
CHAPTER ELEVEN

A Simple and Efficient Algorithm

for High-Quality Line Labeling

Alexander Wolff 1 Lars Knipping2 Marc van Kreveld3

Tycho Strijk3 Pankaj K. Agarwal4

11.1 INTRODUCTION

The interest in algorithms that automatically place labels on maps, graphs, or di-
agrams has increased with the advance in type-setting technology and the amount
of information to be visualized. However, though manually labeling a map is es-
timated to take fifty percent of total map production time (Morrison, 1980), most
geographic information systems (GIS) offer only very basic label-placement features.
In practice, a GIS user is still forced to invest several hours in order to eliminate
manually all label-label and label-feature intersections on a map.

In this chapter, we suggest an algorithm that labels one of the three classes
of map objects, namely polygonal chains, such as rivers or streets. Our method is
simple and efficient. At the same time, it produces results of high aesthetical quality.
It is the first that fulfills both of the following two requirements: it allows curved
labels and runs in O(n2) time, where n is the number of points of the polyline.

In order to formalize what good line labeling means, we studied Imhof’s rules
for positioning names on maps (Imhof, 1975). His well-established catalogue of
label placement rules also provides a set of guidelines that refers to labeling linear
objects. (For a general evaluation of quality for label-placement methods, see (van
Dijk et al., 1999).) Imhof’s rules can be put into two categories, namely hard
and soft constraints. Hard constraints represent minimum requirements for decent
labeling:

(H1) A label must be placed at least at some distance ε from the polyline.

(H2) The curvature of the curve along which the label is placed is bounded from
above by the curvature of a circle with radius r.

1Institut für Mathematik und Informatik, Ernst-Moritz-Arndt-Universität, Jahnstraße 15a, D-
17487 Greifswald, Germany, awolff@mail.uni-greifswald.de

2Sender Freies Berlin, Forckenbeckstraße 52, D-14199 Berlin, Germany, knipping@altus.de
3Department of Computer Science, Utrecht University, The Netherlands, {marc,

tycho}@cs.uu.nl, supported by the Dutch Organization for Scientific Research (N.W.O.) and
the ESPRIT IV LTR Project No. 21957 (CGAL)

4Center for Geometric Computing, Department of Computer Science, Duke University,
Durham, NC, U.S.A., pankaj@cs.duke.edu, supported by Army Research Office MURI grant
DAAH04-96-1-0013, by a Sloan fellowship, by NSF grants EIA–9870724 and CCR–9732787, and
by a grant from the U.S.-Israeli Binational Science Foundation.

A Simple and Efficient Algorithm for High-Quality Line Labeling 2

(H3) The label must neither intersect itself nor the polyline.

Soft constraints on the other hand help to express preferences between ac-
ceptable label positions. They formalize aesthetic criteria and help to improve the
visual association between line and label. A label should

(S1) be close to the polyline,

(S2) have few inflection points,

(S3) be placed as straight as possible, and

(S4) be placed as horizontally as possible.

We propose an algorithm that produces a candidate strip along the input
polyline. This strip has the same height as the given label, consists of rectangular
and annular segments, and fulfills the hard constraints. In order to optimize soft
constraints, we use one or a combination of several evaluation functions.

The candidate strip can be regarded as a simplification of the input poly-
line. The algorithm for computing the strip is similar to the Douglas-Peucker line-
simplification algorithm (Douglas and Peucker, 1973) in that it refines the initial
solution recursively. However, in contrast to a simplified line, the strip is never al-
lowed to intersect the given polyline. The strip-generating algorithm has a runtime
of O(n2), where n is the number of points on the polyline. The algorithm requires
linear storage.

Given a strip and the length of a label, we propose three evaluation functions
for selecting good label candidates within the strip. These functions optimize the
first three soft constraints. Their implementation is described in detail in (Knip-
ping, 1998). We can compute in linear time a placement of the label within the
strip so that the curvature or the number of inflections of the label is minimized.
Since it is desirable to keep the label as close to the polyline as possible (while
keeping a minimum distance) we also investigated the directed label-polyline Haus-
dorff distance. This distance is given by the distance of two points; a) the point
p on the label that is furthest away from the polyline and b) the point p′ on the
polyline that is closest to p. Under certain conditions we can find a label position
that minimizes this distance in O(n log n) time (Knipping, 1998). Here we give a
simple algorithm that finds a near-optimal label placement according to this crite-
rion in O(nk + k log k) time, where k is the ratio of the length of the strip and the
maximum allowed discrepancy to the exact minimum Hausdorff distance.

