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In this article we present algorithms for computing large matchings in 3-regular graphs, graphs
with maximum degree 3, and 3-connected planar graphs. The algorithms give a guarantee on the
size of the computed matching and take linear or slightly superlinear time. Thus they are faster
than the best-known algorithm for computing maximum matchings in general graphs, which runs
in O(y/nm) time, where n denotes the number of vertices and m the number of edges of the given
graph. For the classes of 3-regular graphs and graphs with maximum degree 3, the bounds we
achieve are known to be best possible.

We also investigate graphs with block trees of bounded degree, where the d-block tree is the
adjacency graph of the d-connected components of the given graph. In 3-regular graphs and 3-
connected planar graphs with bounded-degree 2- and 4-block trees, respectively, we show how to
compute mazimum matchings in slightly superlinear time.

Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]: Combinatorics; G.2.2 [Dis-
crete Mathematics|: Graph Theory; F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems

General Terms: Algorithms, Theory
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maxdeg-3 graphs, 3-connected planar graphs, bounded-degree block trees.

1. INTRODUCTION

Recall that a matching is a set of independent (that is, pairwise non-incident) edges
in a graph. A mazimum matching is one of maximum cardinality, and a mazimal
matching cannot be enlarged by adding edges. The problem of finding maximum
matchings in graphs has a long history dating back to Petersen’s theorem [1891],
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which states that every biconnected 3-regular graph has a perfect matching, that
is, a matching that matches every vertex. Finding maximum matchings, or large
matchings in general, has many applications; see, for example, the book on match-
ing theory of Lovédsz and Plummer [1986]. To date the asymptotically fastest (but
rather complicated) algorithm for finding maximum matchings in general graphs
runs in O(y/nm) time [Micali and Vazirani 1980], where n and m are the numbers of
vertices and edges of the given graph, respectively. Only recently faster algorithms
for dense graphs, for planar graphs, for graphs of bounded genus, and for general
H-minor free graphs have been suggested. They are all based on fast matrix mul-
tiplication (which, as a tool, is not very practical) and run in O(n*) time for dense
graphs [Mucha and Sankowski 2004], O(n®/?) time for planar graphs [Mucha and
Sankowski 2006] and for graphs of bounded genus [Yuster and Zwick 2007], and in
O(n>*/@+3)) C O(n'3%%) time for H-minor free graphs [Yuster and Zwick 2007],
where w < 2.376 is the exponent in the running time of the best-known matrix-
multiplication algorithm [Coppersmith and Winograd 1987]. For practical purposes,
however, often slower but less complicated algorithms are used: both LEDA [Al-
gorithmic Solutions 2007] and the Boost Graph Library [Siek et al. 2007] provide
maximum-matching algorithms with a running time of O(nm a(n,m)) that are based
on repeatedly finding augmenting paths [Gabow 1976; Tarjan 1983].

There has been a sequence of more and more general characterizations of graphs
with perfect matchings [Petersen 1891; Hall 1935; Tutte 1947], which are special
maximum matchings. This has also led to algorithms that test the existence of
or compute perfect matchings in o(y/nm) time in, for example, bipartite k-regular
graphs [Schrijver 1999; Cole et al. 2001], 3-regular biconnected graphs [Biedl et al.
2001], and subgraphs of regular grids [Thurston 1990; Hansen and Zheng 1993;
Kenyon and Rémila 1996]. The last four algorithms all work in linear time for
the corresponding subclasses of planar graphs. In planar bipartite graphs a perfect
matching can be computed in O(nlog®n) time if it exists [Miller and Naor 1995;
Fakcharoenphol and Rao 2006]. There is also a fast algorithm for finding unique
maximum matchings [Gabow et al. 2001]. It takes O(mlog* n) time in general and
O(nlogn) time in planar graphs.

Although the theory of matchings is a very well-researched area, there has not
been a comprehensive investigation of graph classes where maximum matchings or
matchings of guaranteed size can be computed faster than matchings in general
graphs, that is, in o(y/nm) time. This article is a first step into this direction. Our
work was inspired by and addresses two open questions posed by Biedl et al. [2004],
who gave tight bounds on the sizes of maximal and maximum matchings in certain
graph classes. Note that, in order to establish bounds on the size of matchings
that depend on n, one has to forbid isolated vertices. In this article we assume
that graphs are connected since matchings can be computed for each connected
component separately. The analysis of Biedl et al. uses the d-block tree Ty, that is,
the adjacency graph of the d-(vertex-)connected components of the given graph. The
parameter of interest is ¢4, the number of leaves of this tree. The bounds of Biedl
et al. fall in two categories, those that use £; (type-2 bound) and those where ¢4
has been replaced by upper bounds on ¢, for the corresponding graph class (type-1
bound). For example, Biedl et al. showed that every 3-regular graph has a matching
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Table I. Our results. The distinction between type-1 and type-2 bounds follows the work of
Biedl et al. [2004]. Our fast algorithms achieve all of theirs bounds (first three rows) except the
type-2 bound for 3-connected planar graphs. Their bound is without the bold 6. The function
a(n) := a(n,n) denotes the slowly growing inverse of the Ackermann function.

Graph Class Bound on Matching Size Runtime O(+)
type-1 type-2 type-1 l type-2
3-regular (4n—1)/9 (3n —262)/6 nlog*n
maxdeg-3 (n—1)/3 | (3n—ngo —202)/6 n nlogtn
3-connected, planar, n > 10 (n+4)/3 (2n+4 —644)/4 n na(n)
3-regular planar (3n — 6£2)/6 n
triangulated, planar (2n+4 —2€4)/4 n
maxdeg-k (n—1)/k n
3-regular, bounded-deg 2-block tree maximum nlog*n
3-regular, pl.,  bounded-deg 2-block tree maximum n
3-connected, pl., bounded-deg 4-block tree maximum na(n)

of size at least (3n — 2¢3)/6. Using that ¢35 < (n + 2)/6 for 3-regular graphs leads
to a bound of (4n — 1)/9 for the matching size in this graph class. The work of
Biedl et al. improved some of the earlier results of Nishizeki and Baybars [1979]
who investigated lower bounds on the size of maximum matchings in planar graphs
depending on the minimum degree (3-5), the connectivity (1-4), and the number of
vertices of the graph.

Biedl et al. asked how quickly one can find matchings that are known to exist. Our
first and main result answers this open question by “implementing” in O(n polylog n)
time all of the bounds of Biedl et al.—except for the type-2 bound for 3-connected
planar graphs; see Table I. Their bound of (2n + 4 — ¢3)/4 is without the bold 6.
Our most urgent open question is how to close this gap.

Our general approach is as follows. We use block trees to grasp the coarse structure
of the graph. They help us to quickly decompose the graph into pieces with desirable
properties (such as higher connectivity). We then compute matchings locally and put
these local results together to form a (near-) maximum matching in the whole graph.
We treat trees is Section 2, turn to maxdeg-3 graphs (that is, graphs of maximum
degree 3) in Section 3, and deal with 3-connected planar graphs in Section 4.

