
Masterarbeit

Complexity of arithmetic circuits over
natural numbers with minimum and

maximum

Pascal Schlereth

Abgabedatum: 15. März 2023
Betreuer: Prof. Dr. Christian Glaßer

Fabian Egidy, M. Sc.

Julius-Maximilians-Universität Würzburg
Lehrstuhl für Informatik I

Algorithmen und Komplexität

Contents

1 Introduction 2

2 Definitions 3
2.1 Concerning circuits and formulas . 3
2.2 Membership problems . 6
2.3 The encoding of circuits and formulas 6

3 Solving membership problems with minimum and maximum 9

4 Problems with only set operators 11
4.1 An upper bound . 11
4.2 Intersection with min and max . 14
4.3 Union with min and max . 16
4.4 The case of only min-, max-gates . 19

5 Problems with both + and × 21
5.1 The case (∩,+,×,min,max) and its subcases 22
5.2 The case (∪,+,×,min,max) and its subcases 24
5.3 (∩,∪,+,×,min,max)-formulas . 31
5.4 (∩,∪,+,×,min,max)-circuits . 34

6 Problems with either + or × 38
6.1 The case of (∪,∩, ,+,min,max)-circuits 38
6.2 (∪,∩,+,min,max)-formulas . 42
6.3 The difficulty of MC(∪,∩,×,min,max) and MC(∪,∩, ,×,min,max) . . 51

7 Conclusion 53

References 54

1

1 Introduction

In this master’s thesis, it is assumed the reader is familiar with the basic concepts
of graph theory and different concepts of theoretical computer science. This includes
knowledge of basic complexity classes like L, P, PSPACE, EXP as well as their non-
deterministic counterparts and many-one logspace respectively polynomial time re-
ducibility.

The studies of formulas dates back to 1973 when L. J. Stockmeyer and A. R. Meyer
[SM73] investigated the complexity of problems over different kinds of formulas. For-
mulas are expressions over a given set of inputs, e.g. numbers or formal words,
connected with some operations, e.g. set union and intersection, addition or con-
catenation. According to these operations every formula evaluates to a solution set.
Stockmeyer and Meyer studied different problems over the solution set of formulas,
for example the membership problem asks for a given formula F and an instance b, if
b is an element of the solution set of F . Another problem is the equivalence problem,
asking for two given Formulas F1 and F2, if F1 and F2 have the same solution set.

In 2007 P. McKenzie and K. W. Wagner [MW07] considered circuits which are a
generalization of formulas. Instead of an expression we consider an acyclic graph, where
the vertices are either labeled as an input element or an operation. They investigated
lower and upper bounds for the membership problem of circuits (and formulas) with
natural numbers as inputs and operations from the set O, where O ⊆ {∪,∩, ,+,×}.
(Here denotes the complement of a set regarding the set of natural numbers N.)

This thesis can be viewed as a direct expansion on this work by McKenzie and Wagner.
Let O ⊆ {∪,∩, ,+,×}. The question we are trying to solve is: what are the lower and
upper bounds for the complexity of the membership problem for a circuit (respectively
formula) over natural numbers with operators from O as well as the operators min
and max, whose value is defined by taking the minimum respectively maximum of the
incoming set?

Chapter 2 covers the formal setup necessary for our studies. In the short chapter 3
we discuss some general strategies and techniques for tackling the membership prob-
lems proposed by this thesis. In the following three chapters, we study the different
membership problems. They are split up in those problems, where only set operators
are allowed (Chapter 4), where both arithmetically operators + and × are allowed
(Chapter 5), and lastly where only one of + and × are allowed (Chapter 6). Chapter
7 summarizes the lower and upper that we have proved.

2

2 Definitions

This chapter covers the definitions of circuits respectively formulas as well as that
of membership problems based on circuits resp. formulas. Furthermore this chapter
provides the basic setup we need for the studies of the membership problems in the
upcoming chapters.

2.1 Concerning circuits and formulas

The following gives a formal and proper definition of the main object studied in this
thesis.

Definition 2.1 (Arithmetic circuits). Let O ⊆ {∪,∩, ,+,×,min,max}. Then an
O-circuit C := (V,E, vC , α) is defined as:

(i) (V,E) is a finite directed acyclic graph, where each vertex’s indegree is at most
2. The vertices of this graph are also called gates; the vertices with indegree 0
are called input gates. The other gates with indegree greater than 0 are called
computational gates.

(ii) vC ∈ V is the designated output gate. In practice, this may often be ”the last”
gate. However, the definition allows for every gate in V to be labeled as the
output.

(iii) The function α : V → O∪N assigns each gate a label, hence we call this function
the label function. The indegree of a given gate v ∈ V determines the possible
values of α(v):

- If v has indegree 0, then α(v) ∈ N.

- If v has indegree 1, then α(v) ∈ { ,min,max}.
- If v has indegree 2, then α(v) ∈ {∪,∩,+,×}.

(iv) The interpretation function I : V → P(N) describes the ”semantic” of the
circuit by assigning each gate a set of natural numbers, representing the com-
puted values at this point in the circuit. For v ∈ V let u be its predecessor, if
v has indegree 1, resp. u1, u2 its predecessors, if v has indegree 2. We define I
inductively:

- If v is an input gate, then I(v) := {α(v)}.
- If α(v) = ∪, then I(v) := I(u1) ∪ I(u2).

