
Master Thesis

Optimized Work Schedule Generation in
Construction Projects

Yasin Raies

Date of Submission: 04.06.2024
Advisors: Prof. Dr. Marie Schmidt

Prof. Dr. Sebastian von Mammen

Julius-Maximilians-Universität Würzburg
Lehrstuhl für Informatik I

Algorithmen und Komplexität

Zusammenfassung

Diese Arbeit formuliert das Project Scheduling Problem with Marked Activities (PSP/mark),
eine Erweiterung des klassischen Project Scheduling Problems, bei der Aktivitäten mit um-
weltbezogenen Eigenschaften wie Lautstärke oder Standort markiert werden, um die Ein-
haltung eines Arbeitsplans zu gewährleisten. Arbeitspläne geben vor, wann Aktivitäten mit
bestimmten Eigenschaften erlaubt oder verboten sind. Darüber hinaus definiert diese Arbeit
das Work Schedule Generation Problem (WSGP), das eine optimale Rekombination gege-
bener Arbeitspläne zur Minimierung einer komplexen Kostenfunktion anstrebt. Die Kosten
werden mithilfe einer Lösung des PSP/mark berechnet.

Zur Lösung des PSP/mark wird ein Verzeitlichungsschema formuliert, das Aktivitäten
„So bald wie möglich“(As Soon As Possible) einplant. Zur Lösung des WSGP werden zwei
Encodierungen vorgestellt, welche in einem evolutionären Algorithmus eingesetzt werden.
Durch die Anpassung eines Datensatzes realer Projekte wurden vier Benchmarkdatensät-
ze erstellt, mit denen die vorgeschlagenen Encodierungen bewertet wurden. Die Ergebnisse
dieser Auswertung zeigten im Schnitt Verbesserungen von 10% und 14% im Vergleich zu
trivial errechneten Ausgangswerten. Jedoch ist dadurch noch keine konkrete Aussage über
die Anwendbarkeit und Ergebnisse der Encodings an echten Instanzen des WSGP zu treffen.
Daher liegt der bedeutendere Beitrag dieser Arbeit mehr im Hervorheben und Erforschen der
genannten Probleme an sich, als den angewandten Lösungen.

2

Abstract

This work introduces the Project Scheduling Problem with Marked Activities (PSP/mark),
an extension of the classical Project Scheduling Problem where activities are annotated with
environment-related properties, such as loudness or location, to ensure compliance with a
work plan. Work plans specify when activities with certain properties are allowed or forbidden.
Additionally, this work defines the Work Schedule Generation Problem (WSGP) which seeks
an optimal recombination of given work plans to minimize a complex cost function. To
calculate the costs, a solution to the PSP/mark is utilized.

An ASAP (As Soon As Possible) scheduling scheme is proposed for the PSP/mark, while
two genetic encodings for WSGP solutions are introduced for use with an evolutionary al-
gorithm. By adapting a dataset of real-world projects, four benchmarking datasets for the
WSGP were created and subsequently used for evaluation of the genetic encodings. The
results show improvements of 10% and 14% in comparison to a trivial baseline. The ap-
plicability of these results to real-word instances of the WSGP is pending. Therefore, the
more significant contribution of this work lies in the general insights gained into the novel
scheduling problems, opening up avenues of future work.

3

Contents

1. Introduction 5

2. Background 8
2.1. Mathematical Foundations . 8

2.1.1. (Project) Scheduling . 8
2.1.2. Optimization . 10

2.2. Related Works . 17

3. Approach 19
3.1. Problem Statement . 19

3.1.1. Modified Project Scheduling Problem 19
3.1.2. Work Schedule Generation Problem 23

3.2. Implementation . 26
3.2.1. Timelines . 26
3.2.2. ASAP scheduling . 26
3.2.3. EC Framework . 28
3.2.4. GA Encodings . 31

4. Evaluation 33
4.1. Datasets and Test Instances . 33
4.2. EA Configuration and Parameter Study . 38
4.3. Experimental Findings . 41
4.4. Miscellaneous Findings . 44

5. Conclusion 46

Bibliography 48

Miscellaneous References 51

A. CIP for ASAP Scheduling Problem 52

B. Implemented GA strategies 54

C. Evaluation Tables 55

4

1. Introduction

Large construction projects are endeavors of coordination involving hundreds of workers,
companies, stakeholders, etc., yielding millions to billions in cost. Infrastructure projects are
particularly critical as they may affect the public due to disruptions in availability of roads,
rail service or goods. To minimize such disruptions and resulting costs, rigorous and resilient
planning is needed. Moreover, it would be highly beneficial if the resulting plan could be
adapted to the various outcomes when it meets reality.

Classically, projects are planned by creating a work breakdown structure (WBS) which
entails all expected outcomes of the project. Next, actions required to achieve these outcomes
are derived from the WBS, estimating their duration through rough empirical values and
standardized buffer factors [1, Section 4]. Errors in judgement may add up and result in a
critically imprecise estimation, as actions often describe high level activities instead of low
level tasks, about which one could reason more easily. Adding precedences, i.e. dependencies
between the actions, results in precedence diagrams, often represented as digital Gantt charts
or physically through walls of sticky notes. Both representations can be seen in Figures 1.1a
and 1.1b. Due to the manual nature of these methods, easy and fast re-planning of projects
from the ground up has not been widely possible.

BII GmbH aims to contribute to a solution of these problems through dProB, a software
environment seen in Figure 1.1c, which integrates into existing Building Information Modeling
(BIM) workflows. By providing means to efficiently plan low level tasks, whose durations
are calculated from utilized equipment and BIM model parameters, dProB helps to create
detailed plans, which can be verified through an interactive 3D visualization of models and
processes. As tasks expose a series of calculated parameters, custom performance indicators
can be derived bottom-up, e.g. estimating CO2 or cost at any point in time during the
project.

While to this day dProB concerns itself with the creation and precedence of tasks as well as
the assignment of resources (equipment and materials) to said tasks, determining when they
should happen is rather rudimentary: excluding the compliance with precedence constraints,
all start times have to be input manually via delays to other tasks. This may be feasible
for projects with few outside constraints, loose deadlines and ample budget, however most
construction projects are highly constrained. Complexity in scheduling arises from labor laws,
live operating infrastructure which may need to be closed, noise-restrictions and less efficient
work at night and so on. Just like with the planning of activities, the scheduling of a project
plan in accordance with cost, time and other factors would benefit from quicker manual
iteration or automated systems.

A core use-case for dProB has been offered by the railway construction industry in which
alterations and maintenance of train paths have to be performed in tight time windows.
Those time windows are often planned years in advance, before the contractors or utilized

5

(a) A screenshot of a scheduled project plan in Mi-
crosoft Project [2] with one activity per row, and
with names, deadlines, start and end dates the left
and a visualization of activities and dependencies
on the right. Taken from [3].

(b) A collaborative planning board for a highway con-
struction project, with rows grouped into produc-
tion areas and activities as bars, color coded per
subcontractor. Taken from [TKA17, Fig. 1(a)].

(c) Screenshot of a tunnel construction site in dProB. The project aims to visualize and compare three different
methods to transport and install concrete slabs through mobile cranes. The top left shows the 3D viewport
which depicts one scenario in which two cranes pick up, drive and install the slabs in parallel. On the
lower left, the Timeline depicts all pick-up drive and deliver processes and optionally shows dependencies.
The inspector in the lower right shows properties and configuration of selected processes. Finally, the
remaining windows on the right depict calculated performance indicators, such as the progress over time
or the consumed fuel at the current point in time.

Fig. 1.1.: Three depictions of classical and modern construction project planning tools.

6

equipment are known. Besides the negative impact on quality of service and branch as well
as sector image, delays beyond the planned closures can increase project costs rapidly. In
an informal interview, we have been told costs are in the order of hundreds of euros per
minute a train could not use its designated track. Furthermore, undercutting given deadlines
provides an opportunity for contractors to earn bonuses, as the infrastructure is freed sooner
than estimated.

Within this context, this work aims to contribute to questions like “When does a rail track
closure provide sufficient benefit to be feasible?” and “Is it cheaper to only work on noisy
activities during the day, or to work day and night but offer locals rooms in far-away hotels?”.
For this, we defined work plans as a means to model when activities may be processed, based
on their properties like loudness and location. Upon this, we formulated a problem statement
for the work schedule generation problem (WSGP), which asks which recombination of user-
given work plans results in minimal cost for a given project. The result is a work plan, which
dictates when costs for environmental factors like permits, closures, or accommodations for
locals during overnight work must be paid in order to achieve minimal total cost.

To solve the WSGP, we devised a two tiered system: The upper tier consists of a meta
heuristic, specifically a genetic algorithm, which evolves work plans by combining prototypical
day or week plans that have been annotated with costs. The fitness of each work plan is
calculated through summation of costs after executing the lower tier: An extended ASAP
scheduling algorithm, which takes work plan restrictions and activity specific allowed work
intervals into account. By this approach we built a proof-of-concept for an optimization
method for the given problem that allows the user to decide how much time they want to
spend on calculations, and that can easily be extended in future work.

Chapter 2 discusses the broad field of project scheduling and optimization, defining com-
mon terms and presenting related work. Building on this, Chapter 3 formalizes the WSGP,
describes the proposed method to solve it and discusses implementation details. To eval-
uate the method and discover the stated problem, Chapter 4 presents the design of four
subsequently refined datasets on which we evaluated our approach. It also states learnings
about the implementation and the problem in general. Lastly, Chapter 5 recaps this work,
highlighting its limitations and giving pointers for future work in this field.

7

2. Background

To provide all context needed for our approach, the associated reasoning and evaluation
in the following chapters, this chapter firstly discusses the mathematical foundations of
optimization and project scheduling, followed by an overview of current related works.

2.1. Mathematical Foundations

2.1.1. (Project) Scheduling

In general, scheduling could be seen as the task of assigning temporal information to a given
set of actions or events to achieve a certain goal. In Scheduling - Theory, Algorithms and
Systems, however, Pinedo also calls scheduling “a decision-making process that [. . .] deals
with the allocation of resources to tasks over given time periods [. . .]” [Pin16]. This simple
comparison of definitions highlights the importance of perspective in formulating a given
scheduling problem depending on its real world use-case. In the end all actions or events,
their relative priorities, resource limitations, due dates, throughput of actions, and other
variables have to be considered. Yet, depending on the elements of interest, it may prove
beneficial to model the problem one way or another.

Machine and Job Scheduling

A framework to describe the most common families of scheduling problems, which models
resources as machines and actions or events as jobs, has been presented in Section 2.1 of
Scheduling [Pin16] with according notation α | β | γ: α describes the machine environ-
ment, including their numbers, interdependencies, and capabilities, β describes scheduling
constraints and specifies properties of jobs, and finally γ describes a goal.

A classic scheduling problem in the literature is the job shop problem Jm | | Cmax, wherein
every job has to be processed on a predetermined subset of m machines with a given order
(α = Jm), aiming to minimize makespan, i.e. the latest finishing time of all jobs (γ = Cmax).
A solution to this problem could be used in a woodworking workshop to manufacture a certain
set of items, which require individual processing at their lathe, saw, planer, sander, glue-up
station, and paint booth, as fast as possible.

Another exemplary problem could be Pm | rj , Mj |
∑

wjTj : At a 3D print farm, there
are m 3D printers, which can operate in parallel and independently of one another and which
have essentially the same capabilities (α = Pm). Despite this, every job j can only be
processed on a subset of machines Mj , as they provide varying print volumes. Further, the
files required for printing will arrive only at a known release time rj (β = rj , Mj). With

8

these parameters the goal is to minimize the sum of deadline overruns over all jobs weighted
by wj , e.g. the contractual penalty of a given job (γ =

∑
wjTj).

Finally, Pinedo propose P∞ | prec | Cmax to describe a basic project, i.e. infinite machines
working in parallel (α = P∞) on jobs with precedence constraints (β = prec) with the goal
to minimize makespan (γ = Cmax). While perfectly usable in its basic form, the machine-
job-centric approach has not been adopted in the world of project planning and scheduling.
We shall assume that this lies in the fact, that projects often involve a higher variety of
resources like skills, workers, equipment, and actions or events, which could theoretically be
represented as machines and jobs, but lend themselves to other representations.

Project Scheduling Problem

The Project Scheduling Problem (PSP) describes the basis of a variety of problems concerned
with the assignment of start and end times of related and interacting activities. The state-
ments following in this subsection are based on a survey by Hartmann and Briskorn [HB22].

Definition 2.1 (Project Scheduling Problem). Given a set of n activities labeled V :=
1, . . . , n having a processing time pi and a set of immediate predecessors Pi each, find a
start time si > 0 and an end time ei = si + pi for each activity i, such that the makespan,
i.e. the time to the latest end maxi∈V {ei}, is minimized, while every activity starts only if
all its predecessors have ended, i.e. ∀i ∈ V, j ∈ Pi : si ≥ ej .

One possible formalization of the PSP is given in Definition 2.1. Notably, all activities
can be executed in parallel if they do not share any predecessors. In practice, this is only the
case, when a project’s activities are planned on a high level of detail and when predecessors
are defined accordingly. To provide real-world value, many scheduling problems are extended
by additional constraints.

The predecessor relationships defined in Definition 2.1 are an instance of so-called finish-
start precedence constraints, which are the most common kind of precedence constraints.
Other kinds include start-start, finish-finish and start-finish constraints. They are readily
available in project management software, such as Microsoft Project. Often, they also
feature lag times, which define an offset that shifts the time constraint forward or backward,
for example saying that some activity can start one day after another activity ended.

Resource Constrained Project Scheduling

A very active area of research and common extension of the PSP is the Resource Constrained
Project Scheduling Problem (RCPSP), which allows each activity to be assigned a set of
resources, which are then assigned or consumed during the activity’s execution. As seen in
a recent survey of RCPSP literature [HB22], there are many kinds of resources, which can
be distinguished by their availability, e.g. being (partially) renewable or being available on
a calendar schedule, or by having multiple skills, e.g. workers or tools that can stand in for
more than one abstract resource requirement.

Building upon availability of resources, activities might also be extended by the possibility
of preemption, i.e. the possibility to interrupt an activity and resume it later. This entails

9

whether preemption causes costs, either in time (setup times) or money. To provide higher
flexibility and the possibility to avoid preemption, activities can also be modeled as multimode
activities, i.e. activities which can be processed in a variety of modes, each with different
resource requirements and processing duration.

With this great variety of problem models, two major goals can be found in the litera-
ture [HB22; GZ22]: Minimization of resource usage, like cost, time (makespan) or emissions,
and minimization of risk, meaning possible change of resource usage in face of adversity. More
recent works, however, often address more intricate optimization targets:

• The Resource Investment / Resource Availability Cost Problem (RIP/RACP) tries
to minimize the fixed cost of resources, under the constraint of a project deadline.
Resources, when bought, are available for the entire project. This can be used to
decide on the minimal number of equipment to buy to get the project done in time.

• The Resource Renting Problem (RRP) extends the RACP by acknowledging, that some
resources may have a time-dependent cost component, i.e. some per minute cost can
be assigned resource usages. Therefore, this adds the possibility to model the renting
of additional equipment during critical bottlenecks of a project.

• The Resource Leveling Problem (RLP) aims to minimize fluctuations in resource usage,
e.g. to minimize fire-and-hire, to avoid spikes in spending, or to avoid bottlenecks in
logistics.

• Afshar-Nadjafi worked on a variation of the RCPSP, where total project cost was
minimized by considering earliness and tardiness penalties, i.e. an abstract cost factor
subsuming contractual deviations, extra storage requirements, idle times, and damages
to reputation among others [Afs14].

It is standing to reason that more complex objectives are still in large parts proxies or
heuristics for resource cost or risk, required due to insufficient detail in models or com-
putational complexity of a detailed formulation. However, less tangible goals like ethics,
reputation and sustainability that inform optimization goals, like reducing needless hiring
and firing, do make appearances.

