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Abstract

Annotating maps, graphs, and diagrams with pieces of text is an important step in
information visualization that is usually refered to as label placement. We define nine
label-placement models for labeling points with axis-parallel rectangles given a weight for
each point. There are two groups; fixed-position models and slider models. We aim to
maximize the weight sum of those points that receive a label.

We first compare our models by giving bounds for the ratios between the weights
of maximum-weight labelings in different models. Then we present algorithms for unit-
height labels. We give an O(n log n)-time factor-2 approximation algorithm for fixed-
position models and the first algorithm for labeling weighted points with sliding labels.
Its approximation factor is (2 + ε) and its runtime in O(n2/ε) for any ε > 0.

1 Introduction

Label placement is one of the key tasks in the process of information visualization. In di-
agrams, maps, technical or graph drawings, features like points, lines, and polygons must
be labeled to convey information. The interest in algorithms that automate this task has
increased with the advance in type-setting technology and the amount of information to be
visualized. For an extensive bibliography about label placement see [8]. The ACM Com-
putational Geometry Impact Task Force report [2] denotes label placement as an important
research area.

This paper deals with one of the most basic label-placement problems, namely labeling
points with axis-parallel rectangles. There is an abundance of publications on this problem,
see [8]. However, with two exceptions this is the first paper that gives approximation al-
gorithms for points with weights, which is extremely important for practical applications.
The only two other approximation algorithms for weighted label placement are the following.
First, Iturriaga [5] gave a factor-O(log n) approximation algorithm for finding a maximum
weight independent set (MWIS) in a set of n axis-parallel rectangles. Second, Erlebach et al.
improved this result for squares by giving a polynomial-time approximation scheme (PTAS)
for the weighted case [3].

Van Keveld et al. [7] forged the term of slider models where a label can slide along one
or several edges under the constraint that it touches the point it labels, see Figure 1. This
is opposed to fixed-position models that allow only a constant number of label candidates per
point. Van Kreveld et al. compared a number of fixed-position and slider models with respect
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Figure 1: The labeling models that we consider in this paper.

to how many more points can be labeled in one model than in another using unit square
labels. Figure 1 shows all nine fixed-position models and slider models that we will consider
in this paper. In that figure, each (unit-height) rectangle stands for a feasible label position.
An arrow between two rectangle indicates that additionally all label position are feasible that
arise when moving one rectangle on a straight line onto the other.

For each of their labeling models, van Kreveld et al. gave a PTAS and a fast factor-2
approximation algorithm for labeling unweighted points with unit-height rectangles. They
also did an experimental comparison that showed that algorithms for sliding labels perform
especially well on dense point sets such as scatterplots. Other applications with dense point
sets include drill-hole maps or electrophoresis gels, where usually hundreds of points must be
labeled and thus automation is especially beneficial. We extend the results of van Keveld et
al. by taking weights into account. Our main result is the first algorithm for labeling weighted
points with sliding labels.

2 Comparing labeling models

Let M1 and M2 be any two different labeling models from Figure 1. Given a finite set P of
points in the plane, each point with a weight, let WM (P ) denote the maximum sum of weights
of those points that can be labeled without intersections given labeling model M . Then the

(M1, M2)-ratio is defined as Ψ(M1, M2) = limn→∞ max|P |=n

WM1
(P )

WM2
(P ) .

In order to bound this ratio simultaneously for several pairs of labeling models with similar
properties, we use definitions similar to those for the unweighted problems in [7]. Let v be
a unit vector parallel to the y-axis. We say that M1 can be flipped into M2 by v (see bold
arrows in Figure 2) if any label position in M1 that is not allowed in M2 can be translated
by v into a valid label position in M2. M1 can be one-way slid into M2 by v (dashed arrows)
if any label position in M1 can be translated by σv into a valid label position in M2 for some
σ ∈ [0, 1]. M1 can be two-way slid into M2 by v (dotted arrows) if any label position in M1

can be translated by σv for some σ ∈ [−1, 1] into a valid label position in M2 such that a
corner of the label coincides with the point to be labeled.

In the full paper we show that the (M1, M2)-ratio equals 2 if M1 can be flipped or two-way
slid into M2 and is at most 3 if M1 can be one-way slid into M2. These and our other results
are summarized in Figures 2 and 3. The numbers that are attached to the arcs between two
models M1 and M2 give the (M1, M2)-ratio; intervals specify lower and upper bounds. Some
of the logarithmic bounds in Figure 3 are non-trivial.
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Figure 2: Constant ratios between different
labeling models.
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Figure 3: Ratios that cannot be bounded by
constants. N is shorthand for log n.

3 Approximation algorithms for unit-height labels

We first consider a 1d-problem, namely the problem 1d-1P of finding a MWIS of n (topo-
logically open) intervals given on the x-axis. The problem is exactly the 1d-version of 1P,
and it can be solved in O(n log n) time by a simple dynamic programming algorithm [4]. The
1d-version 1d-2P corresponding to 2PH is as follows. Given a set of n points, each with a
weight and an interval length, find a MWIS from the 2n intervals that either start or end at
one of the input points. We use open intervals but here we make them intersect artificially if
they belong to the same point. This can be achieved by a symbolic comparison rule, which
allows to use the same algorithm [4], although it assumes disjoint interval endpoints. The
2d-problems can be approximated by using line-stabbing as in [7].

Theorem 1 The weighted fixed-position labeling problems 1P, 2PH, 2PV, and 4P can be
factor-2 approximated in O(n log n) time.

Next we consider algorithms for sliding labels. Again we first tackle the corresponding
1d-problem. Given a set of n points x1, . . . , xn on the x-axis, each with a weight wi and an
interval length li, the problem 1d-1S consists of maximizing the weight sum of those points
that can be labeled by intervals of the prescribed length such that (the closure of) each
interval contains its point and no two intervals intersect. This is in fact a special case of
the single-machine throughput maximization problem [1]. It is special in that in our case the
execution window [xi − li, xi + li] of each job is exactly twice the job length li. With a similar
symbolic comparison rule as above the algorithm in [1, Theorem 9] yields a factor-(1 + ε)
approximation for 1d-1S. Again we use line-stabbing for the 2d-problems. This even works
when vertical sliding is allowed, but the proof becomes more involved.

Theorem 2 The weighted sliding problems 1SH, 1SV, 2SH, 2SV, and 4S can be (2 + ε)-
approximated in O(n2/ε) time for any ε > 0.
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4 Discussion

1d-1S can be solved exactly by dynammic programming if the number of different weights is
bounded, but we do not know how this can be done in the general case. While we have a
PTAS for sliding unit-square labels we do not know how to extend this result to unit-height
rectangles.

For arbitrary axis-parallel rectangular labels we have a factor-(3+ε)dlog2 βe approximation
algorithm, where β is the ratio of maximum and minimum label height. For β > 11 this
improves a practical factor-(1 + β) approximation algorithm for labeling unweighted points
with sliding labels [6].
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