As an example, one of these algorithms finds matchings of size at least (3n —ng —
205)/6 in maxdeg-3 graphs, where ny denotes the number of degree-2 vertices; see
Section 3. Such graphs arise naturally when converting triangulations into quad-
rangulations [Ramaswami et al. 1998]. Biedl et al. [2004] showed that this bound is
tight, but their original construction has no degree-2 vertices, that is, ny = 0. They
gave another construction with ny = 3n/5, but that graph has a matching of size
2n/5, which is larger than (n — 1)/3, the corresponding type-1 bound. Therefore
Biedl et al. posed the question whether there are graphs with a significant number
of degree-2 vertices for which the bound (3n — ng — 2¢3)/6 is actually sharp. We
answer this question in the affirmative. Our construction uses roughly n/3 degree-2
vertices. This is our second result.

Our third and final result concerns the fast computation of maximum matchings
in special 3-regular and special 3-connected planar graphs. Note that Petersen’s
theorem is actually slightly stronger than stated above. It says that every 3-regular
graph whose 2-block tree has maximum degree 2 (that is, is a path) contains a
perfect matching. Biedl et al. [2001] have shown how to compute perfect matchings
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in such a graph in O(n log® n) time. We extend the findings of Biedl et al. by
showing how to compute a maximum matching in 3-regular graphs whose 2-block
tree has constant maximum degree. Our algorithm also takes O(nlog*n) time.
If, however, the graph is additionally planar, our algorithm runs in optimal O(n)
time. It is based on dynamic programming and on administrating which and how
many vertices are matched in the interfaces between the 2-connected components.
Note that, for maxdeg-3 graphs, 2-vertex connectivity (biconnectivity) and 2-edge
connectivity (bridge-connectivity) are equivalent. We apply a similar technique to
3-connected planar graphs with bounded-degree 4-block tree. This yields maximum
matchings in such graphs in O(na(n)) time; see Section 5.

For the 3-regular case we actually use the algorithm of Biedl et al. as a subroutine.
The bottleneck of that algorithm is the dynamic maintenance of the 2-connected
components of a graph. Using a data structure of Holm et al. [2001] yields a query
time of O(log® n). Thorup [2000] claimed to have a data structure with query time
0(10g3 nloglogn). This and any further improvements would immediately improve
the O(log" n)-factors in the running time of the algorithm of Biedl et al. and of our
algorithms; see Table I.

Admittedly, our fast maximum matching algorithms are restricted to subclasses of
3-regular graphs and 3-connected planar graphs. Our results are, however, of more
general interest since Biedl [2001] showed that there exists a linear-time reduction
from maximum matching in arbitrary graphs to maximum matching in 3-regular
graphs and from maximum matching in planar graphs to maximum matching in
triangulated (that is, 3-connected) planar graphs of maximum degree 9. One can
interpret this in two ways. Either one sees Biedl’s results as an indication that there
are no near-linear-time algorithms for much wider subclasses of 3-regular graphs and
3-connected planar graphs, or one sees our algorithms as further evidence that there
are in fact near-linear-time algorithms for maximum matching in planar graphs—or
even in general graphs.

2. TREES

We first compute maximum matchings in trees and then use this result to find
matchings in more complex graph classes: maxdeg-3 graphs and 3-connected planar
graphs. Although the techniques in this section are quite simple, they suffice to
reach some of the bounds given by Biedl et al. [2004].

Consider the following simple algorithm, which we call PICKLEAFEDGES. It takes
an arbitrary graph G as input and computes a set M of edges of G as follows.
Initially M is empty. As long as G has a leaf (that is, a degree-1 vertex), the unique
edge e incident to the leaf is put in M and both endpoints of e are removed from G
with all their incident edges. The algorithm yields the following well-known theorem
[Aronson et al. 1998].

THEOREM 2.1. Let G be a graph, let M = PICKLEAFEDGES(G), let G' = G —
Uwveriiu, v}, and let M' be a mazimum matching in G'. Then M U M' is a maxi-
mum matching in G.

Note that if we apply PICKLEAFEDGES to a tree, edges are picked until the
remaining graph G’ is empty. This shows that the following corollary holds.
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COROLLARY 2.2. Applying PICKLEAFEDGES to a tree yields a mazximum match-
ing in linear time.

THEOREM 2.3. Let T be a tree with n vertices and maximum degree k. Then a
mazimum matching of T has size at least (n — 1) /k.

PrROOF. When PICKLEAFEDGES matches a leaf u to its parent v and removes
both vertices, at most k edges are removed and the matching is enlarged by 1.
There are n — 1 edges, so this can be done at least (n — 1)/k times. O

This thereom yields interesting results for maxdeg-3 graphs and 3-connected pla-
nar graphs: we first find a spanning tree of bounded degree and then a maximum
matching in the spanning tree. Clearly this is a matching in the original graph.

COROLLARY 2.4. Let G be a mazdeg-3 graph. Then G has a matching of size at
least (n —1)/3, and such a matching can be found in linear time.

PROOF. First we find a spanning tree T of G in linear time, for example, by
breadth-first search. Then T also has maximum degree at most 3. By Corollary 2.2
we can find a maximum matching in 7" in linear time, and by Theorem 2.3 it has
size at least (n —1)/3. O

This is one of the type-1 bounds of Biedl et al. [2004]; see Table I. The same
technique can be used for maxdeg-k graphs, leading to a matching of size at least
(n—1)/k. This, however, is a rather weak bound. We can achieve better bounds by
guaranteeing a good upper bound on the maximum degree of our spanning tree.

COROLLARY 2.5. Let G be a 3-connected planar graph. Then we can find in G a
matching of size at least (n — 1)/3 in linear time and, if n > 10, a matching of size
(n+4)/3 in linear time.

PROOF. A maxdeg-3 spanning tree T of G can be computed in linear time [Stroth-
mann 1997]. Then Corollary 2.4 yields in linear time a matching of size at least
(n—=1)/3inT.

Note that this bound is only by 5/3 smaller than the type-1 bound (n + 4)/3 of
Biedl et al. [2004] for 3-connected planar graphs with n > 10; see Table I. Hence we
can reach their bound by finding at most two augmenting paths, which takes O(n)
time [Tarjan 1983]. O

3. GRAPHS WITH MAXIMUM DEGREE 3

In this section we consider matchings in maxdeg-3 graphs. We first consider 3-regular
graphs and give an algorithm that achieves the tight bounds of Biedl et al. [2004]
(see Table I). Then we show how to extend this algorithm to arbitrary maxdeg-3
graphs. We also give a family of maxdeg-3 graphs for which the bound of Biedl et
al. is tight. The novelty is that each graph of the family contains a large fraction of
degree-2 vertices. Finally we focus on planar 3-regular graphs.

3.1 3-regular graphs

Biedl et al. [2004] have shown that every 3-regular graph G has a matching of size
at least (4n — 1)/9, or more generally of size (3n — 2¢3)/6, where ¢3 denotes the
number of leaves of the 2-block tree 72 of G. We show how to find such matchings
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in o(y/nm) time. This has been known only for a special case: Biedl et al. [2001]
have “implemented” Petersen’s theorem [1891]. In O(nlog® n) time they can find a
perfect matching in a 3-regular graph with n vertices and /5 < 2.