2.1.2. Optimization

Informally, optimization is the problem of finding a set of input values for which a given goal
is solved “the best”. The following formal description is a brief summary of [Eng07, Appendix
A]: A (single goal) optimization problem consists of an object function f , a search space
or domain S which contains all possible assignments for all variables of the given problem,
and a set of constraints that restrict which solutions x ∈ S are feasible, resulting in the set
of feasible solutions F ⊆ S. Assuming a maximization problem, we aim to determine the
set of all x∗ ∈ F for which f(x∗) ≥ f(x) for all other x ∈ F , i.e. arg maxx∈F f(x). The
minimization problem is defined analogously. The definitions and classifications below are
built upon [Tal09] unless noted otherwise.

10

Characteristics of Optimization Problems

The three components of optimization problems, together with the required accuracy and
certainty, can contribute to the difficulty of problem instances. In the following paragraphs,
we will look at some of these factors and comment on their impact. Note that “difficulty”
in the paragraphs below is not intended to imply any formal complexity but is intended to
give a rough intuition. As a visual metaphor we will keep a topological map in mind, whose
altitudes are derived from the goal function, akin to [Ban12, Chapter 1].

The goal function specifies a landscape on which we aim to find the highest or lowest
point. The more we know about this function and “the better it behaves”, the easier it will
be to reach our goal. Such “good behavior” can be seen in functions that are continuous,
differentiable, convex, and have homogenous rates of change as well as low interactions
between variables, among others. Visually this would translate to the difference between a
map with broad landscape features, moderate slopes and a single mountain versus rough,
mountainous terrain with many cliffs and peaks. A simple mathematical example would be
a goal function f : x 7→

∑
xici with coefficients c. With this knowledge it is comparatively

easy to find the solution by moving into direction c as far as possible, i.e. maximizing each
xici independently. A nonlinear black box goal function, on the other hand, does not allow
for any global reasoning, instead requiring informed trial and error. Formal descriptions for
the complexity or difficulty of goal function landscapes can be found in [Tal09, Chapter 2.2].
Finally, it shall be noted that dynamic, self-referential and non-deterministic goal functions,
i.e. functions that change over time or may produce a range of results with the same inputs
independently of time, exist. These kinds of problems are beyond the scope of this thesis’
background.

The domain has two modes of influencing the difficulty of a given problem: the number
of its dimensions and their kind. The number of its dimensions, i.e. the number of variables,
trivially increases the problem complexity, if the variables are used in the goal function in
a meaningful way. The kind of dimension, however, has a non-trivial impact: Even though
the set of all integers Z is a real subset of the real numbers R, whereby a domain Zn

could be deemed less complex than a domain of Rn, discrete dimensions implicitly force
the goal function to have discontinuities. As discussed above, discontinuities may increase
problem difficulty. Visually speaking, it is easier to find the highest peak on a single map
of a continuous stretch of land on an A3 sheet of paper, than on eight smaller stretches of
land that may or may not overlap on eight pieces of A6 paper.

The same reasoning can be applied on constraints, as the domain of a problem could be
interpreted as the set of intermediately feasible solutions in the domain of all possible values,
i.e. a set of constraints. Two kinds of constraints are considered on a high level: (1) Equality
constraints h, requiring a function of the variables to result in a certain value, e.g. h(x) = 0,
and (2) inequality constraints, requiring a function of the variables to be greater/less than
or equal to a certain value, e.g. g(x) ≤ 0. Boundary constraints are often considered a third
kind of constraint, but are usually a special case of inequality constraints, limiting the search
space such that the domain closer in size to the set of practically useful, feasible solutions.
The most common boundary constraints are box constraints which put an upper and lower
bound on each dimension of the domain individually. Notably, the functions involved in

11

Optimization methods

Exact methods

Branch and X

Branch and bound Branch and cut Branch and price

Constraint programming Dynamic programming A*, IDA*

Approximate methods

Heuristic algorithms

Metaheuristics

Single-solution based
metaheuristics

Population-based
metaheuristics

Problem-specific
heuristics

Approximation algorithms

Fig. 2.1.: Hierarchy of classical optimization methods, taken from [Tal09, Figure 1.7]

constraints induce similar complexities as a goal function if they are not “well-behaved”. On
a map, boundary constraints could be represented by the map’s borders. Assuming there
exist markings of trees, we could also formulate a complex equality constraint, that solutions
are only feasible if they have exactly zero tree markers within 50 meters adjusted for scale.

As seen above, there are many ways in which an optimization landscape can make it
difficult to find a solution. While there are exact and ϵ-approximation optimization methods,
which yield a provably optimal solution or a solution which is at max ϵ times worse than the
optimum, they usually lean heavily on certain assumptions about the structure and behavior
of goal function, domain or constraints. For an exact approach, brute force enumeration is
always applicable but usually practically unhelpful. If possible, it is useful to prune or bound
the search space as much as possible: suppose a map is partitioned into grid squares and a
heuristic is known that can estimate the highest point in a square while always estimating
higher values than really exist. We can therefore safely discard any square for our search,
that has a lower estimated maximum height than any point we visited.

For black boxes, highly complex problems, or very large instances, it may be desirable to
consider heuristic search methods. They do not guarantee that a global optimum is found,
possibly providing a local optimum, but they can be much more performant, and can often be
generalized to larger problem classes, while being “good enough”. Heuristic methods come in
many flavors with approaches of both local search, i.e. iteratively exploring neighborhoods of
search points, and global search, i.e. trying to find feasible and exclude infeasible subdomains
by aggregating knowledge about the domain. To find the highest point on a map, an example
could be to choose one or more points at random. Each of them is then repeatedly replaced
by the best point in their neighborhood, e.g. by moving a fixed distance up the local slope,
until they end up at peaks. The highest of those peaks is then the best local and possibly
the global maximum. An overview over the hierarchy of optimization methods can be seen
in Figure 2.1.

12

Metaheuristics

While there are certainly problem-tailored heuristic methods, metaheuristics are a family of
optimization methods, which aim to assume comparatively little knowledge about a problem’s
goal function and its domain (search space). Instead, they aim to present general frameworks
to traverse the problem domain efficiently towards promising solutions. To achieve this,
designers of metaheuristics have to decide where on the spectrum of exploration versus
exploitation their method should be positioned. This means they have to decide if the
algorithm samples the search space to try and “learn” more about less visited sub-spaces
(explore) or if sampling aims to derive an optimum from knowledge it has already obtained.
Notably, this decision does not have to be static over the algorithm’s runtime and often
moves from exploration to exploitation over time, as seen with the methods below.

Before presenting a select few metaheuristic methods, we visit a set of classification criteria,
as defined in Metaheuristics: From Design to Implementation [Tal09]:

• We differentiate between iterative and greedy, also known as constructive metaheuris-
tics. While iterative algorithms modify their proposed solution(s) repeatedly based on
evaluation of the goal function, greedy algorithms start with a blank slate and add to
their solutions but never modify or remove previous results. Thereby, we note, greedy
algorithms lean heavily towards exploitation.

• The number of solutions, notably single-solution based algorithms and population-
based or many-solution algorithms, also provide a classification criterion. Notably,
population-based search algorithms naturally lean towards exploration unless the pop-
ulation degenerates into a single-solution.

• The use of memory or lack thereof is an important practical criterion. Extracting
and aggregating information throughout the runtime may provide the possibility to
exploit already visited solutions more efficiently, however memory-less methods may
be less complex, thus easier to reason about and also less demanding in hardware
requirements.

• Next to last, deterministic and stochastic methods are juxtaposed. In contrast to
deterministic methods, stochastic methods may provide different results on repeated
execution. Talbi points out that performance evaluation of stochastic methods must
take this into account.

• Lastly, Talbi lists “Nature inspired versus nonnature inspired” as a classification cri-
terion. While it is interesting to see how many methods are inspired by physical,
chemical, biological or social processes, and may be beneficial for further development
of the methods, we assume this criterion to be less consequential than others for the
application of said methods.

Important for metaheuristics, but not listed as a classification criterion is the assumed
representation or encoding of the problem domain. Usually problems can be modeled and
represented in a multitude of ways. Depending on it, the same method may traverse the

13

[0, 5, 5, 6]
(a) An array of 4 3-bit integers.

[0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0]
(b) An array of 4 · 3 = 16 boolean values.

[1, 0, 0, 0, 0, 2, 1, 0]
(c) An array of integers, each representing

the number of times its integer valued
index occurs in sorted list of values.

(0, 1) (5, 2)
(6, 1)

(d) A tree, with leafs sorted by the first tu-
ple element. The second tuple elements
represent the number of occurrences of
the first tuple element.

Fig. 2.2.: Various representations of a sorted list of 4 of 3-bit unsigned integers.

problem domain more or less efficiently. This is especially true for methods that mutate or
recombine solutions into new solutions for future iterations, as we will see below. Example
representations for a sorted list of 3-bit unsigned integers can be seen in Figure 2.2. While
Figures 2.2a and 2.2b both state each integer one after the other but differ in the repre-
sentation of their atoms, Figure 2.2c chooses to ignore the “identity” of individual integers,
instead opting to count how often each integer value occurs. Similarly, Figure 2.2d counts
occurrences, but representing them in a nonlinear fashion as a tree. Notably, the latter two
variants have to be decoded to retrieve the encoded list, while the former representations
are just different views on the normal integer representation in hardware.

In the excerpt of metaheuristic methods below, we will focus on iterative methods, as
greedy methods require more knowledge about the problem model for their design. We will,
however, feature methods that vary in solution count, use of memory, and determinism.

Tabu Search (TS) is a deterministic single solution optimization method with mem-
ory [Tal09, Chapter 2.5]. Starting from the initial solution, each iteration evaluates all
neighbors of the current solution to select the best feasible solution among them for the
next iteration. Notably, this may include solutions that are worse than the current solution
to escape local optima. As this can lead to cycles, where the algorithm switches back and
forth between two solutions, a tabu list is introduced. This short term memory is filled
with visited solutions, or moves and solutions with certain properties, which will be declared
infeasible upon evaluation, such that the algorithm cannot visit or execute them. For better
exploitation and higher diversification, extensions with longer term memories exist. While
this method has been applied to many optimization problems, it is said to be “very sensi-
tive to [. . .] the size of the tabu list”. Lastly, definition and enumeration of a solution’s
neighborhood and determination of taboo properties can be highly problem-specific.

Simulated Annealing (SA) is a stochastic single solution optimization method without
memory, inspired by controlled heating and cooling of materials in metal and glass processing
among others [Tal09, Chapter 2.4]. Starting with an initial solution and a starting tempera-
ture, each iteration random neighbors of the current solution are generated. The generated
solution replaces the current solution if it is better but also with probability exp

(
−∆E

T

)
,

where ∆E is a measure of how much worse the generated solution is and T is the current
temperature. If after generation and replacement an equilibrium condition is satisfied, e.g.

14

after a fixed number of iterations, the temperature is updated according to the temperature
schedule, e.g. T = T · 0.5. SA is a widely used search method which “gives good results for
a wide spectrum of optimization problems”.

Evolutionary Algorithms (EA) are a family of population based optimization methods,
all of which build on a simple loop inspired by Darwinian evolution [Tal09, Chapter 3.2]:
(1) Selection: from a given population with known fitness, i.e. with known evaluations of the
goal function, individuals, i.e. solutions, are selected with a probability depending on their
fitness. (2) Reproduction: The selected individuals are then used to generate new offspring,
e.g. through mutation, crossover, sexual or asexual reproduction depending on the concrete
method. (3) Replacement: After evaluating their fitness, a new generation of individuals is
assembled by replacing some or all individuals from the current population by newly generated
individuals, again depending on their fitness. This new generation is the population for the
next iteration.

Genetic Algorithms (GA) are a stochastic population based optimization method and are
a very popular class of evolutionary algorithms [Tal09, Chapter 3.2.1 and 3.3]. Classically,
they utilize a selection rule which increases the probability of selection proportional to the
individuals’ fitness, a reproduction rule with two parents both with crossover of the parents’
genes and probabilistic mutation of the resulting gene, and generational replacement, where
all parents are discarded. Furthermore, GAs historically operated on linearly encoded binary
representation of models, where mutations are a bit-flips and crossover refers to the exchange
of gene segments. There are however many extensions of GAs which modify selection,
reproduction or replacement and allow for other representations, blurring the lines to other
methods. One other selection method, for example, is “Rank-Based Selection” where all
individuals are sorted by their fitness and assigned an increasing rank. Based on this rank
and a configurable selection pressure 1 < s ≤ 2 individuals with higher ranks are selected
more often. Another extension, which can be wrapped around any replacement or selection
method, is elitism, where a certain number of previously best individuals of both parent and
child generations are added to the next population or can be considered for reproduction, no
matter the internal mechanism.

As an example for blurred lines between EAs, Differential Evolution (DE) is a stochastic
population based optimization method without memory, for problems whose solutions can
be represented as vectors of real numbers [Tal09, Chapter 3.4.2]. The distinguishing feature
of DE is its unique recombination operator: Given a parent x, a random target t, random
mutants m1 and m2, each selected from the population, and a scaling factor F , such
that x 6= t 6= m1 6= m2, each vector component xk of the parent is replaced by xk =
tk + F · (m1

k −m2
k) probabilistically with a fixed crossover rate CR. The resulting vector

then replaces its parent if it scores better upon evaluation. While there are still ways to
customize DE strategy, e.g. by defining how parents, targets and mutants are selected, it
has relatively few parameters (F and CR), while we can still observe an integral feature
of many EAs: If the pool of chromosomes converges towards an optimum, the algorithm
automatically moves from exploration to exploitation over time. However, where GAs would
have to specify a dynamic mutation rate to lean into this, DE is self-adapting by relying on
the distance of individuals. Notably, this can also result in an increase in exploration, when
a subset of the population discovers a new optimum after exploitation of the old one.

15

Many more metaheuristic methods, including the combination of various algorithms in
hybrid metaheuristics and metaheuristics designed for parallel and distributed computing
systems, can be found in Metaheuristics: From Design to Implementation, Chapters 4 and 5
respectively [Tal09]. More evolution and biology inspired optimization methods, definitions
for many evolutionary computation operators and discussions of extensions for genetic al-
gorithms can be found in Computational Intelligence: An Introduction [Eng07]. A recent
overview of operators used in genetic algorithms can be found in [KCK20]. While no com-
prehensive quantitative evaluation of operators for a variety of general problems could be
found, a listing of qualitative pros and cons can be found in [KCK20; MT24].

Mathematical Programming

The field of mathematical programming aims to model optimization problems in mathemati-
cally clear and formal language, such that they can be classified and then solved with off the
shelf solvers, for example with branch and bound methods. This depends on deep knowl-
edge about the structure of the problem at hand, as it would be impossible to formulate it
otherwise. A very well studied mathematical programming model is that of Linear Programs
(LPs), where the domain is some real value vector space and both goal functions and con-
straint functions are linear maps. The mathematical notation can be seen in Equation (2.1).
It is known, that LPs can generally be solved efficiently, meaning commercial solvers are able
to find optima in problems with millions to tens of millions of variables within minutes to a
few hours [4].

minimize f(x) = c1x1 + · · ·+ cnxn

subject to
a11x1 + . . . + a1nxn ≤ b1,

...
...

...
am1x1 + . . . + amnxn ≤ bm,

with all xi, ci, aij ∈ R, xi ≥ 0

(2.1)

Mixed Integer (Linear) Programs (MI(L)Ps) are very similar to LPs, except that the domain
may consist of real or integer valued dimensions. As discussed above such discretization can
make problems much harder: Even a problem instance with just 60 binary variables cannot
be solved within two hours by many modern solvers [5; Gle+21, markshare2]. The same
holds for extensions like Constraint Integer Programs (CIPs) [Ach07], which generalize the
constraints to any function that returns some boolean value. This does, of course, not
mean that MIPs and CIPs cannot be used for practical problems, we will, however, observe
in Section 2.2 and Appendix A that their formulation has to be considered well for them to
be solved in feasible time.

