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Zusammenfassung

Viele Graphen aus der echten Welt, wie etwa (soziale, logistische, usw.) Netzwerke, er-
weisen oft eine lokal hohe, jedoch global niedrige Dichte. Wéahrend dies sinnvolles Clus-
tern ermoglicht, fithrt es auch zu Schwierigkeiten, beispielsweise wenn eine homogene
Zeichnung besagter Netzwerke erzielt wird. Genauer scheitern traditionelle Zeichenalgo-
rithmen daran, zeitgleich die interne Struktur der Cluster greifbar darzustellen und eine
Ubersicht des Netzwerks als Ganzes zu liefern.

Als Losung dieser Problematik sind hybride Zeichenalgorithmen entstanden. Diese ma-
chen von unterschiedlichen Zeichenansétzen fiir die Cluster und die grobere Struktur des
Graphen Gebrauch und heben dadurch die relevantesten Merkmale von beiden hervor.
Bertihmtes Beispiel hierfiir ist ChordLink ([ADM™19]), welches Chord-Diagramme fiir
die Visualisierung der Cluster verwendet. Auch wenn ChordLink optisch ansprechende
Zeichnungen liefert, erweist es unserer Meinung nach manche Nachteile. Man betrachte
beispielsweise die Knotenverdopplung. Dabei erzeugt der ChordLink-Algorithmus meh-
rere unintuitive Kopien eines Knotens am Rande des Chord-Diagramms des Clusters, in
welchem der Knoten liegt. Kanten, die zu dem Knoten fithren, diirfen dann in eine belie-
bige Kopie miinden. Des Weiteren ist ChordLink als interaktives Programm entworfen
und erfordert demnach Nutzereingaben, um eine Zeichnung zu liefern.

In dieser Arbeit versuchen wir, ChordLinks Nachteile zu mitigieren. Wir stellen einen
ChordLink-ahnlichen Zeichenalgorithmus vor, welcher Cluster ebenso als Chord-Diagramme
darstellt. Unser Algorithmus verwendet jedoch eine radiale Zeichnung, um den Graphen
im groflen Maflstab wiederzugeben. Wir wenden Wegfindungsalgorithmen an, um in der
radialen Zeichnung nicht benachbarte Cluster zu verbinden. Insbesondere ist unser Algo-
rithmus vollkommen autonom und braucht lediglich einen Graphen als Eingabe; weitere
Nutzereingaben sind nicht erforderlich. Cluster werden automatisch deduziert und eine
radiale Zeichnung wird neben sorgfiltig angepassten Chord-Diagrammen geliefert, die
die Relevanz der einzelnen Knoten hervorheben, ohne die Zeichnung des Clusters un-
notig zu iiberladen. Am Ende schlagen wir Alternativen zu manchen Schritten vor, wie
etwa die Platzierung von Labeln, um Knoten zu kennzeichnen.



Abstract

Many graphs encountered in the real world, such as networks (social, logistic, or oth-
erwise), often tend to exhibit a locally dense but globally sparse structure. While this
allows for meaningful clustering results, it also imposes difficulties when attempting to
visualise said networks in a homogeneous manner. In particular, most conventional visu-
alisation approaches struggle to properly convey the internal structure of the network’s
communities and provide an overview of the network as a whole at the same time.

To this end, hybrid visualisation approaches have been proposed: they utilise different
visualisation techniques for the large-scale overview and the communities, highlighting
the important features of both. A notable example is given by ChordLink(JADM™19])
which uses chord diagrams to represent the communities. While ChordLink arguably
provides more optically pleasing drawings, it still has, in our opinion, some drawbacks
— take, for instance, the node duplication feature which, for the sake of highlighting
the connections between communities, creates unintuitive copies of the same vertex on
the boundary of the chord diagram and allows intra-community-edges incident to the
vertex to connect to any copy. Moreover, ChordLink is designed as an interactive tool
for network visualisation, thus requiring user input to perform.

In this work, we strive to improve upon ChordLink’s drawbacks. We introduce a
hybrid graph visualisation model that, similarly to ChordLink, represents communities
as chord diagrams. However, our model utilises a radial drawing for the network on a
large scale instead of a simple node-link-diagram. We apply edge routing algorithms to
connect communities which are not incident on the radial drawing. Most importantly,
our algorithm is fully autonomous, taking only a graph (e.g., as a set of edges or as
an adjacency matrix) and requiring otherwise no user input. Communities are deduced
automatically and a radial drawing is produced alongside carefully tweaked chord dia-
grams emphasising on the importance of each vertex without losing any details inside a
community. Finally, we propose some alternative approaches for some steps, such as the
placement of the node labels.
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1 Introduction

The importance of graph visualisation has long been recognised as drawings are a strong
tool for both exploration and analysis. Still, there are various challenges faced by vi-
sualisation tools and researchers designing these alike, for instance when it comes to
drawing social and other real-world networks. Consider, for example, the students of
some university, connected by the property “attends the same lecture”. Aside from the
potentially immense size of this kind of graphs, the largest issue there lies in their struc-
ture. Their density is non-homogenous, exhibiting high density on a local scale (such as
students with the same major) while at the same time being globally sparse (students
of different faculties do not tend to have many interactions). The fine-grained dense
substructures can be referred to as communities.

As discussed by Shneiderman [Shn96], a drawing of this kind of graphs should empower
the user to perform two tasks efficiently: identify and analyse communities and get a
good overview of the connections between the communities. Alas, with a classical,
homogenous layouting algorithm, usually only one of these tasks can be executed well
at a time. This has given a rise to the so-called hybrid algorithms that, akin to the
graphs they are primarily made to draw, have a heterogenous approach: they setup
the layout of the communities in one way and the layout of the graph as a whole —
in another. The two layout mechanisms do not have to share any similarities, as long
as they assist the user in performing the two tasks listed above. This has lead to some
graph visualisation techniques that, while fulfilling that purpose, produce rather visually
unappealing drawings, such as (in our opinion) NodeTrix [HEMO7|, which represents the
communities as a labelled adjacency matrix and the entire graph — as a node-link diagram
connecting such matrices.

An improvement is given by Angori et al. who present ChordLink [ADM™19]. There,
the authors also prefer node-link diagrams for the large-scale overview of the graph.
However, the communities are represented as circles, and the nodes are drawn as circular
arcs on the boundary of their respective communities. Inside a community, the node
arcs are connected via chords. While this design is visually pleasing and also well-suited
for analysing networks with communities, there are still some details that caught our
attention and upon which we seek to improve.

Our contribution in this work consists of a graph drawing pipeline primarily targeting
small graphs with a couple of hundred vertices at most; see Fig. for a brief overview.
The expected input for the pipeline is an undirected (multi-)graph. The basic concept
stems from the drawing style of ChordLink: clusters are visualised as circles with the
vertices being represented as circular arcs on the boundary of the circle they are part
of. These circular arcs are connected via chords — parabolic curves protruding towards
the interior of the cluster — representing the edges of the input graph.
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Fig. 1.1: Our pipeline with its main steps visualised.

However, our pipeline also exhibits some differences to ChordLink. To begin with, it
is completely automated (save for some constants) and does not require any input from
the user from beginning to end. It partitions the input graph into clusters, positions
the clusters on the plane and connects them elegantly without cluttering the drawing
with the edges between the clusters. Furthermore, unlike ChordLink, our pipeline does
not perform the “node duplication” phase of ChordLink where, inside a cluster, a vertex
connected to vertices of multiple other clusters is represented via multiple circular arcs.
To avoid confusion, we assign exactly one arc to every node and route any edges between
clusters through pre-defined, fixed points. The latter “dummy vertices” are also drawn
in the form of circular arcs.

The rest of this work is structured as follows. In the subsequent Chapter we
define some terms and properties that would be used throughout the majority of our
work. Then, we provide an overview of some existing drawing approaches, and hybrid
visualisation algorithms in particular. Chapter [3|is the main part of this work. There,
we describe step-by-step our pipeline, beginning with the input graph and building up
to the final drawing. Each logical step is described in its own (sub)section. Finally,
Chapter [4] summarises the model and provides an overview of some open questions or
topics for future work.



2 Background

In this chapter, we provide information about various terms and concepts that are used
in the remainder of this work. Furthermore, we investigate and provide an overview
of previous works both in the areas of analysing networks and visualising graphs, par-
ticularly focusing on mixed drawing approaches. Many examples will stem from the
category of social networks, as these have been the focus of both growing interest and,
consequently, extensive research.

2.1 Concepts and Definitions

This work is concerned with the drawing of graphs. Given a graph G with vertices V(QG)
(or simply V should the graph be unambiguously given via context) and edges E(G)
(or E) CV xV, we define n = |V| and m = |E| as the number of vertices and edges,
respectively. The neighbourhood of a vertex v € V' is given by adj(v) =

{u eV |{u,v} € E}, and a vertex’ degree is denoted as deg(v) = |adj(v)|.

A connected graph is a multigraph if E(G) is a multiset, i.e., for a pair of vertices it
may contain multiple edges between them. Note that unless stated otherwise, we will be
working with simple graphs without such “multiedges” and will attempt to intercept and
handle such cases beforehand. Additionally, the degree of a vertex refers to the number
of edges incident to that vertex.

A graph is connected exactly when for each pair of vertices u,v there is a path u =
wo, Wi, ..., Wy, = v from u to v with {[w;, w;+1} € E. If a graph is not connected, we
refer to each separate part as (connected) component. A graph with m =n — 1 is called
a tree. A tree may have a designated vertex known as the root.

A clustering € (G) is a partitioning of the graph’s vertices into non-empty clusters
C; € €. Note that clusters containing a singular vertex are also allowed. We define
E(C;) = {{u,v} € E(G) | u,v € C;} as the intra-cluster edges of C;. For a clustering
¢ (G), we acquire a multigraph (in the general case) G by taking the clusters as vertices
and adding an inter-cluster edge between two clusters C;, C; for every pair of vertices
u € Cj,v € C; adjacent in G.