- If α(v) = ∩, then I(v) := I(u1) ∩ I(u2).

3

- If α(v) = , then I(v) := N \ I(u).

- If α(v) = +, then I(v) := {a+ b | a ∈ I(u1), b ∈ I(u2)}.
- If α(v) = ×, then I(v) := {a · b | a ∈ I(u1), b ∈ I(u2)}.
- If α(v) = min, then I(v) := {a ∈ I(u) | a ≤ b,∀b ∈ I(u)}.
- If α(v) = max, then I(v) := {a ∈ I(u) | a ≥ b,∀b ∈ I(u)}.

Conveniently we set I(C) := I(vC). This set I(C) can be viewed as the solution
set of C. We may paraphrase this by saying ”I(C) is computed by C” and for
the elements b ∈ I(C) we say ”b is computed by C”.

This formal definition is complemented by an graphical example.

Example 2.2. Consider the following circuit C:

1

v1

9

v2

7

v3

10

v4

∪

v5

×

v6

∪

v7

v8

∩

v9

max

v10

∪

v11

Figure 2.1: An example of a circuit.

The input gates are marked green, the computational gates are marked grey and the
output gate is marked red. The values of the interpretation can be found in the
following table.

I(v1) = {1} I(v5) = {1, 9} I(v9) = {81}
I(v2) = {9} I(v6) = {9, 81} I(v10) = {10}
I(v3) = {7} I(v7) = {7, 10} I(v11) = {10, 81}
I(v4) = {10} I(v8) = N \ {1, 9} ⇒ I(C) = {10, 81}

So the circuit in this example computes the set {10, 81}.

Based on the definition of circuits, we define the second object studied in this thesis.

4

Definition 2.3 (Arithmetic formulas). Let O ⊆ {∪,∩, ,+,×,min,max} and F :=
(V,E, vF , α) be an O-circuit. Then F is an arithmetic formula if and only if for every
gate v ∈ V the outdegree is at most 1.

The name ”formula” is indeed well chosen as every circuit satisfying the formula cri-
terion can be written as a formula as shown in the following example:

Example 2.4. Consider the following circuit F :

5

v1

14

v2

2

v3

3

v4

59

v5

∪

v6

∩

v7

min

v8

+

v9

∪

v10

Figure 2.2: An example of a formula.

As the outdegree of every gate in this example is at most 1, F is also a formula. One
can write this formula as

F = min(5 ∪ 14) ∪ ((2 ∩ 3) + 59).

By the way, the set computed by F is {5}. This is due to the fact that I(v8) = {5}
and I(v9) = ∅, as I(v9) is the sum of {59} and an empty set.

Before continuing with the definition of the membership problem, we establish an
useful notation.

Definition 2.5. Let O ⊆ {∪,∩, ,+,×,min,max} and C := (V,E, vC , α) be a O-
circuit. For a gate v ∈ V denote by Cv := (V,E, v, α) the same circuit as C but with
v being the output gate.

5

2.2 Membership problems

Based on circuits and formulas one can study different decision problems. For example
there is the emptiness problem asking whether a given circuit/formula computes the
empty set or not. Another problem, called the equivalence problem, asks, if two given
circuits/formulas are computing the same set or not. However, subject of this thesis
are the so called membership problems which ask for a given circuit/formula C and a
given number b, if b is computed by C or not.

Definition 2.6 (Membership problem). Let O ⊆ {∪,∩, ,+,×,min,max}.

(i) Then define the membership problem of circuits regarding O as

MC(O) := {(C, b) | C is a O-circuit, b ∈ N and b ∈ I(C)} .

(ii) Then define the membership problem of formulas regarding O as

MF(O) := {(F, b) | F is a O-formula, b ∈ N and b ∈ I(F)} .

Instead of writing MC({∪,∩,+}) for example, we will forfeit the set brackets and
simply write MC(∪,∩,+). The same applies for formulas.

2.3 The encoding of circuits and formulas

Let C := (V,E, vC , α) be a circuit with V = {v1, v2, . . . , vn}. As this object is basically
a finite graph, we encode it using the concept of adjacency lists. For v ∈ V denote by
l(v) := {w ∈ V | (v, w) ∈ E} all successor gates of v. Then we assume C is encoded in
the following way:

C : v1, α(v1), l(v1)− v2, α(v2), l(v2)− · · · − vn, α(vn), l(vn)− vC .

In this method of encoding there is no redundant information present.

Example 2.7. Considering once more the circuit C from Example 2.2, then the
encoding of this circuit is

C : (v1, 1, v5)− (v2, 9, v5, v6)− (v3, 7, v7)− (v4, 10, v7)− (v5,∪, v6, v8)− (v6,×, v9)

− (v7,∪, v10)− (v8, , v9)− (v9,∩, v11)− (v10,max, v11)− (v11,∪)− v11.

Here brackets are used for better visualization. Studying this encoding, one may notice
that for a given gate vi there are only successors vj satisfying j > i. This property of
a graph is called topological ordering.

Definition 2.8 (Topological ordering). Let G := (V,E) with V = {v1, . . . , vn} be a
finite graph.