16

2.2. Related Works
In a 2022 survey, Hartmann and Briskorn presented an overview over many works on exten-
sions of the RCPSP, classifying them by their focus [HB22]. Many extensions have been
mentioned in Section 2.1.1, however, the most important ones for this work are those on
scheduling of interruptible/preemptible activities, time dependent availability of resources,
and those focusing on the RACP/RRP. For future work, those on setup times would also
provide a starting point. Below, we will look into three works from this survey. An overview
over their and a related work’s formal problem and approach can be seen in Table 2.1.

In “Mixed-integer linear programming and constraint programming formulations for solving
resource availability cost problems”, Kreter et al. addressed the RACP/max-cal, a version
of the RACP, which features only start-start precedences with minimum and maximum lag,
for which each resource has its own availability-calendar [Kre+18]. As seen in Section 3.1,
we built on this by proposing a method to define such calendars for environmental factors
through “work plans” and “markers”. Their approach featured mixed integer linear programs,
as well as constraint programming methods using the chuffed solver [6], the latter of which
were able to solve problem instances of 200 activities within below one minute on average
in case of zero float1, and within less than three minutes with up to 50% extra project time.
Since their approach operates on the basis of a discretization of time it is important to note,
that the prescribed maximum project duration in the data appears to be around 5500 time
units. We therefore note, that this scheme may not be feasible when activities with durations
of seconds are combined with more abstract activities with durations of hours.

Unlike Kreter et al., Polo-Mejía et al. utilized a mixed discrete and continuous time
approach in their MILP approach for scheduling of activities in a nuclear research facil-
ity [Pol+20]. Formally, they solved the Multi-Skill PSP with partial preemption, i.e. a PSP
variant in which some resources, e.g. technicians, have multiple skills, and activities can re-
quire multiple skills to be processed. Further, activities can be partially preemptive, meaning
some required resources can be released to pause processing, while others cannot be released
without starting from zero. This could be used for experiments, where equipment will still
be occupied, while technicians can switch to more important tasks. Similarly to the previous
MIP approach, their methods worked well enough for their needs, at least after providing
the MIP with at starting point through a greedy heuristic (“warm start”), but the size of
problem instances may become a problem when utilizing their methods in other contexts:
Both their MILP and their CP approach computed in the order of minutes for instances
with 30 activities. Even with a warm start, the MILP approach could solve less than half
(80

200) and the CP approach could solve above three quarters (160
200) of the testing instances

to optimality within 10 minutes.
Another approach could be taken from “Resource Constrained Project Scheduling Sub-

ject to Due Dates: Preemption Permitted with Penalty”, where Afshar-Nadjafi addressed
the RCPSP with cost optimization extended by penalties for preemption as well as earli-
ness/tardiness [Afs14]. Their approach works as follows: A modified simulated annealing

1“Float” or “slack” being the duration an activity can be pushed forward or backward in time without
impacting any other scheduled activity.

17

Tab. 2.1.: Overview of relevant characteristics of reviewed non-survey and background works.

Work Problem Viewpoint Schedule/Time Solution Approach

[Kre+18] RACP/max-cal Scheduling discrete MILP and CP
[Pol+20] MSPSP-PP Scheduling discrete MILP, CP and greedy Alg.
[Afs14] PRCPSP-WETP Scheduling permutation SA with SSGS
[CT15] TCUT Work Plans permutation OMODE with SSGS

process, in which the neighborhood traversal is informed by tardy activities, generates an
ordering of all activities. The generated order is then used by a serial schedule generation
scheme (SSGS), in which the activities are temporalized as early as possible in ascending
order. In their benchmarks, they solved problem instances with 90 activities in less than 5
seconds on average. With smaller instances of 30 activities, they compared their results with
a MILP based approach and achieved an average deviation of less than 1% in cost.

Moving on to the field of work schedule generation, there do not appear to be many
works on generating a timetable or work plan that describes when certain categories of
work could happen instead of focusing on scheduling activities. With “Opposition-based
Multiple Objective Differential Evolution (OMODE) for optimizing work shift schedules”,
Cheng and Tran worked on one instance with said focus [CT15]. They are trying to solve the
time-cost-utilization work shift tradeoff (TCUT) problem, an extended time-cost trade off
(TCT) problem, which in its base form acknowledges that time and cost are highly related in
some domains like construction projects and aims to minimize both time and cost. In their
extension, they add a third goal which aims to minimize evening and night shifts. Similar
to [Afs14] above, a SSGS is used for temporalization. They tested their method with two
test cases of 60 activities, though no calculation time is given.

18

3. Approach
This chapter formally defines the problem this thesis aims to contribute to. Furthermore,
it discusses the implementation of our proposed approach. For this, Section 3.1 defines
a variation of the project scheduling problem, called the project scheduling problem with
marked activities (PSP/mark), to then define our overarching problem, the work schedule
generation problem (WSGP), together with various potential cost components. Section 3.2
presents a solution for the PSP/mark and two solution-encodings for the WSGP for use in
evolutionary algorithms. Further, it contains the required implementation details.

3.1. Problem Statement
On a non-mathematical level this thesis aims to make a first step towards generating cost
optimized work plans, based on an input of activities and precedences which are annotated
with information on resource assignments, environmental needs and other general properties,
and a series of prototypical work plan templates which encode information about when
activities are allowed to be worked on, based on their properties. Further, work plans are
annotated with information about how much these opportunities to work at said times costs.

For this first step, we operated under the assumption that it is generally beneficial to
complete projects as fast as possible. As this is not always true, we formulated the problem
in two parts: on a high level the problem asking for optimization of work plan cost is defined
in Section 3.1.2. On a lower level, however, it requires a scheduling scheme to determine
project cost. Based on the assumption above, we are using and solving a customized variant
of the PSP defined in Section 3.1.1. This scheme can be replaced in the future.

3.1.1. Modified Project Scheduling Problem

To begin with, we formally define activities in Definition 3.1. Note, that this serves as an
abstract representation of low-level tasks, high-level groupings of sets of tasks, and any kind
of processes that have distinct start and end times. This way, information about both rough
and detailed estimations and simulation results can be incorporated.
Definition 3.1 (Activities and Markers). An activity a is some process which has a fixed pro-
cessing duration pa. In case processing can be paused at will, we call an activity interruptible
with ia = 1, otherwise we say it is non-interruptible with ia = 0. To record scheduling rele-
vant properties, activities have an associated set of markers ma which can contain arbitrary
objects, e.g. text. After scheduling, we refer to the time processing is started, i.e. the start
time, as sa and the time processing is finished, i.e. the end time, as ea. For a schedule of
non-interruptible activities to be admissible ea = sa +pa has to hold, otherwise ea ≥ sa +pa

has to hold.

19

In comparison to other PSP extensions, the inclusion of markers instead of resource re-
quirements matches the expectation that resource assignment has already been performed,
while still exposing information like occupied location, utilized equipment or activity inherent
properties like noisiness. Assuming one time unit equals one hour, we could, for exam-
ple, model the process of making a wall opening as some a1 with pa1 = 2, ia1 = 1 and
ma1 = {loud, in basement, uses drill}, while the drying of a wall could be modeled as a2 with
pa2 = 6, ia2 = 0 and ma0 = {quiet, in basement}.

Building upon this, we define precedences, i.e. dependencies between activities, in Defi-
nition 3.2. Notably this definition only contains a minimum lag, but not a maximum lag,
which would seem a natural next step. This has originally been considered by use of a
reversed precedence with negative minimum lag akin to [Kre+18], but has been removed
due to increase in problem complexity and cyclic dependencies. Further details are discussed
below and in Appendix A.

Definition 3.2 (Precedence Constraints). A precedence constraint π = (a1, a2) between two
activities a1, a2 with minimum lag lπ describes a dependency of the start or end time of a2
on the start or end time of a1. Depending on the precedence type tπ ∈ {FS, FF, SF, SS}
this constraint implies one of the following inequalities:

Finish-Start (FS): sa2 ≥ ea1 + lπ Start-Start (SS): sa2 ≥ sa1 + lπ

Finish-Finish (FF): ea2 ≥ ea1 + lπ Start-Finish (SF): ea2 ≥ sa1 + lπ

With these definitions we can now define the activity-on-node (AoN) graph in Definition 3.3
which describes the network of interdependencies between all activities of a given project.
To ensure precedence constraints do not over-constrain the problems they are involved in,
we assume AoN graphs to be directed, acyclic graphs. This assumption forbids two activities
to depend on each other, possibly asking states like “a1 happens before a2 and a2 happens
before a1”. Throughout this thesis, we presume AoN graphs in inputs to be unscheduled,
while the outputs of algorithms will be scheduled AoN graphs.

Definition 3.3 (Activity-on-Node Graph). An activity-on-node (AoN) graph G = (A, Π)
describes the network of all activities a ∈ A as nodes and all precedences π ∈ Π as edges.
It is assumed, that the G is a directed, acyclic graph. We call an AoN graph unscheduled if
the start and end times of activities are undefined while fully defined AoN graphs are called
scheduled.

To schedule an unscheduled AoN graph, we utilize a calendar similar to [Kre+18] but
translated from resource requirements to our activity markers. To this end, we define work
plans in Definition 3.4, which define when activities are allowed to be processed. A visual
representation of two work plan prototypes can be seen in Figure 3.1.

On a technical note, we are using intervals which include their left bound but exclude their
right bound. Formally, we can define a right-open interval as [a; c[= {b | a ≤ b < c}. This
way, every point in time corresponds to a maximum of one work plan intervals. Further, this
also forbids activity starts in the last instant of an interval.

20

Mon Tue Wed Thu Fri Sat Sun

00:00

12:00

24:00

01.01. 02.01. 03.01. 04.01. 05.01. 06.01. 07.01.

00:00

12:00

24:00

r = {no workers} f = {loud}

r = {} f = {}

r = {silent} f = {needs oversight}

r = {} f = {}

r = {} f = {needs oversight}

Fig. 3.1.: Two work plans for the duration of a week. The prototypical work plan on the left depicts
an 8-hour work week with a 1-hour break at noon. The instanced work plan, starting on
01.01.2020, on the right depicts 12-hour work days during the week with additional 8-hour
weekend shifts. The colors denote work plan intervals with the same markers required (r□)
and forbidden (f□) in an activity for it to be processable in the intervals.

Definition 3.4 (Work Plans). A work plan W is a partitioning of given right-open time
interval into right-open intervals w ∈W , for each of which a set rw of required markers and
a set fw of forbidden markers is defined. For the processing of an activity a to be allowed
during w, the following condition has to hold: rw ⊆ ma ∧ ma ∩ fw = ∅. Otherwise, the
processing of a is forbidden in w. For brevity, we say a is allowed or forbidden in w. We
call W a prototype when it partitions an abstract time frame, like a day or a week. When
it partitions a real world calendar interval, e.g. from midnight January 1st 2024 to midnight
January 3rd 2024, it is called instanced.

Definition 3.5 (Schedule Feasibility). A scheduled AoN graph is called feasible with respect
to a work plan, when all activities are allowed to be processed for at least their processing
duration, while activity feasibility constraints and precedence constraints are held, and when
activities start in work plan intervals which allow them to be processed.

We can now formulate an extension of the PSP that fits our definitions of activities,
precedences, AoN graphs and work plans. This project scheduling problem with marked
activities (PSP/mark) is defined in Definition 3.6 and will be the basis on which the larger
work plan generation is built. An overview over all parameters and variables of this problem
is also presented in Table 3.1.

Definition 3.6 (PSP/mark). Given an unscheduled AoN graph G = (A, Π), and an instanced
work plan W , the project scheduling problem with marked activities (PSP/mark) asks which
feasible schedules of G w.r.t. W minimize the makespan, i.e. maxa∈A ea.

As one solution to the PSP/mark we propose the As Soon As Possible (ASAP) scheduling
scheme as defined in Proposition 3.7. It is based on classical ASAP scheduling, e.g. known
from processor scheduling and hardware synthesis [WC95], with an extension for work plans
and is proposed as a starting solution for the PSP/mark to build on in this work, which would
be easily replaceable by an As Late As Possible (ALAP) scheme, other critical path method
related techniques or more complex scheduling algorithms later on [HHA24, Chapter 10].

21

Tab. 3.1.: Overview of parameters and variables in the PSP/mark scheduling problem.

ac
tiv

ity

a activity identifier pa processing time of a
ma marker set of a ia interruptibility of a
sa start time of a ea end time of a

pr
ec

. π precedence identifier
lπ minimum lag of π tπ precedence type of π

wo
rk

pl
an w work plan interval

sw start of interval w ew end of interval w
rw required markers in w fw forbidden markers in w

pr
oj

ec
t

A set of all activities Π set of all precedences
W set of work plan intervals

Proposition 3.7 (ASAP Scheduling Scheme). We propose to solve the PSP/mark opti-
mally by greedily scheduling all activities as early as possible, i.e. starting and ending their
processing as early as possible.

This approach has been chosen, as it yields unique and feasible solutions for the PSP/mark
and can be computed efficiently, as shown below in Section 3.2 and Algorithm 1.

Lemma 3.8. ASAP schedules are unique, minimize makespan and solve the PSP/mark.

Proof. To show that ASAP schedules are unique and minimize makespan by induction, we
will use that all ai ∈ A can be sorted topologically, because G is a directed acyclic graph. The
empty AoN Graph G0 = {∅, ∅} is trivially unique and has minimal makespan 0. Assuming we
have an ASAP scheduled AoN graph Gi = {Ai, Πi}, we now want to add the next activity
ai+1 with its precedences ∆i+1 of form (aj , ai+1), aj ∈ Ai, from the topological order. As
we are only appending nodes without outgoing edges, we are not influencing Gi. It thus
remains to be shown that there is only one way to append ai+1 as early as possible, i.e. there
is exactly one assignment for sai+1 and eai+1 .

Constructively, this time can be determined for all activities through their precedence con-
straints, which pose a lower bound of the latest end time with lag βi+1 = maxπ∈∆i+1(eai +
lπ), where π = (ai, ai+1). Non-interruptible activities have to start at the first point in time
after β such that there exists a work plan interval or consecutive series thereof which allow
ai+1 and which are longer than or equal to pai+1 . The earliest end time eai+1 = sai+1 +pai+1

can be derived for non-interruptible activities from the activity feasibility formula in Defini-
tion 3.1. Interruptible activities are less restrictive in terms of start time and have to start
at the earliest time β that is in a work interval which allows it. Scheduling eai+1 as early
as possible also minimizes interrupted time, such that the processing time pai+1 equals the
time ai+1 intersects work plan intervals that allow it.

As all Gi have minimal makespan and eai+1 is scheduled as early as possible, the makespan
of Gi+1 is also minimal at max(makespan(Gi), eai+1). Therefore, Lemma 3.8 holds.

22

3.1.2. Work Schedule Generation Problem

In this section, we state definitions, building up to Definition 3.14, which formalizes a broad
work schedule generation problem (WSGP). It asks which recombination of prototypical work
schedules is cheapest for a given scheduling scheme. As a first step to approach the WSGP,
this work focuses on instances with an ASAP scheduling scheme.

To recombine prototypical work plans, we define the splicing operation. When splicing two
work plans W1, W2 together at time t, we take all work intervals w1 ∈W1 which end before
or at t and all w2 ∈W2 which start after or at t. Should any interval w′

1 ∈W1 or w′
2 ∈W2

contain t it gets shortened accordingly. Should, for example, both work plan intervals span
the same time interval w′

1 = w′
2 = [0; 1[for some splicing at t = 0.5, they would be turned

into w′′
1 = [0; 0.5[and w′′

2 = [0.5; 1[. Any parameters, like required or forbidden markers, are
identical to the parameters of the full-length intervals.

