
The Minimum Manhattan Network Problem:
A Fast Factor-3 Approximation

Marc Benkert∗ Florian Widmann∗ Alexander Wolff∗

For many applications it is desirable to connect the
nodes of a transportation or communication network
by short paths within the network. In the Euclidean
plane this can be achieved by connecting all pairs
of nodes by straight line segments. While the com-
plete graph minimizes node-to-node travel time, it
maximizes the network-construction costs. An inter-
esting alternative are Euclidean t-spanners, i.e. net-
works in which the ratio of the network distance and
the Euclidean distance between any pair of nodes
is bounded by a constant t ≥ 1. Other desirable
properties are small node degree, total edge length,
and diameter. Euclidean spanners with one or more
of these properties can be constructed in O(n log n)
time [1] (n the number of nodes) and have been stud-
ied extensively.

Under the Euclidean metric, in a 1-spanner (which
is the complete graph) the location of each edge is
uniquely determined. This is not the case in the
Manhattan (or L1-) metric, where an edge {p, q} of
a 1-spanner is a Manhattan p–q path, i.e. a staircase
path between p and q. A 1-spanner under the Man-
hattan metric for a set P ⊂ R2 is called a Manhat-
tan network and can be seen as a set of axis-parallel
line segments whose union contains a Manhattan p–q
path for each pair {p, q} ∈

(
P
2

)
.

In this paper we investigate how the extra degree
of freedom in routing edges can be used to construct
Manhattan networks of minimum total length, so-
called minimum Manhattan networks (MMN). The
MMN problem may have applications in city plan-
ning or VLSI layout. It has been considered before,
but until now, its complexity status is not known.
Gudmundsson et al. [2] have proposed an O(n log n)-
time factor-8 and an O(n3)-time factor-4 approxima-
tion algorithm. Later Kato et al. [3] have given an
O(n3)-time factor-2 approximation algorithm. How-
ever, their correctness proof is incomplete.

In this paper we present an O(n log n)-time factor-
3 approximation algorithm. We use some of the ideas
of [3], but our algorithm is simpler, faster and uses
only linear (instead of quadratic) storage. The main
novelty of our approach is that we partition the plane

∗Faculty of Computer Science, Karlsruhe Uni-
versity, P.O. Box 6980, D-76128 Karlsruhe, Ger-
many. WWW: i11www.ilkd.uka.de/people/, Email:
firstname.lastname@ilkd.uka.de

into two regions and compare the network computed
by our algorithm to an MMN in each region sepa-
rately.

We use the idea of generating sets [3]. A generat-
ing set is a subset of

(
P
2

)
with the property that a

network containing Manhattan paths for all pairs in
the subset is a Manhattan network of P . A gener-
ating set Z with |Z| = O(n) is known [3]. We write
Z as the union of three sets Zhor, Zver, and Zquad.
Our algorithm first establishes paths for all pairs in
Zhor ∪ Zver, then for those in Zquad.

For the sake of brevity we assume in this abstract
that no two input points have the same x- or y-
coordinate. Of course our algorithm works for gen-
eral point sets. Under the above assumption the set
Zver consists of all pairs of points that are neighbors
in the lexicographic order. The definition of Zhor is
analogous to that of Zver with the roles of x and y
exchanged. We now define Zquad:

Definition 1 For a point r ∈ R2 denote its Carte-
sian coordinates by (xr, yr). Let Q(r, 1) = {s ∈ R2 |
xr ≤ xs and yr ≤ ys} be the first quadrant of the
Cartesian coordinate system with origin r. Define
Q(r, 2), Q(r, 3), Q(r, 4) analogously and in the usual
order. Then Zquad is the set of all pairs (p, q) with
p, q ∈ P and q ∈ Q(p, t) for some t ∈ {1, 2, 3, 4} that
fulfill
(a) q is the point that has minimum y-distance from

p among all points in Q(p, t)∩P with minimum
x-distance from p, and

(b) there is no q′ ∈ Q(p, t) ∩ P with {p, q′} ∈ Zhor ∪
Zver.

While the pairs in Z are 2-sets, it helps to view
those in the subset Zquad as ordered pairs. We need
a few simple definitions. Let Rver = {BBox(p, q) |
{p, q} ∈ Zver} (see rectangles in Fig. 1), where
BBox(p, q) is the smallest axis-parallel closed rect-
angle that contains p and q. Define Rhor and Rquad

analogously. Let Aver, Ahor, and Aquad be the sub-
sets of the plane that are defined by the union of the
rectangles in Rver, Rhor, and Rquad, respectively.

For a horizontal line ` consider the graph
G`(V`, E`), where V` is the intersection of ` with the
vertical edges of rectangles in Rver, and there is an
edge in E` if two intersection points belong to the
same rectangle. We say that a point v in V` is odd if

Cver

Rver

S

Figure 1: Rver, Cver, S.

