorname{cr}_{q}(G[F], \sigma)=\min _{F^{\prime} \subseteq F}\left\{\operatorname{cr}_{1}\left(G\left[F^{\prime}\right], \sigma\right) \oplus \operatorname{cr}_{q-1}\left(G\left[F \backslash F^{\prime}\right], \sigma\right)\right\}
$$

Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m}\binom{m}{i} 2^{i}=\tilde{O}\left(m 3^{m}\right)$. Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, '07] Define two functions $f, g: 2^{E(G)} \rightarrow R$ to the (min, Ψ)-ring R :

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\operatorname{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt)
For $i=1$ to n :

remove in $\left(v_{i}\right)$ from B; for each $e \in \operatorname{out}\left(v_{i}\right)$: $\mathrm{cr}=\mathrm{cr}+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$
So we can compute $\mathrm{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}\left(m 2^{m}\right)$ total time.
For $q>1$ and $F \subseteq E(G)$, we have the recurrence

$$
\operatorname{cr}_{q}(G[F], \sigma)=\min _{F^{\prime} \subseteq F}\left\{\operatorname{cr}_{1}\left(G\left[F^{\prime}\right], \sigma\right) \oplus \operatorname{cr}_{q-1}\left(G\left[F \backslash F^{\prime}\right], \sigma\right)\right\} .
$$

Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m}\binom{m}{i} 2^{i}=\tilde{O}\left(m 3^{m}\right)$. Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, '07] Define two functions $f, g: 2^{E(G)} \rightarrow R$ to the (min, \oplus)-ring R : $f: F \mapsto \mathrm{cr}_{1}(G[F], \sigma) \quad$ and $\quad g: F \mapsto \mathrm{cr}_{q-1}(G[F], \sigma) \quad$ with $f, g(\cdot) \leq m^{2}$

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\mathrm{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt)
For $i=1$ to n :

remove in $\left(v_{i}\right)$ from B; for each $e \in$ out $\left(v_{i}\right): c r=\mathrm{cr}+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$
So we can compute $\mathrm{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}\left(m 2^{m}\right)$ total time.
For $q>1$ and $F \subseteq E(G)$, we have the recurrence

$$
\operatorname{cr}_{q}(G[F], \sigma)=\min _{F^{\prime} \subseteq F}\left\{\operatorname{cr}_{1}\left(G\left[F^{\prime}\right], \sigma\right) \oplus \operatorname{cr}_{q-1}\left(G\left[F \backslash F^{\prime}\right], \sigma\right)\right\} .
$$

Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m}\binom{m}{i} 2^{i}=\tilde{O}\left(m 3^{m}\right)$. Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, '07] Define two functions $f, g: 2^{E(G)} \rightarrow R$ to the (min, \oplus)-ring R :
$f: F \mapsto \mathrm{cr}_{1}(G[F], \sigma) \quad$ and $\quad g: F \mapsto \mathrm{cr}_{q-1}(G[F], \sigma) \quad$ with $f, g(\cdot) \leq m^{2}$
Then $(f * g)(F)=\sum_{F^{\prime} \subseteq F} f\left(F^{\prime}\right) \cdot g\left(F \backslash F^{\prime}\right)$ can be computed in $\tilde{O}\left(m^{2} 2^{m}\right)$.

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\mathrm{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt)
For $i=1$ to n :

remove in $\left(v_{i}\right)$ from B; for each $e \in$ out $\left(v_{i}\right): c r=\mathrm{cr}+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$
So we can compute $\mathrm{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}\left(m 2^{m}\right)$ total time.
For $q>1$ and $F \subseteq E(G)$, we have the recurrence

$$
\operatorname{cr}_{q}(G[F], \sigma)=\min _{F^{\prime} \subseteq F}\left\{\operatorname{cr}_{1}\left(G\left[F^{\prime}\right], \sigma\right) \oplus \operatorname{cr}_{q-1}\left(G\left[F \backslash F^{\prime}\right], \sigma\right)\right\} .
$$

Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m}\binom{m}{i} 2^{i}=\tilde{O}\left(m 3^{m}\right)$. Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, '07] Define two functions $f, g: 2^{E(G)} \rightarrow R$ to the (min, \oplus)-ring R :
$f: F \mapsto \mathrm{cr}_{1}(G[F], \sigma) \quad$ and $\quad g: F \mapsto \mathrm{cr}_{q-1}(G[F], \sigma)$ with $f, g(\cdot) \leq m^{2}$
Then $(f * g)(F)=\sum_{F^{\prime} \subseteq F} f\left(F^{\prime}\right) \cdot g\left(F \backslash F^{\prime}\right)$ can be computed in $\tilde{O}\left(m^{2} 2^{m}\right)$.

A Nice Tool: Subset Convolution

Let $p=1$ and $F \subseteq E(G)$. Then $\operatorname{cr}_{1}(G[F], \sigma)=\mid\{\{e, f\} \subseteq F: e$ crosses $f\} \mid$.
Can compute $\mathrm{cr}_{1}(G[F], \sigma)$ in $\tilde{O}(|F|)$ time:
$\mathrm{cr}=0 ; B=$ empty BST for edges (right endpt)
For $i=1$ to n :

remove in $\left(v_{i}\right)$ from B; for each $e \in$ out $\left(v_{i}\right)$: $\mathrm{cr}=\mathrm{cr}+B \cdot \operatorname{rank}(e) ; B \cdot \operatorname{add}(e)$
So we can compute $\mathrm{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}\left(m 2^{m}\right)$ total time.
For $q>1$ and $F \subseteq E(G)$, we have the recurrence

$$
\operatorname{cr}_{q}(G[F], \sigma)=\min _{F^{\prime} \subseteq F}\left\{\operatorname{cr}_{1}\left(G\left[F^{\prime}\right], \sigma\right) \oplus \operatorname{cr}_{q-1}\left(G\left[F \backslash F^{\prime}\right], \sigma\right)\right\}
$$

Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m}\binom{m}{i} 2^{i}=\tilde{O}\left(m 3^{m}\right)$. Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, '07] Define two functions $f, g: 2^{E(G)} \rightarrow R$ to the (min, +)-ring R :
$f: F \mapsto \operatorname{cr}_{1}(G[F], \sigma)$ and $g: F \mapsto \operatorname{cr}_{q-1}(G[F], \sigma)$ with $f, g(\cdot) \leq m^{2}$
Then $(f * g)(F)=\sum_{F^{\prime} \subseteq F} f\left(F^{\prime}\right) \cdot g\left(F \backslash F^{\prime}\right)$ can be computed in $\tilde{O}\left(m^{2} 2^{m}\right)$.