In general, the cost could be an arbitrary function. We, however, propose to additively
compose it from multiple cost components, each with its own focus. There is one component
most central to our original motivation for the WSGP: The cost of opportunity Cop, as
defined in Definition 3.9. It models the cost of allocating certain environmental conditions,
by assigning each work plan interval a cost. That cost is invoked each time the work plan
interval is instanced during the scheduled project, i.e. not after the last or before the first
activity. While costs of any intervals starting after the last activity ends do not have to be
paid, costs of intervals occurring during the project have to be paid even if no work happens
in them. If, for example, we have a work plan which models the cost to provide locals with
hotels, such that loud activities can happen at night, that cost has to be paid whether any
loud work happens or not.

Definition 3.9 (Cost of Opportunity). For a given instanced work plan W and an AoN graph
G = (A, Π) feasible w.r.t. W , and a given cost of opportunity for each work plan interval cw

for each w ∈ W , the cost component of opportunity is the sum Cop =
∑

w∈W ∗ cw, where
W ∗ ⊆W is the set of work plan intervals which intersect the interval of the start of the first
to the end of the last activity, i.e. [mina∈A sa; maxa∈A ea[.

There are, however, other components which are relevant for the actual real work cost of
a project: the cost of lateness Clate, which models a soft deadline for the project as a whole,
penalizing through an hourly rate; the cost of splices in the work plan Csplice, which models
the cost of switching to another prototypical work plan and discouraging frequent switches,
e.g. stemming from inefficiencies from adjusting to the new plan or the exchange of signage;
the cost of renting for discrete time intervals Crent, modeling the fact that some resources
represented by markers cannot be rented for arbitrarily short amounts of time, e.g. crane
#1 costs 500 per day, midnight to midnight; and the hourly and shift dependent cost of
labor Clabor, which models that activities may be more expensive to process during certain
intervals, e.g. at night or on weekends. An example for all stated cost components can be
seen in Figure 3.2. In the evaluation of this work, we will focus on Cop, Clate and Csplice.

Definition 3.10 (Cost of Lateness). The cost of lateness penalizes completion after a soft
deadline d with a rate of clate, such that Clate = clate ·max(0, maxa∈A ea − d).

23

Definition 3.11 (Cost of Splicing). The cost of splicing models the fact, that each change
from one prototypical work plan to another might incur some cost upon realization. Assuming
kW1,W2 switches from work plan W1 to W2, with W1, W2 ∈W and a cost cW1,W2 per switch
the cost of splicing is Csplice =

∑
W1,W2∈W kW1,W2 · cW1,W2 .

Definition 3.12 (Cost of Renting). The rental cost component Crent is based on division
of time, where each marker, that describes a resource which can be rented, is associated
with a grid of time intervals. This grid, specific to each marker m, is defined by a duration
dm and an offset om. For every interval in this grid, if any activity a utilizes marker m,
i.e. where m ∈ ma, for any duration within that interval, a corresponding rental cost cm is
incurred. The total rental cost Crent is the sum of these individual costs across all intervals
and markers.

Definition 3.13 (Cost of Labor). Assuming a baseline cost ca is given for each activity a, the
cost of labor Clabor models varying labor costs over time by allowing each work plan interval
w to specify a cost multiplier λw. Thereafter, Clabor =

∑
a∈A ca · (

∑
pa,w

λw · pa,w

pa
) is the

sum of all activities’ baseline costs multiplied by the weighted mean of all λw, proportional
to pa,w, the duration a is processed in w.

For use in the WSGP, we assume the cost annotation of work plan intervals happens
for prototypical plans before splicing. As stated above, parameters specific to work plan
intervals like opportunity costs are copied. Notably, this may overestimate costs, because
both costs of two trimmed spliced intervals are paid in full. Future work could introduce
merging algorithms, which modify parameters intelligently upon splicing, however, we chose
to allow for no such mechanism, as the problem complexity and parameter count needed for
evaluation is already very high.

Definition 3.14 (Work Schedule Generation Problem). Given an unscheduled AoN graph G,
a set of prototypical work plans W, the earliest project start date s, the latest end date e and
a cost evaluation function C, the optimized work schedule generation problem (WSGP) asks
which splicing and temporalization of the given prototypical work plans into an instanced
work plan W , that partitions [s; e[results in the lowest cost C, for a PSP/mark optimal
scheduled AoN graph.

Contemplating the WSGP with ASAP scheduling scheme and only cost of opportunity, it
can be observed, that the problem is easier when activities are interruptible, as the length
of work plan intervals does not influence the schedule by being too short for an allowed
activity to fit. While the sub-problem of WSGPs with purely interruptible activities will not
be studied further in this work, we expect the existence of a solution which is exact and
performs well.

Assumption 1. In accordance with our motivation from Chapter 1, we assume real world
instances of the WSGP to feature a detailed project plan, whose activities’ processing times
are shorter than the average work interval duration. Concretely we expect work interval
durations of multiple hours and processing times on the order of minutes to hours. Further,
we expect that work plans will be defined through day plays with 10 to 20 intervals, which
are then reused for multiple days of week.

24

pa1 = 2 pa2 = 3 d♦ = 2 d▲ = 2 cW1,W1 = 5

ia1 = 0 ia2 = 1 o♦ = 0 o▲ = 0 cW1,W2 = 5
ca1 = 10 ca2 = 15 c♦ = 10 c▲ = 5 cW2,W1 = 5

ma1 = {♦} ma2 = {▲} clate = 3 cW2,W2 = 5

Parameters

time 0 1 2 3 4 5 6 7 8 9 10

w

cw

λw

fw

work interval

opportunity cost

labor cost factor

forbidden markers

W1 W2

w1

3

1

{}

w2

2

1

{♦}

w3

3

1

{}

w4

2

1

{▲}

w5

3

1

{}

w6

2

2

{♦}

w7

1

2

{♦,▲}

w8

2

2

{♦} ∑
Cop 130 0 cw3 cw4 cw5 cw6 cw7 cw8

Csplice 5
cW1,W2

activity schedule of a1
s1 e1

Crent of ♦ 100 c♦ 0 0 0

Clabor of a2 102
2 ca1 λw3

activity schedule of a2
s2 e2

Crent of ▲ 150 0 c▲ c▲ c▲

Clabor of a2 251
3 ca2 λw5

1
3 ca2 λw6 0 1

3 ca2 λw8

Clate 62 clate

C = 84
soft deadline

Fig. 3.2.: A visual representation of a spliced work plan annotated with the scheduled project’s cost
breakdown for each cost component. The project has two activities a1 and a2, which have
a finish-start precedence (a1, a2) without lag. The intervals during which a1 and a2 are
allowed and forbidden to be processed in the spliced work plan are shown for each in green
and red respectively. Notably, opportunity costs of w1 and w2 are not incurred, as they lie
before the first started activity. In comparison, the opportunity cost of w4 is incurred even
though no activity is processed during w4, because activities are scheduled before and after
it. Further, the opportunity cost of w8 is incurred in full even though a2 is only processed
for half of it. The same holds for the renting cost of ▲ at the beginning and end of a2.

25

3.2. Implementation
To solve the WSGP with ASAP scheduling and opportunity cost, as well as provide an
extensible foundation for solutions of closely related problems, we designed a basic data
structure for modeling data associated with partitions of time, we built an ASAP scheduling
algorithm, we implemented an evolutionary computation (EC) framework, and we developed
two encodings for the splicing of work plans within said framework. This section presents
each of these implementations. They have been written in C#, this section will however
discuss algorithms in pseudocode listings or text to focus on semantics.

3.2.1. Timelines

Both for the implementation of work plans and for one of the proposed genetic encodings,
we required an efficient way to traverse a series of time intervals which have associated
data. Specifically, we required a way to efficiently query the time interval containing a given
timestamp, with the possibility to then iterate forwards or backwards over adjacent intervals.
For this, we built a Timeline data structure by wrapping SortedList, a data structure which
associates arbitrary values to a sorted and indexed set of keys. An illustration of both the
data and the interval interpretation of a Timeline can be seen in Figure 3.3.

When constructing a Timeline, a global start time s, a global end time e, and data for the
first implicit interval [s; e[have to be set. Each key in the sorted list can be interpreted as
the start of an interval while the next key represents its end. The global end time provides
an upper bound for all intervals, particularly the last key. New intervals can be inserted
by providing a start time and a data point. To retrieve the data associated with a query
timestamp t, e.g. to query which work plan is active, the largest key smaller than t is retrieved
by binary search, while iteration is implemented by traversing the key index. By usage of
Timelines we are able to query intervals in O(log n) and step to neighboring ones thereafter
in O(1), where n is the number of keys or intervals.

3.2.2. ASAP scheduling

Upon this basis, we built a solution to the PSP/mark through an ASAP scheduling scheme,
which operates akin to the inductive proof of Lemma 3.8: after sorting all nodes topologi-
cally, we iterate through them, calculating a lower bound for each from all its predecessors
and determining the earliest start time afterwards. The pseudocode for this can be seen

List [
(

0
X

)
,

(
3
Y

)
,

(
5.5
Z

)
,

(
9.2
Y

)
,]

Intervals

time 0 1 2 3 4 5 6 7 8 9 10
X Y Z Y

Fig. 3.3.: Example of a Timeline starting at s = 0 and ending at e = 10. The underlying data
representation in form of a sorted list can be seen at the top. The bottom shows the
implicit interval interpretation, with colors representing associated data.

26

in Algorithm 1. The subroutines are relatively similar to each other, iterating over intervals.
As an example, the subroutine EndFromStartAt is also shown in Algorithm 2.

Regarding runtime, the main algorithm sorts the input AoN graph G = (A, Π) topo-
logically, which can be done in O(|A| + |Π|) for which we can assume the upper bound
O(|A|2) [7]. Afterwards, each node is visited once, iterating over all predecessors. For a
directed acyclic graph, this results in a maximum of |A|(|A|−1)

2 ∈ O(|A2|) calls of the inner
switch statement. The runtime of the switch statement lies in O(1) for FS, SS precedences.
For FF, SF precedences the runtime lies in O(log |T | + |T |) = O(|T |), where |T | is the
number of elements in the Timeline, as the subroutines may have to iterate through the
whole timeline. This assumes that the check whether a is allowed in w is done in O(1), e.g.
through hash sets. The same complexity of holds for the later subroutines. This results in a
worst case runtime complexity of O(|A|2 · |T |).

In accordance with Assumption 1, we expect real world work plan intervals which are longer
than most activities, meaning activities will fit in at most two consecutive intervals. Further,
we expect that most work plans will allow for any activity to be scheduled within a fixed low
number of consecutive intervals, e.g. by being cyclical after 6 intervals. Thus lowering the
complexity of the subroutines to O(log |T |). Further, we assume real world AoN graphs to
have a low number of predecessors for any activity. This lowers the complexity of sorting
and switch calls to O(|A|). Therefore, we assume the average real world complexity of the
ASAP scheduling algorithm to be in O(|A| · log |T |).

Algorithm 1: ASAP scheduling of Activity-on-Node graphs
Input : Unscheduled AoN graph G = (A, Π) with activities ai ∈ A, start time sai ,

end time eai , and precedences (ai, aj) ∈ Π with precedence type t(ai,aj)and
lag lag(ai,aj), Timeline T , earliest project start s

Output: ASAP scheduled G, solution to the PSP/mark
1 for ai ∈ NodesInTopologicalOrder(G) do
2 bound ← s
3 for aj ∈ Predecessor(ai) do
4 switch t(aj ,ai) do
5 case FS do
6 bound ← Max(bound, ej + lag(ai,aj))

7 case SS do
8 bound ← Max(bound, sj + lag(ai,aj))

9 case FF do
10 bound ← Max(bound, StartFromEndAt(T, ai, ej + lag(ai,aj)))

11 case SF do
12 bound ← Max(bound, StartFromEndAt(T, ai, sj + lag(ai,aj)))

13 si ← EarliestAllowedAfter(T, ai, bound)
14 ei ← EndFromStartAt(T, ai, si)

27

Algorithm 2: End time of activity from given start time (EndFromStartAt)
Input : Timeline T of work plan intervals w ∈ T with start time sw, end time ew

and required markers rw and forbidden markers fw, Activity to be
scheduled a with processing time pa, interruptibility ia and markers ma,
lower bound start for start time of a

Output: Earliest end time for the given parameters time

1 (rem, time) ← (pa, start) // remaining processing duration, time sweep
2 w ← IntervalAt(T, time)
3 while rem > 0 do
4 w’ ← IntervalAfter(T, w)

5 if rw ⊆ ma and (ma ∩ fw) = ∅ then // a allowed in w
6 dur ← Min(rem, ew − sw) // used duration of w
7 time ← time + dur // advance time
8 rem ← rem - dur // advance processing time of allowed a

9 else if ia = 0 then // a is non-interruptible and forbidden in w
10 time ← ew // skip w entirely
11 rem ← pa // reset processing time of a

12 else // a is interruptible and forbidden in w
13 time ← ew // skip w entirely

14 w ← w’

3.2.3. EC Framework

The literature on evolutionary computation and genetic algorithms provides a vast variety of
optimization methods [Eng07; Tal09]. Usually, it lists few select applications of a specific
method, or states broad qualitative findings [KCK20; MT24]. On the other hand, there
are also a great variety of works, which go into specific applications for specific problems,
discussing general trends and methods [LO07]. However, it appears that there are no cited
works about how to choose the EC operators for a given problem and how to tune them.
Therefore, we chose to use an EC framework, such that this and subsequent works can easily
try out various operators and methods, to evaluate what works best.

To this end, the EC framework should, in general, provide maximal extensibility with
minimal dependencies. The easy use and replacement of various evolutionary and genetic
operators was a core requirement. First class control over the randomization provider for the
evolutionary process, especially for reproducible testing and benchmarking, was also identified
as an auxiliary requirement. A permissive licensing model, and the ability to interface with
the Dot.Net ecosystem, especially with netstandard 2.1 to be able to interface with the Unity
game engine, were sought for, in hopes of one day integrating the framework into dProB.
Finally, strong use of the type system to disallow the use of operators which do not work
with a given genome, was a soft requirement to improve developer experience.

28

The Genetic Sharp library offers a wide variety of genetic operators and does allow for ex-
tension through user created operators and chromosomes [8]. It does, however, not provide
any of our soft requirements and focuses only on genetic algorithms, whereby differential
evolution operators could for example not be implemented in a modular and type-safe man-
ner. ParadisEO is a mature framework which features many EC methods and operators in a
modular way [Dre+21]. Beyond this, it also features an automatic algorithm design module,
which allows for automatic configuration and evaluation of evolutionary algorithms [ADD21].
It is, however, written in C++, has not yet been packaged for use in Dot.Net ecosystem, and
was discovered late in the progress of this thesis. Therefore, we implemented a library similar
to Genetic Sharp with slightly broader scope.

Core to our framework is the general evolutionary algorithm seen in Algorithm 3. Within it,
we utilize the following modularly replaceable strategies: (1) a termination strategy specifies
when the evolutionary process terminates; (2) the reproduction strategy decides how parents
are to be combined to generate children, additionally prescribing how many children to
generate; (3) a parent selection strategy is used by the reproduction strategy and defines
how to select parents from the population for reproduction; (4) the mutation strategy dictates
how the children are probabilistically modified to explore the domain further; (5) a repair
strategy can specify how to ensure invariants of the evolved objects can be restored should
they not hold after reproduction and mutation; and (6) the survivor selection strategy defines
which individuals of the last and current population make up the next generation.

