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Abstract

Planar graphs have been thoroughly studied for decades as one of the simplest graph
classes. The notion of planarity, however, imposes too harsh restrictions on the struc-
ture, significantly limiting the number of planar graphs. As a result, the research
started shifting towards graphs that allow for a few crossings. One such class is the
class of outer k-planar graphs, that is, the graphs that admit a circular drawing with
straight-line edges and at most k crossings per edge. So far, their recognition has
been discussed in a purely theoretical context, lacking practical validation. In this
work, we focus on the practical aspect of the problem by implementing three different
algorithms for recognising outer k-planar graphs. The first implementation is based
on a formulation of the recognition problem as an integer linear program. The second
implementation solves the problem by reducing it to the satisfiability of a Boolean
formula. The third implementation follows a recently introduced algorithm based on
dynamic programming. Comparing the resulting implementations, we found out that
the one based on integer linear programming works best for most graphs due to the
efficiency of the existing solvers and the simplicity of the encoding. The algorithm
based on satisfiability is more complex, requiring an exponential number of clauses in
terms of k. Finally, the algorithm based on dynamic programming is faster than the
other two approaches only for small values of k (at most 3). Also we demonstrated
the positive effect of biconnected decomposition on the performance of the algorithms.
In the future, these implementations can be used to solve the recognition problem for
small instances and to verify new implementations.

The code for this thesis is available on GitHub: https://github.com/ishevche/
OKP-recognition.

HTTP://WWW.UCU.EDU.UA
http://apps.ucu.edu.ua
https://github.com/ishevche/OKP-recognition
https://github.com/ishevche/OKP-recognition
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Chapter 1

Introduction

Nowadays, graphs are widely used across different domains and occupations. They
prove to be an efficient tool for visualising relational systems. However, as the size of
the graphs grows, so does their complexity, which makes understanding their internal
structure increasingly difficult.

This problem was acknowledged by the community as early as in the 1980s. One of
the key points discussed by the researchers in the field was the importance of reducing
the edge crossings for improving visual clarity [2]. The suspicion that a drawing
with fewer edge crossings was easier to comprehend was later confirmed by several
experimental studies [25, 26]. These studies showed that minimising the crossings
in graph representations significantly improves the ability of humans to interpret the
structure, particularly when dealing with complex or large graphs.

This led to the exploration of the ideal form for crossing minimising drawings –
planar ones. However, requiring the drawing to be completely crossing free imposes
severe limitations on an underlying graph. While providing a clean structure, these
restrictions are often too constraining for many real-world graphs, especially large
ones. As a consequence, many processes cannot be represented in a planar manner,
so no insights acquired by the decades-long studies are applicable to them.

As a result, the research community expresses a growing interest in exploring
graphs whose drawings are beyond planar; see the survey by Didimo et al. [10]. This
led to an exploration of alternative approaches for eliminating edge crossings, such as
drawings which include only parts of the edges [5, 4], or merge several edges to form
a single track [9]. However, the most popular approach is to consider “almost” planar
graphs, that is, graphs which admit a drawing with a limited number of crossings.
Such graphs offer a balance between visual recognisability and structural flexibility
while still retaining some of the beneficial structural properties of planar graphs.

The most natural way to impose a limit on the number of crossings is to place
an upper bound on the number of crossings per edge for some value k. This class
of graphs is among those that have attracted the most interest from the research
community lately [16]. In this work, however, we went a step further, additionally
restricting the vertices to lie on a circle. Drawings that comply with both restrictions
are called outer k-planar, and so are the graphs that admit such drawings.

1.1 Our contribution

However, despite all recent advances in this area, all work has been conducted in
a theoretical context. Algorithms have not been implemented or tested empirically.
Thus, they lack practical validation. In this thesis, we want to address this gap by
implementing the most recent recognition algorithm and by introducing two alterna-
tive approaches based on Integer Linear Programming (ILP) and Satisfiability (SAT).
While it is NP-hard to solve the general integer linear programming problem or to find
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a satisfying truth assignment for general Boolean formulas, there are very advanced
solvers that can help us find the exact solutions for small- to medium-sized instances
within an acceptable amount of time. We also evaluate the performance and efficiency
of these methods, demonstrating their practical applicability and their limitations.

1.2 Structure of the thesis

• Chapter 2 discusses the state of the art by reviewing the main pieces of work in
the context of planar and almost planar graph drawings. Here, we also discuss
the complexity of the problem.

• Chapter 3 describes three algorithms for recognising outer k-planar graphs. Ad-
ditionally, it presents the optimisations we used to improve the performance of
the implemented methods.

• Chapter 4 describes the experiments that we conducted to evaluate the perfor-
mance of the implemented algorithms and discusses the results that we obtained.

• Chapter 5 summarises the key accomplishments and overviews the results. It
also discusses the limitations of our implementations and outlines potential im-
provements that can be made to overcome them.
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Chapter 2

Related Work

As we discussed in Chapter 1, to get an easily interpretable graph drawing, one should
minimise the number of crossings in it. The first algorithms that could do so were
designed to recognise planar graphs and construct their drawing. The first linear-time
algorithm for recognition of planar graphs was introduced as early as 1974 by Hopcroft
and Tarjan [20]. In this chapter, we discuss studies that address the recognition
problem for almost planar graphs.

2.1 Difficulty of dealing with beyond-planar graphs

Most relaxations of strict planarity dramatically increase the complexity of recognis-
ing such graphs. So, the general problem of minimising edge crossings in a graph
drawing was known to be computationally intractable already in 1983 when Garey
and Johnson [15] demonstrated that the Crossing Number problem, where the task
is to check whether a given graph can be drawn with at most k crossings, is NP-
hard. Their proof relies on a reduction from the Optimal Linear Arrangement
problem, which is known to be NP-hard.

Minimising the number of local crossings is also hard. Korzhik and Mohar [23]
showed that testing 1-planarity, that is, recognising whether a graph can be drawn
with at most one crossing per edge, is NP-hard. Later, Cabello and Mohar [6] showed
that testing 1-planarity is NP-hard even for near-planar graphs, that is, graphs that
can be obtained from planar graphs by adding a single edge.