(i) An ordering of the vertices V is a bijective function π : {1, . . . , n} → V .

6

(ii) If this ordering π satisfies

i > j ⇒ (π(i), π(j)) /∈ E,

then this ordering is called topological ordering.

The following well-known result from algorithmic graph theory shows that for every
circuit there exists an ordering of its gates, such that this ordering is a topological
ordering.

Proposition 2.9
Let G := (V,E) be a graph. Then there exists a topological ordering if and only if G is
acyclic.

Theorem 2.10
Let O ⊆ {∪,∩, ,+,×,min,max} and C := (V,E, vC , α), such that (V,E) is a graph,
vC ∈ V and α : V → N ∪ O be a label function. Then the test, if C is a circuit resp.
formula and its gates are topologically ordered, is possible in logarithmic space.

Proof. We give a constructive proof by explicitly stating this algorithm. What does
this algorithm have to check?

Keeping Definition 2.1 in mind, we have to check if (V,E) is acyclic. According
to Proposition 2.9, if the gates of V are given in topological order, this property is
automatically satisfied. We can test if (V,E) is topologically ordered by going through
every gate v ∈ V and check whether v is a successor of a gate u, where u is a gate
found after v in the ordering of V . If we found such a pair of gates u, v, we have found
a contradiction. If the test finds no such pair, then the gates of (V,E) are indeed
topologically ordered.

Further we have to check if the function α labels the gates properly. If a gate v ∈ V
has no predecessors, then α(v) has to be a natural number. If v has one predecessor,
then α(v) has to be an element of { ,min,max} and if v has two predecessors, then
α(v) has to be an element of {∪,∩,+,×}. If v has more than two predecessors, then
we have a contradiction. Keeping the assumption of V being topologically ordered in
mind, it is sufficient to search for the predecessors of v ”to the left of v” in the ordering
of V .

If we want to decide the question whether C is a formula, we additionally have to
check if every gate has at most 1 successor.

The resulting algorithm 2.1 for testing, if a given C is a formula, can be found on the
next page. The memory space this algorithm needs is saving the value of the variable
counter and managing two for-loops. Since the value of counter can not exceed 3,
both of these things can be done in logarithmic space. Additionally in the case of
testing for formulas, one has to test if there is more than one successor for every gate.
This can be done in logarithmic space also, which concludes this proof. �

7

Algorithm 2.1 Deciding, whether a given C is a formula. In case of testing C to be
a circuit, delete the lines 18 and 19.

Input: Graph (V,E), vC ∈ V and α : V → N ∪ O
1: for every v ∈ V do
2: Initialize counter as 0. This variable counts how many
3: predecessors v has in the graph.
4: for every u ∈ V with u > v1 do
5: if (u, v) ∈ E then
6: Return false, as this contradicts the topological ordering.

7: for every u ∈ V with u < v do
8: if (u, v) ∈ E then
9: Increment counter by 1.

10: if counter > 2 then
11: Return false, as there can not be a gate with more than 2 predecessors.

12: if α(v) ∈ N and counter 6= 0 then
13: Return false

14: if α(v) ∈ { ,min,max} and counter 6= 1 then
15: Return false

16: if α(v) ∈ {∪,∩,+,×} and counter 6= 2 then
17: Return false

18: if |l(v)| > 12 then
19: Return false

20: Return true, as there was no contradiction found

The consequence of this Theorem is pretty handy: every complexity class encountered
in the following chapters is at least L, so we can assume a given C is always a proper
circuit resp. formula, as the test is never more complex than the task itself. Addition-
ally, we can assume the ordering of the gates to be topologically ordered. So whenever
we encounter in the upcoming algorithms a ”for every v ∈ V do”-loop (as seen in line
1 of Algorithm 2.1 for example), we assume the gates are processed in a topologically
ordered-way.

Remark. In the upcoming algorithms we will often alter a given circuit C by adding
new gates to the circuit. These gates must be properly named, we have to ensure that
the name of the newly established gate is not already present in C. This can be done in
the following way. Read once through the names of the gates in C and store a pointer
towards the lexicographically largest name. When a new gate is constructed, choose
the next largest name and update the pointer. Constructing and updating this pointer
consumes logarithmic space, so whenever we construct a new gate, we can name it in
an efficient way.

1This notation means u is found after v regarding the ordering of V . Analogously u < v means u is
found before v.

2|l(v)| denotes the number of successors of v.

8

3 Solving membership problems with
minimum and maximum

Before jumping right into solving MC(O) and MF(O) for different O, let us consider
the following statement.

Theorem 3.1
Let O ⊆ P ⊆ {∪,∩, ,+,×,min,max} and C be a complexity class. If C is a lower
bound for the complexity of MC(O) resp. MF(O), then C is also a lower bound for the
complexity of MC(P) resp. MF(P).

Proof. Trivial, as every O-circuit resp. O-formula can be viewed as a P-circuit resp.
P-formula. �

In other words: Adding the possibility of having computational gates of another type
can never make the solving of membership problems easier. This theorem implies a
direct way to build upon the studies of McKenzie and Wagner in [MW07]. Their
results are given in Table 3.1 on the next page.