If a whole map is to be labeled, we can also generate a set of near-optimal
label candidates for each polyline, and use them as input to general map-labeling
algorithms as (Edmondson et al., 1997; Kakoulis and Tollis, 1998; Wagner and
Wolff, 1998). Some of these algorithms accept a priority for each candidate; in our
case we could use the result of the evaluation function.

In his list of guidelines for good line labeling, Imhof also recommends the
labeling of a polyline at regular intervals, especially between junctions with other
polylines of the same width and color. River names e.g. tend to change below
the mouths of large tributaries. This problem can be handled by extending our
algorithms as follows. We compute our strip and generate a set of the, say ten best

A Simple and Efficient Algorithm for High-Quality Line Labeling 3

label candidates for each river segment that is limited by tributaries of equal type.
Then we can view each river segment as a separate feature, and again use a general
map-labeling algorithm to label as many segments as possible. Prioritizing each
label candidate with its distance to the closer end of the river segment would give
candidates in the middle of a segment a higher priority and thus tend to increase
label-label distances along the polyline.

This chapter is structured as follows. In the next section we briefly review
previous work on line labeling. In Section 11.3 we explain how to compute a buffer
around the input polyline that protects the strip from getting too close to the
polyline and from sharp bends at convex vertices. In Section 11.4 we give the
algorithm that computes the strip and in Section 11.5 we show how this strip can
be used to find good label candidates for the polyline. Finally, in Section 11.6
we describe our experiments. Our implementation of the strip generator for x-
monotonous polylines and the three evaluation functions can be tested on-line at
the URL http://www.inf.fu-berlin.de/map-labeling/lines.

11.2 PREVIOUS WORK

For an extensive bibliography about map labeling in general, see (Wolff and Strijk,
1996). The problem of automated line labeling has been treated before. In (Doer-
schler and Freeman, 1992; Barrault and Lecordix, 1995; Alexander and Hantman,
1995; Edmondson et al., 1997; Kramer, 1997) only rectangular labels are allowed;
curved labels are not considered. In (Freeman, 1988) a set of label-placement rules
similar to those of (Imhof, 1975) is listed, followed by a rough description of an
algorithm. An analysis of Figure 8 in (Freeman, 1988) shows that river names are
broken into shorter pieces that are then placed parallel to segments of the river.
Each piece ends before it would run into the river or end too far from the current
river segment.

In (Barrault, 1997) curved labels are taken into account. First, an input poly-
line is split into sections depending on its length and junctions (forks) with other
polylines. For details of this step, see (Barrault and Lecordix, 1995). Then the
polyline is treated with an adaptation of an operator from morphological mathe-
matics, closure, that is a mixture of an erosion and a dilation. This operator yields
a baseline for label candidates where the polyline does not bend too abruptly. It is
not clear how this is done algorithmically; no asymptotic runtime bounds are given.
Finally, simulated annealing is used in order to find a good global label placement,
i.e. a placement that maximizes the number of features that receive a label and at
the same time takes into account the cartographic quality of each label position.

In (Poon et al., 1998) a more theoretical problem is analyzed; an instance
of axis-parallel line segments is labeled with rectangular labels of common height.
While the length of each label equals that of the corresponding line segment, the
label height is to be maximized.

While the restriction to rectangular labels is acceptable for technical maps or
road maps (where roads must be labeled with road numbers), we feel that curved
labels are a necessity for high-quality line labeling. The method we suggest is the
first that fulfills both of the following two requirements: it allows curved labels and

A Simple and Efficient Algorithm for High-Quality Line Labeling 4

its runtime is in O(n2). The runtime thus only depends on the number of points
of the polyline, and not on other parameters such as the resolution of the output
device. Note that the time bound holds even if the approximate Hausdorff distance
is used to select good label candidates within the strip as long as we choose the
parameter k linear in n.