(a) 1-planar drawing (b) Outer 2-planar drawing

Figure 2.1: Drawing of K5 (a) non-restricted and (b) restricted to a
circular setting. Edge crossings are emphasised in red

Given the complexity of recognising k-planarity, researchers have considered ex-
ploring more restrictive settings, hoping that the imposed limitations could simplify
the recognition. One of the considered restrictions is a circular setting that requires
the vertices to be placed on a circle and the edges to be drawn as straight lines. This
restriction gives rise to the local circular crossing number of a graph, which we study
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in this thesis. The graphs whose local circular crossing number is bounded by k are
called outer k-planar graphs. For example, K5, the complete graph with five vertices,
is known to be the smallest non-planar graph. It can be drawn with a single crossing,
hence it is 1-planar (see Figure 2.1a). When insisting on the circular setting, however,
every second edge receives two crossings, hence K5 is outer 2-planar (see Figure 2.1b).

2.2 Efficient recognition of some outer k-planar graphs

Recently Kobayashi et al. [22, Theorem 19] showed that the recognition problem for
outer k-planar graphs is XNLP-hard with respect to the natural parameter k. In
other words, it is unlikely that an algorithm that runs in f(k) · nO(1) time for solving
this problem exists. Here, f represents any computable function, and n represents
the size of the input. Despite that, efficient algorithms for some constant values of k
have been developed.

For k = 0, the recognition task simplifies to an outerplanarity test. Recognition
can be accomplished by augmenting the graph with a new vertex connected to all
original vertices and testing whether the resulting graph is planar. An alternative
approach, described by Wiegers [28], introduces the concept of 2-reducible graphs,
which are totally disconnected or can be made totally disconnected by repeatedly
deleting edges adjacent to a vertex of degree at most two. The proposed outerplanarity
test is based on an algorithm for testing 2-reducibility.

In the case of k = 1, two research groups independently presented linear-time
algorithms [1, 18]. Both algorithms use the SPQR-decomposition of a graph for the
test. Notably, the latter solution extends the graph to a maximal outer 1-planar
configuration if such a drawing exists, unlike the former, which employs a bottom-up
strategy which does not require any transformations of the original graph.

Considering a special case of this problem, Hong and Nagamochi [19] proposed a
linear-time algorithm for recognising full outer 2-planar graphs. An outer k-planar
drawing is full if no crossings lie on the boundary of the outer face. Later, Chaplick
et al. [7] extended the result of Hong and Nagamochi by introducing an algorithm for
recognising full outer k-planar graphs for every k. Their algorithm runs in f(k) · n
time, where f is a computable function.

For the general version of the problem and values of k > 1, no research has been
conducted until recently when a group of researchers proposed an algorithm for the
general case, which we discuss in Section 2.3.

2.3 Recognising general outer k-planar graphs

For a given outer k-planar drawing of a graph, Firman et al. [11] proposed a method
for constructing a triangulation with the property that each edge of the triangulation
is crossed by at most k edges of the drawing. Since the edges of the triangulation
do not necessarily belong to the original graph, they are termed links to distinguish
them from the original graph edges. The construction is done recursively.

Initially, the algorithm selects an edge on the outer face and labels it as the active
link. At each recursive step, the active link partitions the graph into two regions: a
left part already triangulated and a right part not yet explored. The objective of each
step is to triangulate the right portion. To achieve this, a splitting vertex is chosen
within the right region, dividing it into two smaller subregions. The splitting vertex
is selected so that the two new links, connecting the split vertex with the endpoints of
the active link, are each intersected by at most k edges, which allows including them
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into the triangulation. The algorithm then recurses, treating each of these newly
formed links as the active one.

Later, Kobayashi et al. [22] exploited this approach to address the recognition
problem for outer k-planar graphs. In contrast to the triangulation task, where the
drawing is provided, the recognition problem requires determining whether a given
graph admits an outer k-planar drawing. Although the core idea remains analogous,
the absence of a drawing requires the exploration of all possible configurations. Here,
each recursive step verifies whether the unexplored right portion of the graph can be
drawn as an outer k-planar graph that is compatible with the left part.

Moreover, instead of relying on recursion, the method utilises a dynamic program-
ming approach. This framework combines solutions of smaller subproblems retrieved
from a table to solve larger ones. To populate this table, the algorithm iterates over all
possible configurations corresponding to different recursion steps. Several parameters
characterise each such configuration. The first parameter is the active link – a pair
of vertices that divides the graph into a left and a right region. The second param-
eter is the set of vertices in the right part, which is not uniquely determined as in
the triangulation case. Additionally, the configuration depends on the order in which
edges intersect the active link and the number of intersections on the right side for
each one of them. These parameters are used to ensure that the drawing of the right
part is compatible with the left part. For each configuration, the algorithm considers
all possible ways to split the right region further. For each of these splits, the method
checks whether they are compatible with each other and with the left part of the
drawing.

Using the restriction on the number of edges that can cross each link, the authors
demonstrated that, for a fixed k, the number of possible right subgraphs grows only
polynomially with respect to the size of the graph. They proceeded by arguing that the
overall time complexity of the algorithm is 2O(k log k)n3k+O(1), where n is the number
of vertices in the graph, showing that the algorithm is efficient for any fixed parameter
k. This indicates that this problem belongs to the XP class, a class of problems that
admit such “slicewise polynomial” algorithms.
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Chapter 3

Proposed Solution

The studies conducted in the field of outer k-planar graphs lie purely in the theoret-
ical domain, lacking practical validation. In this thesis, we aim to address this gap
by implementing three different algorithms for computing the local circular crossing
number of a given graph. Additionally, we aim to develop a command-line interface
that would allow invoking the implemented algorithms, receiving the graph and a
method as an input and returning the local circular crossing number k and a circular
drawing of the provided graph with at most k intersections per edge as an output.

For operations with graphs, we use the C++ Boost Graph Library [27]. As a graph
class, we use adjacency_list since, for all methods described below, we require both
VertexList and EdgeList concepts to be able to iterate over both vertices and edges. We
prefer this class to an adjacency_matrix as, according to the library documentation1,
it trades memory consumption and speed of graph traversal for the speed of edge
insertion and deletion, and neither of these operations is used for the algorithms
described in this chapter. To represent a circular graph drawing, we simply use the
sequence of vertices in the order in which they appear on the circle.