A Nice Tool: Subset Convolution

Theorem. Given $p \geq 1$ and an ordered graph (G, σ) with n vertices and m edges, we can compute the values $\operatorname{cr}_{1}(G, \sigma), \ldots, \operatorname{cr}_{p}(G, \sigma)$ in $\tilde{O}\left(p \cdot m^{2} 2^{m}\right)$ time.

So we can compute $\mathrm{cr}_{1}(G[F], \sigma)$ for all $F \subseteq E(G)$ in $\tilde{O}\left(m 2^{m}\right)$ total time. For $q>1$ and $F \subseteq E(G)$, we have the recurrence

$$
\operatorname{cr}_{q}(G[F], \sigma)=\min _{F^{\prime} \subseteq F}\left\{\operatorname{cr}_{1}\left(G\left[F^{\prime}\right], \sigma\right) \oplus \operatorname{cr}_{q-1}\left(G\left[F \backslash F^{\prime}\right], \sigma\right)\right\} .
$$

Brute-force computation takes time $O(m) \cdot \sum_{i=1}^{m}\binom{m}{i} 2^{i}=\tilde{O}\left(m 3^{m}\right)$. Instead, do subset convolution! [Björklund, Husfeldt, Kaski, Koivisto, '07] Define two functions $f, g: 2^{E(G)} \rightarrow R$ to the (min, Ψ)-ring R : $f: F \mapsto \mathrm{cr}_{1}(G[F], \sigma) \quad$ and $\quad g: F \mapsto \mathrm{cr}_{q-1}(G[F], \sigma)$ with $f, g(\cdot) \leq m^{2}$ Then $(f * g)(F)=\sum_{F^{\prime} \subseteq F} f\left(F^{\prime}\right) \cdot g\left(F \backslash F^{\prime}\right)$ can be computed in $\tilde{O}\left(m^{2} 2^{m}\right)$.

Need the Fixed-Order Page Number Faster?

Need the Fixed-Order Page Number Faster?

Lemma. Given (G, σ), we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $\operatorname{cr}_{1}(G-S, \sigma)=0$.

Need the Fixed-Order Page Number Faster?
Lemma. Given (G, σ), we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $\operatorname{cr}_{1}(G-S, \sigma)=0$. Via max. indep. set in circle graphs. [Valiente 2003]

Need the Fixed-Order Page Number Faster?

Lemma. Given (G, σ), we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $\operatorname{cr}_{1}(G-S, \sigma)=0$. Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an $O(\log n)$-approximation to the fixed-vertex-order page number of an n-vertex graph.

Need the Fixed-Order Page Number Faster?

Lemma. Given (G, σ), we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $\operatorname{cr}_{1}(G-S, \sigma)=0$. Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an $O(\log n)$-approximation to the fixed-vertex-order page number of an n-vertex graph.
Proof. Let $\mathcal{F}=\left\{F \subseteq E(G): \operatorname{cr}_{1}(G[F], \sigma)=0\right\}$.

Need the Fixed-Order Page Number Faster?

Lemma. Given (G, σ), we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $\operatorname{cr}_{1}(G-S, \sigma)=0$. Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an $O(\log n)$-approximation to the fixed-vertex-order page number of an n-vertex graph.

Proof.

$$
\text { Let } \mathcal{F}=\left\{F \subseteq E(G): \operatorname{cr}_{1}(G[F], \sigma)=0\right\} .
$$

$\mathcal{F}^{\prime} \subseteq \mathcal{F}$ is a feasible solution of the Set Cover instance $(E(G), \mathcal{F})$ if $\cup \mathcal{F}^{\prime}=E(G)$.

Need the Fixed-Order Page Number Faster?

Lemma. Given (G, σ), we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $\operatorname{cr}_{1}(G-S, \sigma)=0$. Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an $O(\log n)$-approximation to the fixed-vertex-order page number of an n-vertex graph.

Proof.

$$
\text { Let } \mathcal{F}=\left\{F \subseteq E(G): \operatorname{cr}_{1}(G[F], \sigma)=0\right\} .
$$

$\mathcal{F}^{\prime} \subseteq \mathcal{F}$ is a feasible solution of the Set Cover instance $(E(G), \mathcal{F})$ if $\cup \mathcal{F}^{\prime}=E(G)$.
\mathcal{F}^{\prime} yields a crossing-free drawing of G on $\left|\mathcal{F}^{\prime}\right|$ pages.

Need the Fixed-Order Page Number Faster?

Lemma. Given (G, σ), we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $\mathrm{cr}_{1}(G-S, \sigma)=0$. Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an $O(\log n)$-approximation to the fixed-vertex-order page number of an n-vertex graph.

Proof.

$$
\text { Let } \mathcal{F}=\left\{F \subseteq E(G): \operatorname{cr}_{1}(G[F], \sigma)=0\right\} .
$$

$\mathcal{F}^{\prime} \subseteq \mathcal{F}$ is a feasible solution of the Set Cover instance $(E(G), \mathcal{F})$ if $\cup \mathcal{F}^{\prime}=E(G)$.
\mathcal{F}^{\prime} yields a crossing-free drawing of G on $\left|\mathcal{F}^{\prime}\right|$ pages.
An opt/app. set cover yields an opt/app. page nmb.

Need the Fixed-Order Page Number Faster?

Lemma. Given (G, σ), we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $\mathrm{cr}_{1}(G-S, \sigma)=0$. Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an $O(\log n)$-approximation to the fixed-vertex-order page number of an n-vertex graph.

Proof.
Let $\mathcal{F}=\left\{F \subseteq E(G): \operatorname{cr}_{1}(G[F], \sigma)=0\right\}$.
$\mathcal{F}^{\prime} \subseteq \mathcal{F}$ is a feasible solution of the Set Cover instance $(E(G), \mathcal{F})$ if $\cup \mathcal{F}^{\prime}=E(G)$.
\mathcal{F}^{\prime} yields a crossing-free drawing of G on $\left|\mathcal{F}^{\prime}\right|$ pages.
An opt/app. set cover yields an opt/app. page nmb.
Compute solution \mathcal{S} by greedily adding the set F in \mathcal{F} that maximizes $|F \backslash \bigcup \mathcal{S}|$.

Need the Fixed-Order Page Number Faster?

Lemma. Given (G, σ), we can compute in quadratic time a smallest set $S \subseteq E(G)$ such that $\mathrm{cr}_{1}(G-S, \sigma)=0$. Via max. indep. set in circle graphs. [Valiente 2003]

Theorem. We can compute an $O(\log n)$-approximation to the fixed-vertex-order page number of an n-vertex graph.