11.3 A BUFFER AROUND THE INPUT POLYLINE

In order to reduce the search space for good label candidates, we generate a strip
along the input polyline that is (a) likely to contain good label positions and (b) easy
to compute. Generating our strip consists of two major tasks. First, we compute a
buffer around the polyline that our strip must not intersect. Second, we generate
an initial strip and refine it recursively. Each refinement step brings the strip closer
to the polyline, but also introduces additional inflections.

The input to our algorithm consists of a polyline P = (p1, . . . , pn) with points
pi = (xi, yi), a minimum label-polyline distance ε, a maximum curvature 1/r, and
a label height h. It makes sense to choose r � ε but the algorithm does not depend
on this. We assume that P is x-monotonous, i.e. x1 < . . . < xn. Non-monotonous
polylines can be split up into monotonous pieces of maximum length in linear time
by a simple greedy algorithm. That algorithm goes sequentially through the edges
of the polyline. Whenever adding the current edge to the current piece would make
that piece non-monotonous, a new piece is started with the current edge.

For ease of presentation we direct P from p1 to pn and only label the upper
(i.e. left) side of the polyline. We use r-disk (r-arc) as shorthand for a disk (arc)
of radius r. We say that pi is at a right turn of P if pi+1 lies to the right of the
directed line through pi−1 and pi, see p3 or p4 in Figure 11.1.

r
2ε

B(P)

P

p3

D4

D1

D7

D10

D11

p1

p4

D1

D4

D7

D11

Figure 11.1 The boundary of the (ε, r)-buffer B(P) (bold dashed line) of the input polyline P

(bold solid line).

We define the (ε, r)-buffer B(P) in two steps. First let the ε-buffer be the
union of all ε-disks whose center lies on P , see the light-shaded area in Figure 11.1.
Second we add certain pieces of r-disks Di placed at right turns pi of P . Their
task is to bound the curvature of our strip. The center mi of Di is placed on the
angular bisector bi of the adjacent edges of P such that Di touches and contains

A Simple and Efficient Algorithm for High-Quality Line Labeling 5

the ε-disk centered at pi, see Figure 11.2. Let Di be the part of Di that is left of
the ε-buffer and touches the ε-disk, see the dark-shaded areas in Figure 11.1. Then
B(P) is the union of the ε-buffer and the Di for each right turn pi.

To simplify the calculation of the strip, we also place r-disks D1 and Dn at the
endpoints p1 and pn of P , respectively. Let bn be the normal to the edge pn−1pn in
pn. Then the center of Dn lies on bn such that Dn touches and contains the ε-disk
centered at pn, see Dn in Figure 11.2. The placement of D1 is analogous.

In order to compute the boundary of the (ε, r)-buffer we first compute that
of the ε-buffer. This is simple since the x-monotonicity of P guarantees that the
ε-buffer does not have any holes.

For computing the candidate strip it is important that we have access to the
elements of the outer face of the (ε, r)-buffer in the order in which they occur. We
compute the (ε, r)-buffer in two phases.

In the first phase, for each right turn pi we follow the boundary of the ε-
buffer from ti to the right until we intersect the boundary of Di for the first time.
This intersection point is denoted by ri, see Figure 11.2. The arc from ti to ri,
oriented clockwise, is the right arc Ri, one of the two parts of the boundary of Di

we are interested in. The left arcs Li that go counterclockwise from ti to li can be
computed analogously. A special case arises if ti lies in the interior of the ε-buffer.
Then Ri or Li is empty, and we have to follow P from pi in both directions until we
arrive at a point or edge that corresponds to an arc or line segment on the upper
part of the ε-buffer. From there, we can continue as usual.

Di

Ri
Li

mi

ti

pi−1

pi+1

pi

bi

li

ri

P

Rn
tn

pn

mn

bn

rn

Dn

Figure 11.2 Placing r-disks Di at right turns pi of the input polyline P .

Clearly, this procedure has a worst-case runtime of O(n2). The worst case
occurs if there are a linear number of right turns pi where we have to walk over
a linear number of segments of the ε-buffer until we hit li or ri, i.e. if r is large
compared to the length of the edges of P . However, in practice one can expect
to walk only over a constant number of segments of the ε-buffer; then the running
time is Θ(n), see Section 11.6. The worst-case running time can be improved using
more sophisticated data structures, but we omit this improvement here as it makes
the algorithm more complicated.