Theorem 6.3 will state that MC(∪,∩, ,+,min,max) ∈ PSPACE, so PSPACE is an
upper bound of the complexity of MC(∪,∩, ,+,min,max). Combining Table 3.1 and
Theorem 3.1 we immediately get PSPACE as a lower bound for the complexity of
MC(∪,∩, ,+,min,max) and the analysis of this case is complete. In fact we are
going to see that most of the time the membership problem is not getting harder to
solve by adding min-, max-gates. In these cases it is sufficient to cover the proofs for
the upper bounds not getting bigger compared to the respective cases without min-,
max-gates.

Theorem 6.3 shows MC(∪,∩, ,+,min,max) ∈ PSPACE by stating an algorithm run-
ning in polynomial space for solving this case. The idea there is to eliminate the min-,
max-gates of a given circuit C one-by-one in a topologically ordered way by explicitly
computing the value of I at these gates. This is done by using the fact that there is
a PSPACE-algorithm oracle for solving MC(∪,∩, ,+). Let v be the current min-,
max-gate with predecessor u, then ask for different i ∈ N if (Cu, i) ∈ MC(∪,∩, ,+).
Technically Cu is not a (∪,∩, ,+)-circuit, however as we eliminate the min-, max-
gates in order, all possible min-, max-gates are behind u, so I(u) is independent of any
min-, max-gate.

Now more general let O ⊆ {∩,∪, ,+,×} and M := {min,max}. We will encounter
this process of explicitly eliminating min-, max-gates by computing their values several
times. It leads organically to the approach of trying to show MC(O∪M) ≤P

m MC(O)

9

resp. MC(O ∪M) ≤log
m MC(O). If the input circuit is a formula, this process may

even respect the property of formulas, resulting in a solution for MF(O∪M) instantly.

Table 3.1: Solution of the membership problem, studied in [MW07].

O MC(O) MF(O)
lower bound upper bound lower bound upper bound

∪, ∩, , +, × NEXPTIME ? PSPACE ?
∪, ∩, +, × NEXPTIME NEXPTIME NP NP
∪, +, × PSPACE PSPACE NP NP
∩, +, × P co-R L L

+, × P P L L
∪, ∩, , + PSPACE PSPACE PSPACE PSPACE
∪, ∩, + PSPACE PSPACE NP NP
∪, + NP NP NP NP
∩, + C=L C=L L L

+ C=L C=L L L
∪, ∩, , × PSPACE PSPACE PSPACE PSPACE
∪, ∩, × PSPACE PSPACE NP NP
∪, × NP NP NP NP
∩, × C=L P L L

× NL NL L L
∪, ∩, P P L L
∪, ∩, P P L L
∪, NL NL L L
∩, NL NL L L

10

4 Problems with only set operators

This chapter is dedicated to membership problems, where only set operators, namely
{∪,∩, ,min,max}, are allowed as computational gates in the underlying circuit resp.
formula. In section 4.1 we will show MC(∪,∩, ,min,max) ∈ P giving us an upper
bound for all these problems. After that, we consider in section 4.2 MC(∩,min,max)
and in Section 4.3 MC(∪,min,max) as well as MC(∪,min) resp. MC(∪,max), as these
problems have indeed a different complexity compared to MC(∪,min,max). We will
conclude this chapter with a quick look at MC(min,max) in section 4.4.

4.1 An upper bound

Let C := (V,E, vC , α) be a (∪,∩, ,min,max)-cirucit and b ∈ N. By directly com-
puting the values of the interpretation function I(v) for every gate v, we just have
to ask in the end, if the given number b is in the output I(vC) or not. This may
seem not possible, because applying a -operator on a finite set yields an infinite set.
However, these infinite sets can be represented by stating their complement. The up-
coming Lemma shows that there exists a set W such that for every gate v ∈ V either
I(v) ⊆ W or I(v) ⊆ W . Moreover this Lemma gives an upper bound for the size of
such an set W , guaranteeing the polynomial runtime.

Lemma 4.1
Let C := (V,E, vC , α) be a (∩,∪, ,min,max)-circuit.

(i) There exists a set W satisfying |W | ≤ |V | and either I(v) ⊆W or I(v) ⊆W for
all v ∈ V , so the number of elements in W are polynomially bounded in |C|.

(ii) Let m be the biggest input element of C and w := maxW . Then |w| ≤ |m|+ |V |,
so the size of the elements of W are polynomially bounded in |C|.

Proof. We will show (i) inductively.

Base Case: Define W0 :=
⋃

input gate v I(v) the union of all input sets. Then

|W0| ≤ |V | and I(v) ⊆W0

for all input gates v, so the statement is true for all input gates v.

Inductive step: Let v ∈ V be a computational gate with predecessor(s) u resp.
u1, u2. There exists a set Wi satisfying |Wi| ≤ |V | and

I(u) ⊆Wi or I(u) ⊆Wi

11

resp.
I(u1) ⊆Wi or I(u1) ⊆Wi and I(u2) ⊆Wi or I(u2) ⊆Wi.

(i) Let α(v) = ∩ and first assume I(u1) ⊆Wi
1. Then

I(v) = I(u1) ∩ I(u2) ⊆ I(u1) ⊆Wi.

Now Assume I(u1), I(u2) ⊆Wi. Then

I(v) = I(u1) ∩ I(u2) = I(u1) ∪ I(u2) ⊆Wi.