Algorithm 3: The general evolutionary computation algorithm of our framework.
Input : Initial population initPop, Environment env,

Randomization provider rand, Goal Function Eval
Output: Final generation of the evolutionary process with fitnesses

1 population ← []
2 foreach genome in initPop do
3 fitness ← Eval(genome, env)
4 population ← population + (genome, fitness)
5 while not ShouldTerminate () do
6 newPopulation ← []
7 foreach genome in Reproduce(population, env, rand, SelectParents) do
8 mutated ← Mutate(reproduced, env, rand)
9 repaired ← Repair(mutated, env, rand)

10 fitness ← Eval(mutated, env)
11 newPopulation ← newPopulation + (genome, fitness)
12 population ← SelectSurvivors(population, newPopulation, env, rand)

13 return population

29

This differs from the minimal EC algorithm seen in [Eng07, p. 128] and [Tal09, p. 200]
in that we split the reproduction step into reproduction, mutation and repair with the goal
of building more generally applicable operators with less required configuration. Further, we
renamed selection to parent selection and replacement to survivor selection, as both steps
generally accept the same operators.

The implementations of strategies are generally intended to be as generic as possible,
stateless or pure functions and potentially composable, such that users which aim to evolve
more complex and composed objects do not have to redefine all operators for the composed
parts. Parameters can be either saved in the operator or read from the shared environment
of the evolutionary process. This environment also holds all data of the specific problem in-
stance for use in the evaluation function. Finally, it could also be used for state management
of stateful strategies like elite selection or self-adaptive processes. For control over random-
ization, strategies are given a randomization provider from which floating point numbers,
integers and boolean values can be generated, e.g. with deterministic values for testing.

To allow for use of generic operators on objects with certain traits, the framework features
some interfaces for genomes to implement. Examples are Randomizable, which indicates that
the gene-domain can be uniformly sampled by use of a randomization provider, Differentiable,
which indicates that a difference between two genomes can be calculated and later added
onto a genome, or ArrayGenome, which allows for translation of the genome object into a
linear series of genes, which in turn can be randomizable or differentiable again.

To provide insight into the strategies used later in this thesis, we will define them here.
TimeoutTermination tracks the duration the evolutionary process has been running for. It
stops the algorithm at the earliest end of a generation after a configured timeout duration.
The TwoPointCrossover reproduces ArrayGenomes by splitting the linear encoding of two
parents at uniformly random indices, swapping out the middle segments and turning the
resulting linear encodings back into genomes. It is configurable whether the strategy returns
one or both resulting genomes. UniformRandomMutation of an ArrayGenome with random-
izable genes iterates over the linear encoding, replacing genes with randomly generated ones
with a given mutation rate. RankBasedSelection selects a given count of elements from a
list with associated fitnesses. For this the elements are first ordered by descending fitness
and associated with a rank. Thereafter, elements are randomly selected with a weight pro-
portional to their rank. For a configured selection pressure 1 ≤ λ ≤ 2, the best element has
a relative probability of λ for being chosen while the worst element is chosen with relative
probability 2 − λ. EliteSelection or n-elitism as a survivor selection strategy ensures that
the best n genomes of the union of the current and last generation survive. The remaining
population is thereafter selected based on a sub-strategy.

It has to be noted, that the pre-implemented strategies and the framework prioritize
flexibility in use, and in general assume the evaluation of the goal function to be a non-
trivial calculation, consequently posing a bottleneck. Therefore, the provided means are not
built for highest performance, e.g. by focusing on efficient integer or float array encodings
and operations.

30

3.2.4. GA Encodings

For the encoding of solutions of the WSGP we propose two variants: First, we propose a
calendar encoding (CAL), where time is discretized into equal sized time intervals, e.g. days,
such that every time interval can be assigned a reference to one of the prototypical work plans.
An illustration of a day encoding with its instanced counterpart can be seen in Figure 3.4a.
The second proposed encoding we call the timeline or interval encoding (INT). It is essentially
a Timeline data structure as described in Section 3.2.1 with references to the prototypical
work plans as data. An example of the timeline encoding can be seen in Figure 3.4b.

The CAL encoding is straight forward to implement as an array of integers, which encode
the indices of the list of given prototypical work plans. It works well with all classical genetic
algorithm operators, as it is intrinsically a linear encoding of values, i.e. an ArrayGenome.
Randomization has been implemented by generating a random positive integer modulo the
number of work plan indices. The encoding is not able to represent all solutions to the WSGP,
as it only allows for work plan switches at discrete points in time. While this may lead to
worse solutions, e.g. when the optimal splicing would occur at 3 o’clock in the morning, we
expect this encoding to be easy to communicate to users, e.g. through a visual and colored
representation of a calendar. As a consequence of their structure, CAL genomes are required
to have a length equal to the number of days in a project.

The INT encoding, on the other hand, can be implemented either akin to the Timeline
implementation as an array of tuples, or as a tuple of two arrays: one for the interval
start points and one for work plan references. We chose to use the former. Either way,
this structure is unconventional for a genome. While the classic operators could be applied
to the tuples, it is standing to reason that the two different data-types should be handled
independently of another to apply data-type specific operators. For timestamps, for example,
we propose the ShiftingMutation strategy which does not replace a timestamp by a random
one but adds an offset sampled from a normal distribution. This opens up a broad field of
experimentation by combining and composing GA operators. As a model of WSGP solutions,
we expect the INT encoding to always be able to represent the global optimum, unlike the
CAL encoding. This does, however, come with the downside, that switches can occur at
arbitrary times and with arbitrary frequency, e.g. switching back and forth between various
work plans within minutes. To limit computational complexity and improve legibility for
users, we set INT genomes to have a fixed length and thus a maximum number of switches
per project.

31

[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0,]
Genome

Prototypical Work Plan Reference

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

splicing

Instanced Work Plan

DoW Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

(a) A genome with calendar encoding, which discretizes the project into days and assigns each one a
reference to a prototypical work plan. Notably, the genome has the same amount of data, no matter
if the work plan reference is switched daily or not.

[(0, 0), (4.75, 1), (7.5, 0), (16, 1),]
Genome

Prototypical Work Plan Reference

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

splicing

Instanced Work Plan

DoW Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

(b) A genome with timeline encoding, which partitions the project into intervals of arbitrary length and
assigns each one a reference to a prototypical work plan. Notably, this can lead to switches midday.

Fig. 3.4.: Illustration of two different encoded example genomes, together with their interpretation
of consecutive work plan references and the instantiation thereof. The colors represent
prototypical week work plans from Figure 3.1 as well as their intervals when instanced.
The figures assume the earliest project start on Monday.

32

4. Evaluation

To evaluate our approach we performed experiments with the goal of answering two broad
questions: 1. How well does an evolutionary algorithm solve WSGP instances with our
encodings? 2. What keeps the evolutionary process from providing better solutions? The
latter entails both the question of what makes the WSGP hard at it’s core, and of what the
limitations of our method are. To limit the scope and provide a focus, we assumed usage
in a digital environment like dProB, where users make modifications to a project plan and
want to see the new optimal work schedule and the resulting cost within a few seconds.

To answer the stated questions, we ran our genetic algorithms on various adapted datasets,
first to determine feasible parameters, then to compare the two encodings and to observe
the evolutionary process. The chosen base dataset, applied modifications and the reasoning
behind the choices are presented in Section 4.1. A description of the performed experiments,
results and a discussion thereof is found in later sections.

4.1. Datasets and Test Instances
To evaluate the proposed method we require problem instances of the WSGP, ideally with
AoN graph structure similar to that seen in the real word. As the WSGP and the PSP/mark
have not been studied before, no benchmarking datasets exist. Therefore, we chose to adapt
the DSLIB dataset from [9], first referred to in “Construction and evaluation framework
for a real-life project database” [BV15]. This dataset has been chosen as it contains the
work breakdown structure, schedule and other documentation of 181 real world projects
from the construction, IT and engineering sectors among others. The contained projects
span days to years in duration and are described through scheduled activities, including their
precedences. Activity counts are in the range of tens to two thousand activities and all four
precedence types are featured sometimes including lag. The additional information includes
resource requirements, risk analyses, cost breakdowns and controlling information among
others. Since a lot of this data is of varying quality and sometimes outright missing, we
only utilized additional information about agendas, which describe the work schedule of the
project on an hourly basis for each day of the week. They were available for every project.

While the DSLIB dataset contains a wide variety of projects, it does not conform to our
assumptions on project plans stated in Assumption 1. In general, the project plans have
been formulated on a high level, with activity durations on the order of days to weeks to
months even. We assume that their activity networks have been created manually, as no
fully integrated tool like dProB has been widely known in the years past. Further we assume
the precedences have been added with the goal of visualizing the project plan, not to provide
machine input for further processing. We base this assumption on the fact that the DSLIB

33

contains some projects which have, in our opinion, questionable graph structures. One such
example can be seen in instance C2019-03 Emergency Department which consists of 17
activities without any precedences. Finally, activities do not have any markers or easily
machine-readable information about interruptibility, loudness, or location.

Adapting DSLIB to LIB Even though our approach to the WSGP assumes that projects
consist of comparatively short activities on the order of hours to days, which form a weakly
connected graph through precedences, we took the whole dataset as a starting point. To
generate a dataset that we can use for testing of our method we took the following steps to
adapt the DSLIB projects:

First, we parsed all activities. If an activity has been scheduled for over 12 weeks, has both
no predecessors and no successors or when the activity name contains the substring “harden”,
we marked the activity as passive and made it non-interruptible. Otherwise, activities are
interruptible. This rule applies to many activities that are naturally uninterruptible, like
the hardening of concrete, activities which should not be interrupted for the whole project
duration, like the removal of water from excavated sites, and pseudo-activities like milestones.
The latter are not expected in real world applications of the WSGP, but we left them in our
dataset as to not accidentally remove actual activities through imprecise removal rules.

Second, we calculated the processing duration of activities. For passive activities the
processing duration is simply the originally scheduled duration in the project plan. We
called this interpretation of time “wall time”. For the remaining activities we calculated the
duration of actual work in the original schedule, by use of the agendas provided. We call
this interpretation of time “work time”. As an example, one week of wall time equals 7 · 24
hours, while one week work time with 8-hour days and free weekends equals 5 · 8 hours.

Third, precedences and their types were transferred unaltered. Potential lag is interpreted
as wall time. If there was no lag it is set to zero.

Fourth, we added passive dummy-activities with finish-start precedences before activities
without predecessors. This is due to the observation that some projects had multiple activities
start long after the project start without any reason in the form of precedences. We assumed
some external reason to which we would have to submit and set the duration of the dummy-
activities to the duration of the difference from the project start. This concludes the basic
adaption of the DSLIB, yielding the AoN graphs for a dataset we called LIB.

Augmenting LIB to AUG When experimenting with instances we observed, that some
instances with similar properties would perform radically different: instance C2015-29 in
the LIB dataset has 205 activities, 246 precedences and the project spans a maximum of
910 days, while instance C2019-03 has 34 activities, 17 precedences and spans a maximum
of 1161 days. Even though the former instance might appear harder to optimize from the
given properties, our tests showed that a genetic algorithm working on C2015-29 achieved
30 generations per second, while it only achieved 2.4 generations per second while working
on C2019-03. Upon inspection, we observe that 35, 1 and 0 of 205 activities in C2015-29
are longer than a day, week and month. In comparison, 27, 25 and 21 of 34 activities of
C2019-03 were longer than a day, week and month. This suggests, that the total sum of all

34

Mo-Fr Sa-So
(no work)

Sa-So
(work)

00:00

12:00

24:00

Mo-Fr Sa-So
(no work)

Sa-So
(work)

00:00

12:00

24:00

Fig. 4.1.: Overview over the components of the four prototypical work plans used for evaluation of
the GA method. The plans on the left apply to the “9 to 6” scheme, those on the right
to the “all-day” scheme. The parameters of work intervals are described in Table 4.1

activities’ processing durations (TPD) could be an interesting parameter in determining an
instance’s hardness. Due to this discovery, we generated a second, augmented dataset from
LIB: by splitting up all non-passive activities with a duration of over four hours into a chain of
non-preemptible activities, whose individual durations are randomly chosen from a symmetric
triangle distribution with a mean of µ = 0.75 hours and limits of ±0.25 hours. This way we
generated new AoN graphs which better fit Assumption 1. We called this dataset AUG.

Work Plan Definitions In addition to project plans (AoN graphs) our method also requires
prototypical work plans, as well as cost annotations. The following descriptions are made
part of the LIB and AUG datasets. We used four prototypical work plans: Two with work
from 9 am to 6 pm with a 1-hour lunch break at 1 pm, and two with 24-hour days. Both
had a variation without work on weekends and with work on weekends. They have been
chosen, as both base types represent reasonable work schedules (one 8-hour shift and three
consecutive 8-hour shifts), and the weekend variations provide ways to shorten the project
duration in exchange for money. An illustration of the days of the week of the work plan
types can be seen in Figure 4.1.

Cost-Annotation for LIB and AUG The costs for the work plan intervals have been
derived by calculating an hourly rate from the following schema: Each interval type has a
base rate of 20 per hour to which a work rate is added, if the interval does not forbid any
markers. The work rate has been calculated by multiplying a base work rate of 20 per hour
with a factor of 2.5 on weekends and a factor of 2.5 for the “all-day” work plans. The
resulting rates can be seen in Table 4.1. The splicing costs have been set to cWi,Wj = 1000
when i 6= j or to cWi,Wi = 0 otherwise. The lateness penalty was clate = 1000 per hour
and the soft deadline was set to 2/3 of the scheduled project duration in the original DSLIB
schedule.

35

9 to 6 All Day
Interval Type

r {passive} {} {} {} {passive} {} {}
f {loud} {} {} {loud} {loud} {} {}

For LIB and AUG c 20 40 70 70 20 70 125
For MIB and MUG c 5 25 55 205 5 205 512

Tab. 4.1.: Overview of the work plan parameters and cost rates of the prototypical work plans used
for evaluation of our method. The colors refer to those of the day structures in Figure 4.1.

Maximum Project Duration Both the CAL encoding and the Timeline backing the INT
encoding require an upper bound for the project duration. Therefore, we scheduled each
instance of each dataset once for each prototypical work plan, only using said work plan. We
then set the upper project duration bound to the highest calculated makespan. Similarly, we
calculated the cost of each of the four schedules to determine a fitness baseline to compare the
results of our method against, as no optimal solutions are known for our datasets instances.

MIB and MUG Datasets After running some experiments with the LIB and AUG datasets,
in which our GA did not perform well against the baseline in most instances, as described
in Section 4.2, we decided to create two more datasets MIB and MUG. The goal was to
create “harder” instances, in which our trivial fitness baseline was further from the optimum.
For this we took the LIB and AUG datasets and marked 5% of all non-passive activities
with a loud marker. For costs, we tweaked the base rate to 5 and set the “all-day” factor
to 10. The switching cost has been set to cWi,Wj = 2000 when i 6= j or to cWi,Wi = 0
otherwise and the lateness penalty has been set to 500 per hour. An overview over the work
plan parameters can be seen in Table 4.1 and a summary of the four datasets can be found
in Table 4.2.