In the second phase, we incrementally extend the ε-buffer to the (ε, r)-buffer
using the left and right arcs we just computed. We maintain Bcurr, the outer face
of the union of the ε-buffer and the areas Di we have processed so far. Initially let
Bcurr be the boundary of the ε-buffer and let the interior of Bcurr the interior of the
ε-buffer. Let the r-arc Ai be the union of Li and Ri. Note that Ai is the part of
the boundary of Di that is a potential part of the outer face of the (ε, r)-buffer. For
each right turn pi we check whether Ai lies completely in the interior of Bcurr. If

A Simple and Efficient Algorithm for High-Quality Line Labeling 6

this is not the case we extend Bcurr by using the appropriate parts of Ai.
The boundary of the ε-buffer consists of a linear number of line and arc seg-

ments to which we add O(n) arcs of type Ai. One can prove that each of these arcs
can contribute at most three pieces to the outer face of B(P). Our implementation
does not depend on this result, but it shows that the outer face of B(P) has linear
complexity. Due to the incremental construction this is also an upper bound for
the size of Bcurr.

Given these observations it is easy to devise an O(n2)-algorithm that computes
the boundary of the outer face of B(P). We store Bcurr in a doubly connected list.
Since the length of this list is linear we can afford to scan the whole list when we
search for intersections with the current arc Ai. If we consider carefully whether
we enter or leave the interior of the area delimited by Bcurr, we can update Bcurr in
linear time for each right turn. We omit details here.

In our implementation of the second phase we use a similar trick as in the first
phase to avoid a quadratic runtime in many cases. We exploit the fact that an arc
Ai usually spans only a constant number of elements of Bcurr.

11.4 A CANDIDATE STRIP

Once we have the outer face of the (ε, r)-buffer, we compute the baseline of the label
candidate strip and refine it recursively. We refer to the line and arc segments that
delimit the buffer on the upper side between l1 and rn as baseline objects. We have
access to these objects in the order in which they appear on the boundary of the
buffer’s outer face. We start with an arc A that touches the first and last object Oi

and Ok, respectively. We bend A towards the buffer until it hits a third object Oj .
There, we split A into two pieces, its children. We connect the children of A with
a piece of Oj that initially has length zero. Then we recursively bend the children
further towards the buffer, see Figure 11.3. While we bend, the portion of Oj that
connects the children of A is growing. Note that there are two phases: in the first,
the radius of the arcs increases while it decreases in the second. The recursion ends
where Oi and Ok are adjacent on the buffer (since there is no Oj then) and in the
second phase where the curvature of an arc would exceed 1/(r + h), h the label
height.

For each level of the recursion, the sequence of arcs we obtain in this way forms
a continuous curve L. If we direct L from left to right, it becomes obvious that the
radius of all arcs that turn right (i.e. towards the buffer) is at least r and the radius
of arcs that turn left is at least r + h. By using L as the baseline of our strip of
height h we ensure that all arcs that form the upper boundary and the baseline of
the strip have at least radius r. Thus the strip fulfills the curvature constraint H2.
Since the baseline of the strip cannot intersect the ε-buffer it is clear that the strip
also fulfills the distance constraint H1. The non-self-intersection constraint H3 can
easily be kept by ending the recursion where the distance between Oi and Ok is less
than 2h.

If the number of inflections is to be kept small, the recursion can also be
stopped whenever the directed distance of a strip segment to the polyline is below
a given threshold. However this is difficult to check without the Voronoi diagram

A Simple and Efficient Algorithm for High-Quality Line Labeling 7

r
2ε

h

P

outer face of B(P)

Figure 11.3 refining the candidate strip: first level (solid), second level (dashed), third level

(densely dotted), and forth level (dotted)

of the points and (open) edges of P .
It is possible to add two interesting refinement levels. In both, an arc of the

baseline does not necessarily touch three objects on the boundary of the buffer’s
outer face. For a strip with more rectangular segments one could add a refinement
level between level 2 and 3 of the leftmost strip segment in Figure 11.3. Note that
the radii of the annular strip segments there increase up to level 2 and then decrease
again. Rectangular segments in an additional refinement level can thus be viewed as
annular segments with infinite radius. On the other hand, to make the strip follow
P as closely as possible, a final refinement level could be added where all annular
strip segments are delimited by two arcs with radius r and r + h. The baseline of
this strip is part of the curve on which a disk of radius r + h is rolled around the
buffer if the disk must always touch the buffer but not intersect its interior.