Proof.
Let $\mathcal{F}=\left\{F \subseteq E(G): \operatorname{cr}_{1}(G[F], \sigma)=0\right\}$.
$\mathcal{F}^{\prime} \subseteq \mathcal{F}$ is a feasible solution of the Set Cover instance $(E(G), \mathcal{F})$ if $\cup \mathcal{F}^{\prime}=E(G)$.
\mathcal{F}^{\prime} yields a crossing-free drawing of G on $\left|\mathcal{F}^{\prime}\right|$ pages.
An opt/app. set cover yields an opt/app. page nmb.
Compute solution \mathcal{S} by greedily adding the set F in \mathcal{F} that maximizes $|F \backslash \cup \mathcal{S}|$. Apply lemma to $G-\cup \mathcal{S}$.

Our Contribution

- We can compute the fixed-vertex-order page number of an ordered graph with m edges \& n vertices in $2^{m} \cdot n^{O(1)}$ time. Alternatively, given a budget p of pages, we can compute a p-page book embedding with the min. number of crossings.
- We obtain an $O((d+1) \log n)$-approximation algorithm for the fixed-vertex-order d-planar page number.
- We show how to decide in $2^{O(c \sqrt{k} \log (c+k))} \cdot n^{O(1)}$ time whether deleting k edges of an ordered graph suffices to obtain a d-planar layout on one page.
- Let h be the size of a hitting set.
 $h=1$: We can efficiently compute the smallest set of edges whose deletion yields fixed-vertex-order page number p. $h>1$: XP algorithm with respect to $h+p$.

Our Contribution

- We can compute the fixed-vertex-order page number of an ordered graph with m edges \& n vertices in $2^{m} \cdot n^{O(1)}$ time.
- We obtain an $O((d+1) \log n)$-approximation algorithm for the fixed-vertex-order d-planar page number.
- We show how to decide in $2^{O(c \sqrt{k} \log (c+k))} \cdot n^{O(1)}$ time whether deleting k edges of an ordered graph suffices to obtain a d-planar layout on one page.
- Let h be the size of a hitting set.
 $h=1$: We can efficiently compute the smallest set of edges whose deletion yields fixed-vertex-order page number p. $h>1$: XP algorithm with respect to $h+p$.

Edge Deletion to p-Page Planar no crossings

Brute-force solution?

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph.

Edge Deletion to p-Page Planar

no crossings

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O\left(n(p+1)^{m}\right)$ time

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O\left(n(p+1)^{m}\right)$ time

New parameter:

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O\left(n(p+1)^{m}\right)$ time

New parameter: $h=$ size of hitting set

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O\left(n(p+1)^{m}\right)$ time

New parameter: $h=$ size of hitting set

- A hitting set can be much smaller than a vertex cover :-)

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O\left(n(p+1)^{m}\right)$ time

New parameter: $h=$ size of hitting set

- A hitting set can be much smaller than a vertex cover :-)
- Given m open intervals, a minimum-size hitting set can be found in $O(m \log m)$ time (greedily).

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O\left(n(p+1)^{m}\right)$ time

New parameter: $h=$ size of hitting set

- A hitting set can be much smaller than a vertex cover :-)
- Given m open intervals, a minimum-size hitting set can be found in $O(m \log m)$ time (greedily).

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O\left(n(p+1)^{m}\right)$ time

New parameter: $h=$ size of hitting set

- A hitting set can be much smaller than a vertex cover :-)
- Given m open intervals, a minimum-size hitting set can be found in $O(m \log m)$ time (greedily).

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O\left(n(p+1)^{m}\right)$ time

New parameter: $h=$ size of hitting set

- A hitting set can be much smaller than a vertex cover :-)
- Given m open intervals, a minimum-size hitting set can be found in $O(m \log m)$ time (greedily).

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O\left(n(p+1)^{m}\right)$ time

New parameter: $h=$ size of hitting set

- A hitting set can be much smaller than a vertex cover :-)
- Given m open intervals, a minimum-size hitting set can be found in $O(m \log m)$ time (greedily).

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O\left(n(p+1)^{m}\right)$ time

New parameter: $h=$ size of hitting set

- A hitting set can be much smaller than a vertex cover :-)
- Given m open intervals, a minimum-size hitting set can be found in $O(m \log m)$ time (greedily).

Edge Deletion to p-Page Planar

Brute-force solution?

For each mapping of the m edges to the p pages (allowing also for edge deletion), check for each page whether the edges assigned to it form an outerplanar graph. $\rightarrow O\left(n(p+1)^{m}\right)$ time

New parameter: $h=$ size of hitting set

- A hitting set can be much smaller than a vertex cover :-)
- Given m open intervals, a minimum-size hitting set can be found in $O(m \log m)$ time (greedily).

Hitting Set of Size 1

Theorem. Given an ordered graph (G, σ) with n vertices, m edges, and $h(G, \sigma)=1$, Edge Deletion to p-Page Planar can be solved in $O\left(m^{3} \log n \log \log p\right)$ time.

Hitting Set of Size 1

Theorem. Given an ordered graph (G, σ) with n vertices, m edges, and $h(G, \sigma)=1$, Edge Deletion to p-Page Planar can be solved in $O\left(m^{3} \log n \log \log p\right)$ time.

Hitting Set of Size 1

Theorem. Given an ordered graph (G, σ) with n vertices, m edges, and $h(G, \sigma)=1$, Edge Deletion to p-Page Planar can be solved in $O\left(m^{3} \log n \log \log p\right)$ time.

Hitting Set of Size 1

Theorem. Given an ordered graph (G, σ) with n vertices, m edges, and $h(G, \sigma)=1$,
Edge Deletion to p-Page Planar can be solved in $O\left(m^{3} \log n \log \log p\right)$ time.

Proof.

Hitting Set of Size 1

Theorem. Given an ordered graph (G, σ) with n vertices, m edges, and $h(G, \sigma)=1$,
Edge Deletion to p-Page Planar can be solved in $O\left(m^{3} \log n \log \log p\right)$ time.

Proof.

Hitting Set of Size 1

Theorem. Given an ordered graph (G, σ) with n vertices, m edges, and $h(G, \sigma)=1$, Edge Deletion to p-Page Planar can be solved in $O\left(m^{3} \log n \log \log p\right)$ time.

Proof.

- Define directed graph.