(ii) Let α(v) = ∪ and assume I(u1), I(u2) ⊆Wi. Then

I(v) = I(u1) ∪ I(u2) ⊆Wi.

Assume I(u1) ⊆Wi
2. Then

I(v) = I(u1) ∪ I(u2) = I(u1) ∩ I(u2) ⊆ I(u1) ⊆Wi.

(iii) Let α(v) = -gate and assume I(u) ⊆Wi. Then

I(v) = I(u) ⊆Wi.

Assume I(u) ⊆Wi. Then
I(v) = I(u) ⊆Wi.

(iv) Let α(v) = min and assume I(u) ⊆Wi. Then

I(v) = min I(u) ⊆Wi

Assume I(u) ⊆ Wi. Then I(v) = {min I(u)} may not be a subset of Wi. How-
ever, since I(v) consists of one element, we can afford to add min I(u) to the set
Wi by Wi+1 := Wi∪{min I(u)}. (The total number of values added through this
case can not exceed the number of min-gates present in the circuit C.) Thus,
through this expansion we get

I(v) ⊆Wi+1 and |Wi+1| ≤ |V |.

(v) Let α(v) = max and assume I(u) ⊆Wi. Then

I(v) = max I(u) ⊆Wi.

Assume I(u) ⊆Wi. Then.

I(v) = max I(u) = ∅ ⊆Wi.

1The case I(u2) ∈ Wi is analogouos.
2The case I(u2) ∈ Wi is analogous.

12

Regarding (ii), we first state m = maxW0 by definition of W0. In the above analysis we
have seen, that the only case we may have to expand W0 is α(v) = min and I(u) ⊆W0,
with u being the predecessor of v. In this case I(v) = {n}, where n is the smallest
number not present in I(u). This yields n is at most m + 1 and either m or m + 1
would be the maximum of the newly expanded W1. We see the maximum of the sets
Wi can increase at most by 1 compared to Wi−1, so the maximum of W can never be
bigger than m + |V |, because |V | is an upper bound for the number of min-gates in
C. �

Theorem 4.2
Let O ⊆ {∪,∩, } and M := {min,max}. Then

MC(O ∪M) ∈ P

Proof. Without loss of generality assume O = {∪,∩, }. Let C := (V,E, vC , α) be a
(O ∪M)-circuit and b ∈ N. Algorithm 4.1 decides the question, if b ∈ I(C) as this
algorithm computes the values of I(v) explicitly (resp. those of I(v)) and saving them
in the list entry L[v]. In the end, the algorithm asks whether b ∈ L[v] and gives the
right answer back, depending on if L[v] represents I(v) or I(v).

The algorithm iterates through every gate of the circuit and performs some kind of set
operations. (Except for α(v) = , where the previous set is just copied.) The size of
these sets is polynomially bounded in |C|, as the number of elements in these sets are
polynomially bounded as well as the size of these elements. (See Lemma 4.1.) This
implies that computing L[v] is doable in polynomial time for every gate v ∈ V . All in
all this gives polynomial runtime for Algorithm 4.1, which concludes this proof.

Algorithm 4.1 Solving MC(∪,∩, ,min,max)

Input: (∪,∩, ,min,max)-circuit C := (V,E, vC , α) and b ∈ N.
1: Initialize an empty list L, which will consist of elements (M, t) with M ⊂ N
2: and t ∈ {0, 1}, where 1 indicates I(v) = M and 0 indicates I(v) = M .
3: for every input gate v ∈ V do
4: Set L[v] := ({α(v)}, 1).

5: for every computational gate v ∈ V do
6: Find the predecessor(s) u resp. u1, u2 of v.
7: Further denote L[u] = (M, t) resp. L[u1] = (M1, t1) and L[u2] = (M2, t2).
8: if α(v) = ∪ then
9: if t1 = t2 = 1 then

10: Set L[v] := (M1 ∪M2, 1).
11: else if ti = 1 and tj = 03 then
12: Set L[v] := (Mj \Mi, 0).
13: else if t1 = t2 = 0 then
14: Set L[v] := (M1 ∩M2, 0).

15: else if α(v) = ∩ then

3Here and in the following i, j ∈ {0, 1} and i 6= j. This notation shortens the length of the algorithm.

13

16: if t1 = t2 = 1 then
17: Set L[v] := (M1 ∩M2, 1).
18: else if ti = 1 and tj = 0 then
19: Set L[v] := (Mi \Mj , 1).
20: else if t1 = t2 = 0 then
21: Set L[v] := (M1 ∪M2, 0).

22: else if α(v) = then
23: Set I(v) := (M, 1− t).
24: else if α = min then
25: if t = 1 then
26: Set L[v] := ({minM}, 1)
27: else if t = 0 then
28: Find the smallest number k satisfying k /∈M and set L[v] := ({k}, 1).

29: else if α(v) = max then
30: if t = 1 then
31: Set L[v] := ({maxM}, 1).
32: else if t = 0 then
33: Set L[v] := (∅, 1).

34: Now let (M, t) = L[vC]
35: if (b ∈M and t = 1) or (b /∈M and t = 0) then
36: Return true, as b ∈ I(vC).
37: else
38: Return false.

�

4.2 Intersection with min and max

The problem MC(∩,min,max) is going to turn out to be in NL. Before we start,
consider the following Lemma.