δ(q, 3)

∆(r, 1)

δ(s, 1)

q

r

s

p

A =

sA

qA

δ(p, 3)

δ(r, 1)

u

δ(u, 2)

Figure 2: Network N .

the number of points to the left of v that belong to
the same connected component of G` is odd, other-
wise v is even. For a vertical line g with g∩P 6= ∅ let
an odd segment be an inclusion-maximal connected
set of odd points on g. We show that the set Cver of
all odd segments (bold black in Fig. 1) is a vertical
cover [3]: for each R ∈ Rver and each horizontal line
h that intersects R there is a segment s ∈ Cver with
s ∩ h ∩R 6= ∅. The set Chor defined analogously is a
horizontal cover, and thus by [3, Lemma 2]:

Lemma 1 The total length of C = Cver ∪ Chor is
bounded by the length of an MMN.

The set C can be computed in O(n log n) time by a
plane sweep. We say that a cover is nice if each cover
segment contains an input point. We show that C is
nice.

Our algorithm proceeds in three phases. In phase I
we compute the generating set Z. In phase II we
connect all pairs in Zver∪Zhor by computing C and by
then adding at most one additional line segment for
each rectangle in Rver ∪ Rhor. Since each rectangle
R = BBox(p, q) ∈ Rver (Rhor) is covered nicely, it
suffices to add a horizontal (vertical) segment whose
length is the width (height) of R in order to connect p
and q by a Manhattan path. Let S be the set of these
additional segments (gray in Fig. 1). Consider the
vertical strip that is defined by a rectangle R ∈ Rver.
By definition of Rver, R is the only rectangle in Rver

that intersects the interior of the strip. Thus the
total length of the additional horizontal (vertical)
segments is the width W (height H) of BBox(P). By
Lemma 1 the network N1 = C ∪ S (solid in Fig. 2)
has length at most |Nopt|+ H + W , where Nopt is a
fixed MMN and |M | is the total length of a set M of
line segments. We will abuse notation by identifying
a set M of line segments with the corresponding set
of points

⋃
M .

In phase III we connect the pairs in Zquad. For
a set M ⊆ R2 we denote by ∂M the boundary of
M and by int(M) = M \ ∂M the interior of M .
Let P (q, t) = {p ∈ P ∩ Q(q, t) | (p, q) ∈ Zquad}

for t = 1, . . . , 4. For each q and t we have to
connect q to the points in P (q, t). Let ∆(q, t) =⋃

p∈P (q,t) BBox(p, q) \ int(Ahor ∪ Aver), see the gray
areas in Fig. 2. Let δ(q, t) be the union of those
connected components of ∆(q, t) that are actually
incident to some p ∈ P (q, t). Each connected com-
ponent A of δ(q, t) is a staircase polygon.

We give an algorithm B? that computes for each
A a set B?(A) of line segments in int(A) with
|B?(A)| ≤ 2|Nopt∩ int(A)| (thickly dotted in Fig. 2).
The set B?(A) connects the points in P ∩ A to the
point qA ∈ ∂A closest to q. Our algorithm B?, which
runs in O(k log k) time (k = |A∩P |), is a non-trivial
modification of an O(k)-time factor-2 approximation
algorithm B for rectangulating staircase polygons
[2]. The algorithm in [3] needs an exact rectangu-
lation, which takes O(k3) time.

In case the point qA is not yet connected to q via
N1 we need an extra vertical segment sA (thinly
dotted in Fig. 2) to connect qA to segments in N1

that lead to q. The segment sA, the boundary of A
(dashed in Fig. 2) and the set B?(A) connect q to
the points in P (q, t) via N1. Let N2 be the set of all
segments sA and of the pieces of ∂A that are not in
N1, both over all sets of type A. Let N3 be the union
of all B?(A) over all sets of type A. Our algorithm
returns the line segments in N = N1 ∪N2 ∪N3, see
Fig. 2. By the discussion above, N is a Manhattan
network.

To bound the length of N we partition the plane
into two sets A12 and A3, and compare N to Nopt in
each region separately. Set A3 is the union of int(A)
over all sets of type A, while A12 = R2 \ A3. We
have N1 ∪ N2 ⊆ A12 and N3 ⊆ A3, and the inte-
riors of different regions of type A do not intersect.
Algorithm B? guarantees |N ∩ A3| ≤ 2|Nopt ∩ A3|.
We show that |N2| ≤ 2|Nopt| − (H + W). Thus
|N ∩A12| = |(N1∪N2)∩A12| ≤ 3|Nopt∩A12|, which
in turn yields |N | ≤ 3|Nopt|.
Theorem 1 An MMN can be 3-approximated in
O(n log n) time and O(n) space.

References

[1] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and
M. Smid. Euclidean spanners: Short, thin, and
lanky. In Proc. STOC’95, pp. 489–498, 1995.

[2] J. Gudmundsson, C. Levcopoulos, and G. Nara-
simhan. Approximating a minimum Manhattan
network. Nordic J. Comput., 8:219–232, 2001.

[3] R. Kato, K. Imai, and T. Asano. An improved
algorithm for the minimum Manhattan network
problem. Proc. ISAAC’02, vol. 2518 of LNCS,
pp. 344–356, 2002. Springer-Verlag.