When working with real-world data, it is possible for it to contain additional informa-
tion for some vertices or edges. We refer to such information as attributes and access it
via z.attribute for x € V or x € E. Examples include vertex labels, edge weights, or even
the direction of an edge. For simplicity, in our algorithms we assume that a graph con-
taining the edge (u,v) also contains the edge (v,u), or, in common terms, is undirected.
We discuss the applicability of our algorithm on directed graphs in Chapter



Analogously to the concept of vertices and edges we define nodes and links as their
respective counterparts on a drawing of a graph I'(G). Each node v has coordinates v,
and v, on the plane.

2.2 Related Work

Rigorous work has already been done in the general field of visualising graphs. This is
no wonder given the fact that humans tend to understand, memorise and analyse data
(for instance, some logistic, electrical and social networks, a step-by-step description
of a process, etc.) much better when said data is accompanied by some sort of visual
representation [She67, [(CM84]. While the earliest graph drawing methods focused pri-
marily, if not exclusively, on simple node-link diagrams designed per hand, more and
more advanced and complex drawing techniques started to emerge once graphs became
subject of mathematical study. Additionally, the emergence of computers gave rise to
the idea of automatic generation of graph drawings, such as the work of Baecker|[Bae67].

Still, a great number of drawing algorithms until the 21st century focused on force-
generated node-link layouts using attraction and repulsion, akin to springs and elec-
trically charged particles, respectively, as those simulate how a graph would behave
“naturally”, i.e. if it was a physical object. Some examples are given in [Ead84] [KIK89,
FRI1l, FLM94, [DH96]. While these approaches work acceptably well and are efficient
enough on average, it should come to no surprise that in some cases they also exhibit var-
ious drawbacks in terms of readability. For instance, a study by Ghoniem et al. [GFCO05]
showed that on denser graphs with as few as 20 nodes, classic node-link diagrams make
it difficult to perform some basic tasks such as finding a specific vertex or determining
whether two vertices are adjacent. Many types of networks tend to be sparse on a global
scale but rather dense locally. Therefore, designing layout algorithms tailored for these
cases is clearly preferable. Examples include social (e.g. [WHPL10]), but also biological
(e.g. [MMRR13]), information (e.g. [FLGC02]) networks and the like.

The local, dense parts of such graphs are often called communities. Given the interest-
ing properties of networks with communities [WS98]|, those have been studied quite well;
examples include the works of Horn et al. [HFBT04] and Newman [New(3]. Regarding
their visualisation, different requirements have been proposed (compare, for instance,
Shneiderman [Shn96] to Wasserman and Faust [WEF94]). Still, it can be safely said that
most, if not all, of those requirements or tasks can be reduced to the following points:

e Analysing the network on a large scale, thus identifying communities and their
relations, including more “central” ones.

o Analysing the network on a small scale, i.e., getting insights into the internals of
each community and how singular vertices are connected to each other.

Alas, achieving both tasks simultaneously is challenging as they tend to contradict in
the case of a static layout: making the top-scale structure of the network easy to analyse
by e.g. drawing communities close together means that the fine-grained structure will be



more difficult to see, as its parts has been contracted so as to not obscure the overview
of the top-scale structure. Similarly, putting an accent on the low-level structure such as
singular vertices, vertices with high degree and their connections to each other, will often
distort a graph’s drawing in such a way that the large-scale structure — the communities
— cannot be instantly recognised.

This, among other factors, like for instance scalability, has given rise to multi-layer
and/or hybrid graph drawing approaches. The main idea of the former consists of recur-
sively subdividing a (potentially large) graph into a set of smaller ones, and continuing
doing so until the resulting graphs are small enough to be visualised in a clean and eas-
ily comprehensible manner. The subdivisions themselves are often drawn in a tree-like
manner. However, one feature of the drawings of most multi-layered approaches is that
they imply some sort of hierarchical structure in the input graph, defined via the order
of subdivisions; in truth, this is a by-product of the exact method that is used for the
subdivision, and often different partitions can be achieved by using different subdivision
criteria. For example, Harel and Koren [HK00] subdivide the graph based on an esti-
mation of the k-centres problem. The FM? algorithm [Hac05], which is not explicitly
optimised for a specific use-case but works on general graphs instead, even has a proven
worst-case runtime of O(nlogn+m) by showing that a fixed number of nodes and edges
is present in each subdivision. Worth mentioning is also the approach of Six and Tolis
[ST99], which we will also refer to later in this work. It is unique in that it allows one
to manually specify a custom size for the drawing of each community instead of auto-
matically making subdivisions smaller; to the best of our knowledge, no other work has
these properties. Newer works in the area also exist; consider, for instance, the radial
algorithm PLANET [HLT™20] which uses a list of angle assignment rules to distribute
nodes evenly and minimise the number of edge crossings.

Hybrid drawing approaches have also begun to emerge, often for the purpose of draw-
ing globally sparse but locally dense graphs. In particular, the main idea is to utilise a
different drawing paradigm for the large-scale network and the small-scale communities,
which are to some extent akin to clusters, thus waiving homogeneity but highlighting
the features of both. Given that the great majority of graph visualisation approaches
use node-link diagrams, it should come to no surprise that adjacency matrices, as the
other “classic” graph representation, were the first to be included in hybrid approaches;
take, for instance, Matrixexplorer, developed by Henry and Fekete [HF06], which pro-
vides both representations side-by-side, synchronised. This allows one to refer to either
visualisation depending on the task at hand — as shown by Ghoniem et al. [GFC05], the
node-link visualisation is better suited for path-related queries, while the matrix repre-
sentation eases for instance the check whether two vertices are adjacent. The creators of
Matrixexplorer would improve upon their work by first adding edges on the sides of the
matrix, thus creating MatLink [HF0T7], and later introducing NodeTrix [HEMOQT], which
is — we believe — currently one of the best-known hybrid visualisation tools. NodeTrix
first represents the input graph as a node-link diagram and, on user input, groups the
selected nodes into an adjacency matrix. Links incident to nodes encompassed by the
matrix now connect the corresponding matrix row with its neighbour nodes (which can
also be the rows of another matrix) instead. An example is given in Fig.
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Fig. 2.1: An example of the output of NodeTrix, as given by Henry et al. [HFMOT].

NodeTrix has not only sparked a vast array of papers presenting visualisation tech-
niques based on it, but has also inspired the creation of new hybrid drawing algo-
rithms. The most notable of those, and the main focus of this work, is ChordLink
ADM™19, IADM™22]. Designed by Angori et al., ChordLink opts to use not adjacency
matrices for the representation of the communities, but rather circular chord diagrams.
In each chord diagram, a node is represented by one or many circular arcs. In particular,
the ChordLink algorithm creates an arc copy for each neighbour of a node that is not
in the community. A subsequent step reorders those arc copies that share the same
“external” neighbour in order to minimise the amount of copies of the same node that
are not consecutive on the community’s boundary. For instance, as seen on Fig.
the positions of the copies of nodes 5 and 9 that are adjacent to node 1 are swapped,
thus yielding two consecutive copies of node 9. This is logically followed by a step where
consequent arc copies of the same node are merged. Finally, within the community, a
chord for each edge is placed. The authors employ a heuristic that minimises the num-
ber of edge crossings created this way, so as to decide between which copies of the two
nodes should an edge chord be drawn. Note that ChordLink, similarly to NodeTrix,
is an interactive tool: it does not compute any meaningful communities by itself, but
instead relies on user input to group, ungroup and move communities around. Subse-
quent works revolving around ChordLink are also emerging. The authors of the original
paper conducted an evaluation [ADM¥22] of ChordLink based on some real-world net-
works and discussed in detail the algorithms used throughout the ChordLink toolchain.
Kindermann et al. [KSW23] proved, among other points, the N"P-complexity of some
of the algorithmic challenges of ChordLink. Finally, in this work we will build a hybrid
visualisation toolchain for globally sparse but locally dense graphs that is to some extent
inspired by the procedures of ChordLink.

10
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Fig. 2.2: An example of the steps of the ChordLink algorithm, as given by Angori et al.

Finally, we mention the existence of hybrid graph drawers that use tree maps as
a second component, next to node-link diagrams. Examples are given by the works
of Fekete et al. [FWDT03], who extract a tree map structure from an input graph
and subsequently add the remaining edges, and Zhao et al. [ZMCO05] who construct a
hierarchy of tree maps and connect them in a node-link diagram-like manner. A study
on various hybrid drawing techniques is given by Giacomo [GDMT21]. Also, aside from
Matrixexplorer, NodeTrix and ChordLink, many researchers and industries have opted
for designing interactive tools which, while initially providing a large-scale overview of
the network, allow the user to select and switch between different communities for closer
inspection. Further examples for such tools are Treeplus [LPPT06] and Vizster [Hdb0H].

11



3 The Model

We aim to design a hybrid visualisation toolchain focusing primarily on locally dense,
but globally sparse networks. We focus on small graphs with a couple of hundred vertices
at most — unlike most existing drawers that aim for scalability in order to be able to draw
large networks with tens of thousands of vertices. This helps relax some requirements
in terms of performance while also filling a niche and providing a framework for a more
day-to-day, commonplace use where e.g. a researcher may want a quick overview of some
small graph or network. Finally, to provide out-of-the-box functionality, we attempt to
design our framework as automated as possible; user input in a few selected places is
possible, but not required.
The framework can be described on a high level as follows:

1. Clustering the input graph G into % (G): Using only the graph’s structure and the
vertices’ properties, we partition the graph into clusters for a high-level drawing.

2. Extracting a spanning tree Ty from G¢: We compute a maximum spanning tree
so that there are as few edges as possible that do not connect two adjacent clusters
on the tree. Then, we define a root for the tree.

3. Routing the inter-cluster edges along the edges of T»: We bundle the edges enter-
ing/exiting a cluster. If the two clusters incident to an edge are not neighbours
on Ty, we route the edge in its bundle along the tree’s structure, and around the
boundary of other clusters until the target cluster is reached.

4. Drawing T as a radial tree on a large scale: We calculate space to dedicate to
each subtree, then place the clusters at their initial coordinates on the plane.