36

Dataset Augmented Passive Markers Loud Markers

LIB ×
MIB × ×
AUG × ×
MUG × × ×

Percentile 0th 25th 50th 75th 100th

Project Days 7.0 3.4× 102 6.4× 102 1.1× 103 9.2× 103

TPD 4.5× 101 1.1× 103 3.8× 103 3.2× 104 1.4× 107

A
.C

ou
nt

LIB 9.0 2.5× 101 3.4× 101 6.7× 101 2.2× 103

MIB 9.0 2.5× 101 3.4× 101 6.7× 101 2.2× 103

AUG 2.6× 101 1.0× 103 2.2× 103 4.9× 103 1.2× 105

MUG 2.6× 101 1.0× 103 2.2× 103 4.9× 103 1.2× 105

A
.D

ur
at

io
n LIB 2.2 4.0× 101 1.3× 102 4.6× 102 7.2× 103

MIB 2.2 4.0× 101 1.3× 102 4.6× 102 7.2× 103

AUG 7.1× 10−1 7.4× 10−1 1.5 1.0× 101 3.5× 103

MUG 7.2× 10−1 7.4× 10−1 1.5 1.0× 101 3.5× 103

Pr
ee

m
pt

.(
%

) LIB 5.0× 101 8.2× 101 9.3× 101 9.6× 101 10.0× 101

MIB 5.0× 101 8.2× 101 9.3× 101 9.6× 101 10.0× 101

AUG 0.0 0.0 7.3× 10−2 4.7× 10−1 6.9× 101

MUG 0.0 0.0 7.3× 10−2 4.7× 10−1 6.9× 101

Lo
ud

(%
) LIB 0.0 0.0 0.0 0.0 0.0

MIB 0.0 0.0 8.5× 10−3 2.3× 10−2 4.9× 10−2

AUG 0.0 0.0 0.0 0.0 0.0
MUG 0.0 0.0 1.0× 10−3 2.5× 10−2 1.8× 10−1

Pa
ss

iv
e

(%
) LIB 4.9× 10−3 4.0× 10−2 8.0× 10−2 2.9× 10−1 1.0

MIB 4.9× 10−3 4.0× 10−2 8.0× 10−2 2.9× 10−1 1.0
AUG 1.6× 10−4 7.5× 10−4 1.4× 10−3 6.0× 10−3 1.0
MUG 1.6× 10−4 7.5× 10−4 1.4× 10−3 6.0× 10−3 1.0

Tab. 4.2.: Short overview over the four datasets used for evaluation at the top. Statistical summary
of instance parameters maximum project days, total sum of processing times (TPD),
activity count, mean activity duration in hours, and percentage of activities that are
preemptible, loud, and passive. The rows are split by dataset where differences exist.
Notably all differences are between the LIB+MIB and AUG+MUG groups, whereas hardly
any differences can be seen inside the groups. The percentage of loud activities does,
however, differ in that only M* datasets have them, and they show a significant difference
in percentile values.

37

4.2. EA Configuration and Parameter Study
To evaluate the proposed encodings, we first had to decide on a configuration of an evolution-
ary algorithm within our framework. This includes strategies, parameters and the concrete
fitness function. As they differ in our various experiments, the following paragraphs provide
a baseline configuration chosen if not stated otherwise.

Configuration The fitness function used was the logarithm with base 10 of a scheduled
project’s cost − log10(C). It has been chosen to give differences of the same value progres-
sively more weight as a project gets cheaper. We assume this to yield better results than
simply using the linear cost −C, should a proportional selection operator be used. This
assumption has, however, not been verified as we chose to use rank-based selection.

In accordance with our assumption from the beginning of this chapter, expecting use in an
interactive planning and scheduling context, we chose to terminate the evolutionary processes
through TimeoutTermination after 10 seconds. For parent and survival selection operator we
chose Rank-Based Selection with λ = 2, as we did not want to risk premature convergence
in local minima which the literature suggests of TournamentSelection [Jeb13]. In addition,
the survival selection makes use of 2-elitism as to not “lose” the best solutions. For the
reproduction strategy we chose Two-Point-Crossover in hopes that inserting segments from
and into the baselines would yield good results quickly in the first generations. The chosen
mutation operators for both the CAL encoding and the work plan references in the INT
encoding was UniformRandomMutation. The timestamps of the INT encoding have been
mutated by ShiftingMutation with µ = 0 and σ = 7 days. The mutation processes of the
work plan reference and the timestamp of any given INT gene were independent. Finally, for
repair operators, we enforced that the values were in the range of the work plan reference
indices. Mutation of start times for INT could, however, yield shorter genomes when two
intervals start at the same time due to implementation details. We therefore added new
random genes if any INT genome had fewer genes than their intended genome length of 10.

To initialize the populations four genomes, one for each prototypical work plan, were
generated which only featured that work plan. The remaining individuals were uniformly
sampled from the domain and therefore had no special internal structure. In combination
with the elitism in survival selection, we ensured that the evolutionary process would not
yield results worse than the baselines.

Parameter Study (Experiment 1) Finally, we had to select a mutation rate and a pop-
ulation size. For this we performed a small parameter study as a first experiment. To this
end, we ran ten iterations with incrementing randomization seeds of our genetic algorithm
for each combination of encoding (INT, CAL), mutation rate ({0.01, 0.05, 0.1, 0.2}) and
population size ({10, 25, 50}), for the first ten instances of both initial datasets (LIB, AUG).
This resulted in 4800 EA runs. To evaluate the runs, we used the relative improvement in
fitness in relation to the fitness baseline of each instance. A visualization of the results can
be seen in Figure 4.2.

38

Fig. 4.2.: Visualization of mean improvement depending on mutation rate and population size pa-
rameter tests and split by encoding. The heatmaps show, that CAL and INT have vastly
different optimal parameters. Further INT appears to yield better results on average.

The results show, that the experiments with CAL encoding yielded better results with a
low mutation rate of 1%, while INT encodings yielded best results with high mutation rates
of 20%. The population size appears to have a significantly lower impact on improvement
than the mutation rate. While the data of the CAL subset might suggest that lower popu-
lation sizes for, the INT subset does not immediately suggest any impact. To verify these
observations, we performed an analysis of variance (ANOVA) to statistically show which
parameter has a statistically significant impact on the mean of improvement. We also per-
formed post-hoc tests with the conservative Bonferroni correction, to show which parameter
values differ significantly. The results of the analyses are available in Appendix C.

The statistical analysis showed, that for both subsets the influence of mutation rate is in
fact highly significant (p < 0.1%) and that the influence of mutation rate values on the mean
of improvement differs highly significantly (pbonf < 0.1%), except for 10% and 20%. For
the INT subset the two sub-subsets can be distinguished with less but still high significance
(pbonf = 0.3%), for the CAL subset their impact cannot be distinguished. The influence of
population size on mean improvement was significant for the INT subset (p ≤ 2.5%) and
highly significant for the CAL subset (p ≤ 1%). However only the population sizes of 10 and
50 could be distinguished with statistical significance (pbonf < 2.5%).

We assume, that the strong difference between optimal mutation rate for INT and CAL
genomes might stem from the fact that INT genomes are comparatively short, while CAL
genomes are very long. This gives changes in INT genes more significant impact on fitness.
The fact, that some timestamps in INT genomes lie after the makespan of the given project,
effectively shortening the genomes even further, amplifies this effect. In addition to the lower
impact of each gene, we assume another effect with CAL genomes: as mutation rate is not
applied per genome but per gene, too many changes might happen at once without any
feedback in form of an evolutionary cycle. Instead, the impact on cost and makespan of the
modified genes might cancel each other out. We concluded the parameter study by choosing
a mutation rate of 1% for CAL genomes and 20% for INT genomes, as well as a population
size of 25 for all further experiments.

39

Fig. 4.3.: Per-instance improvements of a subset of the parameter study results with a population
size of 25, a mutation rate of 20% for INT genomes and a mutation rate of 1% for CAL
genomes. While the left plot shows the whole subset as described, the plot on the right
shows only the sub-subset of instances that yielded any improvement greater zero. The
variance in improvement is low in some instances, implying reliable convergence behavior,
but very large in others. The data suggests that INT generally performs better than CAL.

Fig. 4.4.: Per-instance improvements of ten runs of the first ten MIB and MUG instances. While the
left plot shows the whole subset as described, the plot on the right shows only the sub-
subset of instances that yielded any improvement greater zero. In comparison to Figure 4.3
the significantly larger y-axis has to be noted. The data suggests that INT generally
performs better than CAL.

40

4.3. Experimental Findings
After finalizing the EA configuration and determining its parameters, we first engaged in
further exploratory analysis of the results of parameter study, yielding knowledge about our
limitations in estimating a WSGP instance’s hardness and issues of our mathematical model.
Afterwards we performed a final comparison of the CAL and INT encodings.

Hardness of Instances (Experiment 2) Exploratory analysis of the data of the parameter
study showed, that even with the best choice in parameters a third of the runs did not
yield any improvement. Looking at the statistical distribution of improvement per instance
in Figure 4.3, we see that for some instances almost no runs yielded an improvement. Under
the assumption, that this was due to “too good” of a baseline, this led to the development
of the MIB and MUG datasets. They had the goal to have instances for which our method
of generating baselines would yield worse results.

To validate that the MIB and MUG datasets do indeed get higher improvements, we ran
a second experiment on them with both encodings, ten times on each of the two datasets
instances. In total this yielded 7240 runs. To ensure comparability to the results of the
parameter study, only the first 10 instances were inspected here. The data shows a significant
improvement over the LIB and AUG datasets. A view on the per-instance distribution
suggested a large improvement, as can be seen by comparing Figure 4.3 to Figure 4.4.
Whereas in LIB and AUG about a third of runs did not yield an improvement, for MIB and
MUG only about a tenth of runs on the first ten instances did not yield an improvement, as
can be seen in Table C.7. Furthermore, the mean cost improvement increased from 2.6% to
8.9% with the CAL encoding and from 3.4% to 16.3% with the INT encoding.

This confirms our assumption, that the fitness baseline of the LIB and AUG datasets
yielded too good results, such that it was comparatively hard to improve them. The finding
also highlights the fact, that the “hardness” of an instance is a vague measure, as it is
not immediately clear what it means and how to measure it. This is especially the case
when experimenting on synthetic datasets without real world data or at least verified data
to compare against. To try to quantify what contributes to better improvements within
the MUG dataset, we tried to apply a linear regression analysis. However, no model could
be found which would explain more than 5% of the variance in the dataset based on the
instance properties Activity Count, Maximum Project Days, Total Processing Duration and
Percentage of Preemptible Activities, as seen in Appendix C. While statistically significant
correlations can be found, as seen in Table C.9, it was to be expected that of the properties
above only the percentage of interruptible activities correlated positively with improvement.

Experiment 3 To further study convergence behavior, we performed a third experiment.
It contained five runs for each of the first five MIB and MUG instances. The results, seen
in Figure 4.5, show that CAL runs had continual improvement but significant spread in fitness
within each generation, while INT runs usually show fast convergence within 10 seconds and
show only occasional improvements afterwards. INT runs also showed low inner-generation
spread. This implies, that selection pressure and mutation should be tweaked further.

41

Fig. 4.5.: Overview of the convergence behavior of five runs on each of the first five instances of
the MIB and MUG datasets, sampled in 2.5 second intervals. Bold lines indicate the best
genome in a generation, the filled areas span from the median to the best genome and
thus show a bracket of half the individuals.

42

Tab. 4.3.: Descriptive Statistics of improvement and generation count for 10 runs of the EA for each
instance in the MIB and MUG datasets, and for each encoding.

Cost Improvement (in %) Generation Count
Encoding CAL INT CAL INT
Dataset MUG MIB MUG MIB MUG MIB MUG MIB

Mean 4.7 10.1 12.6 14.3 242 1758 236 1876
Std. Deviation 7.0 11.2 14.5 14.0 570 1520 481 1393
Minimum 0.0 0.0 0.0 0.0 0 1 0 1
Median 1.4 6.7 9.6 12.7 126 1383 127 1818
Maximum 42.5 46.1 63.1 52.2 6826 7397 5302 5457

(a) Percentiles of improvement in cost. The INT
encoding appears to have a more closely re-
lated distributions between the MUG and MIB
runs than the CAL encoding.

(b) Percentiles of generation count. MUG runs
appear to achieve an order of magnitude less
generations in the same time as MIG runs.

Fig. 4.6.: Plots of improvement and generations in the results of the second experiment.

Final Analysis of Encodings To properly evaluate the two proposed encodings, we an-
alyzed all 7240 runs of the second experiment. Their descriptive statistics can be found
in Table 4.3. The statistics show that the INT encoding appears to yield better results than
CAL in general. Nevertheless, both encodings struggle to yield any improvement about 25%
of the time. Both methods achieve better improvements on the MIB dataset, however, the
MUG difference between the 50th and 75th percentiles appears to be larger with the CAL
encoding, indicating that it struggles more with the MUG dataset than the INT encoding. In
the best case, i.e. the 100th percentile, the INT encoding even yields better improvements
on the MUG dataset. These findings are confirmed by the percentile plots in Figure 4.6a.

Shifting our focus to the generation count achieved per run, the data does not show a
major difference between the encodings. It does however show, that runs on instances from
the MIB dataset achieved about an order of magnitude more generations within the 10-
second time limit than runs on the MUG dataset. We assume this to be due to the higher
activity counts, as seen in Table 4.2. Therefore, a more performant scheduling and cost
calculation could aid in a higher generation count and thus in better improvements. This
causal connection should, however, be verified before a significant time investment is made.

43

4.4. Miscellaneous Findings
After presenting the statistical evaluation and concrete results, this section aims to share
possible paths of improvement based on theories about impediments and general learnings
about the PSP/mark and the WSGP.

Opportunities for Improved WSGP Encodings An easily conceivable way to narrow
down the vast domain of the CAL encoding could be discrete the interval encoding, i.e.
a combination of the time discretization of the CAL encoding with the sparse work plan
switch-based intervals of the INT encoding. This, together with an improved population
initialization scheme would, in our opinion, probably bring great improvements over the CAL
encoding’s results. It would also possibly yield better results than the INT encoding. It
would, however, suffer from the same central issue its inspirations were held back by: the
encoded work plan switches are linked to the time since the project started. After formulating
the encodings, it was discovered that every improvement in generated work plans early on
during a projects makespan has a significant probability to worsen whatever comes after.
As an example, let us assume an AoN graph and a work plan which are perfectly fitted to
each other, except for one interval in the beginning. Should the EA now find the perfect
assignment for said interval, allowing an activity to be scheduled earlier than before, then
there is a high probability of all subsequent activities to be scheduled at other times than
before. This would lead to an increase in cost and thus death of the individual in the
evolutionary system unless all subsequent work intervals adjust at the same time.

While the “additive” nature of the ASAP solution to the PSP/mark, where topologically
later activities cannot influence earlier activities, is a useful property in some situations,
in this situation the reverse is true. As every earlier activity may influence later activities
when on their critical path, every change in work plans may invalidate the optimality of all
subsequent work plan intervals. Therefore, we propose future work to study an encoding
that ties work plan switches to the starts or end of activities. This idea is based on the
work on serial schedule generation schemes, where the order of activities to be scheduled is
determined independent of time.

Challenges in Adapting Classical Schedule Modelling Tools Finally, working on the
PSP/mark yielded a fact which had not been discussed in the literature on project scheduling
problems: When introducing advanced automated scheduling systems, tools or parameters
used for manual scheduling and visualization may change or even lose their meaning. The
most concrete example for this discovered while working on the PSP/mark was that of
multiple types of precedence constraints.

When developing a solution for the PSP/mark, we first attempted to implement a critical
path method based approach, which first calculated an As Soon As Possible and an As Late As
Possible schedule. Thereafter, it was our goal to optimize for cost by shifting activities around
within their float. This approach has, however, been abandoned, as especially the ALAP
schedule yielded results which would not be feasible in real life: when planning interruptible
activities, the algorithm opted to schedule the start of some activities at the instant before

44

work plan intervals that forbid them. Incidentally, we noticed a similar behavior with start-
finish and finish-finish precedences, which scheduled infinitesimally small quantities after the
weekend. This led to scrutinization of all precedence types except finish-start, since it is
unclear what exactly they and their potential lag model.

We assume, that all precedence types but finish-start are a circumvention of the fact
that most project plans to date operate on a very high level. We assume, that they are
often used, to represent dependencies on sub-activities. For example: the fact, that some
plaster can only be post-processed after it dried for some time could be modeled as two
long activities with start-start precedences and an offset for the drying time. In this case the
activities would stand in for all plastering and post-processing activities on the whole site.
If one were to split-up the process per wall, however, only finish-start precedences would be
needed. This variant of modeling would also be robust against interruptions, whereas in the
first variant the post-processing activity could overtake the plastering activity if they have
different markers.

There are many ways to interpret the criticized constraints, for example that the percentage
of completion of an activity may not overtake the percentage of completion of another
activity. However, we argue that it would be best to model projects in more detail or at least
preprocess AoN graphs, such that they only feature precedences with a clear and concise
meaning.