Hitting Set of Size 1

Theorem. Given an ordered graph (G, σ) with n vertices, m edges, and $h(G, \sigma)=1$,
Edge Deletion to p-Page Planar can be solved in $O\left(m^{3} \log n \log \log p\right)$ time.

Proof.

- Define directed graph.
- Find p directed paths.

Hitting Set of Size 1

Theorem. Given an ordered graph (G, σ) with n vertices, m edges, and $h(G, \sigma)=1$,
Edge Deletion to p-Page Planar can be solved in $O\left(m^{3} \log n \log \log p\right)$ time.

Proof.

- Define directed graph.
- Find p directed paths.
- Define flow network.

Hitting Set of Size 1

Theorem. Given an ordered graph (G, σ) with n vertices, m edges, and $h(G, \sigma)=1$,
Edge Deletion to p-Page Planar can be solved in $O\left(m^{3} \log n \log \log p\right)$ time.

Proof.

- Define directed graph.
- Find p directed paths.
- Define flow network.
- Find min-cost max flow.

Hitting Set of Size 1

Theorem. Given an ordered graph (G, σ) with n vertices, m edges, and $h(G, \sigma)=1$,
Edge Deletion to p-Page Planar can be solved in $O\left(m^{3} \log n \log \log p\right)$ time.

Proof.

- Define directed graph.
- Find p directed paths.
- Define flow network.
- Find min-cost max flow. Such a flow has value p

Hitting Set of Size 1

Theorem. Given an ordered graph (G, σ) with n vertices, m edges, and $h(G, \sigma)=1$,
Edge Deletion to p-Page Planar can be solved in $O\left(m^{3} \log n \log \log p\right)$ time.

Proof.

- Define directed graph.
- Find p directed paths.
- Define flow network.
- Find min-cost max flow. Such a flow has value p and max. total path length.

Preparing for the General Case

Preparing for the General Case

Preparing for the General Case

Two subsets $E, F \subseteq E(G)$ are compatible if $|E|=|F|$ and there is an enumeration $e_{1}, \ldots, e_{|F|}$ of E and an enumeration $f_{1}, \ldots, f_{|F|}$ of F s.t. e_{i} is contained in f_{i} for each $i \in[|F|]$.

Preparing for the General Case

Two subsets $E, F \subseteq E(G)$ are compatible if $|E|=|F|$ and there is an enumeration $e_{1}, \ldots, e_{|F|}$ of E and an enumeration $f_{1}, \ldots, f_{|F|}$ of F s.t. e_{i} is contained in f_{i} for each $i \in[|F|]$.

Lemma 1. Given an ordered graph (G, σ) with $h(G, \sigma)=1$ and two subsets $E, F \subseteq E(G)$ of size p, we can decide in $\tilde{O}\left(m^{3}\right)$ time whether E and F are compatible and, if so, solve a version of Edge Deletion to p-Page Planar s.t:

Preparing for the General Case

Two subsets $E, F \subseteq E(G)$ are compatible if $|E|=|F|$ and there is an enumeration $e_{1}, \ldots, e_{|F|}$ of E and an enumeration $f_{1}, \ldots, f_{|F|}$ of F
 s.t. e_{i} is contained in f_{i} for each $i \in[|F|]$.

Lemma 1. Given an ordered graph (G, σ) with $h(G, \sigma)=1$ and two subsets $E, F \subseteq E(G)$ of size p, we can decide in $\tilde{O}\left(m^{3}\right)$ time whether E and F are compatible and, if so, solve a version of Edge Deletion to p-Page Planar s.t:

- on each page, one edge of E is contained in all other edges and one edge of F contains all other edges on that page.

Preparing for the General Case

Two subsets $E, F \subseteq E(G)$ are compatible if $|E|=|F|$ and there is an enumeration $e_{1}, \ldots, e_{|F|}$ of E and an enumeration $f_{1}, \ldots, f_{|F|}$ of F
 s.t. e_{i} is contained in f_{i} for each $i \in[|F|]$.

Lemma 1. Given an ordered graph (G, σ) with $h(G, \sigma)=1$ and two subsets $E, F \subseteq E(G)$ of size p, we can decide in $\tilde{O}\left(m^{3}\right)$ time whether E and F are compatible and, if so, solve a version of Edge Deletion to p-Page Planar s.t:

- on each page, one edge of E is contained in all other edges and one edge of F contains all other edges on that page.

Proof.

Preparing for the General Case

Two subsets $E, F \subseteq E(G)$ are compatible if $|E|=|F|$ and there is an enumeration $e_{1}, \ldots, e_{|F|}$ of E and an enumeration $f_{1}, \ldots, f_{|F|}$ of F
 s.t. e_{i} is contained in f_{i} for each $i \in[|F|]$.

Lemma 1. Given an ordered graph (G, σ) with $h(G, \sigma)=1$ and two subsets $E, F \subseteq E(G)$ of size p, we can decide in $\tilde{O}\left(m^{3}\right)$ time whether E and F are compatible and, if so, solve a version of Edge Deletion to p-Page Planar s.t:

- on each page, one edge of E is contained in all other edges and one edge of F contains all other edges on that page.

Proof. Modify flow network:

Preparing for the General Case

Two subsets $E, F \subseteq E(G)$ are compatible if $|E|=|F|$ and there is an enumeration $e_{1}, \ldots, e_{|F|}$ of E and an enumeration $f_{1}, \ldots, f_{|F|}$ of F s.t. e_{i} is contained in f_{i} for each $i \in[|F|]$.

Lemma 1. Given an ordered graph (G, σ) with $h(G, \sigma)=1$ and two subsets $E, F \subseteq E(G)$ of size p, we can decide in $\tilde{O}\left(m^{3}\right)$ time whether E and F are compatible and, if so, solve a version of Edge Deletion to p-Page Planar s.t:

- on each page, one edge of E is contained in all other edges and one edge of F contains all other edges on that page.

Proof. Modify flow network: Connect only $s^{\prime} \rightarrow E$ and $F \rightarrow t$.

Preparing for the General Case

Two subsets $E, F \subseteq E(G)$ are compatible if $|E|=|F|$ and there is an enumeration $e_{1}, \ldots, e_{|F|}$ of E and an enumeration $f_{1}, \ldots, f_{|F|}$ of F s.t. e_{i} is contained in f_{i} for each $i \in[|F|]$.

Lemma 1. Given an ordered graph (G, σ) with $h(G, \sigma)=1$ and two subsets $E, F \subseteq E(G)$ of size p, we can decide in $\tilde{O}\left(m^{3}\right)$ time whether E and F are compatible and, if so, solve a version of Edge Deletion to p-Page Planar s.t:

- on each page, one edge of E is contained in all other edges and one edge of F contains all other edges on that page.