5. Drawing each cluster in a ChordLink-like manner: We use circular arc nodes for
the vertices and chord links for the intra-cluster edges. We also introduce gate
nodes to connect clusters to one another.

6. Optionally placing vertex labels next to the respective node arcs, if the input graph
contains such labels.

This exhibits several differences — and, in our opinion, improvements — as compared
to the classic ChordLink. First, the drawn graph is structured (as a tree), whereas
ChordLink places the drawing freely in the plane. Second, within a cluster, while
the nodes are represented as circular arcs as is the case with ChordLink, our model
completely eliminates the node duplication feature; there is exactly one arc per nodeﬂ

'as well as additional arcs connecting the clusters; this will be elaborated further in Subsection m

12



(a) Complete graph with 8 (b) Complete cycle with 8 (c) Complete binary tree
vertices. nodes. with 5 levels.

Fig. 3.1: Examples of graphs that do not exhibit any unambiguous clusters. The graphs in (a)
and (b) cannot be clearly subdivided at all, while the graph in (c¢) can be subdivided
in multiple ways that appear equally valid.

Finally, our algorithm is automated, requiring no user input from beginning to end (al-
though one could argue that whether this is an improvement depends on the use-case).
In the following, we will go into detail about each step.

3.1 Clustering

A clustering of a set of elements consists of partitioning that set into some number of non-
empty groups C;. The members of each group are then expected to be similar in some
way. In particular, clustering algorithms usually make use of a predefined similarity (or
distance) measure between two points, d(u,v) or, alternatively, of some measure of the
“integrity” of a cluster. Clearly the quality of a clustering algorithm’s result is heavily
dependent on the chosen measure.

We emphasize that in general it is crucial to differentiate between clustering ap-
proaches that take a graph (as defined earlier) as an input on the one hand, and general
data point clustering algorithms which do not concern themselves with the graph’s struc-
ture, but work merely on n-dimensional data points on the other. Examples for the latter
include the well-known k-means, DBSCAN [EKSX96] etc. Still, even in the former case,
not all graphs admit a “meaningful” partition of their vertices into clusters, regardless of
the chosen algorithm. Take, for instance, most trees, all complete graphs or even a circle,
that is, a set of vertices, each with degree 2, connected in a chain (as seen on Fig. [3.1)).
Nevertheless, every clustering algorithm will yield a result for any input graph (such as
a single cluster consisting of the entire graph); this result may simply be of no use for
further reasoning. Visualisation often helps in reasoning whether a clustering algorithm
has yielded a meaningful result for a given graph.

Similarly, many tools that cluster graphs either as a result or as an intermediate step
rely on user input for doing so; examples include NodeTrix [HEMO07] and ChordLink
[ADM™19]. This is convenient for experimentation and similar goals, but assumes that
the user already has vague knowledge of what they aim for. As opposed to that, we
wish to deliver an autonomous framework that produces a visually appealing drawing of

13



a graph whilst requiring little to no input from the user.

To achieve this design, we will begin by examining the already existing graph clustering
algorithms. Some of those operate based on algebraic concepts, rather than graph-
theoretical ones. For instance, Markov Clustering [VD00] emulates random walks within
the graph by modifying a transition probability matrix; intuitively, such a random walk
is less probable to leave a cluster than to stay inside of it. Once a reoccurring state
is reached, the modifications are halted. The final result, that is, the clusters, can
be extrapolated by looking at the connected components of the graph induced by the
matrix. Spectral Clustering [NJWOI] uses the eigenvectors of the graph’s Laplacian to
essentially reduce the graph’s vertices to datapoints in such a way that the edges are
related to the distance between the datapoints. Afterwards, a clustering approach from
the area of data analysis can be applied, such as the aforementioned k-means. Another
useful concept is that of conductance — a measure of the quality of a graph partition,
or, equivalently, of a cut through a graph. Intuitively, for any cut through a graph
with high conductance there will be many edges connecting the two partitions. Iterative
Conductance Clustering [KVV00Q], or ICC, uses this measure to (sub-)partition a graph
recursively. However, ICC relies on an input parameter in order to recognise when to
stop dividing the graph further; thus, it is not applicable for our use-case. Moreover,
computing a cut with minimum conductance is AN'P-hard [vS06] and so heuristics need
to be used instead.

Hierarchical clustering algorithms like ICC, produce a structure where each cluster is
comprised of further subdivisions, sometimes all the way down to clusters consisting of
a single vertex. This hierarchy has a natural representation as an (often binary) tree
rooted at the entire input graph; an edge directed away from the root indicates a further
subdivision of the parent cluster. Such a tree is known as a dendrogram. Hierarchical
clustering can be achieved in two ways:

e bottom-up, or agglomerative — starting with small clusters usually consisting of a
single vertex, each step of those algorithms consists of either merging two clusters
or adding a single vertex to a larger cluster. At the end, the entire input graph is
reconstructed. To the best of our knowledge, not many algorithms in this category
exist; as an example, we mention the work of Hopcroft et al. [HKKS03].

e top-down, or divisive — beginning with the input graph, a cut optimising some
efficiently computable “connectivity measure” is found and then used to split the
subdivision at hand. Aside from the selection of that connectivity measure, another
important question for divisive algorithms is when to stop partitioning (if at all).

Various criteria can be used for determining the next partition in divisive clustering.
As mentioned, conductance is an example for one. Another popular alternative con-
sists in splitting the graph along its minimum cut, for instance with Karger’s algorithm
[Kar93]; equivalently, the maximum flow can be computed instead. Hartuv and Shamir
[HS00] propose an approach based on this method; their criterium to stop dividing the
graph is if its edge connectivity is over 5. Well-known is also the betweenness centrality
metric introduced by Girvan and Newman [NG04] based on the node betweenness given

14



by Freeman [Fre77]. In essence, the betweenness centrality of an edge {u, v} is the num-
ber of shortest paths between any two vertices of the graph that pass through that edge.
While calculating this measure may seem computationally intensive, Brandes [Bra0l]
shows that it can be done in O(n + m) time. In particular, Girvan and Newman’s
approach is to remove, step-by-step, the edge with the currently highest betweenness
centrality. Note that unlike the minimum cut criterion, not every step will split the
graph in this case.

3.1.1 Clustering with Modularity

In the aforementioned work, Girvan and Newman also introduce the notion of modularity
in order to evaluate the quality of a division of a graph into clusters. Intuitively, the
modularity of a clustering is a comparison between the number of intra-cluster-edges of
the given graph and the expected number if the graph’s edges were distributed uniformly.
A positive modularity indicates a good division into clusters. An important feature of
the modularity approach is given by the fact that a modularity-based algorithm needs
not know the number or sizes of clusters beforehand. It can even automatically stop
subdividing the graph if that would bring no improvements to the modularity at the
moment.

While Newman [New(6] shows that modularity can be optimised efficiently using some
algebraic methods and heuristics, deciding on the existence of a clustering with a specific
minimum modularity is AP-hard [BDGT07|. As most approaches to find clusters with
optimal modularity are computationally expensive, we decide against using modularity
exclusively. Still, computing the modularity value of an already given clustering is easy.
Therefore we opt in favour of applying modularity as a stop criterion when performing the
clustering. As for the algorithm, we pick divisive clustering via betweenness centrality,
as modularity and betweenness centrality are somewhat related.

Newman [New(6] gives the following expression for the modularity of a division of a
graph in two communitie

Q — Zl::nzz <AZj _ deg(Z) deg(])) Sisj (31)

2m

where A is the graph’s adjacency matrix and s; is 1 or -1, depending on which community
vertex 4 is placed in. However, we require a formulation applicable to more than two
clusters. While Newman [New(6] provides a formula for the additional contribution AQ
upon further dividing a cluster, that formula is more suited for algebraic approaches such
as spectral clustering that perform divisive clustering entirely via modularity. Instead,
we are simply using this metric to evaluate an already given subdivision. As the s;
parameter is the only one to rely on the number of clusters, it needs a replacement. To
retain its feature of distinguishing whether two vertices are part of the same cluster or
not, we define

1

Znote that the leading factor of T

is only given for compatibility with [NGO04].
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Fig. 3.2: An exemplary graph (a), and how it was clustered by our algorithm (b).

(3.2)

1 if ¢ and j are in the same cluster
S —
Z’j —1 otherwise

So in total, our approach looks as follows, with an example given in Fig. [3.2

1. Calculate a (divisive) hierarchical clustering based on betweenness centrality.

2. Begin iterating the hierarchy (or dendrogram) from the root. As long as the
modularity increases, accept a split and recurse on the two subdivisions.

3. Once there is no modularity increase on any path, take the clusters on the lowest
levels reached.

Of course, that can somewhat be optimised: instead of computing the entire dendro-
gram, one could instead stop subdividing as soon as the modularity stops increasing.
However, as we are dealing with small graphs, we expect no significant improvement
from this.

3.2 Spanning Tree

Previously, we constructed a clustering %' (G) for the given input graph G. In this brief
step, we aim to derive a rooted tree whose structure will serve as a base for the residual
drawing.

First, we note that since we ultimately wish to deliver a drawing for GG, we will need
to work with the multigraph of ¢ (G), G¢. Recall that this graph contains, for a pair
of clusters C; and Cj, a total of [{{u,v} | u € C;Av e Cj A{u,v} € E}| many edges
between C; and C;. Drawing ¢(G) as a tree means that many inter-cluster-edges — in
fact, all those that connect two non-adjacent cluster vertices of the tree — will need to
be routed in some way alongside the tree structure.

It is thus intuitive to try and minimise the number of such edges. We observe that this
is equivalent to maximising the number of inter-cluster-edges that are also edges in the
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tree. From this follows trivially that the problem at hand can be solved via converting
the multigraph of €'(G) to a weighted graph with w(Cj, Cj) equal to the number of edges
between C; and Cj, and then computing the maximum spanning tree of the resulting
weighted simple graph.