3.1 Bicomponent decomposition

For complex problems, a decomposition into smaller subproblems often leads to a sig-
nificant increase in performance. In our context of recognising outer k-planar graphs,
an effective strategy to do so is to partition the graph into subgraphs in such a manner
that allows us to process each part independently by the recognition algorithm. One of
the plausible ways to accomplish this is to split the graph into biconnected components
using block-cut decomposition, as shown in Figure 3.1a. It is worth noting that each
edge of the graph belongs to a single biconnected component, referred to as a block.
However, any two bicomponents may share a vertex, referred to as a cut vertex. Con-
sidering blocks and cut vertices as graph nodes, we can construct a so-called block-cut
tree, wherein a block node is connected to a cut node if and only if the corresponding
biconnected component contains a corresponding cut vertex, see Figure 3.1b.

Due to the nature of bi-connectedness, after getting outer k-planar drawings of
all biconnected components separately, we can combine them easily into an outer k-
planar drawing of the whole graph. To be more specific, if some component does not
admit an outer k-planar drawing, neither does the whole graph. Otherwise, if for all
of them such a drawing exists, they can be merged by combining duplicates of each
cut vertex see Figure 3.1c and Figure 3.1d. This merging process does not introduce
any additional edge crossings since both components are located on the outer face of
each other. Moreover, as no new faces are created during this process (due to the
acyclic structure of the block-cut tree), every vertex remains on the outer face of the

1https://www.boost.org/doc/libs/1_88_0/libs/graph/doc/adjacency_matrix.html

https://www.boost.org/doc/libs/1_88_0/libs/graph/doc/adjacency_matrix.html
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(d) Outer k-planar drawing of the original graph

Figure 3.1: An example of a bicomponent decomposition

graph during this process. Consequently, the resulting drawing of an original graph is
outer k-planar, and it exists if and only if each biconnected component of the graph
admits such a drawing.

In this work, we implemented this decomposition using the method biconnec-
ted_components2 from the Boost Graph Library [27]. This function assigns an index
of the bicomponent to each edge to which it belongs. Additionally, it provides a list
of cut vertices. Afterwards, we copy each block as an independent graph and create
mappings to translate new local vertices back to their original identifiers. Finally, we
construct a supergraph representing the structure of a block-cut tree wherein each
node references a copied block alongside corresponding mapping or a cut vertex.

To construct a drawing of the whole graph, after performing the decomposition,
we perform a depth-first search on the block-cut tree, recording the predecessor for
each node upon discovery. Additionally, each time a block vertex is discovered, we
use one of the methods described in Sections 3.2, 3.3 and 3.5 to check whether the
component admits an outer k-planar drawing and obtain it if so. Afterwards, we merge
the new drawing with the already existing one by combining the common cut vertex
if such exists. To be more specific, if the considered block is the first encountered
one, its drawing is directly copied into a sequence that will form the final drawing.
Otherwise, the block necessarily has a predecessor. Due to the structure of a tree, it
is a cut node corresponding to a vertex that is shared with some other block. Due

2https://www.boost.org/doc/libs/1_87_0/libs/graph/doc/biconnected_components.html

https://www.boost.org/doc/libs/1_87_0/libs/graph/doc/biconnected_components.html
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to how we traverse the tree, that other block has already been considered and thus
added to a final drawing. As a result, the corresponding cut vertex is present in both
global and local drawings. Since each drawing is represented as a cyclic sequence of
vertices, we can rotate the local one so that the corresponding cut vertex appears
as the first one in a sequence. Finally, we insert the local drawing starting from the
second element into the global one immediately after the corresponding cut vertex.

3.2 ILP-based algorithm

As we discussed earlier, the problem of recognising the outer k-planar graphs is known
to be XNLP-hard with respect to the natural parameter k. This justifies the use of
exponential-time methods to approach our problem. By doing so, we benefit from
decade-long studies conducted for these problems that resulted in the development of
extremely optimised algorithms for their solving. One of them is an Integer Linear
Programming problem (ILP). This problem asks to find a vector x that optimises
the linear objective cTx subject to specific constraints Ax ⩽ b. Additionally, some
variables in the ILP problem are restricted to integer values. Since researchers have
extensively studied the problem and developed efficient solvers, we decided to use
their results to build an algorithm for recognising outer k-planar graphs. This section
discusses the process we use to encode the recognition task as the ILP problem.

As an implementation of ILP solver, we used Gurobi Optimizer [17] under the free
academic licence. We chose it due to its outstanding performance demonstrated by
Luppold et al. [24].

To encode a recognition problem as an ILP, we have to represent its structure
using variables and constraints. We start with a graph drawing, which is represented,
as described above, as a sequence of vertices. For the ILP, we can encode it using the
so-called ordering variables, which indicate a relative order of two vertices. Specifi-
cally, for every pair of vertices u and v, we create a binary variable au,v introducing
Equation (3.18) as a constraint for the ILP problem. We interpret the value 1 as an
indication of vertex u being located before vertex v and the value 0 as an indication
of either v being located before u or u and v being the same vertex.

To ensure that these variables encode a valid sequence, we also have to enforce
the transitivity. That is, for every ordered pair of distinct vertices u and w, and every
other vertex v, if au,v = 1 and av,w = 1, meaning u is located before v and v is located
before w, then u must be located before w, so the following should hold au,w = 1.
Including also the implication for the reversed order, we get:

au,v = 1 ∧ av,w = 1 =⇒ au,w = 1 (3.1)
au,v = 0 ∧ av,w = 0 =⇒ au,w = 0 (3.2)

If we instead consider a pair w, u and the same vertex v, the constraints would look
like follows:

aw,v = 1 ∧ av,u = 1 =⇒ aw,u = 1 (3.3)
aw,v = 0 ∧ av,u = 0 =⇒ aw,u = 0 (3.4)

Note that for any distinct vertices x and y the equality ax,y = 1− ay,x always holds,
thus Equations (3.1) and (3.4) alike Equations (3.2) and (3.3) are equivalent. Conse-
quently, it is enough to ensure only the first constraint as long as we do it for every
ordered pair of vertices. Considering that the variables are binary, to limit au,w to
1 it is enough to impose a constraint au,w ⩾ ϵ for any ϵ ∈ (0; 1]. In a constraint for
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ILP, this ϵ must be represented as a linear function of au,v and av,w. The values of
this function must lie in the half-interval (0; 1] if and only if both binary variables are
1. Using an expression au,v + av,w − 1 for this leads to Equation (3.7) in the encoded
ILP formulation below.