In order to determine the third object on an arc, we test each object between
the left- and rightmost object in constant time. Thus we need linear time for each
level of the recursion. As with the Douglas-Peucker line-simplification algorithm,
the number of recursion levels depends on the distribution of the input data and
can vary from Ω(log n) to O(n). Given the outer face of the (ε, r)-buffer the strip
can hence be computed in O(n2) time, while the average case can be expected to
be in O(n log n).

11.5 FINDING GOOD LABEL POSITIONS

In order to satisfy the soft constraints, we evaluate label candidates within the strip
according to curvature, number of inflections, or directed label-polyline Hausdorff
distance. (We define the curvature of a label as the sum over curvature times
length of each label segment. The curvature of a rectangular segment is 0; that of
an annular segment with arcs of radius r1 and r2 = r1 + h is 1/r1.) For all three

A Simple and Efficient Algorithm for High-Quality Line Labeling 8

evaluation functions, the basic idea is the same. We discretize the space of label
candidates such that the discrete space has linear size and contains minima. Then
we search the discrete space for a minimum.

For curvature and number of inflections it is easy to see that there is a min-
imizing label candidate that starts or ends with one of the rectangular or annular
segments of the strip. In order to find a minimum, we push a label of the given
length through the strip and stop whenever a new segment starts (or ends). To
compute the measure of the current candidate, we only have to do a constant num-
ber of updates given the value at the previous position. This is how we can find a
placement minimizing curvature or number of inflections in linear time.

For Hausdorff distance, the discretization is more difficult. We only take into
account the baseline of the strip. In order to compute efficiently the distance be-
tween the baseline of a label candidate and the polyline P , we need to know the
closest object (point or edge) of P for every point on the whole baseline. Inter-
secting the baseline with the Voronoi diagram of the objects of P would yield this
information and lead to an O(n log n) algorithm under certain conditions (Knipping,
1998).

However, computing the Voronoi diagram for a set of points and line segments
is not a trivial task in practice. Therefore we implemented a simpler algorithm
that finds a near-optimal label placement as follows. Given an integer k, we split
the baseline into k pieces of equal length. Let γ be the length of such a piece.
We approximate the distance between each piece and P by the distance of the
piece’s midpoint from P . This can be done by brute force in O(nk) time with O(k)
storage. Then we proceed as above: we push the label through the strip, stop at
each midpoint and evaluate the current label position. Its Hausdorff distance to P
is within γ from the maximum over the distances of all baseline pieces covered by
the label. For fast access to this approximate maximum, we keep the appropriate
distances in a priority queue. During the execution of the algorithm, we must
insert the distance of each piece at most once into the queue. The same holds
for deletions. Each such operation costs O(log k) time, hence we can compute an
optimal placement among all those starting at a midpoint of a baseline piece in
O(nk + k log k) time with O(k) storage. The triangle inequality guarantees that
this placement is at most γ further away from P than a placement minimizing the
exact directed Hausdorff distance. A detailed description of the implementation of
the above evaluation functions can be found in (Knipping, 1998) (in German).

11.6 EXPERIMENTAL RESULTS

In order to analyze our line-labeling algorithm, we applied it to synthetic and to real-
world data. The latter is taken from the CIA-map data at the URL ftp://gatekeeper.
dec.com/pub/graphics/data/cia-wdb/db.tar.Z, see Figures 11.4 and 11.5. In both
figures, labels were placed according to the approximated Hausdorff distance.

The synthetic data belongs to three different example classes. Due to lack of
space we can only present our results on one class. For more detailed information
including graphs depicting the frequency of crucial operations, see our Web page.

For the example class RandomWalk we use random numbers ∆xi and ∆yi

A Simple and Efficient Algorithm for High-Quality Line Labeling 9

Dor
dogne

Figure 11.4 A piece of the Dordogne (109 points). Above with candidate strip and label

placement (shaded grey), below with lettering

Figure 11.5 A piece of the Guadalquivir (130 points)

Figure 11.6 RandomWalk with 400 points

that we draw from a normal distribution with mean 0 and standard deviation 1.
In order to get an x-monotonous polyline we choose the x-coordinates as follows:
x1 = 0 and xi = xi−1 + |∆xi|. Then we scale all xi by xn such that 0 = x1 < x2 <
. . . < xn = 1. Similarly, we set the y-coordinates to y1 = 0 and yi = yi−1+∆yi/100.