Finding a maximum spanning tree, in turn, is also simple to achieve given the various
algorithms that calculate a minimum spanning tree (MST). Indeed, for any weighted
graph it is sufficient to negate the weights of the edges and execute a MST algorithm.
After the negation, the previously heaviest edges will have the least weight and so will be
prioritised by the MST algorithm. While algorithms for finding minimum spanning trees
in as fast as O(m) time are known to exist, such as the one of Pettie and Ramachandran
[PROO0], they are also rather elaborate and use complex data structures. Recall that the
target graphs of our framework are small with a couple of hundred vertices at most.
Therefore, we decide that taking a “standard” MST algorithm is sufficient. Due to the
ease of implementation, we decide in favour of Kruskal’s algorithm [Kru56] known to
run in O(mlogn) time [CLRS22].

In essence, the algorithm “grows” a forest of trees of minimal weight by iteratively
taking light edges, as long as this would not cause a cycle. The other well-known
algorithm we considered, the one of Prim [Pri57], has the same asymptotic running time
and delivers the same result, but achieves it via computing shortest paths instead. As the
implementation of Prim’s algorithm is arguably more vexing and it provides no benefit
as compared to Kruskal’s algorithm, we opt against it. Note that instead of negating
the edge weights, it is equally possible to modify e.g. Kruskal’s algorithm to pick heavy
edges first. However, with the weight negation, our pipeline remains flexible and able to
accept any MST algorithm if different needs or use-cases arise.

3.2.1 Rooting the Tree

Finally, we wish to designate some cluster vertex as the root of the produced maximum
spanning tree; this cluster vertex will be later placed in the middle of the final drawing.
As previously mentioned, we explicitly try to compute a drawing which does not imply
any hierarchical properties; therefore, in that regard, which cluster we choose as the root
is irrelevant.

Still, the choice will ultimately have influence on the positions of the other clusters as
well as the overall aesthetic of the final drawing. Roughly speaking, we want to choose
a cluster that is somewhat “central” in the structure of the spanning tree, so that the
drawing appears balanced. Intuitively, two possible metrics come to mind:

o a centre of the tree [HCHS8I|] — one (or two) vertices that minimise the maximum
distance to the rest of the vertices (i.e., the tree’s diameter). It can be computed
easily in O(n + m) time by two graph searches: the first starting at an arbitrary
node and resulting in one end of the diameter, and the second starting at the
vertex that was just found and ending in the one that is farthest from it. Then,
one (of the at most two) vertices in the middle is picked.
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Fig. 3.3: The graph from Fig. [3.2[ (a), reduced to the clustering tree Te.

o a centroid of the tree [Jor69] — a vertex that, if chosen as a root, will contain no
more than half of the tree’s vertices in each of its subtree children.

We believe that choosing the centroid will produce better results in our case — if the
size of the root’s subtree children is somewhat balanced, then the canvas space around
the root will also be distributed and utilised in a more balanced manner, potentially also
allowing for more compact drawings. To conclude this section, we provide an example of
the produced tree on Fig. as well as a simple algorithm for computing the centroid:

Algorithm 1: Our algorithm for computing the centroid of a tree.

1 fn ComputeCentroid (tree)

2 start < random vertex of tree
3 return DFS(start, &)
// Returns the centroid if it is in u’s subtree, and null otherwise
4 fn DFS(u, parent)
5 u.stze <— 1
6 for each v € adj(u) \ parent do
7 if DFS (v, parent: {u}) is not null then
8 L return the found value
9 u.stze <— u.size + v.size
10 parentSize < n — u.size
11 if all child sizes and parentSize are at most § then
12 ‘ return u
13 else
14 ‘ return null
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3.3 Drawing the Tree and Clusters

Having computed the cluster graph’s spanning tree T¢, the logical next step is to draw it.
This task presented us with a bigger challenge than initially expected due to a variety of
reasons. Indeed, as we will show later on (see Subsection, it is difficult to separate
the large- and the small-scale drawing steps completely.

Before we proceed with the description of our approach, we summarize the main goals
which guided us through our decision-making process.

e The large-scale drawing should not suggest any kind of hierarchy in the graph.
o The large-scale drawing should take different cluster sizes into consideration.
e In the cluster drawings, each vertex should be represented as a single circular arc.

e The size of those circular arcs should be relative to the “relevance” of the vertex,
defined via some measure.

e At least within the clusters, the number of edge crossings should be minimised, as
long as this does not impose an overwhelming computational overhead.

We will often use the term cluster size in this section, so we feel the need to elaborate
on it in advance. In order to produce an uniform drawing in regard to the nodes, a node
from cluster C; which is as “relevant” as a node from cluster C; must be drawn just as
large. As we draw nodes as circular arcs on the boundary of the cluster they are part
of, the size of the cluster’s drawing directly depends on the sizes of the singular nodes.
In particular, this influences the circumference of the cluster’s drawing (and thus the
circle’s radius). This, in combination with some edges drawn directly around the cluster,
is also what we will refer to as cluster size. We will quantify this later in Subsection
B.3.4

The rest of this section is structured in a topological way: since many values depend
on each other, we describe the derivation of these values so that at any given point all
requirements for the step at hand have been fulfilled in previous steps. Though this order
may appear counter-intuitive (as compared to, for instance, describing the drawing from
large grained to small grained), we consider it important; otherwise, the separate steps
would mention values that will be defined at some point in the future.

3.3.1 Routing the Inter-Cluster Edges

We begin with an unexpected part of our pipeline: The setup and positioning of the
inter-cluster edges. This depends merely on the tree Ty which was constructed during
the previous section. We will see shortly why it is important for this step to occur before
drawing the interiors of the clusters. Note that this does not include the drawing of the
edges as this requires the setup of the clusters, which will be performed in Subsection
Here, we are merely setting up the intermediate path each edge will take.
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Fig. 3.4: Example for a cluster tree T with 6 clusters. Three edges are selected and displayed
akin to the way they would be drawn with our pipeline.

Our general concept is as follows: the links corresponding to the inter-cluster edges
connect to the clusters on specific locations only. Also, these links may not go directly
from one cluster to another, should the two clusters not be adjacent in T%. Instead,
bundles of inter-cluster links run alongside the edges of the spanning tree. If a link
between clusters C7 and Cs would go through another cluster, C, it is instead routed
alongside the boundary of C'3, as exemplified on Fig. The approach we introduce in
this section will see to it that the number of crossings within those link bundles is kept
small, and that links do not take longer detours around clusters than necessary.

We begin by introducing gate nodes — additional nodes that each cluster contains and
that serve as entry and exit locations for inter-cluster links. In particular, given the
cluster tree Ty, each cluster C; € V(Ty) receives degr, (C;) many gate nodes — one
for each of its neighbour clusters. For uniqueness, we denote a gate node of cluster
C; “targeting” cluster C; as g;;. A link {u,v} such that v € C; and v € C; is now
represented as a sequence of links {u,g;;},{9i;, 05} {g;i,v}. Subsection will
handle the links of type {u, g; ;}; this subsection’s subject are the links of type {g;;, 9.}
only.

The problem of routing links to avoid node interiors has been well studied (see, e.g.,
Dwyer and Nachmanson [DN09]). Often, it is combined with link bundling — group-
ing links together as they traverse the same area simultaneously — and the problem of
ordering the links within these bundles to minimise crossings as links enter or exit the
bundle. Classic examples for general graphs are the works of Pupyrev et al. [PNBHI1I]
and Holten et al. [HvW09]. A newer algorithm is given by Hegemann and Wolff [HW23)]
which build upon the work of Pupyrev et al. [PNBHI11]. If the links are to traverse the
structure of an embedded graph, this becomes an instance of the metro line crossing
minimisation problem (MLCM) introduced by Benkert et al. [BNUWOG].

A usual approach begins with the construction of an auxiliary routing graph. It defines
the allowed routes on the plane for the links to run alongside of in order to connect the
nodes. The links are then routed on top of the edges of the auxiliary graph, with one
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Fig. 3.5: Part of a routing graph. The purple vertices are terminal vertices corresponding to
the cluster they are placed in. The black vertices are internal vertices.

link often covering multiple of its edges. Links routed on the same edge form a bundle.
We define our routing graph H as follows.

V(H) contains one terminal vertex, term(g;;), and one internal vertex, int(g;;), for
each gate node of each cluster of Ty. E(H) is defined as follows. First, for each cluster
and each of its gate ports, the corresponding terminal and internal vertex are connected
with an edge. For clusters C;,C; that are adjacent in T, we add an edge between
int(g;;) and int(g;;). If a cluster C; contains exactly two gate nodes, g; and g, we
connect int(g; ;) and int(g; ) with a single edge. It is irrelevant on which side of the
cluster this edge will be later on, as a cluster with degree two in Ty will be drawn in the
middle of the straight line between its neighbours, and so routing edges on either side
of it will be equally efficient. If C; contains more than two gate nodes, we connect the
corresponding internal vertices in such a way that a circle is formed. We do not impose
any requirements on the order of that circle. An exemplary construction of the routing
graph H is given on Fig. (3.5

As our routing graph is sparse, routing is fairly trivial: for each link {u,v} to be
routed, it is sufficient to take the shortest path from u to v. Given that H is unweighted,
the simplest algorithm for the task would be a breadth-first search. Indeed, as H was
constructed on top of a tree, the only case where the routing algorithm has to actively
take agency is when arriving at an internal node of a cluster C; with three or more
adjacent clusters. In this case, for a link {Cgart, Cena} € E(T), there are two paths to
the unique internal node propagating links further in the direction C¢,q.

The link ordering, however, cannot be declared trivial by the same premise. Observe
that with a routing graph constructed as described above, minimising the link crossings
during the link ordering step corresponds to Problem 5 from the work of Pupyrev et al.
[PNBHI11] (where “path” refers to a link that needs to be routed):

Given an embedded graph H and a set of simple paths P so that no node of H
is terminal for some path while being internal for some other path, compute
an ordering of paths for all edges of H so that the number of crossings between
pairs of paths is minimizedﬂ

Our routing graph H fulfils the imposed condition by construction as all edges start
and end in a terminal node. The authors show that in this case, minimising the crossings

3quoted directly from [PNBHII], with the definition of the Path Terminal Property being inlined.
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can be done efficiently, and provide two algorithmsﬂ While the first algorithm is less
efficient, this does not present a significant issue in our case, given that Ty can be
assumed to be comparatively small (recall that our assumed input graphs contain already
a couple of hundred vertices at most). There are also two further degrees of freedom:
first, at which internal nodes the crossings are to take place, and second, in what order
a link bundle must arrive at a terminal node.