We present a constructive proof of the bound (3n—2¢5)/6 that yields an algorithm
with running time O(nlog*n) for finding such a matching. The basic idea is to cut
off leaves in the 2-block tree such that a small number of free, that is, unmatched,
vertices can be guaranteed. Recall that a bridge is an edge whose removal disconnects
the graph.

We use a slightly simpler definition of the 2-block tree than Biedl et al. [2004].
Their 2-block tree has a node for each biconnected component of G and a node for
each cut vertex of G, that is, for each vertex whose removal decomposes G. (The
definition of the tree edges is obvious.) Since our graphs have maximum degree 3,
each cut vertex must be incident to a bridge. (This observation yields the equivalence
of 2-edge and 2-vertex connectivity in maxdeg-3 graphs.) Thus our simplified 2-block
tree has a node only for each biconnected component of G and an edge for each bridge
in G. Note that the number of leaves in both trees is the same. From now on we
refer to vertices of the d-block tree 7; as nodes (as opposed to the wvertices of the
given graph).

In the following lemma we treat the special case f2 € {3,4}. Tt will serve as the
base of the induction in the proof of Theorem 3.2.

LEMMA 3.1. Let G be a 3-reqular graph whose 2-block tree has £y leaves. If b5 < 4
then G has a matching of size at least (3n — 2¢3)/6. The matching can be chosen
such that every free vertex is incident to a bridge.

Proor. If 5 € {1,2}, there exists a perfect matching by Petersen’s theorem
[1891]. If £5 = 3 then T3 has exactly one node of degree 3. Let C be the corresponding
biconnected component of G. We consider two subcases.

In the first subcase, C consists of a single vertex, which we call v. Every edge
incident to v is a bridge. We remove these three bridges. Now we have four compo-
nents, namely, the single vertex v and three branches, each containing one vertex of
degree 2. We claim that in each of the branches there exists a matching that leaves
only the degree-2 vertex free. To show the claim we argue as follows. We attach the
helper graph H (see Figure 1a) to each degree-2 vertex. This makes the branches
3-regular. Thus Petersen’s theorem [1891] yields a perfect matching in each of them.
Finally we delete the helper graphs. Due to the structure of the helper graphs, it is
clear that the degree-2 vertices become free, and the claim holds. One of these free
vertices can be matched to v. This results in a total of two free vertices. Note that,
as desired, every free vertex is incident to a bridge.

Now we treat the second subcase, that is, C' contains more than one vertex. We
remove two of the three bridges incident to C and call them b and b’. This yields
three connected components By, Bs, and Bs, where By contains C' and thus has two
degree-2 vertices, while By and B3 have only one degree-2 vertex each. Note that
the 2-block trees of By, By, and Bs are paths. We treat By and Bs as in the first
subcase above. This yields two nearly perfect matchings Ms and M3 in By and Bs,
respectively, that leave the two degree-2 vertices free.

In B; we connect the two degree-2 vertices by a new edge e. This makes B; 3-
regular and yields a perfect matching M, in B; since the 2-block tree of B is a path.
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(a) in a branch (b) in the main component (c) at degree-1 vertices

Fig. 1: Restoring 3-regularity.

If e is not in M; then M; U Ms U M3 is a matching in G that leaves two vertices free
both of which are incident to a bridge. If e is in M7 then (M7 \{e})U{b, b’ }UMoUM;
is a perfect matching in G. This completes our treatment of the second subcase and
thus settles the case o = 3.

If ¢/ = 4, we can argue similarly. [

THEOREM 3.2. Let G be a 3-regular graph whose 2-block tree has €o leaves. Then G
has a matching of size at least (3n — 203)/6. This matching can be chosen such that
every free vertex is incident to a bridge.

Proor. We use induction on ¢5. The cases ¢ < 4 are covered by Lemma 3.1.
Now let £5 > 5. We cut off three parts of the graph such that we remove three leaves
from the 2-block tree 75 of G at the cost of at most two free vertices. Then the
induction hypothesis takes effect.

We first show that there always exist three leaves that are suitable for removal.
Choose an arbitrary leaf node ¢ of T3 and walk upward until a node vy of degree at
least 3 is reached. The last edge of the traversal corresponds to a bridge b, after
whose removal G decomposes into two components: the branch containing the leaf
component and the main component now containing one degree-2 vertex. The 2-
block tree of the branch is a path, and the 2-block tree of the main component has
05 — 1 leaves.

Now assume that every leaf £ of 75 has a pointer to the tree node vy defined as
above. If, after removing by, the degree of v, in the tree is still at least 3, all leaves
¢ # (£ remain valid in the sense that cutting off ¢ at v, reduces the number of leaves
of the 2-block tree. Otherwise, there is at most one other leaf ¢ with v, = vp. It
cannot be cut off at vy anymore since this would not reduce the number of leaves
in the 2-block tree of the main component. Hence, by cutting off a leaf ¢ we make
at most one other leaf ¢/ invalid. Since ¢ > 5, we can cut off three branches such
that the number of leaves in the 2-block tree of the main component decreases by 3
in total.

After removing the three bridges, G decomposes into four components: three
branches, each with one degree-2 vertex, and the main component with three degree-2
vertices. The 2-block tree of the main component has f5 — 3 leaves. Now we restore
3-regularity in each component. We extend each branch B by attaching the helper
graph H depicted in Figure 1a to the unique degree-2 vertex, which we denote by vg.
Now Petersen’s theorem yields a perfect matching in each of the extended branches.
Then we remove H from each branch B. This results only in vg becoming free. Thus
so far we have three free vertices, all incident to bridges. Now consider the main
component. We add a new vertex h and connect it to each of the three degree-2 ver-
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tices; see Figure 1b. This makes the main component 3-regular. Its 2-block tree still
has ¢5 — 3 leaves. By induction the main component has a matching that leaves at
most 2(¢y — 3)/3 = 2¢5/3 — 2 vertices free, each incident to a bridge. Since the main
component was already connected, the new vertex h is not incident to a bridge and
hence not free. When we remove h, one of the incident degree-2 vertices becomes
free and can be matched to the free vertex in the corresponding branch. Thus in
total we have created at most 2¢5/3 free vertices, each incident to a bridge. O

Since the proof is constructive, we simply implement each step of the proof. We
use the algorithm of Biedl et al. [2001] for computing matchings in the branches and
for the base case. We only need to make a linear number of cuts because /5 is linear.
After each cut we just add a constant number of vertices. Since each vertex is in
exactly one component, the computation of all partial matchings takes O(n log4 n)
time in total.

The 2-block tree of G changes drastically when we link the new vertex h to the
three degree-2 vertices of the main component. It remains to show how to maintain
the leaf pointers and the dynamically changing 2-block tree of the main component.
We call a branch good if its removal decreases the number of leaves in the main
component.