Proof. Modify flow network: Connect only $s^{\prime} \rightarrow E$ and $F \rightarrow t$. E and E compatible \Leftrightarrow

Preparing for the General Case

Two subsets $E, F \subseteq E(G)$ are compatible if $|E|=|F|$ and there is an enumeration $e_{1}, \ldots, e_{|F|}$ of E and an enumeration $f_{1}, \ldots, f_{|F|}$ of F s.t. e_{i} is contained in f_{i} for each $i \in[|F|]$.

Lemma 1. Given an ordered graph (G, σ) with $h(G, \sigma)=1$ and two subsets $E, F \subseteq E(G)$ of size p, we can decide in $\tilde{O}\left(m^{3}\right)$ time whether E and F are compatible and, if so, solve a version of Edge Deletion to p-Page Planar s.t:

- on each page, one edge of E is contained in all other edges and one edge of F contains all other edges on that page.

Proof. Modify flow network: Connect only $s^{\prime} \rightarrow E$ and $F \rightarrow t$. E and E compatible \Leftrightarrow maximum flow has value p.

The General Case

The General Case

The General Case

The General Case

The General Case

The General Case

The General Case

The General Case

- Split in ($h=1$)-type instances

The General Case

- Split in $(h=1)$-type instances - Adjust flow network

Where Is the Difficulty?

For $E \subseteq E(G)$ and $q \in[p]$, let E^{q} be the edges on page q.

Where Is the Difficulty?

For $E \subseteq E(G)$ and $q \in[p]$, let E^{q} be the edges on page q.
Let \mathcal{X}^{q} be the family of subsets of H bridged by edges in E^{q}.

Where Is the Difficulty?

For $E \subseteq E(G)$ and $q \in[p]$, let E^{q} be the edges on page q.
Let \mathcal{X}^{q} be the family of subsets of H bridged by edges in E^{q}.
If page q is crossing-free, the set family \mathcal{X}^{q} is laminar.

Where Is the Difficulty?

For $E \subseteq E(G)$ and $q \in[p]$, let E^{q} be the edges on page q. Let \mathcal{X}^{q} be the family of subsets of H bridged by edges in E^{q}. If page q is crossing-free, the set family \mathcal{X}^{a} is laminar. $\mathcal{E}^{q}=\left\{\left(X, e_{X}^{q}, f_{X}^{q}\right) \mid X \in \mathcal{X}^{q}\right\}$ is the partial encoding of E on page q

Where Is the Difficulty?

For $E \subseteq E(G)$ and $q \in[p]$, let E^{q} be the edges on page q. Let \mathcal{X}^{q} be the family of subsets of H bridged by edges in E^{q}. If page q is crossing-free, the set family \mathcal{X}^{a} is laminar. $\mathcal{E}^{q}=\left\{\left(X, e_{X}^{q}, f_{X}^{q}\right) \mid X \in \mathcal{X}^{q}\right\}$ is the partial encoding of E on page q and $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle$ is the encoding of E.

Where Is the Difficulty?

For $E \subseteq E(G)$ and $q \in[p]$, let E^{q} be the edges on page q. Let \mathcal{X}^{q} be the family of subsets of H bridged by edges in E^{q}. If page q is crossing-free, the set family \mathcal{X}^{q} is laminar. $\mathcal{E}^{q}=\left\{\left(X, e_{X}^{q}, f_{X}^{q}\right) \mid X \in \mathcal{X}^{q}\right\}$ is the partial encoding of E on page q and $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle$ is the encoding of E.

If $X \subseteq H$ is bridged only on, say, page 1 of an optimal drawing,

Where Is the Difficulty?

For $E \subseteq E(G)$ and $q \in[p]$, let E^{q} be the edges on page q. Let \mathcal{X}^{q} be the family of subsets of H bridged by edges in E^{q}. If page q is crossing-free, the set family \mathcal{X}^{q} is laminar. $\mathcal{E}^{q}=\left\{\left(X, e_{X}^{q}, f_{X}^{q}\right) \mid X \in \mathcal{X}^{q}\right\}$ is the partial encoding of E on page q and $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle$ is the encoding of E.

If $X \subseteq H$ is bridged only on, say, page 1 of an optimal drawing, then we just have to select as many edges as possible (without crossing) from those contained between e_{X}^{1} and f_{X}^{1}.

Where Is the Difficulty?

For $E \subseteq E(G)$ and $q \in[p]$, let E^{q} be the edges on page q. Let \mathcal{X}^{q} be the family of subsets of H bridged by edges in E^{q}. If page q is crossing-free, the set family \mathcal{X}^{a} is laminar.
$\mathcal{E}^{q}=\left\{\left(X, e_{X}^{q}, f_{X}^{q}\right) \mid X \in \mathcal{X}^{q}\right\}$ is the partial encoding of E on page q and $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle$ is the encoding of E.

If $X \subseteq H$ is bridged only on, say, page 1 of an optimal drawing, then we just have to select as many edges as possible (without crossing) from those contained between e_{X}^{1} and f_{X}^{1}.

Let $Q_{X}=\left\{q \in[p]: X \in \mathcal{X}^{q}\right\}$.

Where Is the Difficulty?

For $E \subseteq E(G)$ and $q \in[p]$, let E^{q} be the edges on page q. Let \mathcal{X}^{q} be the family of subsets of H bridged by edges in E^{q}. If page q is crossing-free, the set family \mathcal{X}^{a} is laminar.
$\mathcal{E}^{q}=\left\{\left(X, e_{X}^{q}, f_{X}^{q}\right) \mid X \in \mathcal{X}^{q}\right\}$ is the partial encoding of E on page q and $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle$ is the encoding of E.

If $X \subseteq H$ is bridged only on, say, page 1 of an optimal drawing, then we just have to select as many edges as possible (without crossing) from those contained between e_{X}^{1} and f_{X}^{1}.

Let $Q_{X}=\left\{q \in[p]: X \in \mathcal{X}^{q}\right\}$.
Challenge: If $\left|Q_{X}\right|>1$, the choices of which edges are drawn on which of these pages are not independent.

The Main Lemma
Lemma 2: Let $E \subseteq E(G)$ be a solution with encod. $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle$.