45

5. Conclusion

This thesis contributes to the field of optimized project scheduling, by identifying an under-
researched niche: project scheduling with environmental resources, which are either available
or unavailable for all processes at the same time, especially concerning optimization of op-
portunity cost. We formalized this as the Project Scheduling Problem with Marked Activities
(PSP/mark) and the Work Schedule Generation Problem (WSGP) aimed at cost-optimized
resource availability schedules. In an attempt to solve the stated problems, we built an ASAP
scheduling scheme, which is thereafter used in an evolutionary algorithm with two encodings
(CAL and INT) that aims to optimize a project’s cost. In multiple iterations, we adapted
the DSLIB dataset which we first used to tweak the evolutionary parameters in a parame-
ter study and then used to compare the proposed encodings. The results showed that the
INT encoding generally outperforms the CAL encoding with a mean improvement in cost
of 14.3% versus 10.1% on the MIB dataset. Our evaluations also highlighted difficulties in
designing benchmarking instances, in formulating an effective encoding for solutions of the
WSGP, and in adapting classical scheduling tools to novel systems.

Our work made first steps towards introducing environmental resources into cost optimized
scheduling for large projects, potentially leading to more cost-effective plans. On the theo-
retical side, we contributed by highlighting that some factors, like the permission to perform
loud activities or access to an area, can be modeled as environmental resources. This allows
for optimization in a less computationally intensive manner compared to the RCPSP, as ac-
tivities in the PSP/mark do not compete for resources. On the practical side, we contributed
through a solution to the PSP/mark and a first attempt at a WSGP solution.

The contributions are, however, not without limitations. A key limitation is the lack of
real-world data to verify the applicability of both the problem and the proposed solutions. As
fully integrated and interactive project planning, scheduling, and evaluation tools like dProB
are just emerging as of time of writing, industries like the construction industry cannot provide
the detailed project and cost plans expected by the WSGP without major effort. Further,
it is not yet entirely clear which environmental parameters could and should be modeled as
environmental resources. Therefore, the adapted dataset, although useful for a comparative
evaluation of encodings and EA parameters, does not allow for any conclusions about real-
world optimization potential. To remedy this, a future work should focus on interviewing
industry professionals, hand-crafting and verifying WSGP instances. While this work could
benefit from the ability to abstract, found in the computer science community, a background
in engineering would be beneficial, too.

Another limitation is the underutilization of the framework for evolutionary algorithms due
to temporal constraints. As alluded to in Section 3.2.3, the literature did not yield clear
guidance in the decision-making process regarding the selection of evolutionary operators
and parameters. It did not give the impression that all methods were created equal, i.e.

46

that it was impossible to have a structured approach in designing an EA. Instead of an
overarching structured and empirical analysis, much of the literature appeared to promote a
“trial and error” approach informed by highly problem-specific prior instances of success. In
hindsight, the time spent researching evolutionary operator literature could have been used
more effectively by directly experimenting with operators for this specific problem context.
A future work could focus on evaluating the various operators for the WSGP with the MUG
dataset, though this does not necessarily need to be done with our EC framework but could
be done with ParadisEO [Dre+21].

Similarly, this thesis’ findings are limited by the fact that the two proposed encodings
for WSGP solutions are very basic. It would for example be easy to propose an INT-like
encoding that only allows for discrete time-steps. This could combine the easier legibility for
users and the minimum distance between work plan switches of the CAL encoding, with the
INT encodings improved performance due to the drastically smaller domain. As alluded to
in Section 4.3, we believe that an encoding of work plan switches coupled to the start and
end times of activities may yield better results than an encoding coupled to the time since
project start.

In conclusion, this work has opened up a subfield of project schedule optimization by
proposing two new formal problems and proposing first solutions. While the real-world
applicability remains to be validated, the work highlighted points of vantage for future work
in academia, to gain a deeper understanding of the problems at hand, and for industry,
to provide more and better data for research. The author is optimistic that significant
innovations in project planning and scheduling, along with their societal benefits, can be
achieved through the recognition of the mutual benefit of regular communication and steady
collaboration of industry and all parts of academia.

47

Bibliography

[Ach07] Tobias Achterberg. “Constraint Integer Programming”. PhD thesis. 2007.
[Ach09] Tobias Achterberg. “SCIP: solving constraint integer programs”. English. In:

Math. Program. Comput. 1.1 (2009), pp. 1–41. issn: 1867-2949. doi: 10.1007/
s12532-008-0001-1.

[ADD21] Amine Aziz-Alaoui, Carola Doerr, and Johann Dréo. “Towards Large Scale Au-
tomated Algorithm Design by Integrating Modular Benchmarking Frameworks”.
In: CoRR abs/2102.06435 (2021). arXiv: 2102.06435. url: https://arxiv.
org/abs/2102.06435.

[Afs14] Behrouz Afshar-Nadjafi. “Resource Constrained Project Scheduling Subject to
Due Dates: Preemption Permitted with Penalty”. In: Advances in Operations
Research 2014 (2014), pp. 1–10. doi: 10.1155/2014/505716. url: https:
//doi.org/10.1155/2014/505716.

[AM14] Behrouz Afshar-Nadjafi and Mahyar Majlesi. “Resource constrained project schedul-
ing problem with setup times after preemptive processes”. In: Computers &
Chemical Engineering 69 (2014), pp. 16–25. issn: 0098-1354. doi: https :
/ / doi . org / 10 . 1016 / j . compchemeng . 2014 . 06 . 012. url: https : / /
www.sciencedirect.com/science/article/pii/S0098135414001914.

[Ban12] Patrick Bangert. Optimization for Industrial Problems. Springer Berlin Heidel-
berg, 2012. isbn: 9783642249747. doi: 10.1007/978-3-642-24974-7. url:
http://dx.doi.org/10.1007/978-3-642-24974-7.

[BB14] Andrew Baldwin and David Bordoli. “An Introduction to Planning and Schedul-
ing”. In: A Handbook for Construction Planning and Scheduling. John Wiley
& Sons, Ltd, 2014. Chap. 1, pp. 3–35. isbn: 9781118838167. doi: https :
//doi.org/10.1002/9781118838167.ch1. eprint: https://onlinelibrary.
wiley . com / doi / pdf / 10 . 1002 / 9781118838167 . ch1. url: https : / /
onlinelibrary.wiley.com/doi/abs/10.1002/9781118838167.ch1.

[BV15] Jordy Batselier and Mario Vanhoucke. “Construction and evaluation framework
for a real-life project database”. In: International Journal of Project Management
33.3 (2015), pp. 697–710. issn: 0263-7863. doi: https://doi.org/10.1016/
j . ijproman . 2014 . 09 . 004. url: https : / / www . sciencedirect . com /
science/article/pii/S0263786314001410.

48

https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1007/s12532-008-0001-1
https://arxiv.org/abs/2102.06435
https://arxiv.org/abs/2102.06435
https://arxiv.org/abs/2102.06435
https://doi.org/10.1155/2014/505716
https://doi.org/10.1155/2014/505716
https://doi.org/10.1155/2014/505716
https://doi.org/https://doi.org/10.1016/j.compchemeng.2014.06.012
https://doi.org/https://doi.org/10.1016/j.compchemeng.2014.06.012
https://www.sciencedirect.com/science/article/pii/S0098135414001914
https://www.sciencedirect.com/science/article/pii/S0098135414001914
https://doi.org/10.1007/978-3-642-24974-7
http://dx.doi.org/10.1007/978-3-642-24974-7
https://doi.org/https://doi.org/10.1002/9781118838167.ch1
https://doi.org/https://doi.org/10.1002/9781118838167.ch1
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118838167.ch1
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118838167.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118838167.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118838167.ch1
https://doi.org/https://doi.org/10.1016/j.ijproman.2014.09.004
https://doi.org/https://doi.org/10.1016/j.ijproman.2014.09.004
https://www.sciencedirect.com/science/article/pii/S0263786314001410
https://www.sciencedirect.com/science/article/pii/S0263786314001410

[CT15] Min-Yuan Cheng and Duc-Hoc Tran. “Opposition-based Multiple Objective Dif-
ferential Evolution (OMODE) for optimizing work shift schedules”. In: Automa-
tion in Construction 55 (2015), pp. 1–14. issn: 0926-5805. doi: https://doi.
org/10.1016/j.autcon.2015.03.021. url: https://www.sciencedirect.
com/science/article/pii/S0926580515000618.

[Dre+21] Johann Dreo et al. “Paradiseo: from a modular framework for evolutionary com-
putation to the automated design of metaheuristics: 22 years of Paradiseo”. In:
July 2021, pp. 1522–1530. doi: 10.1145/3449726.3463276.

[Eng07] Andries P. Engelbrecht. Computational Intelligence: An Introduction. Wiley, Oct.
2007. isbn: 9780470512517. doi: 10.1002/9780470512517. url: http://dx.
doi.org/10.1002/9780470512517.

[Gle+21] Ambros Gleixner et al. “MIPLIB 2017: Data-Driven Compilation of the 6th
Mixed-Integer Programming Library”. In: Mathematical Programming Compu-
tation (2021). doi: 10.1007/s12532-020-00194-3. url: https://doi.org/
10.1007/s12532-020-00194-3.

[GZ22] Kai Guo and Limao Zhang. “Multi-objective optimization for improved project
management: Current status and future directions”. In: Automation in Construc-
tion 139 (2022), p. 104256. issn: 0926-5805. doi: https://doi.org/10.
1016/j.autcon.2022.104256. url: https://www.sciencedirect.com/
science/article/pii/S0926580522001297.

[HB22] Sönke Hartmann and Dirk Briskorn. “An updated survey of variants and ex-
tensions of the resource-constrained project scheduling problem”. In: European
Journal of Operational Research 297.1 (2022), pp. 1–14. issn: 0377-2217. doi:
https://doi.org/10.1016/j.ejor.2021.05.004. url: https://www.
sciencedirect.com/science/article/pii/S0377221721003982.

[HHA24] Chris Hendrickson, Carl Haas, and Tung Au. Project Management for Construc-
tion (and Deconstruction) - Fundamental Concepts for Owners, Engineers, Ar-
chitects and Builders. Carl Thomas Michael Haas, Mar. 1, 2024. isbn: 978-1-
7383557-0-9.

[Jeb13] Khalid Jebari. “Selection Methods for Genetic Algorithms”. In: International Jour-
nal of Emerging Sciences 3 (Dec. 2013), pp. 333–344. url: https://www.
researchgate.net/publication/259461147_Selection_Methods_for_
Genetic_Algorithms.

[KCK20] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. “A review on ge-
netic algorithm: past, present, and future”. In: Multimedia Tools and Applica-
tions 80 (2020), pp. 8091–8126. url: https://api.semanticscholar.org/
CorpusID:226227415.

49

https://doi.org/https://doi.org/10.1016/j.autcon.2015.03.021
https://doi.org/https://doi.org/10.1016/j.autcon.2015.03.021
https://www.sciencedirect.com/science/article/pii/S0926580515000618
https://www.sciencedirect.com/science/article/pii/S0926580515000618
https://doi.org/10.1145/3449726.3463276
https://doi.org/10.1002/9780470512517
http://dx.doi.org/10.1002/9780470512517
http://dx.doi.org/10.1002/9780470512517
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/https://doi.org/10.1016/j.autcon.2022.104256
https://doi.org/https://doi.org/10.1016/j.autcon.2022.104256
https://www.sciencedirect.com/science/article/pii/S0926580522001297
https://www.sciencedirect.com/science/article/pii/S0926580522001297
https://doi.org/https://doi.org/10.1016/j.ejor.2021.05.004
https://www.sciencedirect.com/science/article/pii/S0377221721003982
https://www.sciencedirect.com/science/article/pii/S0377221721003982
https://www.researchgate.net/publication/259461147_Selection_Methods_for_Genetic_Algorithms
https://www.researchgate.net/publication/259461147_Selection_Methods_for_Genetic_Algorithms
https://www.researchgate.net/publication/259461147_Selection_Methods_for_Genetic_Algorithms
https://api.semanticscholar.org/CorpusID:226227415
https://api.semanticscholar.org/CorpusID:226227415

[Kre+18] Stefan Kreter et al. “Mixed-integer linear programming and constraint program-
ming formulations for solving resource availability cost problems”. In: European
Journal of Operational Research 266.2 (2018), pp. 472–486. issn: 0377-2217.
doi: https://doi.org/10.1016/j.ejor.2017.10.014. url: https:
//www.sciencedirect.com/science/article/pii/S037722171730927X.

[Li+14] R. Li et al. “Estimating railway infrastructure project cost from transferring nom-
inal price to real price by considering the working time possessions”. In: Comput-
ers in Railways XIV Special Contributions. CRS14. WIT Press, Oct. 2014. doi:
10.2495/crs140011. url: http://dx.doi.org/10.2495/CRS140011.

[LO07] John Lancaster and Mustafa Ozbayrak. “Evolutionary algorithms applied to project
scheduling problems-a survey of the state-of-the-art”. In: International Journal of
Production Research 45.2 (2007), pp. 425–450. doi: 10.1080/00207540600800326.
eprint: https : / / doi . org / 10 . 1080 / 00207540600800326. url: https :
//doi.org/10.1080/00207540600800326.

[MT24] Büsra Meniz and Fatma Tiryaki. “Genetic Algorithm Optimization with Selection
Operator Decider”. In: Arabian Journal for Science and Engineering (May 2024).
doi: 10.1007/s13369-024-09068-5.

[Net+07] Nicholas Nethercote et al. “MiniZinc: Towards a Standard CP Modelling Lan-
guage”. In: Principles and Practice of Constraint Programming – CP 2007. Ed. by
Christian Bessière. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 529–
543. isbn: 978-3-540-74970-7.

[Pin16] Michael L. Pinedo. Scheduling - Theory, Algorithms and Systems. Springer Inter-
national Publishing, 2016. isbn: 9783319265803. doi: 10.1007/978-3-319-
26580-3. url: http://dx.doi.org/10.1007/978-3-319-26580-3.

[Pol+20] Oliver Polo-Mejía et al. “Mixed-integer/linear and constraint programming ap-
proaches for activity scheduling in a nuclear research facility”. In: International
Journal of Production Research 58.23 (2020), pp. 7149–7166. doi: 10.1080/
00207543.2019.1693654. eprint: https://doi.org/10.1080/00207543.
2019.1693654. url: https://doi.org/10.1080/00207543.2019.1693654.

[Rei+24] Julian Reisch et al. “Eine Potentialabschätzung zur Reduktion der von Baustellen
betroffenen Zugfahrten”. In: HEUREKA (2024).

[Tal09] El-Ghazali Talbi. Metaheuristics: From Design to Implementation. Wiley, June
2009. isbn: 9780470496916. doi: 10.1002/9780470496916. url: http://dx.
doi.org/10.1002/9780470496916.

[TKA17] Algan Tezel, Lauri Koskela, and Zeeshan Aziz. “Lean thinking in the highways
construction sector: motivation, implementation and barriers”. In: Production
Planning & Control 29 (Dec. 2017), pp. 1–23. doi: 10.1080/09537287.2017.
1412522.

[WC95] R.A. Walker and S. Chaudhuri. “Introduction to the scheduling problem”. In:
IEEE Design & Test of Computers 12.2 (1995), pp. 60–69. doi: 10.1109/54.
386007.