LEMMA 3.3. Given a 3-regular graph G, we can in O(na(n)) total time repeatedly
determine three good branches of G, remove the branches, link the degree-2 vertices
of the main component to a new verter, and update the 2-block tree Ty of the main
component. The process ends when T has less than five leaves.

ProOF. We first compute the 2-block tree 73 of G. This takes linear time [Tarjan
1972]. Then we choose an arbitrary node w of T3 and direct all edges to w. We
maintain a list of all leaves. For each leaf node, we have a pointer pointing to a
bridge where it can be cut off. At every node of T3, we keep a list of all leaves that
can be cut off at an incoming edge. This initialization takes linear time.

Next we repeatedly find three leaves that we can cut off. We do this as in the
proof of Theorem 3.2. At the same time, we identify at most three leaves whose
pointers become invalid and hence need an update. With our data structure, each
update takes constant time. We denote the nodes where we cut off by a, b, and ¢ as
in the proof of Theorem 3.2.

We now have to contract into one big “super node” the nodes a, b, ¢, and all
nodes that lie on the three unique paths between a, b, and c. We search these nodes
starting from each of the nodes a, b, and ¢, following the directed edges. For the
sake of efficiency, we search in parallel. Each of the searches marks the vertices it
visits. The searches stop when the first node v has been visited by all three searches.
The nodes that need to be contracted are v and all nodes that have not been visited
before the corresponding search reached v. If we contract k nodes, the three searches
have visited at most 3k + 2 nodes in total. Using a union-find data structure with
path compression and union by rank [Tarjan 1983], this step takes O(na(n)) time
for the whole algorithm.

After we have computed the 2-block tree of the main component, we have to
update the at most three leaves marked as needing an update. We use their pointers
to get to our starting points in the graph and walk up from there until we reach a
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node of degree at least 3. This establishes the invariant. Since we never walk back,
each edge is visited at most once. Hence, this step takes linear time in total.

Note that the above description does not work correctly if the root of the tree
has degree less than 3. A small root degree may be due to our initial choice of the
root or the result of a contraction. If the root has degree 1, it is a leaf but does not
have a bridge where it can be cut off. If the root has degree 2, there may be a leaf
whose pointer points to a bridge incident to the root. This bridge, however, does
not define a good branch. Both cases can be checked easily. We resolve this issue by
using other leaves as long as there are at least six leaves. Once the number of leaves
drops to five, we choose a new root with degree at least 3 and direct all edges toward
it. This takes linear time and happens only once during the whole algorithm. [

Theorem 3.2 and Lemma 3.3 together yield the following theorem.

THEOREM 3.4. Let G be a 3-regular graph whose 2-block tree has £y leaves. Then
we can find in G a matching of size at least (3n — 205)/6 in O(nlog*n) time.

3.2 Maxdeg-3 graphs

We now extend the algorithm of the previous subsection to maxdeg-3 graphs. Let G
be such a graph and let ny denote the number of degree-2 vertices of G. For now we
assume that G has no degree-1 vertices. For every three degree-2 vertices, we add
a helper vertex and link it to the three vertices. Note that this does not increase
the number of leaves of 7T3. If ns is a multiple of 3, this results in a 3-regular graph.
By Theorem 3.4 we can find a matching of size at least (3n — 2£5)/6 in O(nlog*n)
time in this graph. Removing the ny/3 added vertices results in at most ny/3 free
vertices or, equivalently, a matching of size at least (3n — ng — 2¢2)/6.

If ny is no multiple of 3, we first add helper vertices as before until there are at
most two degree-2 vertices left. If there are two degree-2 vertices left, we connect
them by an additional edge. If there is only one degree-2 vertex left, we link it to the
helper graph H; see Figure la. Using Theorem 3.4 we compute a matching in the
resulting 3-regular graph. Removing the added vertices results in a matching M of
size at least (3n—mng —203)/6—1. If M actually contains exactly (3n—ng —2¢2)/6—1
edges, we can enlarge M by one edge by computing an augmenting path in G in O(n)
time. This is due to the fact that we know G has a matching of size (3n—ng—2¢3)/6.
Making G 3-regular as above takes O(n) time, too.

Finally we also admit degree-1 vertices. Each such vertex is a leaf in the 2-block
tree. Hence we can make G 3-regular by linking a copy of the helper graph H’
depicted in Figure 1c to each degree-1 vertex. Adding and later removing the helper
graphs neither changes ¢ nor the number of free vertices and can be done in linear
time. The following theorem summarizes our discussion.

THEOREM 3.5. If G is a maxdeg-3 graph with no degree-2 vertices whose 2-block
tree has lo leaves, we can find in G a matching of size at least (3n —ny — 265)/6 in
O(nlog* n) time.

3.3 A sharp bound for maxdeg-3 graphs with many degree-2 nodes

Now we construct a family of graphs that shows that the bound (3n — ny — 265)/6
holds even in the presence of a large fraction of degree-2 nodes. This answers an
open question posed by Biedl et al. [2004] in the affirmative.
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10 : Ignaz Rutter and Alexander Wolff

Fig. 2: A maxdeg-3 graph with n = 31 vertices, a linear number of degree-2 vertices, and a
maximum matching of size (3n — ngy — 2¢2)/6 (bold edges).

Let k > 0 be a positive integer, and let n = 6k+1. We construct an n-vertex graph
as follows. We start with a path v1,...,vor41. For i = 1,... k, we attach to v,
one of the three leaves of a 4-vertex star; see Figure 2. The resulting graph G has
ng = 2k—1 = (n—4)/3 degree-2 vertices. Note that since G is a tree, it is essentially
its own 2-block tree. Hence #5 equals the number of leaves of G, that is, (n 4+ 5)/3.
Thus the lower bound yields a matching of size at least (3n—mng —2¢2)/6 = (n—1)/3.
On the other hand, the central vertices of the k stars and the vertices v, vy, . .., Vok
form a vertex cover of G (the gray shaded vertices in Figure 2). Thus, any matching
can have size at most 2k = (n — 1)/3. This shows that the bound (3n — ny — 263)/6
is tight even if there is a linear number of degree-2 vertices.

3.4 Planar 3-regular graphs

We now turn to planar 3-regular graphs. The algorithm of Biedl et al. [2001], which
finds perfect matchings in (non-planar) 3-regular graphs whose 2-block trees are
paths, runs in O(nlog* n) time. We show how to reduce its running time to O(n) in
the planar case and how to find large matchings in arbitrary planar 3-regular graphs
in O(n) time.

We first sketch the algorithm of Biedl et al. Their algorithm is based on decom-
posing the input graph G into bridgeless 3-regular components. It works as follows.
Remove all bridges. Let G; with i = 1,..., s be the resulting (bridgeless) connected
components with n; vertices of which at most two have degree 2. Then replace each
degree-2 vertex and its incident edges by a single new edge. For each of the resulting
3-regular bridgeless components G} call a subroutine that computes in O(n; log4 n;)
time a perfect matching not including the at most two new edges in G;. Now the
union of the perfect matchings in G/, ..., G plus the bridges is the desired perfect
matching in G. In the same work, Biedl et al. also considered the planar bridgeless
case, which they can handle in linear time. Our aim is to generalize their algorithm
from the planar bridgeless case to the planar version of Petersen’s theorem while
keeping its linear running time.