We apply this algorithm, with T% as the main graph and H as the routing graph.
The algorithm proceeds as follows. It iterates the edges of H in an arbitrary order and
for each edge {u,v}, an ordering of the links routed across {u, v} is computed. To this
end, first an arbitrary direction is selected for {u,v} and then the links are sorted by
traversing the edges of H where they occur together, starting from u. For links e; and
e2, the ordering is determined as follows:

o If an edge {u/,v'} is reached that was already processed by the algorithm, then
the ordering of e; and es is reused from there.

o Otherwise, if a vertex v’ is reached after which e; and ey diverge, the ordering
is selected that does not induce a crossing after the divergence. Note that this
only requires a fixed cyclic sequence of each vertex’ neighbours in H, which we set
during H’s construction.

o Otherwise, if e; and ey end in a common vertex u/, this operation is repeated
starting from u but this time going in the opposite direction.

This yields an ordering of the edges of Ti alongside the edges of H and according to the
authors [PNBHII], their crossings are minimised. There are two important co-products
of this algorithm:

o Link order at the terminal nodes: As mentioned, the ordering algorithm of Pupyrev
et al. [PNBHII] results in the edges of Ty ending in the gate nodes in a specific
order. This offers a trade-of: either accept this fixed order for each gate node and
work with it when we draw the interior of a cluster (see Subsection , or allow
that step to draw the edges incident to the gate nodes freely. The latter could
result in a different order of the inter-cluster edges at the entrance and the exit of
the gate nodes, so an intermediate matching step would be necessary that induces
more crossings. We handle this in Subsection [3.3.6

e Number of “orbits” around each cluster: The internal vertices of H are designed
to connect in a circle around a cluster. The algorithm of Pupyrev et al. [PNBH11]
works with edge bundles (i.e., draws multiple edges in parallel next to each other
alongside the same edge of H). Therefore, in general, a cluster will have a different
number of edges around it as we walk on the aforementioned circle. For instance,
on Fig. cluster Cs has two edges on one of its sides and one edge on the other,

*as a side remark, this is an extension of the MLCM-T1 problem first considered by Argyriou et al.

[ABKSO08] where all edges are incident to nodes of degree 1.
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with the third side being free. This motivates us to induce the orbit count of a
cluster as the largest number of edges routed parallel to each other next to some
cluster. So, on Fig. the orbit counts of Cy and Cy are 2 and 1, respectively.

As the orbit count is independent of the vertices in a cluster, but still contributes to
the space we need to dedicate to a cluster in order to draw it without overlaps, it is
important to define it before drawing the clusters themselves. Additionally, as we will
see in Subsection [3.4.1] we wish to be able to place labels also as circular arcs next to
the node arcs they describe (that is, should the input graph come with labels or specific
identifiers for its vertices). For that purpose, we manually increment each cluster’s orbit
count by a constant amount. For the sake of readability, we dedicate more “vertical”
space to a label than to a link; for instance, 2 port units of space can be used as compared
to an orbit’s 1.

3.3.2 Initial Cluster Sizes

As mentioned, defining the size of a cluster is a difficult task. It has dependencies
on many other values: the positions of the clusters, the inter-cluster edges and even
the drawing of the cluster’s interior. However, the positions in particular depend on
the cluster sizes themselves, as we will see in Subsection [3.3.3} so does the interior of
a cluster (Subsection . To resolve those cyclic dependencies, we setup an initial
size for each cluster that disregards some of those constraints; we will handle them in
Subsection

We aim for a cluster design not unlike the one of ChordLink, as will be seen in
Subsection [3.3:4 In particular, we will represent the non-gate nodes of a cluster as
radial arcs on the boundary of the cluster. Note that the gate nodes are only implicitly
assigned an arc in order to simplify and generalise the used algorithms and formulas;
these arcs are not visualised as such on the cluster’s boundary. With this in mind, we
clearly require enough space to position all arcs.

Recall that one of our goals, defined in the beginning of this section, is for the size of
the radial arcs to represent the “relevance” of the node. As the graph does not necessarily
come with node attributes of some sort, we opt in favour of using the node’s degree as
a measure for the size of the arc. This has the additional benefit of yielding cluster
drawings where the links incident to a node arc are evenly spaced throughout the entire
cluster. We thus define a port p, ; as the location where the i-th link incident to the node
arc of u connects to that arc. Similarly, we can define a constant port unit to represent
the space dedicated to a single port on the final drawing. This allows us to express the
minimum circumference of the cluster needed to draw all ports of all arcs in terms of
this unit:

p(C;) > Z (deg(u) + 1) + Z deg(gi,;) (3.3)

ueC; J

Or, in other words, the number of ports among all port and non-gate nodes. This
guarantees that a cluster with many edges inside it will get more space assigned. For
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clarity, we additionally increase the circumference of the cluster by the number of nodes
in it (the +1 in the first sum); these empty spaces will be placed between the node arcs
to make them better distinguishable and to make the entire drawing clearer.

Regarding the orbits, we have already computed the orbit count of the cluster in
Subsection For convenience, we also set the “width” of one orbit to one port unit.
So in total, since a cluster C; needs to be large enough for both its orbits and the node
arcs, the initial radius is given by

>uec; (deg(u) + 1) + >, deg(gi,5)

T = + orbitCount(C;) (3.4)
2m

3.3.3 Radial Layout

Note that for the large-scale drawing of T, we need a layout algorithm of our own as
ChordLink does not perform any layouting per se: It begins with an already existing
drawing (without requiring it to have any specific properties or features) of the input
graph and then replaces a set of selected vertices with a cluster. The remainder of the
graph drawing is left untouched, aside from the edges incident to any of the clustered
vertices.

In addition, recall that we strive for an “optically pleasing” drawing. While this
statement is rather vague, we can still infer some criteria from it. For instance, we
decided against using a force-based drawing algorithm relatively quickly, as this kind
of algorithms do not consider any kind of spatial distribution. As we already require
the coarse-grained layout algorithm to be able to handle different vertex sizes, it is also
natural to require a drawing that dedicates space to a vertex (or a subtree) proportional
to its size. Ideally, the drawing should also exhibit some amount of symmetry, although
this is difficult as, in the general case, the graph Ty we are drawing is not symmetric.

We considered adapting various existing algorithms for this task. An early idea con-
sisted of representing T as a cactus graph; however, this was swiftly dismissed since
first, the transformation step would introduce an unnecessary level of complexity in the
drawing process and second, hardly any layout algorithms dedicated to cactus graphs
exist to the best of our knowledge, even less so ones catering to our specific needs.

A more promising idea involved the concept of balloon drawings, as given e.g. by
Lin and Yen [LY05)] (see Fig. (a)). Notice that the algorithm presented in their
work already complies with some of our desired properties: it is applicable on trees,
takes varying vertex sizes into consideration and, in the drawing, distributes the space
proportional to the subtree sizes. Alas, it also entails the implication of a hierarchical
structure within the drawn graph, with the root of the tree being on top of the hierarchy
and children being placed on the circumference of a circle centered at their parent — a
property we explicitly desire to avoid. Applying similar reasoning, we decided against
the work of Grivet et al. [GADMO04] who introduce the notion of bubble trees (see Fig.
(b)). While they, too, consider trees with circular vertices of varying size, they draw
the subtree rooted at a vertex implicitly enclosed in a circle large enough to fit it (thus
suggesting a hierarchy).
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Colld == ancestor(n)

(a) (b)

Fig. 3.6: Examples for a balloon-style drawing (a) and a bubble tree (b), as given by Lin and
Yen [LY05] and Grivet et al. [GADMO4], respectively.

Still, the idea of using a radial layout for the large-scale drawing appeared prospective
and so we focused on it further. It must be emphasized here that our goal during this
step is fixing the cluster coordinates for Ty using the initial cluster radii defined in the
previous subsection. The locations of the inter-cluster edges were handled in Subsection
[3:3.1} they will be drawn in detail later in Subsection [3.3.6]

While the “classical” radial drawing algorithm, presented by Eades and Bat-
tista et al. [BETT99], considers the drawn nodes to be of equal size (thus making the
weight of a subtree equal to the number of nodes in it), this can be extended to allow
nodes of different sizes to be included. This is also the approach taken by Six and Tollis
[ST99] (see Fig. [3.7). Of particular interest for us is the algorithm “RADIAL — With
Different Node Sizes” presented in that work. In regard of the large-scale drawing of Ti,
this algorithm covers all of our requirements:

o It is capable of handling vertices (in our case for Tt — the clusters) with predefined
sizes.

« It distributes the space of the drawing canvas relatively to the sizes of the separate
subtrees, taking not only the vertex count of the subtree into consideration, but
also, once again, the vertex sizes.

¢ It does not induce any sort of “penalty” on vertices further away from the root, thus
subverting the idea that the structure of the drawn graph is hierarchical. To the
contrary, instead of constraining child vertices to a space defined by their parent,
the algorithm allocates space to the parent strongly dependent on the children.

Similarly to other radial layout algorithms, “RADIAL — With Different Node Sizes”
assigns polar coordinates (p,f) to each node v with the root of the input tree always
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Fig. 3.7: Examples for drawings produced by the algorithm of Six and Tollis [ST99].

Fig. 3.8: The p coordinate of a node v, as defined by Six and Tollis [ST99]. The shown child of
u — v — is the one with the largest diameter.

being placed at (0,0). The p coordinate is the distance from (0,0) to the centre of the
node and in the work of Six and Tollis is defined, for a node v, as follows:

P(U) = ,O(U) +6+7r,+ max(rl, T, ... ,T‘k) (35)

Here, node w is the parent of v, r, is its predefined radius, r1,...,r; are the radii of
the children of u (including v) and ¢ is a predefined constant representing the smallest
distance allowed between the boundaries of two nodes. This definition of p is intuitive:
in theory, it leaves just enough space (§) between u and v, as seen on Fig. Moreover,
a noteworthy feature is that it places all children of a node u at an equal distance from
(0,0), not from u’s centre.