u v s t

(a)

u s v t

(b)

u s t v

(c)

s u v t

(d)

s u t v

(e)

s t u v

(f)

u v t s

(g)

u t v s

(h)

u t s v

(i)

t u v s

(j)

t u s v

(k)

t s u v

(l)

v u s t

(m)

v s u t

(n)

v s t u

(o)

s v u t

(p)

s v t u

(q)

s t v u

(r)

v u t s

(s)

v t u s

(t)

v t s u

(u)

t v u s

(v)

t v s u

(w)

t s v u

(x)

Figure 3.2: All 24 possible arrangements of the endpoints of two edges,
only 8 of which result in an intersection; see the central column.

The next step of the algorithm is to encode the intersections. To represent them,
for every unordered pair of edges, uv and st, we introduce a binary crossing variable
cuv,st, hence Equation (3.17) representing this constraint. The endpoints of the edges
can be arranged in 24 different ways, among which only eight result in an intersection,
as demonstrated in Figure 3.2. To encode this, we must ensure that the value of the
variable cuv,st equals 1 if the corresponding ordering variables indicate one of these
eight arrangements3. For example, considering the arrangement in Figure 3.2b, we
have to limit the value of cuv,st to 1 if the endpoints are arranged in the order usvt.

3As the objective of the program is to minimise the number of crossings, we do not constraint
cuv,st to 0 when uv and st do not cross, leaving this to the optimiser. Doing so, we simplify the
problem by reducing the number of constraints for every pair of edges from 24 to 8.
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This order of vertices is implied by the model if and only if each equivalence out of
au,s = 1, as,v = 1 and av,t = 1 holds. Thus, we can represent this limitation as follows:

au,s = 1 ∧ as,v = 1 ∧ av,t = 1 =⇒ cuv,st = 1

To transform this into a constraint for an ILP formulation, we can use the same logic
as for encoding Equation (3.1), getting as a result Equation (3.8). Equations (3.9)
to (3.15) are constructed analogously for the other seven intersecting arrangements.

Lastly, the algorithm has to encode each edge’s crossing number and minimise
the maximal value out of them. The crossing number of each edge can be easily
represented as a sum of the corresponding crossing variables:

cre ⩽
∑

e′∈E(G)

ce,e′ (3.5)

However, as the maximum is not a linear function, constructing the objective function
out of the per-edge crossing numbers is not as simple. To get around this limitation, we
have to introduce a new continuous variable k, which represents the crossing number
of the whole graph G. To ensure that, we have to bound k from below by the crossing
number of each edge: k ⩾ cre∀e ∈ E(G). Combining this with Equation (3.5), we
get Equation (3.16) as a constraint for the ILP problem. As a result, minimising for
k would give the desired result.

Combining everything together, we get the following formulation of the ILP prob-
lem:

minimize k (3.6)
subject to au,v ⩾ au,v + av,w − 1, ∀u, v, w ∈ V (G) (3.7)

cuv,st ⩾ au,s + as,v + av,t − 2, ∀uv, st ∈ E(G) (3.8)
cuv,st ⩾ au,t + at,v + av,s − 2, ∀uv, st ∈ E(G) (3.9)
cuv,st ⩾ av,s + as,u + au,t − 2, ∀uv, st ∈ E(G) (3.10)
cuv,st ⩾ av,t + at,u + au,s − 2, ∀uv, st ∈ E(G) (3.11)
cuv,st ⩾ as,u + au,t + at,v − 2, ∀uv, st ∈ E(G) (3.12)
cuv,st ⩾ at,u + au,s + as,v − 2, ∀uv, st ∈ E(G) (3.13)
cuv,st ⩾ as,v + av,t + at,u − 2, ∀uv, st ∈ E(G) (3.14)
cuv,st ⩾ at,v + av,s + as,u − 2, ∀uv, st ∈ E(G) (3.15)

k ⩾
∑

e′∈E(G)

ce,e′ , ∀e ∈ E(G) (3.16)

ce1,e2 ∈ {0, 1}, ∀e1, e2 ∈ E(G) (3.17)
au,v ∈ {0, 1}, ∀u, v ∈ V (G) (3.18)

To estimate the complexity of the formulation, we can calculate the number of
constraints used in the encoding. So considering them in the order they are mentioned
above, we have O(n3) + 8 ·O(m2) +O(m) +O(m) +O(n) = O(n3 +m2) constraints,
where n is the number of vertices and m is the number of edges in the input graph.
Note that the size of the ILP formulation does not depend on the graph’s local circular
crossing number.

After encoding the problem as an ILP problem, as we described above, we run
the solver. After optimisation, it returns assigned values for each variable used in the
program. The variables of interest for us are ordering variables au,v and k. The latter
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one indicates the minimal possible crossing number that is reported. The former ones
we use to reconstruct an outer k-planar drawing of the original graph. As the desired
drawing is a sequence of vertices, we must order them. To do so, we can use the
values of ordering variables to define the strict total order relation. We say that for
two vertices u and v u < v if and only if au,v is assigned to 1. Due to the construction
of these variables and transitivity constraints represented with Equation (3.7), this
order satisfies all requirements of the strict total order. Thus, it can sort the vertices,
resulting in an outer k-planar drawing.

3.3 SAT-based algorithm

Another example of a thoroughly studied problem with an exponential-time solver
is a Boolean Satisfiability problem (SAT). As an input, the problem gets a Boolean
formula in a conjunctive normal form (CNF). For the output, it asks for such an
assignment of logic values True and False to the variables used in the input, for
which the formula evaluates to True. This section discusses our process of encoding
the recognition task as the SAT problem. To do so, we represent our problem as a
Boolean expression, which is satisfied if and only if the graph admits an outer k-planar
drawing. As an implementation of SAT solver, we used kissat [3, 21]. We chose it for
our work as this solver is one of the best-performing ones [12].