The subroutine of Biedl et al. makes use of the following simple observation.
Given a 3-regular bridgeless graph G and two edges e; and es of G, there is a perfect
matching that does not contain e; and e;. This can be seen as follows: subdivide e;
and es using extra vertices vy and wvs, respectively, and add the edge vivy to the
graph. Let G* be the resulting graph. Compute a perfect matching of G*. In case it
does not contain vivs, find an alternating cycle that contains vyve. The symmetric
difference of the matching and the cycle is the desired matching. Computing an
alternating cycle can be done in linear time [Biedl et al. 2001]. Removing vjvy from
this matching yields the desired matching without e; and es in the original graph G.
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Adding the edge vive may violate planarity, which forced Biedl et al. to use the
O(n10g4 n)-time subroutine for the non-planar case. The following lemma shows
that this can be avoided.

LEMMA 3.6. Let G be a planar 3-reqular bridgeless graph and let e; and es be
any two edges of G. A perfect matching of G that neither contains e; nor es can be
computed in linear time.

Proor. To make use of the algorithm for the planar case we modify the above
procedure slightly. We first compute any perfect matching M of G using the linear-
time algorithm of Biedl et al. [2001] for the planar bridgeless case. Let G* be defined
as above. Observe that M \ {e1, e2} is a matching in G* that leaves only a constant
number of vertices free. We now compute a matching M* in G* that contains the
edge v1v2 by computing a constant number of augmenting paths with respect to
M\ {e1,ez}. This takes linear time [Tarjan 1983]. Again M*\ {viva} is the desired
matching in G. [

Now we plug Lemma 3.6 as a subroutine into the algorithm of Biedl et al. that is
sketched above. This yields the following.

COROLLARY 3.7. Let G be a 3-regular planar graphs whose 2-block tree is a path.
Then a perfect matching in G can be computed in linear time.

Naturally we would like to use this improved algorithm as a subroutine of our
algorithm for arbitrary 3-regular graphs to improve its running time to linear in
case the graph is planar. Our scheme of cutting branches and adding new vertices,
however, does not preserve planarity. So we cannot assume that the branches we cut
are still planar. We leave open the question whether linear time suffices to compute
a matching of size at least (3n — 2¢2)/6 in any planar 3-regular graph. If we insist
on linear time, we can achieve the following weaker bound.

THEOREM 3.8. Let G be a 3-reqular planar graph whose 2-block tree has £o leaves.
Then a matching of size at least (3n — 63)/6 can be computed in linear time.

PROOF. We first compute the 2-block tree of G in linear time. Recall our algo-
rithm for non-planar 3-regular graphs (Theorem 3.2). In each step it cuts off three
branches from the main component. Here, in the planar case, we cut branches off
one by one. We can easily find a good branch B by walking upward from a leaf in
the 2-block tree until we find a node of degree at least 3. The edge between this
node and the last node of the branch corresponds to a bridge b = uv in G, where u
is a vertex of the branch and v is a vertex of the main component. Now we remove
the bridge b. The branch contains a nearly perfect matching that leaves only u free.
By Corollary 3.7 we can compute such a matching Mp in time linear in the size of
the branch B.

The other endpoint of the bridge, vertex v, has degree 2 in the main compo-
nent Cia.n. Denote the neighbors of v by v; and vo. We remove v and add the
edge v1v2 to G. Note that this leaves Ciain planar, but Chhaim may now be a multi-
graph with two copies of the edge vyve. The 2-block tree of the main component has
ly — 1 leaves. By induction Ch ., contains a matching that leaves at most 205 — 2
vertices free. We can compute such a matching M., recursively; the algorithm
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of Biedl et al. [2001] that is used as a subroutine in Corollary 3.7 explicitly allows
multiple edges.

Consider the matching M = (Mpain \ {v1v2}) U {b} U Mp in G. This matching
leaves at most 205 vertices free—the free vertices of Myain plus possibly vy and vy (if
V102 € Mipain). Thus M covers at least n — 2¢5 vertices. In other words, M consists
of at least n/2 — {3 edges. O

We do not know how to generalize this result to maxdeg-3 graphs since our re-
duction for making a maxdeg-3 graph 3-regular does not preserve planarity.

4. 3-CONNECTED PLANAR GRAPHS

In this section we give an algorithm for finding a matching of size at least (2n +
4 — 604)/4 in 3-connected planar graphs. In graphs where every separating triplet
is a triangle (for example, in triangulated graphs), we can even guarantee a size of
(2n 4+ 4 — 244)/4. This is very close to the tight bound (2n + 4 — ¢4)/4 that Biedl
et al. [2004] gave for 3-connected planar graphs. We use an approach similar to
Section 3.1. We cut off leaves of the 4-block tree until it has only two leaves left.
To implement this, we first need an algorithm for finding matchings in 3-connected
planar graphs whose 4-block tree is a path. Biedl et al. [2004] have shown that such
a graph always has a perfect or a nearly perfect matching, that is, a matching that
matches all vertices but one.

If a graph G is 3- but not 4-connected, there exists a separating vertex triplet T' =
{u,v,w}. For each component C of G —T, we consider the graph C'+ T and add the
dummy edges uv, vw, and ww if they did not already exist. We iterate this process
until all components are 4-connected. These are the 4-connected components of G.
The 4-block tree of G contains a node for every 4-connected component of G; two
nodes are connected if the corresponding 4-connected components share a separating
triplet (by planarity every separating triplet separates only two components). Note
that the definition of Biedl et al. [2004] is more general. For 3-connected planar
graphs, however, both definitions lead to the same value of /4.

4.1 The 4-block tree is a path

Let G be a 3-connected planar graph whose 4-block tree is a path. If G is 4-
connected, we can find a Hamiltonian cycle and hence a (nearly) perfect matching
in linear time [Chiba and Nishizeki 1989]. If G is not 4-connected, the basic idea is to
find a matching in each 4-connected component separately and combine the resulting
matchings to a matching in G. Let Gy, ..., G be the 4-connected components of G
and for i =1,...,k—1let T; be the triplet that separates G; and G;1; see Figure 3.
Note that consecutive triplets need not be disjoint.

If n is odd, choose a face of G, that is not incident to all vertices of Ty _1. Place a
new vertex v* into this face and connect it to each vertex of the face. Now G has an
even number of vertices, G is still 3-connected planar and its 4-block tree is still a
path, and hence G has a perfect matching. In particular, it follows that it is enough
to leave a vertex in Gy, free (the one matched to v*).

Now one could start by computing a Hamiltonian cycle in G; with the algorithm
of Chiba and Nishizeki [1989]. It seems difficult, however, to extend either of the
matchings induced by the cycle to a matching of G. Therefore we go a different way.
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T T, T; Th—1

Fig. 3: Graph whose 4-block tree is a path.