Unfortunately, Six and Tollis’ work does not provide an explicit formula or definition
for the 6 coordinate — the counter-clockwise angle between the x-axis and the line segment
connecting (0, 0) and the centre of the to-be-drawn node. It is merely mentioned that any
such formula should incorporate the widths of that node’s descendants and not merely
their count, as is often the case with radial algorithms. In this spirit, we define

Tu if u is a leaf
) (3.6)
max(Ty, 2y child of w Tv) Otherwise

weight(u) = {
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We then iterate Ty in a pre-order manner and split the plane into wedges (radial sectors)
starting at (0,0). Each node’s 6 coordinate is given by the angle between the z-axis and
the bisector of its assigned wedge. We begin with the root, whose “wedge” is the entire
plane. For a node w and its wedge wedge(u), we further split that wedge among u’s
children vy, ..., v, proportionally to weight(v;). This way, a node is assigned a larger
wedge if the subtree rooted at it is comprised of nodes with larger radii. Regarding the
exact order in which the children v; are drawn, we adopt the cyclic order that was used
in Subsection [3.3.1] when routing the inter-cluster edges.

As we will discuss later, in our case the radii may change throughout the drawing
process. This case is handled in Subsection [3.3.5]

3.3.4 Cluster Drawing

The design of the cluster layout exhibits large similarity to the one of ChordLink. How-
ever, it had to undergo some modifications to comply with the criteria we laid out at
the beginning of this section, and also with the fact that the input graph is drawn as a
tree Tt on a radial layout.

Recall that Subsection introduced the notion of gate nodes. The main reasoning
behind this is that visualising the inter-cluster links as simple straight lines would disrupt
the otherwise clean tree structure we have established in Subsection [3.3.3] and thus
lead to more poorly comprehensible drawings. Instead, the links should follow the tree
structure and enter and exit the clusters in predefined points.

Both gate and non-gate nodes are represented as radial arcs (with the remark from
Subsection that the arcs of the gate nodes are not drawn in the end), as would
be the case in the original ChordLink. However, with them, a cluster becomes a self-
contained entity: as long as we control the positions of the gate nodes, we are free to
draw the “normal” nodes and the rest of the interior of the cluster in an arbitrary manner
without the cluster influencing the rest of the drawing.

Once the algorithm from the previous subsection has defined the initial positions of
the clusters in the drawing of Ty, we can fix the positions of the gate node arcs on the
clusters’ boundaries. Ideally, the gate node to gate node links between a cluster and its
neighbours (in regard to Ti) will be drawn without bends, as per the routing graph from
Subsection [3.3:1] Therefore, we place the gate node arcs centered around the straight
lines connecting the centres of the cluster and its neighbours, respectively, as seen on
Fig. 3.9 (a).

In the case where the gate node arcs are large (as there are many links leaving a cluster
towards another one) and the neighbouring clusters are positioned close to each other,
the setting of the gate node arcs we described may lead to a situation where two or more
gate node arcs overlap, as shown on Fig. [3.9| (b). However, both the sizes of the gate
node arcs and the cluster positions are fixed at this point. This makes it possible to use
angular geometry in order to define a new lower bound for the radius of the cluster that
will allow the gate node arcs to be placed without overlapping with each other.

Consider cluster C; placed at (p;,0;). Assume the n neighbours of C; are placed at
polar coordinates (pg,0;),1 < k < n by the algorithm of the previous subsection, and
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(a) (b)

Fig. 3.9: Examples of naive placement of gate node arcs on a cluster’s boundary. In (a), the
initial placement was successful. In (b), there would be an overlap if the arcs were
placed on their initial positions.

the gate node arcs of C; have sizes l;. In the following calculation&ﬂ7 r} will refer to the
necessary radius of C; to avoid overlaps.

1. First, we use the trivial conversion to Cartesian coordinates given by xp = pg cos 0y
and y, = pg sin 0y to compute the angles of the arcs in the local coordinate system
centered at Cj:

o, = atan2(zg — x4, Yk — Yi)
where atan2 refers to the 2-argument arctangent function yielding the angle be-
tween the positive z-axis and a ray from the origin to (z,y).

2. Then, sort the arcs ascending by that angle.

3. We calculate the gaps between the angles:

A, — Vk+1 — Pk forl1<k<n-1
b 2r —pon+¢1 fork=n

4. If arcs k and k + 1 (taken modulo n) were to meet exactly, it must hold that

Iy +1
Ay, >k + Ik+l
2r;
This yields the following constraint: 7, > maxy, %. Let rf = max{r;,r,}; we will
use this value going forward. Now, it is safe to place the gate node arcs of C; on its
boundary without causing overlaps.

5Some of the given formulas were derived with the help of Al assistants and then verified manually.
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Fig. 3.10: An example where some arcs have already been inserted. There is sufficient space for
one more arc (orange) with size at most 2 (as the ports next to the already placed
arcs are buffers). However, the next arc (violet) has size 4, so a growth phase is
necessary.

With this done, we now add the remaining, non-gate node arcs on the boundary of
the cluster. A somewhat similar problem was tackled by Baur and Brandes [BB04] as
they attempt to place nodes on a circular boundary while minimising the number of
edge overlaps the placement would yield. As they show, this problem is N'P-complete.
Nevertheless, the heuristics provided in their work can be of use to us as well. Note that
we still have some tighter restrictions: for a given node, not every location is valid as it
may not be large enough to host the arc without causing overlaps.

As proposed by Baur and Brandes [BB04], we process the non-gate nodes one-by-
one. We also opt in favour of the connectivity rule for determining an insertion order,
meaning: we select a node with the least number of unplaced neighbours. The rationale
behind this is to keep the number of edges low for which one of the incident vertices is
already placed while the other is not.

However, the decision where to place the node at hand is not as simple as in the work
of Baur and Brandes [BB04]. In particular, a case can occur where due to the placement
of the previous node arcs, there is no singular gap wide enough to fit the current one
(see Fig. . Additionally, we wish to keep one port unit of buffer space between arcs
for the sake of having a clearer drawing in the end. Unlike ChordLink, we also explicitly
want to avoid splitting a node arc in multiple pieces. To mitigate this, we introduce the
so-called growth phase.

In order to provide more space for the node arcs to be placed, we let (the drawing
of) the cluster artificially “grow” (starting at r; and updating this value after each
expansion) until no overlaps occur. In each growth step, we expand the cluster size by a
specific amount defined below. This is a feedback loop: once an expansion has occurred,
we begin the drawing step anew, fixating the gate node arcs and attempting to insert
the residual nodes. Note that this is a finite process as the sizes of the node arcs (both
for gate nodes and otherwise) remain unchanged; we are merely “generating” more space
on which to draw them without having to split them.
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Going back to the stepwise insertion of non-gate nodes, we handle three different cases,
for a node u:

1. There is no gap between already placed node arcs that is large enough to fit the
node arc of u (plus a buffer on each side, if not present via neighbouring arcs): in
this case, the cluster undergoes a growth phase, expanding by deg(u) —maxGap—2
(where maxGap is the size of the largest gap currently available in port units),
and the node placement step begins again.

2. There is a single gap between already placed node arcs that is large enough to fit
the node arc of u (plus buffers): here, we simply put « in that gap and proceed
with the next node.

3. There are multiple gaps between already placed node arcs that are large enough
to fit the node arc of u (plus buffers): we place u in the gap that would result
in the least amount of new edge crossings. These crossings are easy to find since
for cyclically ordered nodes, two links {z,y} and {z,w} cross exactly when their
nodes appear in an alternating sequence on the cyclic order (e.g. z...z...y...w).

After iterating through the node placement (and, if necessary, growth) steps, we are
left with a final drawing of the node arcs of the cluster, and a minimum size constraint
r7. Note that since we expect some number of growth phases, the final size of the cluster
is difficult to predict in advance. This collides with the layout algorithm of Six and
Tollis described in Subsection [3.3:3] Should a cluster C;’s final size be larger than the
initial one, C; will extend beyond the boundaries of its wedge if it is placed on its original
position. Our initial solution revolved around performing the tree layout procedure again
with C’s new size. However, doing so would require a rebalancing of the tree, including
already drawn clusters, among other problems. We will show in the next Subsection
[3.3.5 how we tackle this issue.

The final step needed to complete the cluster would be to select, for each link {u, v},
which ports of the arcs of u and v to connect in order to keep the number of crossings
small. Recall that in the end of Subsection [3.3.1] we were left with a trade-off: The order
of the links at each gate node is already defined by the routing algorithm of Pupyrev et
al. [PNBHI1]. So, we either use this order when inserting the edges inside the cluster,
or insert all edges freely and, at the gate nodes, have a “crossing phase” to match the
links on both sides of every gate node. We believe that the latter option will lead to
more visual clutter and make the drawing less intuitive. So, the benefit of potentially
less crossings of links in the interior of the cluster is deemed insufficient and we opt
for the first option. The algorithm we designed is given below on Alg. There, the
“highest” port p,; of a node u refers to the port with the largest index ¢ (that satisfies
some property).
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Algorithm 2: Our algorithm for placing edges to connect the ports of an al-
ready drawn cluster.

1 fn PlaceEdges(arcs : RingBuf fer)

2 for each arc A € arcs.ordered() do

3 if A corresponds to a gate node then

4 set the ports to Open(...) as yielded by the algorithm in [PNBHI1]
L continue

for each arc A’ € arcs.next0f(A) to arcs.prev0f(A) do
if A’ ¢ adj(A) then
L continue

for each edge e € edges(A, A") do

if A’ has port pas that is Open(A) then
10 pa < highest port of A that is Free or Open(A’)
11 pa.state < Connected(par)
12 pa.state < Connected(pa)
13 else
14 p4 < highest port of A that is Free
15 pa.state < Open(A’)

The given algorithm takes into consideration not only the current node w’s free ports,
but also the fact that the node v that u is attempting to place a link to might have to
be connected to other nodes after u as well (see Fig. . As for the links, they are
drawn, in a ChordLink-manner, as chords in the inside of the cluster’s boundaries. This
completes the drawing step of the clusters.