Lemma 4.3
Let C := (V,E, vc, α) be a (∩,min,max)-gate. Further let u ∈ V be an input gate and
v ∈ V be a gate such that v can be reached by u. Then either I(v) = ∅ or I(v) = {α(u)}.

Proof. We show the statement inductively.

Initial case: For the input gate u we have I(u) = {α(u)}.

Inductive step: Let v ∈ V be a gate, which can be reached from u. Further let w
resp. w1, w2 be the predecessor(s) of v.

(i) Let α(v) = ∩. As v can be reached by u either w1 or w2 (or both) can be reached
from u; w.l.o.g. let w1 be the gate, which can be reached from u. Then either

I(v) = I(w1) ∩ I(w2) = {α(u)} ∩ I(w2) =

{
{α(u)}, if α(u) ∈ I(w2)
∅, else

14

or
I(v) = I(w1) ∩ I(w2) = ∅ ∩ I(w2) = ∅.

So either I(v) = {α(u)} or I(v) = ∅.

(ii) If α(v) = min, then

I(v) = min I(w) =

{
{α(u)}, if I(w) = {α(u)}
∅, if I(w) = ∅ .

So again either I(v) = {α(u)} or I(v) = ∅.

(iii) The case α(v) = max is analogous to (ii).

�

Theorem 4.4

MC(∩,min,max) ∈ NL

Proof. Instead of showing MC(∩,min,max) ∈ NL directly, we show that the com-
plement of this problem is in NL, which yields MC(∩,min,max) ∈ NL by using the
fact that NL = coNL. So we are searching for a nondeterministic algorithm, which
yields for a given (∩,min,max)-circuit C := (V,E, vc, α) and b ∈ N the answer yes, if
b /∈ I(C) and no, if b ∈ I(C).

Assume for the moment that b /∈ I(C). Then there has to be an input gate u with
α(u) 6= b such that vC can be reached from v. (Otherwise, every input gate v, which
reaches vC , satisfies α(v) = b.4 Then b ∈ I(C), as on the one hand for a set {b} the
minimum resp. maximum is b = min{b} = max{b}. On the other hand intersecting
{b} with {b} yields {b}, so I(C) = {b}.)

Now assume there is an input gate u with α(u) 6= b, from which we can reach vC .
There are two cases to distinguish:

(i) vC can not be reached by any other input gate or every other input gate v, from
which we can reach vC , satisfies α(v) = α(u). Then I(C) = {α(u)} as seen above
and b /∈ I(C).

(ii) There is another input gate v, satisfying α(v) 6= α(u) and vC can be reached
from v. Applying Lemma 4.3 yields I(vC) = {α(v)} or I(vC) = ∅. However vC
can also be reached from u, so I(vC) = {α(u)} or I(vC) = ∅. As α(v) 6= α(u),
the only possibility is I(vC) = ∅, so b /∈ I(C).

We conclude b /∈ I(C) if and only if there is an input gate u such that vC can be
reached from u and α(u) 6= b. This property can be be easily tested by the following
algorithm.

4The case that no input gate can reach vC would contradict the fact that C is acyclic.

15

Algorithm 4.2 Solving the complement of MC(∩,min,max)

Input: (∩,min,max)-circuit C := (V,E, vC , α) and b ∈ N.
1: for every gate u ∈ V with α(u) 6= b do
2: Initialize v := u.
3: while v 6= vC do
4: If v has no successors, break the while-loop. This path is a dead end.
5: Set nondeterministicly each successor of v as the new v.

6: Return true, as we found a path from u to vC .

7: Return false.

This algorithm runs in (nondeterministic) logarithmic space, the only space needed is
for managing the for-loop and saving the current v in the while-loop. �

Corollary 4.5

MF(∩,min,max) ∈ L

Proof. Let F := (V,E, vC , α) be a (∩,min,max)-formula and let b ∈ N. As F is a
(∪,min,max)-circuit, too, Algorithm 4.2 can be used to decide the question, if b /∈
I(C). However, since F is a formula, there is no need for nondeterministicly guessing
the successors of a given gate in line 5. Instead we can search for the unique successor,
resulting in a deterministic (logarithmic space) algorithm. �

4.3 Union with min and max

This case is quiet an interesting one, as we have to differentiate, whether we add both
minimum- and maximum-gates, or if we add just one of these types of gates. If we
just add min- or max-gates, the problem will be in NL, while adding both min- and
max-gates, the membership problem will be P-complete regarding ≤log

m -reduction.

Theorem 4.6

MC(∪,min) ∈ NL and MC(∪,max) ∈ NL

Proof. Let C := (V,E, vC , α) be a (∪,min)-circuit and b ∈ N. Then b ∈ I(C) if and
only if there exists a path in C from an input gate v ∈ V satisfying α(v) = b to vC
and the following condition is met: For every min-gate w along this path, there can
not be an input gate u ∈ V with α(u) < b and w can be reached by u. Otherwise, we
would have I(w) = {x} with x ≤ α(u) and ”the value b is lost” along this path.

The following algorithm returns true if and only if such a path exists.