Figure 11.6 shows an instance of RandomWalk with the candidate strip of the
last refinement level, not counting the additional levels mentioned in Section 11.4.
The grey regions indicate an optimal label placement within the strip minimiz-
ing curvature, number of inflections, and approximative Hausdorff distance (left to
right, shaded light to dark). The parameters for the strip computation were mini-
mum label-polyline distance ε = 0.005, curvature bound r = 0.01, and label height
h = 0.02. More examples can be found in (Knipping, 1998) or generated on our
Web page.

We generated 50 RandomWalk examples with 100, 200, . . ., 1000 points to
analyze the performance of our C++ implementation. We used the SunPRO-CC

A Simple and Efficient Algorithm for High-Quality Line Labeling 10

�

��� �

��� �

��� �

��� �

��� �

��� �

��� 	

���

����� ���� ���� 	���� ����

��� ��������� �

� � � � � � � � � �

� ��� ��� � ���������

! "#� $ %'&���(����#)�" $ *�(+

+
+

+
+

+
+

+
+

+
+

Figure 11.7 Strip generation time

compiler with optimizer flags -fast -O3 and measured runtimes on a Sun Ultra-
Sparc 250. We prepared two graphs, see Figures 11.7 and 11.8. In both, the y-axis
gives the average CPU time (in seconds) and the x-axis gives the number n of
points of the polyline. The points on our graphs give the results averaged over all
50 examples; the extent of the vertical bars indicates the minimum and maximum
runtime among these 50 examples.

Figure 11.7 shows the running times of the ε-buffer, (ε, r)-buffer and strip
generation for RandomWalk. Note that the three curves are additive; i.e. the top-
most curve corresponds to the total runtime. The two additional refinement levels
mentioned in Section 11.4 were included.

,

-

.�,

.�-

/,

/-

0,

.�,�, 0,�, -�,, 1,, 2�,�,

354�687 9�:�; <=9�> 7 ?#4@�ACBD8EF4@�9�:�GIHJ4�K L M

M M M M
M

M
M

M

M

M
AC6�;#N�4�? 6�; BD�EF4@�9�:�GIHJ4�K L O

O O O O O O O O O O

Figure 11.8 Running times for label placement

In Figure 11.8 we give the runtimes for placing labels within the pre-computed
strip according to curvature and approximated Hausdorff distance. Here the param-
eters were curvature r = 8/n, minimum distance ε = 2/n, label height h = 10/n,
and label length ` = 50/n. For minimizing the Hausdorff distance we set the ap-
proximation parameter γ to 1/(2n). We omitted the curve for number of inflections
since it is identical to that of curvature. Other than in the description in Sec-
tion 11.5 we used lists instead of priority queues for the approximated Hausdorff
distance, hence the quadratic runtime behaviour.

A Simple and Efficient Algorithm for High-Quality Line Labeling 11

11.7 CONCLUSION

We have presented a new and conceptually simple method for high-quality line label-
ing. It is the first that fulfills both of the following two requirements: it allows curved
labels and its worst-case runtime is in O(n2). We introduced a concept of gradual
refinement that is similar to the idea of the Douglas-Peucker line-simplification al-
gorithm. This concept allows to introduce additional application-dependent criteria
and to stop the refinement when these criteria are met.

An experimental evaluation of our algorithm shows that it usually runs in
sub-quadratic time and generally yields good results in practice. However, since
we reduce the search space for good label candidates to a one-dimensional strip, it
is clear that we cannot hope to find an optimal label placement in every case. As
the following example indicates, a more flexible strategy in the buffer construction
might help to overcome problems caused by the reduction of the search space.

Figure 11.9 Disturbing effects of the definition of the (ε, r)-buffer. (The upper part of its outer
face is marked by bold grey arcs; the input polyline below consists of bold black line segments.)