The Main Lemma

Lemma 2: Let $E \subseteq E(G)$ be a solution with encod. $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle$.
For every $X \subseteq H$ with $Q_{X} \neq \emptyset$, let
$-e_{X}=\left\{e_{X}^{q} \mid q \in Q_{X}\right\}$,
$-f_{X}=\left\{f_{X}^{q} \mid q \in Q_{X}\right\}$, and
$-S_{X} \subseteq E_{X}$ from applying Lemma 1 w.r.t. $e_{X}, f_{X}, p^{\prime}=\left|Q_{X}\right|$.

The Main Lemma

Lemma 2: Let $E \subseteq E(G)$ be a solution with encod. $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle$.
For every $X \subseteq H$ with $Q_{X} \neq \emptyset$, let
$-e_{X}=\left\{e_{X}^{q} \mid q \in Q_{X}\right\}$,
$-f_{X}=\left\{f_{X}^{q} \mid q \in Q_{X}\right\}$, and
$-S_{X} \subseteq E_{X}$ from applying Lemma 1 w.r.t. $e_{X}, f_{X}, p^{\prime}=\left|Q_{X}\right|$. Then $S=\bigcup_{X} S_{X}$ is a solution for p pages and $|S| \geq|E|$.

The Main Lemma

Lemma 2: Let $E \subseteq E(G)$ be a solution with encod. $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle$.
For every $X \subseteq H$ with $Q_{X} \neq \emptyset$, let
$-e_{X}=\left\{e_{X}^{q} \mid q \in Q_{X}\right\}$,
$-f_{X}=\left\{f_{X}^{q} \mid q \in Q_{X}\right\}$, and
$-S_{X} \subseteq E_{X}$ from applying Lemma 1 w.r.t. $e_{X}, f_{X}, p^{\prime}=\left|Q_{X}\right|$. Then $S=\bigcup_{X} S_{X}$ is a solution for p pages and $|S| \geq|E|$.

Proof. Let $X \subseteq H$ with $Q_{X} \neq \emptyset$.

The Main Lemma

Lemma 2: Let $E \subseteq E(G)$ be a solution with encod. $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle$.
For every $X \subseteq H$ with $Q_{X} \neq \emptyset$, let
$-e_{X}=\left\{e_{X}^{q} \mid q \in Q_{X}\right\}$,
$-f_{X}=\left\{f_{X}^{q} \mid q \in Q_{X}\right\}$, and
$-S_{X} \subseteq E_{X}$ from applying Lemma 1 w.r.t. $e_{X}, f_{X}, p^{\prime}=\left|Q_{X}\right|$. Then $S=\bigcup_{X} S_{X}$ is a solution for p pages and $|S| \geq|E|$.

Proof. Let $X \subseteq H$ with $Q_{X} \neq \emptyset$.
For $q \in Q_{X}$, let S_{X}^{q} be the edges in S_{X} that appear on the same page as $e_{X}^{q} \in e_{X}$ when applying Lemma 1 .

The Main Lemma

Lemma 2: Let $E \subseteq E(G)$ be a solution with encod. $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle$.
For every $X \subseteq H$ with $Q_{X} \neq \emptyset$, let
$-e_{X}=\left\{e_{X}^{q} \mid q \in Q_{X}\right\}$,
$-f_{X}=\left\{f_{X}^{q} \mid q \in Q_{X}\right\}$, and
$-S_{X} \subseteq E_{X}$ from applying Lemma 1 w.r.t. $e_{X}, f_{X}, p^{\prime}=\left|Q_{X}\right|$. Then $S=\bigcup_{X} S_{X}$ is a solution for p pages and $|S| \geq|E|$.

Proof. Let $X \subseteq H$ with $Q_{X} \neq \emptyset$.
For $q \in Q_{X}$, let S_{X}^{q} be the edges in S_{X} that appear on the same page as $e_{X}^{q} \in e_{X}$ when applying Lemma 1 .
Let $\sigma: Q_{X} \rightarrow Q_{X}$ be the permutation s.t. $f_{X}^{\sigma(q)}$ is the unique element of f_{X} in S_{X}^{q}.

The Main Lemma

Lemma 2: Let $E \subseteq E(G)$ be a solution with encod. $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle$.
For every $X \subseteq H$ with $Q_{X} \neq \emptyset$, let
$-e_{X}=\left\{e_{X}^{q} \mid q \in Q_{X}\right\}$,
$-f_{X}=\left\{f_{X}^{q} \mid q \in Q_{X}\right\}$, and
$-S_{X} \subseteq E_{X}$ from applying Lemma 1 w.r.t. $e_{X}, f_{X}, p^{\prime}=\left|Q_{X}\right|$. Then $S=\bigcup_{X} S_{X}$ is a solution for p pages and $|S| \geq|E|$.

Proof. Let $X \subseteq H$ with $Q_{X} \neq \emptyset$.
For $q \in Q_{X}$, let S_{X}^{q} be the edges in S_{X} that appear on the same page as $e_{X}^{q} \in e_{X}$ when applying Lemma 1.
Let $\sigma: Q_{X} \rightarrow Q_{X}$ be the permutation s.t. $f_{X}^{\sigma(q)}$ is the unique element of f_{X} in S_{X}^{q}. We make a drawing of $\hat{E}:=\left(E \backslash E_{X}\right) \cup S_{X}$ on p pages by assigning edges to pages, as follows.

Converting Solution E via \hat{E} into S

Converting Solution E via \hat{E} into S

Converting Solution E via \hat{E} into S

Converting Solution E via \hat{E} into S

edges of E^{2} containing f_{X}^{2}
edges of $E^{\sigma(2)}$ containing $f_{X}^{\sigma(2)}$
For $q \in[p] \backslash Q_{X}$, set $\hat{E}^{q}=E^{q}$.
For $q \in Q_{X}$, construct \hat{E}^{q} from $E^{\sigma(q)}$:

- remove the edges contained in $f_{X}^{\sigma(q)}$,
- add the edges of S_{X}^{q}, and
- add the edges of E^{q} contained in e_{X}^{q}.

Converting Solution E via \hat{E} into S

edges of E^{2} containing f_{X}^{2}
edges of $E^{\sigma(2)}$ containing $f_{X}^{\sigma(2)}$
For $q \in[p] \backslash Q_{X}$, set $\hat{E}^{q}=E^{q}$.
$E \cap E_{x}$ is a feasible sol. of Lem. 1.
For $q \in Q_{X}$, construct \hat{E}^{q} from $E^{\sigma(q)}$:

- remove the edges contained in $f_{X}^{\sigma(q)}$,
- add the edges of S_{X}^{q}, and
- add the edges of E^{q} contained in e_{X}^{q}.