16

Algorithm 4.3 Solving MC(∪,min)

Input: (∪,min)-circuit C := (V,E, vC , α) and b ∈ N.
1: for every gate v ∈ V with α(v) = b do
2: Initialize w := v
3: while w 6= vC do
4: If w has no successors, break the while-loop. This is a dead end.
5: if α(w) = min then
6: for every u ∈ V with α(u) < b do
7: Test, if w can be reached by u.
8: If yes, break the outer for-loop and continue with the next v.

9: Set nondeterministicly each successor of w as the new w.

10: Return true.
11: Return false.

At line 7 the test if w can be reached by u can be implemented via the idea of the
proof of the famous Immerman–Szelepcsényi theorem. This ensures us that if w can
be reached, there is a calculation path that returns this answer, and if w can not
be reached, there is a calculation path returning this answer. Continue the calcula-
tion only in these cases. If a calculation path returns no definitive answer drop the
calculation at this point.

Besides managing two for-loops (starting in lines 1 and 6) and one while-loop (line 3),
the algorithm has to solve a reachability problem in line 7. All of these things can be
done in nondeterministic logarithmic space, yielding MC(∪,min) ∈ NL.

The algorithm for solving MC(∪,max) is analogous, the only differences are in line 5
(α(w) = max) and in line 6, where we are looking for input gates satisfying α(u) > b
instead of α(u) < b, showing MC(∪,max) ∈ NL. �

Now let us study the case MC(∪,min,max). To see the P-hardness of MC(∪,min,max),
we consider the monotone circuit value problem (MCV), which asks for a given boolean
circuit C with AND- and OR-gates, if the circuit C evaluates true.

Here we define boolean circuit with AND- and OR-gates similar to algorithmic circuits
(see Definition 2.1). Let C := (V,E, vc, α), then C is a monotone boolean circuit,
if (V,E) is an acyclic graph. Further for an input gate v ∈ V , we have α(v) ∈
{true, false}. If v ∈ V is a computational gate, then α(v) ∈ {AND,OR}. The
interpretation function I is defined inductively:

- I(v) := α(v) for input gates v ∈ V .

- Let v ∈ V be a computational gate and u1, u2 ∈ V its predecessors. If α(v) =
AND, then I(v) := I(u1) ∧ I(u2). If α(v) = OR, then I(v) := I(u1) ∨ I(u2).

From that define the set

MCV := {C | C is a boolean circuit and I(C) is true}.

17

Goldschlager has shown in [Gol77] that the set MCV is ≤log
m -complete for P.

Theorem 4.7

MCV ≤log
m MC(∪,min,max),

so MC(∪,min,max) is P-hard.

Proof. Let C := (V,E, vC , α) be a boolean circuit with AND- and OR-gates. We
translate C into an algortihmic circuit C̃ := (Ṽ , Ẽ, ṽC̃ , α̃) in the following way:

- For input gates v ∈ V , if α(v) = true, set α̃(v) := 1. Otherwise set α̃(v) := 0.

- For computational gates v ∈ V , construct a new gate vnew and add (v, vnew) to
E as well as (vnew, w) for all predecessors w of v. Delete all edges (v, w) from E.
In other words: Add the gate vnew to C by placing it right after v.

If α(v) = AND, set α̃(vnew) := min, otherwise if α(v) = OR, set α̃(vnew) := max.
Set α(v) = ∪ in the end in both cases.

- Set ṽC̃ := vCnew.

Let I be the interpretation function regarding C and Ĩ the interpretation function
regarding C̃. Then C ∈ MCV ⇔ (C̃, 1) ∈ MC(∪,min,max), which we show by
proofing the equivalences

I(v) = true⇔ Ĩ(vnew) = {1} and I(v) = false⇔ Ĩ(vnew) = {0} (4.1)

for every v ∈ V inductively.

Initial case: For input gates v ∈ V (4.1) is true by construction.

Inductive step: Let v ∈ V be a computational gate with predecessors u1, u2

If α(v) = AND, then

I(v) = true⇔ I(u1) = true and I(u2) = true⇔ Ĩ(u1new) = {1} and Ĩ(u2new) = {1}
⇔ Ĩ(v) = {1} ⇔ Ĩ(vnew) = min Ĩ(v) = {1}

I(v) = false⇔ I(u1) = false or I(u2) = false⇔ Ĩ(u1new) = {0} or Ĩ(u2new) = {0}
⇔ Ĩ(v) = {0} or Ĩ(v) = {0, 1} ⇔ Ĩ(vnew) = min Ĩ(v) = {0}.

Analogously, if α(v) = OR, then

I(v) = true⇔ I(u1) = true or I(u2) = true⇔ Ĩ(u1new) = {1} or Ĩ(u2new) = {1}
⇔ Ĩ(v) = {1} or Ĩ(v) = {0, 1} ⇔ Ĩ(vnew) = max Ĩ(v) = {1}

I(v) = false⇔ I(u1) = false and I(u2) = false⇔ Ĩ(u1new) = {0} and Ĩ(u2new) = {0}
⇔ Ĩ(v) = {0} ⇔ Ĩ(vnew) = max Ĩ(v) = {0}.

This reduction is realised by Algorithm 4.4 on the next page. Besides managing one
for-loop, this algorithm has to store the value of the pointer p. This can be done in
logarithmic space.