To encode the drawing, we use the ordering variables au,v we used in the ILP-
based algorithm described in the Section 3.2 interpreting the value 1 as True and 0
as False. To encode the transitivity constraint, we follow the same logic, ending up
with the same Equation (3.1). In terms of Boolean algebra, this can be encoded as
follows:

au,v ∧ av,w → au,w

To transform this into CNF, we expand the implication and apply De Morgan’s law,
getting the first set of clauses in the SAT representation:

au,v ∧ av,w → au,w ≡ (au,v ∧ av,w) ∨ au,w

≡ au,v ∨ av,w ∨ au,w (3.19)

To encode the edges’ intersections, we also reuse crossing variables cuv,st from the
ILP-based algorithm. Similarly, we ensure that the variable is set to True if the
endpoints of the corresponding edges are arranged in one of eight crossing patterns
(see Figure 3.2). This leads to eight sets of clauses, each of which contains ones
representing one of these arrangements for all crossing variables. For example, for the
arrangement from Figure 3.2b the constraint for the variable cuv,st can be encoded as
follows:

au,s ∧ as,v ∧ av,t → cuv,st

To represent it as a clause, we expand the implication and apply De Morgan’s law:

au,s ∧ as,v ∧ av,t → cuv,st ≡ au,s ∧ as,v ∧ av,t ∨ cuv,st

≡ au,s ∨ as,v ∨ av,t ∨ cuv,st (3.20)

The last thing to encode is the limit of k intersections per edge. Unlike the ILP-
based algorithm, we cannot add the corresponding variable. To impose this restriction,
we ensure that no edges are crossed at least k + 1 times. For that, for each edge e0
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and every set of k + 1 edges E = {e1, e2, . . . , ek+1} we add a following clause to the
Boolean formula:

ce0,e1 ∨ ce0,e2 ∨ · · · ∨ ce0,ek+1
(3.21)

which evaluates to True only if at least one variable is set to False. By inserting
this clause for every possible set E, we ensure that no k + 1 edges cross the same
edge. Thus, if the resulting Boolean expression is satisfiable by some realisation of
the variables, the values of ordering variables from this realisation would indicate an
outer k-planar drawing.

Lastly we combine clauses from Equation (3.19) for all triplets of vertices u, v
and w, with clauses from Equation (3.20) for all pairs of edges uv and st, and with
clauses from Equation (3.21) for all edges e0 and all sets E of k+1 edges. We combine
the clauses using logical and operator (∧), as every single clause must be satisfied to
graph to be outer k-planar. Then, we run the SAT solver using the resulting Boolean
expression as an input. If the solver fails to find a satisfiable instance, the algorithm
halts, indicating that the graph is not outer k-planar. Otherwise, the algorithm
halts returning the desired graph drawing. To reconstruct an outer k-planar drawing,
similar to the ILP approach, we sort the vertices using the values of the ordering
variables assigned by the solver to specify the order.

Unfortunately, unlike the algorithm based on ILP, this one does not solve the
optimisation problem of finding the minimal possible k. The resulting algorithm solves
the decision problem, that is, whether the graph admits an outer k-planar drawing
or not. To transform this into an optimisation, we incrementally check each integer,
starting from 0, until the Boolean expression becomes satisfiable.

Finally, to estimate the complexity of the described formulation, we calculate the
number of clauses in the Boolean expression. So by considering them in the order they
are mentioned above, we get O(n3) + 8 ·O(m2) +O(mk+2) = O(n3 +mk+2) clauses,
where n is the number of vertices and m is number of edges in the graph. Unlike in
the ILP-based algorithm, here, the size of the encoded problem grows exponentially
in terms of k, which makes this encoding more complex.

3.4 Optimisations for ILP- and SAT-based algorithms

In both ILP- and SAT-based algorithms, for encoding the intersection of two edges
uv and st, we used binary variable cuv,st. However, despite 24 possible arrangements
of edges’ endpoints (see Figure 3.2), we imposed only 8 constraints in each algorithm.
Each of these constraints covers one of the arrangements that result in the intersection,
leaving the rest 16 for the solver to optimise. This section discusses two ways we
considered helping the solver optimise these variables.

The first optimisation is a simple extension of the same logic we applied for the
intersecting arrangements. To ensure the correct values of crossing variables, we can
impose all 24 constraints on each one. The first eight we described in the correspond-
ing Sections 3.2 and 3.3. The other 16 we construct in a similar way. For example,
to construct a constraint for an arrangement in Figure 3.2a, we have to encode the
following:

au,v = 1 ∧ av,s = 1 ∧ as,t = 1 =⇒ cuv,st = 0

To represent it as a linear constraint for an ILP-based algorithm, we have to
limit cuv,st from above if all three variables are 1. We can do so with an expression
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3− au,v − av,s − as,t, resulting in a constraint:

cuv,st ⩽ 3− au,v − av,s − as,t, ∀uv, st ∈ E(G)

For a SAT-based algorithm, we can transform the implication in the similar way
we did it for the clause from Equation (3.20):

au,v ∧ av,s ∧ as,t → cuv,st ≡ au,v ∧ av,s ∧ as,t ∨ cuv,st

≡ au,v ∨ av,s ∨ as,t ∨ cuv,st

By repeating these constraints for all non-crossing arrangements, we get the algo-
rithms with exact crossing variables.

Another optimisation that we considered can be implemented only for an ILP-
based algorithm. The primary problem caused by this inaccuracy in ILP formulation
is that the variables’ influence on the objective function is not direct. The crossing
variables constrain another variable k, which in turn affects the objective function, so
it might be hard for an optimiser to estimate the effect of crossing variables accurately.
With this optimisation, we help the solver by introducing a small direct influence on
an objective function bypassing the intermediate variable k. To do so, we include
an extra term in the objective function from Equation (3.6):

∑
ce1,e2
|E|2 . By using |E|2

as a dominator in the fraction, we ensure that the value of the inserted term never
exceeds 1 so that the optimiser would always prioritise decreasing k over this term.
As a result, the optimised objective function for the ILP problem is:

k +
∑

e1,e2∈E(G)

ce1,e2
|E|2

3.5 DP algorithm

The last algorithm we considered was introduced by Kobayashi et al. [22]. Unlike
previously discussed ones, this algorithm was explicitly designed to solve the recog-
nition problem. This method uses the approach of dynamic programming, where the
solution for a problem is built based on solutions of similar but smaller problems.
Thus, the final drawing of the graph is built incrementally each time for a larger part
of the original graph.