Converting Solution E via \hat{E} into S

edges of E^{2} containing f_{X}^{2}
edges of $E^{\sigma(2)}$ containing $f_{X}^{\sigma(2)}$

For $q \in[p] \backslash Q_{X}$, set $\hat{E}^{q}=E^{q}$.
For $q \in Q_{X}$, construct \hat{E}^{q} from $E^{\sigma(q)}$:

- remove the edges contained in $f_{X}^{\sigma(q)}$,
- add the edges of S_{X}^{q}, and
- add the edges of E^{q} contained in e_{X}^{q}.
$E \cap E_{X}$ is a feasible sol. of Lem. 1. $\Rightarrow\left|E \cap E_{X}\right| \leq\left|S_{X}\right|$.

Converting Solution E via \hat{E} into S

edges of E^{2} containing f_{X}^{2}
edges of $E^{\sigma(2)}$ containing $f_{X}^{\sigma(2)}$

For $q \in[p] \backslash Q_{X}$, set $\hat{E}^{q}=E^{q}$.
For $q \in Q_{X}$, construct \hat{E}^{q} from $E^{\sigma(q)}$:

- remove the edges contained in $f_{X}^{\sigma(q)}$,
- add the edges of S_{X}^{q}, and
- add the edges of E^{q} contained in e_{X}^{q}.
$E \cap E_{X}$ is a feasible sol. of Lem. 1. $\Rightarrow\left|E \cap E_{X}\right| \leq\left|S_{X}\right|$.
$\Rightarrow|E| \leq|\hat{E}|=\left|\left(E \backslash E_{X}\right) \cup S_{X}\right|$.

Converting Solution E via \hat{E} into S

edges of E^{2} containing f_{X}^{2}
edges of $E^{\sigma(2)}$ containing $f_{X}^{\sigma(2)}$

For $q \in[p] \backslash Q_{X}$, set $\hat{E}^{q}=E^{q}$.
For $q \in Q_{X}$, construct \hat{E}^{q} from $E^{\sigma(q)}$:

- remove the edges contained in $f_{X}^{\sigma(q)}$,
- add the edges of S_{X}^{q}, and
- add the edges of E^{q} contained in e_{X}^{q}.
$E \cap E_{x}$ is a feasible sol. of Lem. 1. $\Rightarrow\left|E \cap E_{X}\right| \leq\left|S_{X}\right|$.
$\Rightarrow|E| \leq|\hat{E}|=\left|\left(E \backslash E_{X}\right) \cup S_{X}\right|$.
Iterate this for each $X \subseteq H$.

Converting Solution E via \hat{E} into S

 edges of E^{1} containing $f_{X}^{1} \quad$ edges of $E^{\sigma(1)}$ containing $f_{X}^{\sigma(1)}$
edges of E^{2} containing f_{X}^{2}
edges of $E^{\sigma(2)}$ containing $f_{X}^{\sigma(2)}$

For $q \in[p] \backslash Q_{X}$, set $\hat{E}^{q}=E^{q}$.
For $q \in Q_{X}$, construct \hat{E}^{q} from $E^{\sigma(q)}$:

- remove the edges contained in $f_{X}^{\sigma(q)}$,
- add the edges of S_{X}^{q}, and
- add the edges of E^{q} contained in e_{X}^{q}.
$E \cap E_{X}$ is a feasible sol. of Lem. 1 . $\Rightarrow\left|E \cap E_{X}\right| \leq\left|S_{X}\right|$.
$\Rightarrow|E| \leq|\hat{E}|=\left|\left(E \backslash E_{X}\right) \cup S_{X}\right|$.
Iterate this for each $X \subseteq H$.
Finally, $\hat{E}=\bigcup_{X} S_{X}=S$.

An XP Algorithm

Theorem. Edge Deletion to p-Page Planar is in XP with respect to $h+p$.

An XP Algorithm

Theorem. Edge Deletion to p-Page Planar is in XP with respect to $h+p$.

Proof. Recall: For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q.

An XP Algorithm

Theorem. Edge Deletion to p-Page Planar is in XP with respect to $h+p$.

Proof. Recall: For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q.
Then $\left|\mathcal{X}^{p}\right| \leq$

An XP Algorithm

Theorem. Edge Deletion to p-Page Planar is in XP with respect to $h+p$.

Proof. Recall: For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q.
Then $\left|\mathcal{X}^{p}\right| \leq \quad \times \times \times \times \times \times \times \times \times \times$

An XP Algorithm

Theorem. Edge Deletion to p-Page Planar is in XP with respect to $h+p$.

Proof. Recall: For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q.
Then $\left|\mathcal{X}^{p}\right| \leq$

An XP Algorithm

Theorem. Edge Deletion to p-Page Planar is in XP with respect to $h+p$.

Proof. Recall: For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q.
Then $\left|\mathcal{X}^{p}\right| \leq$

An XP Algorithm

Theorem. Edge Deletion to p-Page Planar is in XP with respect to $h+p$.

Proof. Recall: For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q.
Then $\left|\mathcal{X}^{p}\right| \leq$

An XP Algorithm

Theorem. Edge Deletion to p-Page Planar is in XP with respect to $h+p$.

Proof. Recall: For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q.

An XP Algorithm

Theorem．Edge Deletion to p－Page Planar is in XP with respect to $h+p$ ．

Proof．Recall：For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q ．
Then $\left|\mathcal{X}^{p}\right| \leq 2 h-1$ ．区区凹区区x 区 区国
\Rightarrow partial encod． \mathcal{E}^{q} chooses $\leq 4 h-2$ edges e_{X}^{q} / f_{X}^{q} ．

An XP Algorithm

Theorem. Edge Deletion to p-Page Planar is in XP with respect to $h+p$.

Proof. Recall: For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q.

\Rightarrow partial encod. \mathcal{E}^{q} chooses $\leq 4 h-2$ edges e_{X}^{q} / f_{X}^{q}.
\Rightarrow \# encodings $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle \leq$

An XP Algorithm

Theorem. Edge Deletion to p-Page Planar is in XP with respect to $h+p$.

Proof. Recall: For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q.