Ti ,matched Tz+ 1,free|

Cri,frcc Ti—i—l,matchcd

Fig. 4: Examples of matching configurations

Whether a given matching M; in G; can be extended to a perfect matching of G
depends only on which vertices of the separating triplet 77 are matched and which
are free with respect to M;. The next definition formalizes this observation.

For 1 < i < k, a matching configuration of G; is a pair (T} matched, Li,free) With
T matched € Ti—1 and T; gree € T;. Such a configuration is called feasible if both of
the following conditions hold.

(1) Ti,matched N Ti,free = (Z), and
(ii) there exists a matching M; in G; that matches exactly the vertices of G; —
(T, matched U Tj free) and uses exclusively edges of G (that is, no dummy edges).

The first condition makes sure that vertices already matched in G;_; are not declared
free in G; (and may hence not be matched again in G;;1). The second condition
makes sure that the configuration at hand can potentially be extended to a perfect
matching in G.

Consider the directed acyclic graph whose nodes correspond to the feasible match-
ing configurations of G and whose edges are defined as follows. Two nodes u =
(Ti,matchedyn,free) and v = (E,matclledyTj,free) of this graph are connected by an
edge if and only if j = i+ 1 and T; \ T} free = Tj matched- We call this graph the
configuration graph of G. Note that the configuration graph contains the edge uw if
and only if the matching given by u can be extended into the matching given by v
such that the only free vertices are in 7} free. In the situation of Figure 4, there would
be an edge between the two nodes representing the first and the last configuration,
but not between the first and the second. For ease of description, we add a source
node with edges to all feasible matching configurations of Gj.

The configuration graph has O(n) nodes since G has O(n) 4-connected compo-
nents and every components has only a constant number of feasible matching con-
figurations. Every perfect matching of G corresponds to a path of length & in the
configuration graph and vice versa. Such a path describes a sequence of matching
configurations that fit together. For the configuration (T} matched, Li,free) Of G; lying
on the path there exists a matching M; that is perfect in G; — (T} matched U T free)-
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Then M; U---U My, is a perfect matching in G. Such a path can be found in O(n)
time by breadth-first search starting at the source node of the configuration graph.

Now we need a fast algorithm for finding the feasible matching configurations of a
4-connected component G;. Let n; denote the number of vertices of G;. Since G; has
only a constant number of matching configurations, it is enough to give an algorithm
that can quickly determine feasibility of a given matching configuration. We first
compute a (nearly) perfect matching M in G; by finding a Hamiltonian cycle in
O(n;) time [Chiba and Nishizeki 1989]. From M we remove all edges that do not
belong to G and all edges incident to vertices we may not use (that is, vertices in
T; matched U Tj free). This results in O(1) free vertices. Hence if there is a perfect
matching in G; — (T} matched U Li free), We can find it in O(n;) time by computing
a constant number of augmenting paths [Tarjan 1983]. If the resulting matching is
perfect, the configuration is feasible and we store the matching as M;; otherwise the
configuration is not feasible.

Thus we can compute all feasible matching configurations of a component G; in
O(n;) time. Since every component shares at most six vertices with other compo-
nents, we can compute the feasible matching configurations for all components in
linear time.

Finally, if the graph originally had an odd number of vertices, we have to remove
the vertex v* added in the beginning, which frees the vertex v** matched to v*. This
yields a perfect matching in G — v**, that is, a nearly perfect matching in G. We
summarize our observations as follows.

LEMMA 4.1. Let G be a 3-connected planar graph whose 4-block tree is a path.
Then we can compute a (nearly) perfect matching in G in linear time.

4.2 Cutting leaves

In this section we apply the algorithm from the previous section to cut off leaves of
the 4-block tree Ty similarly to the way we treated the 2-block tree in Section 3.1.
The 4-block tree of a 3-connected planar graph can be computed in O(na(n)) time
[Kanevsky et al. 1992]. The 4-block tree has at most (2n — 4)/3 leaves [Biedl et al.
2004]. We pick an arbitrary one and walk upward in the 4-block tree until we reach
a component of degree at least 3. The last edge we have traversed corresponds to a
separating triplet that we can use to cut off a leaf of the 4-block tree.

We split the graph at the separating triplet. This results in two components, the
main component and the branch containing the leaf that we cut off. We add to each
of these components the edges between the vertices of the separating triplet if they
did not already exist. We again refer to these new edges as dummy edges. Now we
compute matchings in the main component and in the branch using recursion and
the algorithm of the previous section, respectively. The following lemma states that
we can combine these matchings without getting too many free vertices.

LEMMA 4.2. Let G be a 3-connected planar graph. Let B be a branch, let Cpain
be the corresponding main component, and let T = {u,v,w} be the triplet that sep-
arates B and Cuain. Let C! .. = Cuain U {uv,vw, wu}. Let Mpain be a matching
in C . and let f be the number of free vertices in Cl,,;, with respect to Mpain.

Then there is a matching M of G that leaves at most f + 3 vertices free.
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PrOOF. Let B’ = B U {uv,vw,wu}. Note that B’ is planar. Clearly, B’ has a
(nearly) perfect matching Mp,. We claim that we can choose Mp/ such that its free
vertex, if any, belongs to T. If |B’| is even, B’ has a perfect matching. Otherwise
we connect a dummy vertex to u, v, and w. Then the resulting graph B” is still
3-connected, it is still planar, and its 4-block tree is still a path. Thus B” contains
a perfect matching. This perfect matching minus the edge that matches the dummy
vertex is the claimed nearly perfect matching.

If w is free with respect to Mp:, let u* = u; otherwise let u* be the vertex that is
matched to u. Define v* and w* analogously.

Consider the matching M’ = (Mmain \ {uw, vw, wu}) U (Mp: \ {vu*, vv*, ww*}).
If uw, v, and w are matched in M’, we can use M = M’. Otherwise this means
that an edge of the separating triplet 7' (that is, a possible dummy edge) was used
in Mpain, say uv. In this case, u and v are free with respect to M’.

The vertices that are free with respect to M’ but were not already free with respect
t0 Mmain are a subset of the set F' = {u, v, u*,v*,w*}. We now show that we can
either add one edge matching two of these vertices or |F| < 3.

If w* is not in T, we simply take M := M’ U {uu*}. The same works if v* is not
inT.

If wv is in Mps then u* = v and v* = u and hence |F| = 3.

The last case to check is that one of the vertices u or v, say u, is free with respect
to Mp/ and the other one, that is, v, is matched to w. But in this case again, v* = w
and w* = v and hence |F| <3. O

This results in an algorithm that produces at most three free vertices for every
leaf of the 4-block tree. Hence the matching has size at least (2n — 644)/4. We
can reach the bound (2n + 4 — 6¢4)/4 by finding at most one augmenting path in
linear time. Once the 4-block tree is computed, we can find leaves to cut off in a
way similar to the method described in Section 3.1. In fact here it is even easier
since we can cut off the leaves one by one. Hence the complete decomposition of the
graph can be done in linear time. We do O(n) splits, and combining the matchings
in both components can be done in constant time. By Lemma 4.1, the computation
of the matching in the branch takes time linear in the size of the branch. Since
two adjacent components share only three vertices, the total number of vertices we
process is linear. Due to the initial computation of the 4-block tree, the algorithm
needs O(na(n)) time. The following theorem summarizes our discussion.