The whole process can be divided into steps. Each one of them can be parame-
terised by three parameters. The first is a pair of vertices u and v that split a graph
into two parts, denoted as a link. The next is a set Ruv of vertices lying to the right
of the link. And lastly the set Euv = {e1, e2, . . . , el} of l edges crossing the uv link
from the right to the left side. To represent each step separately, we introduce a graph
Guv,Ruv which consists of vertices {u, v} ∪Ruv alongside all connecting edges from an
original graph G with inserted vertices t1, t2, . . . , tl connected to corresponding ver-
tices by edges e1, e2, . . . , el. We call a configuration on each step drawable if exists an
outer k-planar drawing of a corresponding graph Guv,Ruv which cyclic order contains
(u, tτ(1), tτ(2), . . . , tτ(l), v) as a consecutive subsequence for some permutation τ . On
each step, the algorithm finds all possible permutations for which the configuration is
drawable and stores them in the lookup table.

In the implementation of the algorithm, we first construct an index of all possible
configurations. It allows us to simply iterate through it later without searching for
the next configuration. Since, on each step, we try to draw a configuration using two
smaller drawable ones, we group them by the size of the right part, guaranteeing that
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all smaller drawable configurations are already discovered at any point of the process.
Unfortunately, it is unfeasible to consider all possible configurations due to the sheer
number of them. For a graph with n vertices, there are n(n−1)

2 links with 2n−2 possible
right sides each. As the link together with the right side uniquely determines the edges
that cross the link, totally there are n(n− 1) · 2n−3 possible configurations.

To significantly reduce the search space, the authors used the result of Firman
et al. They showed [11] that there is a vertex w from the right side of any drawable
configuration that splits it into two smaller narrow configurations for which |Euw| ⩽ k
and |Evw| ⩽ k. By reversing their argument, we get that Guv,Ruv admits an outer
k-planar drawing if and only if we can combine it from two narrow drawable config-
urations. This allows us to limit the considered configurations only to narrow once,
reducing their number to 2O(k)mk+O(1) [22, Lemma 15] instances.

Despite this optimisation, there is still a massive number of configurations. To
minimise the memory consumption and make it feasible, we represent the right sides
as binary masks stored as 64-bit integers. This decision limits the current implemen-
tation to graphs with at most 64 vertices. However, considering the complexity of
the algorithm, we believe the graphs of bigger sizes would require an unreasonable
amount of resources anyway4.

To populate this index, we start by iterating over possible values for l5. For
each choice of l and each link uv, we consider an augmented graph H obtained by
removing u and v from the original graph G alongside all connected edges. Then,
we select exactly l edges from H to cross the link uv. These edges further subdivide
some connected components of H into connected subcomponents. Crucially, as these
subcomponents do not contain edges that cross the link, each one of them must
be located entirely on one side. Thus, finding all valid right sides for a given link
means finding all valid black-white colourings of subcomponents, where white indicates
belonging to the right and black to the left side. Consequently, each selected edge has
to connect subcomponents of different colours, or in other words, the metagraph of H
with subcomponents as vertices connected by selected edges has to be bipartite. After
ensuring this holds, we construct all possible right sides for the selected link. As each
connected bipartite graph can be coloured in exactly two ways, there are exactly 2d

possible right sides, where d is the number of connected components in H.
After constructing an index, we proceed to fill the lookup table. In there, for each

configuration, we record all discovered sets of arrangements of Euv that can appear in
an outer k-planar drawing of Guv,Ruv grouped by the link uv and the right side Ruv.
Each arrangement Auv apart from a permutation τ of edges in Euv also contains a map
fuv : Euv → N+ that matches each edge from Euv with its number of intersections in
the drawing of Guv,Ruv .

To fill the corresponding cell of the lookup table, we have to find all arrangements
for which a specific configuration is drawable. We start by selecting a split vertex w
that belongs to the right side Ruv. For each w, we iterate over all configurations with
a link uw and a right side Ruw that is a subset of Ruv. Additionally, we also consider a
complementary configuration with a link vw and right side Rvw = Ruv \ (Ruw ∪{w}).
For each such pair of configurations, we iterate over all pairs of drawable arrangements
Auw and Avw saved in the lookup table and search for all possible ways to combine
them into an outer k-planar drawing of Guv,Ruv .

4Potentially it is possible to develop a specified bitmask object which could handle any number
of vertices by using multiple integers stored in an array.

5By iterating over this first, we ensure that it is easy to extend the index for k + 1 edges if the
check for outer k-planarity is unsuccessful.
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There is only one way to glue drawings of two configurations together. However,
to form a valid drawing of Guv,Ruv , we also have to decide on the order of edges
crossing the link uv represented by a permutation τuv. To ensure the correctness of
the solution, we go through all possible ones. For each permutation, we check whether
the resulting drawing is valid – each edge is crossed at most k times – and construct
a mapping fuv if so. To do that, we focus on an inner triangle consisting of three
vertices u, v and w, and all the edges crossing at least one of the links uv, uw and
vw. Additionally, we include edge (u, v) if such exists. Crucially, to calculate all
the intersections apart from the edges, we also need the order in which they enter
the triangle. As sides of the triangle are exactly the links, this order is represented in
corresponding permutations: τuw from Auw, τvw from Avw and τuv which is considered
one by one. To represent the order in the triangle, we insert luv helper vertices between
u and v, given that luv := |Euv|. We treat them as endpoints of corresponding edges
that enter the triangle by crossing the link uv. Similarly, we insert vertices along the
links uw and vw. Importantly, each inserted vertex is an endpoint only for one edge,
and along each link, they are ordered according to the corresponding permutations.
By considering these vertices as edges’ endpoints, we limit the view to the intersections
created by the combination of two parts, ignoring those in Ruw and Rvw. So, to get
the crossing number for each edge, apart from the ones we count in the triangle, we
also have to add those accounted by fuw and fvw. If the crossing number of any edge
exceeds k, we discard the permutation τuv and proceed to the next one. Otherwise,
we extract the mapping fuv and, together with the current permutation τuv, add it
as a new arrangement to the lookup table.