\Rightarrow partial encod. \mathcal{E}^{q} chooses $\leq 4 h-2$ edges e_{X}^{q} / f_{X}^{q}.
$\Rightarrow \#$ encodings $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle \leq m^{p \cdot(4 h-2)}$

An XP Algorithm

Theorem．Edge Deletion to p－Page Planar is in XP with respect to $h+p$ ．

Proof．Recall：For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q ．
Then $\left|\mathcal{X}^{p}\right| \leq 2 h-1$ ．区区区区区× 区 区 区
\Rightarrow partial encod． \mathcal{E}^{q} chooses $\leq 4 h-2$ edges e_{X}^{q} / f_{X}^{q} ．
\Rightarrow \＃encodings $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle \leq m^{p \cdot(4 h-2)}$
For each $X \subseteq H$ ，we apply Lem． 1 in $\tilde{O}\left(\left|E_{X}\right|^{3}\right)$ time．

An XP Algorithm

Theorem．Edge Deletion to p－Page Planar is in XP with respect to $h+p$ ．

Proof．Recall：For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q ．
Then $\left|\mathcal{X}^{p}\right| \leq 2 h-1$ ．区区区区区× 区 区 区
\Rightarrow partial encod． \mathcal{E}^{q} chooses $\leq 4 h-2$ edges e_{X}^{q} / f_{X}^{q} ．
\Rightarrow \＃encodings $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle \leq m^{p \cdot(4 h-2)}$
For each $X \subseteq H$ ，we apply Lem． 1 in $\tilde{O}\left(\left|E_{X}\right|^{3}\right)$ time．
If $X \neq X^{\prime}$ ，then $E_{X} \cap E_{X^{\prime}}=\emptyset$ ．

An XP Algorithm

Theorem．Edge Deletion to p－Page Planar is in XP with respect to $h+p$ ．

Proof．Recall：For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q ．
Then $\left|\mathcal{X}^{p}\right| \leq 2 h-1$ ．区区区区区x－区国
\Rightarrow partial encod． \mathcal{E}^{q} chooses $\leq 4 h-2$ edges e_{X}^{q} / f_{X}^{q} ．
\Rightarrow \＃encodings $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle \leq m^{p \cdot(4 h-2)}$
For each $X \subseteq H$ ，we apply Lem． 1 in $\tilde{O}\left(\left|E_{X}\right|^{3}\right)$ time．
If $X \neq X^{\prime}$ ，then $E_{X} \cap E_{X^{\prime}}=\emptyset$ ．
\Rightarrow Per encoding，we spend $\tilde{O}\left(m^{3}\right)$ time（for flows）．

An XP Algorithm

Theorem．Edge Deletion to p－Page Planar is in XP with respect to $h+p$ ．

Proof．Recall：For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q ．
Then $\left|\mathcal{X}^{p}\right| \leq 2 h-1$ ．区区区区区x－区国
\Rightarrow partial encod． \mathcal{E}^{q} chooses $\leq 4 h-2$ edges e_{X}^{q} / f_{X}^{q} ．
$\Rightarrow \#$ encodings $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle \leq m^{p \cdot(4 h-2)}$
For each $X \subseteq H$ ，we apply Lem． 1 in $\tilde{O}\left(\left|E_{X}\right|^{3}\right)$ time．
If $X \neq X^{\prime}$ ，then $E_{X} \cap E_{X^{\prime}}=\emptyset$ ．
\Rightarrow Per encoding，we spend $\tilde{O}\left(m^{3}\right)$ time（for flows）．

An XP Algorithm

Theorem．Edge Deletion to p－Page Planar is in XP with respect to $h+p$ ．

Proof．Recall：For $q \in[p], \mathcal{X}^{q}$ is the family of subsets of H that are bridged on page q ．
Then $\left|\mathcal{X}^{p}\right| \leq 2 h-1$ ．区区区区区× 区 区 区
\Rightarrow partial encod． \mathcal{E}^{q} chooses $\leq 4 h-2$ edges e_{X}^{q} / f_{X}^{q} ．
$\Rightarrow \#$ encodings $\left\langle\mathcal{E}^{1}, \ldots, \mathcal{E}^{p}\right\rangle \leq m^{p \cdot(4 h-2)}$
For each $X \subseteq H$ ，we apply Lem． 1 in $\tilde{O}\left(\left|E_{X}\right|^{3}\right)$ time．
If $X \neq X^{\prime}$ ，then $E_{X} \cap E_{X^{\prime}}=\emptyset$ ．
\Rightarrow Per encoding，we spend $\tilde{O}\left(m^{3}\right)$ time（for flows）．
\Rightarrow Total running time is $\tilde{O}\left(m^{p \cdot(4 h-2)+3}\right)$ ．

Open Problems

- Is Edge Deletion to Page-p Planar even in FPT?

Open Problems

- Is Edge Deletion to Page-p Planar even in FPT?
- Is Edge Deletion to 1-Page d-Planar $W[1]$-hard w.r.t. the natural parameter k if d is part of the input?

Open Problems

- Is Edge Deletion to Page-p Planar even in FPT?
- Is Edge Deletion to 1-Page d-Planar $W[1]$-hard w.r.t. the natural parameter k if d is part of the input?

Can we reduce from Independent Set?

Open Problems

- Is Edge Deletion to Page-p Planar even in FPT?
- Is Edge Deletion to 1-Page d-Planar $W[1]$-hard w.r.t. the natural parameter k if d is part of the input? Can we reduce from Independent Set?
Note that Deletion to Degree-d is W[1]-hard with respect to treewidth [Betzler, Bredereck, Niedermeier, Uhlmann 2012] and that outer d-planar graphs have treewidth $O(d)$ [Wood \& Telle, 2007]

Open Problems

- Is Edge Deletion to Page-p Planar even in FPT?
- Is Edge Deletion to 1-Page d-Planar $W[1]$-hard w.r.t. the natural parameter k if d is part of the input?

Can we reduce from Independent Set?
Note that Deletion to DEGREE-d is W[1]-hard with respect to treewidth [Betzler, Bredereck, Niedermeier, Uhlmann 2012] and that outer d-planar graphs have treewidth $O(d)$ [Wood \& Telle, 2007]

- Can the fixed-order crossing number be computed in $2^{n} n^{O(1)}$ instead of $2^{m} n^{O(1)}$ time?

Open Problems

- Is Edge Deletion to Page-p Planar even in FPT?
- Is Edge Deletion to 1-Page d-Planar $W[1]$-hard w.r.t. the natural parameter k if d is part of the input? Can we reduce from Independent Set?
Note that Deletion to Degree-d is W[1]-hard with respect to treewidth [Betzler, Bredereck, Niedermeier, Uhlmann 2012] and that outer d-planar graphs have treewidth $O(d)$ [Wood \& Telle, 2007]
- Can the fixed-order crossing number be computed in $2^{n} n^{O(1)}$ instead of $2^{m} n^{O(1)}$ time?
- What is the parameterized complexity of Edge Deletion to Outer d-Planarity (that is, for unordered graphs)?