3.3.5 Resolving Issues

Unfortunately, deeper analysis and experimentation of the approach described so far
unveiled some issues that would prevent our model from working as expected. In this
subsection, we go into detail about them and describe the steps we undertook in order
to resolve them.

Node placement with Six and Tollis. The first problem was found with the algorithm
of Six and Tollis [ST99]. As mentioned earlier, the authors do not provide an explicit way
to compute 6(u) — the counter-clockwise angle between the x-axis and the line segment
from (0,0) to the position of the node u — save for mentioning that this computation
must take the sizes of the descendents of u into consideration. The function chosen by
us satisfies this condition.

A graph was discovered during the concept phase which, when drawn with the specified
p and 0 coordinate functions, will still have some clusters extend beyond the boundaries
of the wedges assigned to them (see Fig. [3.12)).

Luckily, this issue was not difficult to resolve. It is sufficient to add a condition to the
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Fig. 3.11: An example of link placement between ports. First, ports become open towards a
node they’ll later connect to. In the 5. image, as vy attempts to place the {vy,vo}
link, it discovers v;’s open port p; 4 towards ve. The highest free port of vy, p2 1,
then connects to p; 4. On the 6. image, v behaves similarly.

Fig. 3.12: Example for a graph that, when drawn with the algorithm of Six and Tollis [ST99],
has overlaps of the clusters. Left: representation of the graph with the nodes given
as pairs (name, size). Right: drawing of the problematic part with the orange lines
showing the dedicated wedges.
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p function that the distance from (0, 0) to the centre of the cluster must be large enough
for the cluster’s initially planned visualisation to fit in (we will elaborate the interactions
with cluster growth shortly). Given the wedge assigned to node v, wedge(v), the adjusted
p coordinate is given by

p(u) + 7y + max(ri,ro, ..., 7k)
p(v) = § + max re

. od,
sin 2 ge(v)

where u,r;, and § are defined as before. Note that even so, this formula is unable to
produce the results depicted in the work of Six and Tollis (Fig. [3.7) — a careful look
into the drawings presented by the authors reveals that there, the centres of the children
of a node u are equidistant from the centre of u itself, not from (0,0), contradicting
the original formulation of p given by the authors themselves. Still, this error does not
present an issue for our model.

Clusters extending over their wedges after a growth phase. As noted earlier in Sub-
section [3.3.4] at the end of the drawing phase of a cluster C; we have computed a new
lower bound r} for its size, as constrained by the node arcs. Since sufficient space to
draw the orbits is also necessary, the final size of a cluster is 7, ==} + orbitCount(C;).
In particular, this bound can be already larger than the value used in the algorithm of
Six and Tollis in Subsection [3.3.3| (including the amendments from the first part of this
subsection). Drawing C; with the new radius will, in general, cause it to extend beyond
the wedge defined for it by the layout algorithm. Alas, simply re-running the layout
algorithm is not a plausible solution as it would create multiple issues:

o A changed balance of the clusters and the subtrees would yield new locations for
the clusters in the general case. Thus the created drawing of C; would no longer be
valid as the gate node arcs would not point towards their respective clusters any
more. This in turn leads to a repeated cluster drawing step for C;, which could
once again produce a new size for it, and so on. This process is not guaranteed to
find an optimum and terminate.

e This changed balance would also disrupt previously drawn clusters; therefore, in
the worst-case, all clusters would have to be recomputed as well.

e Even aside from terminating, such an iterative procedure would be very inefficient,
regardless of us limiting our model to small graphs only.

It is clear that any solution that accepts a cluster’s size to grow during the drawing
phase is not allowed to invoke a new layout step completely from scratch, or to influence
the entire cluster graph Ti%. In other words, we require a local solution enabling us to
draw a larger cluster in the same wedge that was originally assigned to it.

What we ultimately opted for is a simple trade-off: we keep the drawing of the cluster
C; centered in its wedge (i.e., the 6 coordinate remains unchanged), but we shift it
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further away (i.e., increase the p coordinate). With 7;,;; and r tin being the initial and
the final size of C}, the necessary shift is given by

(7 fin — Tinit) - P(Cs)

Tinit

dist =

(3.7)

or, in other words, C;’s final placement is at polar coordinates (p(C) + dist, 0(C)).

This raises the question of how the subtree rooted at C; is to be handled, as it is
possible that pushing C; further away from (0,0) yields an overlap with the drawing of
one of its children. We solve this issue in two steps: first, we draw Ty in a post-order
manner; this ensures that no cluster will be drawn after its parent’s final placement, and
that the parent can rely on the coordinates of its children being fixed in order to place
its gate node arcs accordingly. Second, when we move an expanded cluster C' alongside
the (0,0) — (p(C;),0(C;)) line, we also shift with it the subtree it hosts. Note that we
do not, in any way, change the details of the drawing of the subtree, such as directions;
we simply push it further away. This is guaranteed to cause no overlaps as the subtree
is placed entirely in C;’s wedge, and that wedge is wider further away from the centre
of the coordinate system.

The downside of the aforementioned trade-off influences the link(s) from C;’s parent
cluster, C}, to C;. The position of g; ; has already been fixated, but it no longer directly
points towards C';. Note that rotating C; and its subtree to compensate for this is not
recommended as the subtree may thus enter the wedge of one of the sibling clusters of
C;. It is thus clear that a bend in the inter-cluster links between the two is necessary. We
choose to place this bend near ;. This minimises the possible interferences of the links
in the wedges of the siblings of C;. The positioning of g;; on the other hand is no reason
for concern. As Cj is drawn after C; has been finished (post-order traversal), that gate
node can be positioned directly towards C;’s new location. The gate node placement
procedure described in Subsection [3.3.4 makes sure that the gate nodes placed towards
sibling clusters will not overlap. An example of the steps just described is given on Fig.
0. 19

3.3.6 Finishing the Inter-Cluster Links

Recall that in Subsection [3.3.1] we performed a preliminary setup of the inter-cluster
edges in order to determine the orbit counts and the edge orders. We achieved this by
constructing a routing graph and then applying the algorithm of Pupyrev et al.[PNBHI1].
Still, it remains to actually draw them like on Fig. [3.4] now that the setup and drawing
phase of the clusters is complete as well.

Ultimately, we only have to handle the exact behaviour of the links at the boundaries
of the internal and the terminal nodes. We handle an internal node int(g; ;) of cluster
C; as an area in the form of an annular sector, as given on Fig. These sectors
have radial width equal to orbitCount(C;), and arc length equal to the number of links
entering the int(g; ;) from direction of int(g;;). This way, links that are “orbiting” the
cluster at this internal node have enough space to pass by, and so do links arriving at
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Fig. 3.13: An example of the cluster expansion process. The green arrows represent the cluster
tree, and the purple arcs — the gate node arcs. The orange cluster is expanded to
its new size (blue) which no longer fits in its dedicated wedge (between the dotted
lines), so it is shifted further away. Edges between the cluster and its parent now
have a bend.

or leaving the cluster. Recall that the orbit count was artificially inflated to allow us to
draw the graph’s labels at the end; to this, we dedicate the two innermost orbits.

Keeping the focus on Cj, let the clusters incident to it be €}, Cy and C;. We place
ports on the sides of the internal nodes to affix the locations where links can enter. Once
again, Fig. visualises the described idea.

o For int(g;;), on the side directed towards int(g;;), we position as many ports as
the number of links entering it from that side.

« For int(g; ), on the two sides directed towards int(g; ) and int(g;;), we position
as many ports as is the orbit count of the cluster, starting from the inside. These
are for links that simply go around C; on the way between two clusters.

e As the radial width of int(g; ;) is equal to the number of links entering it from
int(g;,i), on the opposite side — the one towards term(g; j) — we distribute deg(g; ;)
many ports not along the entire width, but starting from the middle. This way
they can transit directly to g; ;.

As for the small bends introduced at the end of Subsection we mentioned that
we decide to place them next to the cluster C; that was pushed further away, like on
Fig. Since we do not want any crossings at the bends, we do not need to re-do the
routing or ordering steps. Consider the inter-cluster links from C; to C;. Any location
is suitable enough for the bend as long as first, it lies on the ray from the center of C}

35



_orbits

/ gate node \ b

Fig. 3.14: An example of an internal node next to a cluster with orbit count of three. The
cluster only has one valid orbit; we dedicate the lower two orbits to labels. The
colours exemplify a possible way of how the links could be routed.

to the center of C; and second, is sufficiently close to g; ; while allowing for all links to
bend so that they can enter g; ; in their corresponding port.

Note that there are always at least as many links entering an internal node from the
direction of another cluster as there are entering it from the connected terminal node,
so taking the former as a measure for an internal node’s size is sufficient. This can be
proven simply: suppose there were k links entering from the terminal node, and I < k
many entering from the neighbouring cluster. Then, at least kK — [ many of the former
links would have to leave the internal node from one of its sides, travelling to another
internal node of the same cluster. This is a contradiction to our design, as these links
are thus taking an unnecessary detour; they would have been directly connected to that
internal node instead.

Clearly there is sufficient space around the clusters to place the internal nodes as we
have already constrained the radius of the cluster to include its orbit count (which is
also the width of the internal nodes). In the provided area, the links can traverse their
predefined paths, crossing if necessary. This concludes the considerations of the internal
nodes.

Regarding the terminal nodes, there is not much left to do either. In fact, they exist
merely for the purpose of having the links end in vertices of degree 1 in the routing graph.
As we noted in Subsection [3.3.4] we decide against changing the order of the links that
was defined by the routing algorithm of Pupyrev et al. [PNBHI11] in an additional step.
arissa With this, the inter-cluster edges are complete. Due to the way we have defined
the orbits and the internal nodes, no nudging is necessary. Note that this also holds for
the drawn links within a cluster, as there the node arcs already have fixed ports that
leave sufficient space as well.
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3.4 Labels and Other Details

Last, we would like to discuss some elements important for the readability of the pro-
duced drawing.