THEOREM 4.3. In a 3-connected planar graph whose 4-block tree has €4 leaves,
we can compute a matching of size at least (2n + 4 — 644)/4 in O(na(n)) time.

In case the graph is a planar triangulation (and hence 3-connected) we can improve
this result. This is due to the fact that the edges between the vertices of a separating
triplet are already in the graph—every separating triplet is a separating triangle.
This means that we can always choose the matching in the branches such that it fits
optimally with the matching in the main component.

THEOREM 4.4. In a triangulated 3-connected planar graph whose 4-block tree
has £y leaves we can compute a matching of size at least (2n + 4 — 204)/4 in linear
time.
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PRrROOF. The triangulated case is considerably simpler than the general 3-con-
nected planar case (treated in Theorem 4.3). In the special case we know that the
vertices of a separating triplet form a triangle. Let G be a triangulated 3-connected
planar graph. Since G is triangulated, the 4-block tree of G can be computed in
linear time [Kant 1997].

Structurally, we do the same as in the general case: we cut off a branch B at a
separating triangle T" and process the main component recursively. Then we extend
the matching M of the main component into the branch. We now show that, in
linear time, we can find a matching M’ D M that leaves at most one vertex in the
branch free. By induction, M’ leaves at most £4 — 1 vertices free. Hence M’ has size
at least (n — (€4 —1))/2 = (2n + 2 — 244) /4. Computing an augmenting path yields
the desired bound of (2n 4+ 4 — 2¢4)/4 in linear time [Tarjan 1983].

The branch B is a path of 4-connected components. We go through these com-
ponents sequentially, starting with the one that contains 7. Let C' be the current
component. Roughly, our idea is as follows. Since C' is 4-connected and planar, we
can compute some Hamiltonian circuit H in C' in O(|C|) time [Chiba and Nishizeki
1989]. In the following, we show how to transform H in linear time into a (nearly)
perfect matching M¢ of C such that (a) M¢ respects the matching in the compo-
nent C~ preceding C' (note that C~ may be the main component), (b) M¢ leaves
at most one vertex free, and (c) if M¢ leaves a vertex free and C' is not the last
component of B, then we can choose M¢ such that the free vertex belongs to the
component CT succeeding C. Given such a matching for each component of B, the
linear running time of the whole algorithm can be seen as in the proof of Lemma 4.1.

It remains to show how to compute in linear time the (nearly) perfect matching Mc¢
of C' from the Hamiltonian circuit H. This requires some bookkeeping, but the idea
is simple. The circuit H yields a (nearly) perfect matching My in C. We claim (and
show below) that we can identify a constant-size subset R of C such that C'\ R has
a perfect matching M that fulfills properties (a)—(c) listed above. This allows us
to remove all edges incident to vertices in R from the matching My . The resulting
matching M}, is restricted to C'\ R. By construction of R we can transform the
matching M}, into the desired perfect matching M by computing a constant number
of augmenting paths in C'\ R. Clearly, M can be computed in O(|C|) time.

Let T~ = {u~,v~,w™} be the triangle separating C from C~. If C is not the
last component in B, let T7 be the triangle separating C from CT and let u™
be a vertex in T \ T~. Otherwise let u™ be any vertex in C'\ T~. Note that 7"~
contains at most one free vertex with respect to the matching that we have computed
for C~. Next, we specify the above-mentioned constant-size set R such that C'\ R
contains a perfect matching fulfilling properties (a)—(c). The set R will be a subset of
{u™,v7,w™,uT}. We use a result of Thomas and Yu [1994], which says that every
graph G* obtained by deleting at most two vertices from a 4-connected planar graph
is Hamiltonian (Plummer’s conjecture, Theorem 1.1). They also show that one can
choose the Hamiltonian circuit in G* such that it contains a prescribed edge on one
of the facial cycles of G* containing one of the deleted vertices (Theorem 3.3). We
distinguish two cases depending on the number of free vertices in 7.

Case I: One vertex of T, say w—, is free.
Then C \ {v~,v"} contains a Hamiltonian circuit. The circuit yields a
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(nearly) perfect matching Mc in C \ {u=,v~}. If |C| is odd, we can
choose M¢ such that ut is free. In this case, we let B = {u™,v",ut}.
Otherwise, |C| is even and all vertices are matched. In this case, we let
R={u",v }.

Case II: T~ does not contain any free vertices.

If |C] is odd, C'\ {u~} contains a Hamiltonian circuit with the edge v~ w™.
The circuit hence contains a perfect matching Mpe,s of C'\ {u~}. The
matching Mpers can be chosen such that it contains the edge v~w™. Now
Mc = Mper \ {v~w™ } is the desired matching. We let R =1T".

If |C| is even, C'\ {u~,u*} contains a Hamiltonian circuit with the edge
v~ w™. As shown above, this circuit contains an appropriate matching. We
let R=T"U{u"}.

In both cases and their subcases, it is obvious that C'\ R contains a perfect matching
fulfilling properties (a)—(c). This completes our proof of the theorem. [J

5. GRAPHS WITH BOUNDED-DEGREE BLOCK-TREES

We already know two algorithms for the special case that the corresponding block
tree has maximum degree 2: (a) the algorithm of Biedl et al. [2001] computes perfect
matchings in 3-regular graphs whose 2-block trees are paths, and (b) the algorithm
from Section 4.1 computes (nearly) perfect matchings in 3-connected planar graphs
whose 4-block trees are paths. In this section, we extend these results to graphs
with block trees of constant maximum degree.

It is clear that, if we bound the number of leaves of the block tree by a constant,
we can find maximum matchings in 3-regular graphs and 3-connected planar graphs
fast. In these cases, our algorithms of the previous sections guarantee to find a
matching that is smaller than |n/2] by only a constant. Hence we can enlarge
the computed matching to a maximum matching by finding a constant number of
augmenting paths, which takes linear time [Tarjan 1983].

In this section, we relax our previous requirement for the fast computation of
maximum matchings: instead of insisting that the block tree has a constant number
of leaves, we require only that its degree is bounded. In this way the number of leaves
can still be large (that is, linear in the size of the graph). This also shows which
structures make the fast computation of maximum matchings difficult: components
with a large number of neighbors.

The technique we use in this section is similar to the one we used in Section 4.1 for
the case of 3-connected planar graphs whose 4-block tree is a path. Recall that we
first decomposed the graph into its 4-connected components by iteratively splitting
at separating triplets and adding dummy edges as necessary. Then each 4-connected
component contains at most two (not necessarily disjoint) separating triplets. The
clue was that whether a local matching in such a 4-connected component can be
combined with a matching of a neighboring component depends exclusively on the
question which vertices of the separating triplets are matched and which are free.
We called this a matching configuration.