50

https://doi.org/https://doi.org/10.1016/j.ejor.2017.10.014
https://www.sciencedirect.com/science/article/pii/S037722171730927X
https://www.sciencedirect.com/science/article/pii/S037722171730927X
https://doi.org/10.2495/crs140011
http://dx.doi.org/10.2495/CRS140011
https://doi.org/10.1080/00207540600800326
https://doi.org/10.1080/00207540600800326
https://doi.org/10.1080/00207540600800326
https://doi.org/10.1080/00207540600800326
https://doi.org/10.1007/s13369-024-09068-5
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1007/978-3-319-26580-3
http://dx.doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1080/00207543.2019.1693654
https://doi.org/10.1080/00207543.2019.1693654
https://doi.org/10.1080/00207543.2019.1693654
https://doi.org/10.1080/00207543.2019.1693654
https://doi.org/10.1080/00207543.2019.1693654
https://doi.org/10.1002/9780470496916
http://dx.doi.org/10.1002/9780470496916
http://dx.doi.org/10.1002/9780470496916
https://doi.org/10.1080/09537287.2017.1412522
https://doi.org/10.1080/09537287.2017.1412522
https://doi.org/10.1109/54.386007
https://doi.org/10.1109/54.386007

Miscellaneous References

[1] Sven Wroblewski Petya Tsvyatkova. I NV Leitfaden Bau- und Sperrzeitenkatalog.
Tech. rep. DB Netz AG I.NIG 41, 2021. url: https://www.deutschebahn.com/
resource / blob / 6892074 / 5d89ccc5d7732f21653024ca1a27c1fa / Leitfaden -
Bau-und-Sperrzeiten_Rev-01-data.pdf (visited on 03/19/2024).

[2] Microsoft Corporation. Microsoft Project. url: https://www.microsoft.com/en-
us/microsoft-365/project/project-management-software.

[3] Leopard Project Controls. How to build a construction schedule with MS Project from
Project Documents? url: https://consultleopard.com/how- to- build- a-
construction-schedule-with-ease/ (visited on 05/29/2024).

[4] Hans Mittelmann. Benchmarks for Optimization Software - LPopt Benchmark. Mar. 27,
2024. url: https://plato.asu.edu/ftp/lpopt.html (visited on 04/10/2024).

[5] Hans Mittelmann. Benchmarks for Optimization Software - The MIPLIB2017 Bench-
mark Instances Table for 8 Threads. Apr. 5, 2024. url: https://plato.asu.edu/
ftp/milp_tables/8threads.res (visited on 04/10/2024).

[6] Geoffrey Chu et al. Chuffed - a lazy clause generation solver. url: https://github.
com/chuffed/chuffed (visited on 04/10/2024).

[7] Brent Yorgey. Topological sorting: pseudocode and analysis. Sept. 20, 2019. url:
http://ozark.hendrix.edu/~yorgey/382/static/topsort.pdf (visited on
05/30/2024).

[8] Diego Giacomelli. GeneticSharp - GitHub. May 30, 2024. url: https://github.
com/giacomelli/GeneticSharp/ (visited on 05/30/2024).

[9] M. Vanhoucke, J. Coelho, and J. Batselier. DSLIB Dataset - Emperiacl Project Data.
url: https://www.projectmanagement.ugent.be/research/data (visited on
05/22/2024).

[10] JASP Team. JASP (Version 0.18.3)[Computer software]. 2024. url: https://jasp-
stats.org/.

51

https://www.deutschebahn.com/resource/blob/6892074/5d89ccc5d7732f21653024ca1a27c1fa/Leitfaden-Bau-und-Sperrzeiten_Rev-01-data.pdf
https://www.deutschebahn.com/resource/blob/6892074/5d89ccc5d7732f21653024ca1a27c1fa/Leitfaden-Bau-und-Sperrzeiten_Rev-01-data.pdf
https://www.deutschebahn.com/resource/blob/6892074/5d89ccc5d7732f21653024ca1a27c1fa/Leitfaden-Bau-und-Sperrzeiten_Rev-01-data.pdf
https://www.microsoft.com/en-us/microsoft-365/project/project-management-software
https://www.microsoft.com/en-us/microsoft-365/project/project-management-software
https://consultleopard.com/how-to-build-a-construction-schedule-with-ease/
https://consultleopard.com/how-to-build-a-construction-schedule-with-ease/
https://plato.asu.edu/ftp/lpopt.html
https://plato.asu.edu/ftp/milp_tables/8threads.res
https://plato.asu.edu/ftp/milp_tables/8threads.res
https://github.com/chuffed/chuffed
https://github.com/chuffed/chuffed
http://ozark.hendrix.edu/~yorgey/382/static/topsort.pdf
https://github.com/giacomelli/GeneticSharp/
https://github.com/giacomelli/GeneticSharp/
https://www.projectmanagement.ugent.be/research/data
https://jasp-stats.org/
https://jasp-stats.org/

A. CIP for ASAP Scheduling Problem
Before utilizing an exact algorithm for solving the ASAP scheduling Problem with the given
formal definitions, we tried a CIP approach for a slightly modified problem with the following
modifications: precedences could feature a maximum lag sub-constraint and could only be of
type finish-start, and work plans were defined through restriction calendars akin to calendars
in [Kre+18]. Different to their implementation however we did not discretize time.

The CIP below solves the modified ASAP scheduling problem. Given parameters are
• a restriction calendar of k restriction intervals r ∈ R each with restriction type tr ∈ T ,

• a set of n activities a ∈ A each with a set of restriction types ρa ⊆ T which forbid a
from being processed during some restriction r′ if t′

r ∈ ρa, and

• a set of m precedences (a1, a2) = π ∈ Π with a defined lag lπ,

• an absolute earliest start time and end time s, e.
To translate the calendars above into the work plans from our proposed formulation, each

combination of markers would have to be translated into a distinct restriction type. In the
worst case, this would mean T is the power set of all used markers.

The CIP utilizes variables sa and ea to indicate the scheduled start and end times of a, a
set of variables ira which indicates whether restriction r and variable a are intersecting, and
a set of variables ba which indicates how long a is forbidden within sa and ea.

minimize n · 103 ·max ea +
∑

ba

subject to sa ≥ s a ∈ A activity box constraint
e ≥ ea a ∈ A activity box constraint
ea ≥ sa a ∈ A activity feasibility
lπ ≥ lmin

π π ∈ Π lag box constraint
lmax
π ≥ lπ π ∈ Π lag box constraint

sa2 ≥ ea1 + lπ (a1, a2) = π ∈ Π precedence constraint
ea ≥ sa + pa + ba a ∈ A end calculation
ira ↔ (ea > sr ∧ er ≥ sa ∧ tr ∈ ρa) a ∈ A, r ∈ R interrupting intersections
ba ≥

∑
r∈R: ira

er − sr a ∈ A break calculation

Notably the addition of maximum lag provides the ability to over constrain the problem,
meaning it allows problem instances to be unsolvable. The definitions in Section 3.1 are
built in such a way, that problem instances can not be over-constrained through precedence
constraints, as the AoN graphs are required to be directed acyclic graphs. Additional con-
straints may lead to activities be pushed later in time, but they cannot make the problem
unsolvable by themselves.

52

The code has been written in the MiniZinc language [Net+07] and has been solved with
the SCIP 8 [Ach09] constraint integer program solver.

type floatplus = 0.0..1000000000.0; % basic box constraint for all variables
enum restrictions = { Quiet, All }; % definition of restriction

int: n; % Activities
set of int: ACTIVITY = 1..n;
array[ACTIVITY] of floatplus: duration;
array[ACTIVITY] of set of restrictions: restricted_by;
array[ACTIVITY] of var floatplus: start;
array[ACTIVITY] of var floatplus: end;
constraint forall(i in ACTIVITY) (end[i] > start[i]);

int: m; % Precedences
set of int: PRECEDENCE = 1..m;
array[PRECEDENCE] of ACTIVITY: source;
array[PRECEDENCE] of ACTIVITY: target;
array[PRECEDENCE] of floatplus: min_lag;
array[PRECEDENCE] of floatplus: max_lag;
constraint forall(i in PRECEDENCE, j in PRECEDENCE) (source[i] != target[i]);
constraint forall(i in PRECEDENCE) (min_lag[i] >= 0);
constraint forall(i in PRECEDENCE) (max_lag[i] >= min_lag[i]);
array[PRECEDENCE] of var floatplus: lag;
constraint forall(i in PRECEDENCE) (lag[i] >= min_lag[i]);
constraint forall(i in PRECEDENCE) (lag[i] <= max_lag[i]);
constraint forall(i in PRECEDENCE) (start[target[i]] >= end[source[i]] + lag[i]);

int: k; % Restriction Calendars
set of int: RESTRICTION = 1..k;
array[RESTRICTION] of restrictions: r_type;
array[RESTRICTION] of floatplus: r_start;
array[RESTRICTION] of floatplus: r_end;
array[ACTIVITY] of var floatplus: pause;
array[RESTRICTION, ACTIVITY] of var bool: intercepting;
constraint forall(i in ACTIVITY, r in RESTRICTION)

(intercepting[r,i] =
(r_type[r] in restricted_by[i] /\ end[i] > r_start[r] /\ r_end[r] >= start[i]));

constraint forall(i in ACTIVITY) (pause[i] >= sum(
[if (intercepting[r, i])
then (r_end[r] - r_start[r])
else (0)
endif | r in RESTRICTION]));

constraint forall(i in ACTIVITY) (end[i] >= start[i] + duration[i] + pause[i]);

solve minimize max(end) * n * 1000 + sum(pause);

53

B. Implemented GA strategies

Tab. B.1.: Overview of Implemented Strategies in Genetic Algorithms

Te
rm

in
at

io
n Max Generation Terminate after reaching a set number of generations

Timeout Terminate after a specific time duration
Min Fitness Terminate when a fitness threshold is reached
x-Fitness Stagnation Terminate if no improvement in fitness for x generations

Se
le

ct
io

n

n-Elite Select the n best individuals based on fitness, defer the
rest to a sub-strategy

Random Select individuals uniformly
Roulette Wheel Probabilistic selection proportional to fitness
Rank Based Selection probability scaled by fitness rank

M
ut

at
io

n

Uniform Random Mutate each gene independently with a set probability
Inorder Random Mutate genes between two random indices
Scaled Uniform Random Mutate each gene independently with scaling
Scaled Inorder Random Mutate and scale genes between indices
Shifting Mutation Shift value based on sampling a normal distribution

Re
pr

od
uc

tio
n Uniform Crossover Swap independently chosen genes from two parents

One Point Crossover Split genomes at a point and recombine segments
Two Point Crossover Split at two points and recombine segments
Differential Reproduction Create offspring using scaled difference vectors

Idempotent Repair No modification, placeholder for potential repair
Length Repair Fill genome with randomized genes

54

C. Evaluation Tables

Statistical evaluations and tables have been created with JASP [10].
Some tables have been manually reformatted.

Parameter Study - CAL Encoding

Tab. C.1.: ANOVA - Improvement

Cases Sum of Squares df Mean Square F p
Mutation Rate 0.149 3 0.050 234.135 < .001
Population Size 0.002 2 0.001 5.046 0.007
MR * PS 0.002 6 3.319× 10−4 1.561 0.154
Residuals 0.508 2388 2.126× 10−4

Tab. C.2.: Post Hoc Comparisons - Mutation Rate

Mean Difference SE t pbonf

1 5 0.015 8.418× 10−4 17.973 < .001
10 0.019 8.418× 10−4 22.144 < .001
20 0.020 8.418× 10−4 23.324 < .001

5 10 0.004 8.418× 10−4 4.171 < .001
20 0.005 8.418× 10−4 5.351 < .001

10 20 9.933× 10−4 8.418× 10−4 1.180 1.000

Tab. C.3.: Post Hoc Comparisons - Population Size

Mean Difference SE t pbonf

10 25 0.001 7.290× 10−4 1.813 0.210
50 0.002 7.290× 10−4 3.166 0.005

25 50 9.865× 10−4 7.290× 10−4 1.353 0.528

55

Parameter Study - INT Encoding

Tab. C.4.: ANOVA - Improvement

Cases Sum of Squares df Mean Square F p
Mutation Rate 0.187 3 0.062 72.056 < .001
Population Size 0.007 2 0.003 3.866 0.021
MR * PS 0.004 6 5.955× 10−4 0.689 0.658
Residuals 2.064 2388 8.642× 10−4

Tab. C.5.: Post Hoc Comparisons - Mutation Rate

Mean Difference SE t pbonf

1 5 −0.009 0.002 −5.286 < .001
10 −0.017 0.002 −10.279 < .001
20 −0.023 0.002 −13.770 < .001

5 10 −0.008 0.002 −4.994 < .001
20 −0.014 0.002 −8.485 < .001

10 20 −0.006 0.002 −3.491 0.003

Tab. C.6.: Post Hoc Comparisons - Population Size

Mean Difference SE t pbonf

10 25 −0.003 0.001 −1.778 0.227
50 −0.004 0.001 −2.741 0.019

25 50 −0.001 0.001 −0.963 1.000

56

Encoding Comparison

Tab. C.7.: Frequencies for Any Improvement
All Param means the subset of results of the parameter study with population size of 25
Best Param means the subset of runs of the parameter study with population size of 25
and with mutation rate 0.01 (CAL) and 0.2 (INT)
MIB+MUG means the results of our second experiment

All Param Best Param MIB+MUG
Encoding Any Improvement Frequency Percent Frequency Percent Frequency Percent

CAL FALSE 608 76.0 70 35.0 22 11.0
TRUE 192 24.0 130 65.0 178 89.0

INT FALSE 412 51.5 67 33.5 12 6.0
TRUE 388 48.5 133 66.5 188 94.0
Total 800 100.0 200 100.0 200 100.0

Tab. C.8.: Descriptive Statistics of Cost Improvement
All Param means the subset of results of the parameter study with population size of 25
Best Param means the subset of runs of the parameter study with population size of 25
and with mutation rate 0.01 (CAL) and 0.2 (INT)
MIB+MUG means the results of our second experiment

All Param Best Param MIB+MUG
CAL INT CAL INT CAL INT

Median 0.000 0.000 0.013 0.032 0.077 0.128
Mean 0.006 0.023 0.020 0.034 0.089 0.163
Std. Deviation 0.016 0.031 0.026 0.035 0.071 0.119

57

Hardness Factor Analysis

Tab. C.9.: Pearson’s Correlations
Pearson’s r p

Cost Improvement - Activity Count −0.084 < .001
- Max Project Days −0.084 < .001
- Total Processing Duration −0.129 < .001
- Interruptible Percent 0.160 < .001

Tab. C.10.: Regression Model of Cost Improvement - Summary, ANOVA and Coefficients

Model R R2 Adjusted R2 RMSE

H0 0.000 0.000 0.000 0.126
H1 0.213 0.045 0.045 0.123

Model Sum of Squares df Mean Square F p

H1 Regression 5.213 4 1.303 85.957 < .001
Residual 109.689 7235 0.015

Total 114.902 7239

Model Unstandardized Standard Error Standardized t p

H0 (Intercept) 0.104 0.001 70.438 < .001
H1 (Intercept) 0.088 0.003 34.669 < .001

Activity Count 9.014× 10−7 2.009× 10−7 0.068 4.487 < .001
Max Project Days −6.315× 10−6 1.567× 10−6 −0.052 −4.030 < .001

Total Processing Duration −1.350× 10−8 1.354× 10−9 −0.143 −9.971 < .001
Interruptible Percent 5.022× 10−4 3.492× 10−5 0.176 14.382 < .001

58

	Title Page
	Zusammenfassung
	Abstract
	Contents
	1 Introduction
	2 Background
	2.1 Mathematical Foundations
	2.1.1 (Project) Scheduling
	2.1.2 Optimization

	2.2 Related Works

	3 Approach
	3.1 Problem Statement
	3.1.1 Modified Project Scheduling Problem
	3.1.2 Work Schedule Generation Problem

	3.2 Implementation
	3.2.1 Timelines
	3.2.2 ASAP scheduling
	3.2.3 EC Framework
	3.2.4 GA Encodings

	4 Evaluation
	4.1 Datasets and Test Instances
	4.2 EA Configuration and Parameter Study
	4.3 Experimental Findings
	4.4 Miscellaneous Findings

	5 Conclusion
	Bibliography
	Miscellaneous References
	A CIP for ASAP Scheduling Problem
	B Implemented GA strategies
	C Evaluation Tables