If at any moment, the algorithm finds a drawable configuration with the link uv
and right side Ruv = V (G) \ {u, v}, it halts indicating that G is outer k-planar. In
this case, the graph Guv,Ruv is equivalent to the original graph G and admits an outer
k-planar drawing. If, on the other hand, we reach the end of the index and do not
find such a configuration, the algorithm halts, indicating that the graph is not outer
k-planar.

In case of success, apart from a positive answer, we also have to return the graph
drawing. There are multiple ways to accomplish this. One is to use a backtrack-
ing algorithm after finding the configuration to rediscover all smaller configurations
with which the last one was built. Another approach is to store information on how
each configuration was constructed alongside each arrangement. The latter trades the
memory consumption required for additional information in each arrangement for the
time required to perform backtracking. We used the second option in our implemen-
tation as it is much easier. Moreover, the bottleneck of the current implementation
is running time and not memory. As additional information, we opted to store the
drawing of the right side. To get this, we combine the drawings of two parts on each
step, inserting the split vertex w between them. As a result, to get the drawing of G
having the drawable configuration Guv,Ruv , it is enough to add vertex u at the start
and vertex v at the end of the drawing stored alongside the arrangement Auv in the
lookup table.

Similar to the SAT-based algorithm from the Section 3.3, this method only tests
whether the graph admits an outer k-planar drawing or not for a fixed k, so to find
the minimal possible crossing number, we have to check each value incrementally.
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Figure 3.3: An example of the resulting drawing for some well-know
graphs.

3.6 Interface of the implementation

To have the ability to invoke the implemented algorithms for some specific graph, we
designed a command-line interface. As an input, it receives a graph and a name of the
algorithm the user wants to invoke. As an output, the user receives a local circular
crossing number k of the passed graph alongside its circular drawing, where each edge
is intersected at most k times. To communicate with a user, we use the Graphviz [14]
DOT language for both the graph and its drawing. We use this representation as it
is easily interpretable by humans and computers.

Speaking more precise, the command-line interface has 1 required parameter – an
undirected graph, represented as a string in Graphviz DOT language – and 2 optional
arguments: method specifying one of the three implemented algorithms and output
file specifying a path to file in which the graph’s drawing should be saved. By default,
the former holds the value corresponding to the ILP-based algorithm, and the latter
holds an empty string, indicating that the drawing should not be saved anywhere.
Additionally, by providing an additional parameter, the user can disable bicomponent
decomposition. After running the algorithm, the tool will display the local circular
crossing number and save the drawing in the specified file if it is found.

To transform the returned drawing into a picture, we use the neato layout en-
gine [13]. In Figure 3.3, we demonstrate the results returned by the ILP-based algo-
rithm for some well-known graphs, depicted by neato engine. In the returned drawings,
we use blue to indicate the edges that cross exactly k other edges, where k is the local
circular crossing number.



17

Chapter 4

Experiments and Results

This chapter describes our experiments that evaluate and compare the performance
of the methods described above and reports the results. For conciseness, here we refer
to the implementations of the ILP-, SAT- and DP-based algorithm as ILP, SAT, and
DP respectively.

4.1 Data

To evaluate the implementation, we require a set of graphs which will be provided as
input to the algorithm. To acquire them, we used the online database The House of
Graphs [8] that contains interesting graphs. We decided to conduct experiments on
these graphs, as they are most likely to be typical targets of the algorithms. In this
work, we experimented with a small subset of all those graphs.

The problem of computing the local circular crossing number is XNLP-hard. Con-
sequently, the resources required by all implemented algorithms grow exponentially
with the input size. To be able to perform the experiments, we had to limit the size of
the graphs. We have done this by picking only graphs with at most 10 vertices. This
constraint leaves plenty of graphs to experiment with while significantly limiting the
computational resources. Also, as we designed the implementation only for connected
graphs, we filtered out unconnected graphs.

This query resulted in 2007 different graphs. Among them 1326 are biconnected
and 681 are not. The distribution of the number of vertices among these graphs is
displayed in Figure 4.4 on page 20 alongside the experiment outcomes for each method.

4.2 Experiment setup

All experiments described below were conducted on a virtual cloud server provided by
Amazon Web Services. The hardware available was limited to a single core of an AWS
Graviton4 Processor and 2GiB of random access memory. As an operating system,
we used Linux.

For each experiment, we chose a set of graphs, a set of methods, and a set of
configurations. We constructed all possible triplets of these parameters. For each
one of them, we compute the local circular crossing number of the given graph using
the specified method in a given configuration. Apart from recording the number
itself, we also track the time required by the corresponding algorithm, which does
not include the time required to start up and parse the graph, as it is part of any
algorithm. Unfortunately, some methods require an unreasonable amount of time to
calculate the result for some graphs. To mitigate this, we limit the execution time to
10 minutes for each triplet, indicating the outcome in the results.
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Figure 4.1: Results of the experiment, demonstrating the influence of
biconnected decomposition on the running time of ILP , SAT and DP.
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We save the results of each experiment in csv format. For each entry, we specify
the Graphviz representation of the graph, the configuration, the method, and the
execution results. The latter includes the local circular crossing number, the time
required to compute it and whether the algorithm succeeded or not.

Apart from reporting, we also use the results obtained by all experiments to cross-
validate the correctness of the implementations. Since no algorithm has been pre-
viously implemented for recognising outer k-planar graph, we do not have a reliable
source to provide the correct local circular crossing numbers for test graphs. This
cross-validation acts as a primary method for testing the implemented algorithm,
with the only other one being manual verification of the returned drawing for small
instances.

It is worth noting that the Gurobi optimiser supports multithreading. However,
to make the comparison of the algorithms fair, we limited it to a single thread.

4.3 Biconnected decomposition

The first experiment we considered was comparing the performance of the algorithms
with and without bicomponent decomposition. Here, we used only non-biconnected
graphs from the dataset to show the difference between the two configurations. We
ran this for all three methods. The results are presented in the Figure 4.1.

The results prove that using decomposition indeed boosts performance for almost
all methods and graphs. The only exceptions are small graphs for ILP, for which
the cost of initialising multiple environments outweighs the cost of decoupling the
problem.