In Figure 11.9 we depicted all r-arcs at right turns of the input polyline P .
The parameter r was chosen large compared to the average segment length of P . As
a result, some of the arcs that contribute to the (ε, r)-buffer are quite distant from
the input polyline P . They were caused by right turns incident to two very steep
but short edges of P . It would be desirable to remove these arcs. However, we must
ensure that the resulting strip does not violate the curvature constraint H2. This can
be done as follows. After the first phase of the (ε, r)-buffer computation we compute
the directed Hausdorff distance of each r-arc Ai to the ε-buffer between li and ri. In
order of descending distance we check for each Ai whether the corresponding ε-arc
lies completely in the area Dj of another r-arc Aj . If this is the case, we remove
Ai. Then we proceed to the second phase of the buffer computation as usual. Note
that the resulting outer face of the buffer still consists exclusively of r-arcs and line
segments. Thus the strip will still keep H2.

An alternative approach is as follows. We observed that our placement of the
r-disks is good if the the adjacent edges of the polyline are long enough. Then the
directed Hausdorff distance between the arc Ai and the ε-buffer is minimized. How-
ever, in general the placement of the r-disks is too inflexible. It could certainly be
improved if we tried to minimize the aformentioned distance during the placement.
Then the placement of the r-disks would take into account not only the adjacent
edges of the polyline but all of the polyline (or the ε-buffer) between li and ri.

Finally we would like to acknowledge a simple and elegant idea of Mike Loner-
gan, University of Glamorgan, Pontypridd. He suggested to put the ε-buffer around
the label (and thus simply thicken the strip by 2ε) instead of the polyline. Unfor-
tunately, this does not solve the problem of placing the r-circles.

A Simple and Efficient Algorithm for High-Quality Line Labeling 12

REFERENCES

Alexander, D. H. and Hantman, C. S., 1995, Automating linear text placement
within dense feature networks. In Proc. Auto-Carto 12, Charlotte, NC, U.S.A.,
pages 311–320.

Barrault, M., 1997, An automated system for name placement which complies with
cartographic quality criteria: The hydrographic network. In Proceedings of the
Conference on Spatial Information Theory, volume 1329 of Lecture Notes Comput.
Sci., (Springer-Verlag), pages 499–500.

Barrault, M. and Lecordix, F., 1995, An automated system for linear feature name
placement which complies with cartographic quality criteria. In Proc. Auto-Carto
12, Charlotte, NC, U.S.A., pages 321–330.

Doerschler, J. S. and Freeman, H., 1992, A rule-based system for dense-map name
placement. Communications of the ACM, 35:68–79.

Douglas, D. H. and Peucker, T. K., 1973, Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. Canadian
Cartographer, 10(2):112–122.

Edmondson, S., Christensen, J., Marks, J., and Shieber, S., 1997, A general carto-
graphic labeling algorithm. Cartographica, 33(4):13–23.

Freeman, H., 1988, An expert system for the automatic placement of names on a
geographic map. Information Sciences, 45:367–378.

Imhof, E., 1975, Positioning names on maps. The American Cartographer, 2(2):128–
144.

Kakoulis, K. G. and Tollis, I. G., 1998, A unified approach to labeling graphical
features. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 347–356.

Knipping, L., 1998, Beschriftung von Linienzügen. Master’s thesis, Fach-
bereich Mathematik und Informatik, Freie Universität Berlin. Available at
http://www.inf.fu-berlin.de/map-labeling/papers/k-bl-98.ps.gz

Kramer, J. C., 1997, Line feature label placement for ALPS5.0.

Morrison, J. L., 1980, Computer technology and cartographic change. In Taylor,
D., editor, The Computer in Contemporary Cartography. J. Hopkins Univ. Press,
New York.

Poon, C. K., Zhu, B., and Chin, F., 1998, A polynomial time solution for labeling
a rectilinear map. Information Processing Letters, 65(4):201–207.

van Dijk, S., van Kreveld, M., Strijk, T., and Wolff, A., 1999, Towards an evaluation
of quality for label placement methods. In Proceedings of the 19th International
Cartographic Conference, Ottawa, Int. Cartographic Association, pages 905–913.

Wagner, F. and Wolff, A., 1998, A combinatorial framework for map labeling.
In Whitesides, S. H., editor, Proceedings of the Symposium on Graph Drawing
’98, volume 1547 of Lecture Notes in Computer Science, (Springer-Verlag), pages
616–331.

Wolff, A. and Strijk, T., 1996, A map labeling bibliography. http://www.inf.fu-
berlin.de/map-labeling/bibliography/.