3.4.1 Labeling the Drawing

Vertex labels are of high significance when visualising real-world data. Without them a
user is often left puzzled as to which vertices are, for instance, clustered together. In our
particular case, all vertices of the original input graph GG now lie on the boundary of their
respective clusters in the form of circular arcs. This special case has also gained interest
as of recent, considering for instance the work of Islam et al. [IHB™23], with the general
use-case often being various round displays like smartwatches. Recently, Bonerath et
al. [BNT™24] proposed a new variant of the classical boundary labeling problem called
orbital boundary labeling and analysed some variants of it.

It is clear in our case that we wish to place labels outside of the cluster’s drawing, as
the inside is reserved for the chords. Also, the gate nodes do not need a label as they
are artificially created; they can also be enhanced with additional information, but this
will be discussed shortly. As for the labels of a cluster C;’s “normal” arc nodes, there
are various possibilities for their placement.

The simplest option would be to draw them as freely placed axis-parallel rectangles
next to the cluster; however, this is impractical as they could potentially cause overlaps
by extending beyond C;’s dedicated wedge. We also consider shifting a cluster further
away, as described in Subsection possible but not beneficial enough to outweigh
the distortions that would be caused in the drawing this way. Similar is the case with
the labeling model utilised by ChordLink itself, which places labels perpendicular to
the node arcs they correspond to. While this does not cause potential overlaps between
labels of the same cluster, it also blocks a potentially large amount of space around
each cluster. This is acceptable for ChordLink, given that it does not draw graphs in a
structured way on the large scale, but even worse than the previously discussed option
in our case.

This leaves as a viable option to draw the labels on the boundary of the cluster as
circular arcs, similarly to our approach to the nodes. Recall however that in general,
inter-cluster links are routed next to a cluster’s boundary (except for clusters that are
leaves in Ty, but this is an edge case). We are therefore presented with a choice:

Opt. 1 Draw the labels between the cluster’s boundary and the routed inter-cluster links

Opt. 2 Draw the labels outside of the routed inter-cluster links.

While both variants are similar in that they apply an additional “layer” around the
cluster and thus increase the lower bound of its radius, they also offer a trade-off. The
first option feels more natural as the labels are placed directly next to the node arcs
they describe (i.e., without anything in between). Option 2 provides a bit more space
as the labels are placed further away, but by separating them from the node arcs we
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make them less helpful. Using leaders — lines connecting a node arc to its corresponding
label — undermines the readability of the drawing as the leaders will need to cross the
inter-cluster arcs.

In addition, in both cases we do not have any way of guaranteeing that sufficient space
will be available for the labels (in regard to their length) to be drawn. Initially, an idea
was proposed where similarly to the orbital boundary labeling problem of Bonerath et
al. [BNTT24] the node arcs were drawn with size proportional to their label’s length.
This would indeed have trivialised the label placement problem; however, we abandoned
this idea as it felt unnatural to regulate the length of a node arc by a feature outside of
the graph structure. For instance, applying this approach could have produced drawings
where the largest arc of a cluster corresponds to a node of degree 1, but with a long
label attached to it. Opting for the arc length to be defined via the degree of the node
was, in our opinion, a more logical choice.

As we could not arrive at a completely satisfying solution, we opt in favour of the
first variant described above and implement it as follows. First, recall that in Subsection
3.3.1, we manually increased a cluster’s orbit number by 2, thus leaving space for the
labels. Since the gate node arcs are not labeled, they serve as delimiters that divide the
space around a cluster in segments. For vertex u, let the length of the label describing
u be A(u). We compute the following metric for each cluster C;:

arcFit; = max Aw)
ueCy deg(u)

(3.8)

We wish to be able to fit every label directly over the arc it describes. The given
metric provides a factor for each cluster that enables scaling of the labels so that this is
possible. Should the down-scaled label be shorter than the node arc it describes, it is
positioned over the middle of that arc. While this solution is admittedly suboptimal due
to using this approach, we believe that it is sufficient as a compromise between viability
and aesthetic.

3.4.2 Miscellaneous

Here, we focus on some other minor details of the drawing. We begin by examining
the gate nodes closer. While our design enables the user to clearly see the connections
between the nodes of the same cluster, this is not entirely the case with inter-cluster-
edges. To the contrary, they simply exit from the cluster via a gate node and one must
follow their curve to recognise what the target cluster (or node) is. We propose a solution
to this. In the previous subsection, we mentioned that no label is placed over a gate
node arc. Instead, we suggest using the space to apply small labels aligned with the
departing links. Consider link e = {u,v} with u € C;,v € Cj. Then, as e departs Cj, it
gets the label of v at the gate node. This is repeated symmetrically at Cj.

We also propose enhancing the produced image with the use of colours, via selecting
a clearly distinguishable colour for each cluster. This is also a difference to ChordLink
where each node arc gets assigned a dedicated colour; we put more emphasis on the
clusters as entities. While keeping the labels of the non-gate nodes black is a solid
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Fig. 3.15: An example of a cluster with labeled node arcs and inter-cluster links towards two
other clusters, one of which is coloured in violet and the other one — in turquoise.
The ports are displayed for clarity.

approach, we suggest colouring the labels over the inter-cluster links we just described.
In particular, in the example from the previous paragraph, the label of v as {u, v} departs
from C; gets the colour assigned to Cj, the cluster v lies in.

The ideas proposed in this section are visualised on Fig. [3.15
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4 Summary and Future Work

In this work, we presented a hybrid graph drawing pipeline inspired by ChordLink
[ADM™19]. Our pipeline primarily targets small locally dense but globally sparse graphs,
with the small size allowing for some simpler, but less efficient algorithms to be used.
Similarly to ChordLink, our pipeline draws the communities of a graph as circles, and
the nodes of the communities — as circular arcs on the boundary of their cluster. Intra-
cluster edges are also still drawn as chords in the interior of the cluster containing the
vertices they connect. However, unlike ChordLink, our pipeline does not require user
interaction and is fully autonomous.

First, our pipeline extracts the communities from the input graph automatically by
smartly cutting a dendrogram constructed via the measure of betweenness centrality.
It proceeds by computing a rooted cluster tree Ti» and then draws the tree using a
radial layout inspired by the work of Six and Tollis [ST99]. This is another difference
to ChordLink, which does not apply any particular structure to the large-scale drawing
of the graph. Our model routes the edges of the graph which connect non-adjacent
clusters in T alongside the tree structure and lets them enter their incident clusters
via dedicated gate nodes, instead of simply connecting adjacent vertices to one another
regardless of the cluster they are in. When these edges need to be routed around a cluster
they are not incident to, they do so in dedicated layers we call orbits. To conclude the
description of our model, we discussed some visual details such as labeling the drawn
graph.

We believe the drawings produced by our pipeline to be more visually pleasing than the
ones given by ChordLink, to no small part due to the explicit structure that is present. If
necessary, our pipeline is also capable of some degree of flexibility, for instance in terms
of the dendrogram construction and cutting mechanisms, although we believe to have
selected good algorithms and metrics for the task.

4.1 Future Work

Here, we present some topics that, in our opinion, could probably be improved somewhat
given additional analysis and research.

Directed graphs. As our work so far assumed that we are given an undirected graph
as an input, we believe it important to discuss the opposite case as well. Recall that in
the majority of our pipeline we use the cluster tree T¢ which is undirected. Therefore
the only real challenge is presented by the initial step of clustering the input graph (as
the tree is then computed automatically). For the clustering, we utilise betweenness
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centrality and modularity, as described in Section [3.I] We have already extended the
modularity formula of Newman [New(6| to evaluate a division in more than two clusters.
An additional consideration would be whether, if at all, the formula could be adapted
further to accept directed graphs, as in general for an edge (u, v), the edge in the opposite
direction is not always present. Same holds for the definition of betweenness centrality,
which uses the concept of shortest paths; those would also function differently in the
case of a directed graph. We believe that aside from that, no other major considerations
are necessary when handling directed graphs, as directed edges can simply be drawn in
the standard manner (with an arrow towards the target vertex) without changing the
rest of our pipeline.

Ordering the children in the cluster tree. Subsection [3.3.1] constructed the routing
graph H in order to route and order the inter-cluster edges. There, an arbitrary order
was chosen to connect the internal nodes around a cluster C; in a cycle. This order
was later on used in Subsection when assigning initial coordinates to the clusters.
Consider a cluster C; and its children (in regards to the tree T). A potential research
question would be whether it is possible, given T and the not-yet-routed inter-cluster
edges, to define an order in which the cluster’s children are drawn, so as to minimise the
number of crossings later on. For this, the routing algorithm of Pupyrev et al. [PNBH11]
can be taken into consideration, or another one entirely, given that a MLCM-T1-suitable
routing graph will be constructed once the child order is fixed.

Cluster size prediction. As elaborated in Subsection the growth phases intro-
duced in Subsection tamper in general with the cluster coordinates and wedges
assigned in Subsection [3.3.3] This leads to an optically displeasing bend in the drawn
link bundles since the violating cluster’s subtree is pushed further away from (0,0).
The reason for the growth phases is that occasionally, there will be no gap between the
already placed node arcs that is large enough to host the arc of the next node to be
inserted. This raises the following question: can one define an initial circumference or
radius for each cluster beforehand so that no growth phase is necessary? In particular,
what is the smallest such value to avoid making the clusters unreasonably big? The
resulting value would have to take not only the cluster’s vertices into consideration, but
also the orbit counts and potentially the labels. After the node insertion phase, it could
also be possible to shrink the clusters instead (while retaining the gate nodes’ direction)
to eliminate any gaps. This works as the non-gate node arcs do not have fixed directions
and a shrinking would not have any influence on the number of link crossings in the end.

Labeling alternatives. In Subsection we solved the issue of providing enough
space for each label by scaling the labels for each cluster just enough for them to fit.
While we already discussed some alternatives and their drawbacks, we believe it would
be an intriguing research question to delve deeper into this topic. In the best-case, an
approach is developed that allows drawing labels for each node arc without having to
re-scale the labels themselves.
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