In the above case (where the 4-block tree is a path), we can afford to check all
matching configurations since every component has at most two neighbor compo-
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nents and thus only a constant number of matching configurations. Our arguments,
however, also work for a constant number of neighbor components. We now give
fast algorithms, first for 3-connected planar graphs and then for 3-regular graphs,
in both cases assuming that the corresponding block tree has constant maximum
degree.

5.1 3-connected planar graphs

When we treated the case of 3-connected planar graphs whose 4-block tree is a path
(see Section 4.1), we knew that there exists a (nearly) perfect matching. Hence
we could restrict ourselves to considering configurations that can be reached with-
out leaving any vertices free. In the more general setting of arbitrary maximum
matchings, this is no longer the case. Instead of just considering the feasibility of
the matching configurations as in Section 4.1, we now keep track of the number of
vertices that we must leave free to reach a given configuration. We use dynamic
programming to join matching configurations. The running time of our algorithm is
exponential in the degree bound.

Let G be a 3-connected planar graph. We first compute its 4-block tree 7y in
O(na(n)) time [Kanevsky et al. 1992], choose an arbitrary node of 7Ty, and direct
all edges toward it. We call a node u of Ty a predecessor of v if there is a directed
path from u to v in 7. In this case, we also say that the 4-connected component
of G corresponding to u is a predecessor of the component corresponding to v. We
process the 4-connected components of GG in topological order with respect to this
predecessor relation. In this way, whenever we process a component, there is at most
one neighbor component that has not been processed before.

We split G into its 4-connected components by keeping, with each component,
copies of all vertices that belong to separating triplets incident to that component.
In order to actually make the components 4-connected, we add dummy edges that
turn each separating triplet into a separating triangle.

Let C be one of the resulting components and let G denote the subgraph of G
that consists of all vertices that belong to C or to a predecessor of C. There is
at most one separating triplet T' that separates C from a component that has not
been processed already. We call T the leaving separating triplet of C'. An important
observation is that the extendability of a maximum matching in G¢ to a matching
of G depends only on the question which vertices of T are free. Once we have
computed all eight possibilities, we do not need to consider any vertex of Go — T
again.

For each subset F' C T, we compute how many vertices we have to leave free for
a maximum matching in G¢ — F and store the resulting values in a counter. For
this computation, we use the fact that we have already computed the counters of all
predecessors of C'. There is only a constant number of neighbors, and each of them
has a constant number of configurations. To compute the cost of F', we now simply
check the cost of every possible combination. Since this is only a constant number
(even though exponential in the maximum degree of Ty), this takes asymptotically
the same time as checking a single configuration.

Checking the cost of a single configuration takes time proportional to the size of the
component C. This is due to the fact that C' is 4-connected and planar, which means
we can find a Hamiltonian cycle in C in linear time [Chiba and Nishizeki 1989] and
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hence a (nearly) perfect matching. After computing such a matching, we remove all
dummy edges (for example, edges that have only been added to make the components
4-connected) and all vertices that are already matched by predecessor components
in the given configuration as well as all vertices in F'. We remove only a constant
number of vertices and edges, resulting in a constant number of free vertices. Thus we
can enlarge the matching to a maximum matching by computing a constant number
of augmenting paths in linear time [Tarjan 1983]. The number of free vertices of the
resulting configuration is the number of free vertices in the considered component
plus the number of free vertices in the predecessor configurations.

If we store with each counter the corresponding configuration and the correspond-
ing local matching, we can report a maximum matching in linear time once all com-
ponents have been processed. (Instead of storing all local matchings we could also
backtrack once we have processed the whole graph.) The next theorem summarizes
this result. The asymptotic running time is dominated by the initial computation
of the 4-block tree, which takes O(na(n)) time [Kanevsky et al. 1992].

THEOREM 5.1. In a 3-connected planar graph whose 4-block tree has bounded
degree we can compute a mazimum matching in O(na(n)) time.

5.2 3-regular graphs

A similar algorithm can be used to compute a maximum matching in a 3-regular
graph with bounded-degree 2-block tree. We first compute the 2-block tree in linear
time [Tarjan 1972] and then work upward from the leaves in the same way as before.
Here, however, we have only two counters for each (2-connected) component. The
vertex incident to the leaving bridge is either matched or free. Note that when
combining matchings we can add a bridge if both its incident vertices are free. We
compute the cost of each configuration (that is, the number of free vertices) according
to this rule. We must make sure to not match a vertex via two bridges at the same
time. It is not hard to see, however, that a vertex is either incident to at most one
bridge or to three bridges. In the latter case, the vertex is actually a component by
itself, and this can be checked easily.

To check the configurations of a given component we do the following. We first
substitute every degree-2 vertex together with its incident edges by a new edge. This
results in a bridgeless 3-regular graph. We then use the algorithm of Biedl et al.
[2001] to compute a perfect matching in the modified component. By removing the
new edges from the matching, we obtain a matching in the original component that
leaves only a constant number of vertices free. This follows from the assumption
that the degree of the 2-block tree is bounded. Starting from this matching, we
can easily check the cost of every configuration by computing a constant number of
augmenting paths, which takes linear time [Tarjan 1983].

The overall running time for the 3-regular case is dominated by the running time
of the algorithm of Biedl et al. [2001], which runs in O(p log* p) time for a component
of size p and in O(p) time if the input graph is planar. Summing up these running
times over all components yields the following theorem.

THEOREM 5.2. Let G be a 3-reqular graph with n vertices whose 2-block tree has
bounded degree. Then we can find a maximum matching in G in O(n log? n) time.
If G is planar, the running time reduces to O(n).
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As we pointed out at the end of the introduction, the above results concerning
special graph classes are of general interest due to Biedl’s linear-time reductions
[2001] from maximum matching in arbitrary graphs to maximum matching in 3-
regular graphs and from maximum matching in planar graphs to maximum matching
in triangulated (that is, 3-connected) planar graphs of maximum degree 9.

6. OPEN QUESTIONS

Our most burning question deals with 3-connected planar graphs. In such graphs,
we can compute matchings of size at least (2n+4—6¢4)/4 in O(na(n)) time. Can we
achieve the tight bound (2n + 4 — £4)/4 of Biedl et al. [2004] in near-linear time? If
not, what about the triangulated case, where we currently achieve (2n+4 — 204) /47

In planar 3-regular graphs, we currently have the choice of computing a matching
of size at least (3n — 2£3)/6 in O(nlog*n) time or a matching of size at least (3n —
6/5)/6 in linear time. The first algorithm does not exploit planarity; the second does.
The ingredients of these algorithms are incompatible: the subroutine for treating
branches in the linear-time algorithm depends on planarity, whereas the scheme of
cutting branches and fixing 3-regularity in the slower but better algorithm does not
preserve planarity. Can we still get the best of both worlds, that is, a matching of
size at least (3n — 2¢2)/6 in linear time?

Finally, it would be interesting to see whether there are fast algorithms that
implement the bounds of Nishizeki and Baybars [1979] for planar graphs. The main
question here is how to exploit minimum degrees.
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