As we demonstrated in this experiment, the non-biconnectivity of the graphs arti-
ficially decreases the complexity of the recognition task, as each one of them requires
multiple times fewer resources compared to equally sized biconnected graphs. Thus, in
the following experiments, we consider only biconnected graphs to exclude this source
of noise from the results.

4.4 Comparison of the algorithms

In this experiment, we compared the performance of the algorithms. We grouped
results by crossing numbers and the algorithm used for solving and displayed in Fig-
ure 4.2. Due to the complexity of the problem, some runs ran out of allocated re-
sources. So, to display the results, we used only the measurements from runs that
successfully found the minimal crossing number. As a result, starting from k = 6,
boxes for SAT and DP depict fewer runs compared to ILP as they required more
resources for some graphs than were available.

SAT and DP, however, were limited primarily by different factors. Unlike ILP,
encoding in SAT contains an exponential number of clauses in terms of local circular
crossing number. As a result, the solver ran out of allocated memory for 185 out of
1326 biconnected graphs. Similarly, DP ran out of memory 16 times. However, the
bigger limiting factor for this algorithm is time, as 317 runs exceeded the 10-minute
time limit imposed on each one. All other runs finished successfully. A more detailed
breakdown of the execution outcomes grouped by the number of vertices in the graph
is displayed in Figure 4.4.
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Figure 4.2: Comparison of running times of different algorithms for
graphs with different crossing numbers.
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Figure 4.3: Comparison of running times required by algorithms to
recognise outer k-planar graphs for various values of k.
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Figure 4.4: The outcomes of the experiment for each method grouped
by the number of vertices.
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Figure 4.5: Comparison of different configurations for ILP and SAT.

The results show that the time required by both SAT and DP grows much faster
than the time required by ILP. The latter requires each instance to set up an environ-
ment for the graphs. With smaller crossing numbers, these costs outweigh the solver’s
speed. However, for instances with bigger k, the time required for setup is negligible.

As the algorithm’s running time depends not only on crossing numbers but also
on the size of the graph, we can represent the results more accurately by grouping
them by both the crossing number and the number of vertices. To demonstrate this
dependency, in Figure 4.3, we created a plot for each crossing number represented
by at least 150 graphs. These plots show that, for k ∈ {2, 3}, DP and SAT are
consistently the two fastest methods, with the former being faster than the latter.
However, starting from k = 4 and graphs with at least 9 vertices, ILP outperforms
the other two methods. Most importantly, these results agree with the ones displayed
in Figure 4.2, which aggregate them for each value k.

4.5 Optimisation benchmark

The last experiment we considered is the comparison of optimisations we discussed for
ILP and SAT in Section 3.4. For ILP, we ran four configurations for each biconnected
graph using none, one, or both optimisations. For SAT, we used two configurations
with and without optimisation. The results are presented in Figure 4.5a and Fig-
ure 4.5b respectively.

In the first plot, we can clearly see that adding additional constraints to enforce the
exact value for each crossing variable degrades the performance. For SAT, however,



Chapter 4. Experiments and Results 22

this change does not influence this much. We can see a slight rise in execution time,
but the difference is within the margin of error. Here, the difference may be caused by
the algorithm writing down the required additional constraints, not the SAT solver.

The objective optimisation for ILP, which includes an extra term in the objective
function, makes small but still an improvement. As a result, we consider the algorithm
that includes this optimisation to be the most efficient ILP. Thus, we have used this
configuration for all other experiments. For SAT, we used a configuration that did not
include optimisation.
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Chapter 5

Conclusions

In this bachelor thesis, we have provided implementations of three algorithms for
recognising outer k-planar graphs. Two of them are based on integer linear pro-
gramming and satisfiability formulation and have been introduced in this thesis. The
last one uses a dynamic programming approach, recently presented by Kobayashi et
al. [22]. Additionally, we provide a command line tool to invoke the desired method
for a specific graph G. The tool returns the local circular crossing number k of G
together with a circular drawing of G where each edge is intersected at most k times.

We have also demonstrated an example of the program’s output for a sample
graph and the results of the experiments designed to test, evaluate the performance
and compare the algorithms with each other. After having analysed the results of the
experiments, we conclude as follows:

• Despite the overhead required to perform the biconnected decomposition, doing
so significantly improves the performance of all methods.

• In the ILP-based algorithm, including constraints for all arrangements of two
edges’ endpoints significantly worsens its performance. On the other hand, in-
cluding an extra symetry-breaking term in the objective function slightly im-
proves the performance.

• In the SAT-based algorithm, including clauses for all arrangements does not
influence the performance.

• The computational resources required for executing the ILP-based algorithm
grow more slowly compared to both the SAT- and DP-based algorithms with
increasing local circular crossing number.

• The running times of the SAT- and DP-based algorithm grow exponentially in
terms of the local circular crossing number of the graph.

5.1 Limitations

The first and most major limitation of our implementations is the complexity of
the underlying algorithm. The exponential dependency of the running time on local
circular crossing number of the input graph significantly limits the number of graphs
for which using these implementations is practically reasonable.

The current version also limits the number of vertices to 64 in the input graph
for the DP-based algorithm, as it uses a bitmask for storing subsets of vertices. We
implemented this using an integer as a bitmask to lower the memory consumption;
hence, this limit may be different for other systems.
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5.2 Future work

There are many directions to explore as future work. First of all, we could combine
our implementations into a library. By doing so, the algorithms could more easily be
called by other programs.

Secondly, we could optimise the developed solution. Here, we distinguish between
two possible directions: theoretical and practical. Optimising the theoretical part
means tweaking the underlying algorithms discussed in this work. In particular, it
would be desirable to simplify the algorithm for very small values of k. Can outer
2-planar graphs be recognised in, say, quadratic time?

Meanwhile, optimising the practical part means doing so with the implementation
of the algorithms. One of the highly promising ways to do so would be to make
the implementation of the DP-based algorithm multithreaded. By ensuring that all
threads check configurations with the right sides of the same size, we eliminate the
requirement of memory synchronisation. This makes this algorithm embarrassingly
parallel, as it requires synchronising all threads less than |V (G)| times throughout the
whole execution.

Another direction of improvement might be developing an algorithm that, for the
given embedding of an outer k-planar graph, draws it using Bézier curves for edges
instead of straight lines. Using this approach, we can improve the readability of the
drawings.
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