18

Algorithm 4.4 Reducing MCV to MC(∪,min,max)

Input: boolean circuit C := (V,E, vC , α) with AND- and OR-gates.
1: Let n be the greatest number present in the names
2: of the gates v ∈ V and set m := n+ 1.
3: for every v ∈ V do
4: if α(v) = true then
5: Write v, α(v) := 1 as well as all successors of v onto the output.
6: else if α(v) = false then
7: Write v, α(v) := 0 as well as all successors of v onto the output.
8: else if α(v) ∈ {AND,OR} then
9: Write v and α(v) := ∪ onto the output.

10: Set a new gate ṽ as the only predecessor of v.
11: if α(v) = AND then
12: Start a new gate entry by writing ṽ, α(ṽ) := min
13: and all predecessors of v onto the output.
14: else if α(v) = OR then
15: Start a new gate entry by writing ṽ, α(ṽ) := max
16: and all predecessors of v onto the output.

17: if v = vC then
18: Store a pointer p towards ṽ.

19: Write the name, which is pointed at by p, as the new output gate onto the output.

�

4.4 The case of only min-, max-gates

At first glance the problem MC(min,max) might look equivalent to the Reachability
problem of graphs, however, one can use the fact, that every min-, max-gate has exactly
one predecessor to solve MC(min,max) - getting rid of the need for nondeterministicly
guessing predecessor gates.

Theorem 4.8

MC(min,max) ∈ L

Proof. We have to find a logspace algorithm for deciding, if for a given (min,max)-
circuit C := (V,E, vC , α) and b ∈ N the statement b ∈ I(C) is true. Consider the
following idea: We start at the output gate and work our way through the circuit
backwards by taking the unique predecessors. In the end, we have to reach an input
gate v. If α(v) = b, then I(C) = {b}, as the min-, max-gates do not alter the values at
all. (For an arbitrary set N := {n}, n = minN = maxN .) This yields the following
algorithm.

19

Algorithm 4.5 Solving MC(min,max)

Input: (min,max)-circuit C := (V,E, vC , α) and b ∈ N.
1: Initialize v := vC
2: while α(v) /∈ N do
3: Find the unique u with (u, v) ∈ E and set v := u.

4: if α(v) = b then
5: Return true.
6: else if α(v) 6= b then
7: Return false.

The memory space needed to perform this algorithm is saving the variable v. This can
be realized in logarithmic space by using a pointer. �

The same idea can be applied to formulas without any restrictions.

Corollary 4.9

MF(min,max) ∈ L

Proof. For solving MF(min,max) one can use Algorithm 4.5 once again. �

20

5 Problems with both + and ×
The question, if MC(∪,∩, ,+,×) is decidable, is an open question. McKenzie &
Wagner showed, based on an idea first found by Christian Glaßer, that an algorithm
for solving MC(∪,∩, ,+,×) could decide, whether the famous (unsolved) Goldbach
Conjecture is true or false. The Conjecture states: Every even number greater than 2
is the sum of two primes.

Consider the formula
GE2 = (0 ∪ 1)

for the set of the numbers ≥ 2 and the formula

PRIMES = GE2 ∩ (GE2×GE2)

for the set of all primes. Now contruct the formula

GOLDBACH = (GE2× 2) ∩ (PRIMES + PRIMES).

Then I(GOLDBACH) is empty if and only if every even number greater than 2 is
the sum of two primes, so

0 ∈ I
(
0×GOLDBACH

)
if and only if Goldbach’s Conjecture is true.

By adding the option of having min-, max-gates, we can find even more open problems,
which can be represented by a (∩,∪, ,+,×,min,max)-formula. A good place to find
”easy to formulate but hard to solve”-problems are problems about prime numbers.
For example consider the following formula

TWINS = PRIMES ∩ (PRIMES + 2)

for the set of twin primes. (More correctly, the set contains the greater prime of all
twin prime pairs.) The open question, if there are infinitely many prime twins, is true
if and only if max (TWINS) is empty. In the same way as above, we formulate the
equivalent membership problem

0 ∈ I
(
0×maxTWINS

)
.

For the next example consider

SPRIMES = PRIMES ∩ ((2× PRIMES) + 1)

21

the set of all safe primes, associated to a Sophie-Germain prime. (A prime p is called
Sophie-Germain prime, if 2p+ 1 is also prime. 2p+ 1 is called a safe prime associated
with p.) Then

0 ∈ I
(
0×maxSPRIMES

)
if and only if there are infinitely many Sophie-Germain primes, which is also an open
question. More general, problems of the form: ”Are there infinitely many numbers
satisfying some condition A?” can be easily represented by finding a formula FA de-
scribing the set of numbers satisfying condition A and then asking

0 ∈ I
(
0×maxFA

)
,

since maxFA is empty if and only if, there are infinitely many numbers satisfying
condition A. The tricky part however may be to find a formula FA to describe condition
A. At this point I encourage the reader to find more open problems, which can be
represented by a (∩,∪, ,+,×,min,max)-formula.

Coming back to actually solving the membership problem, in this chapter, we are
studying the problems, where both + and × are possible computational gates. In
section 5.1 we take a look at how to eliminate all min- max-gates efficiently from
a (∩,+,×,min,max)-circuit reducing it to a circuit without any min-, max-gates.
Similarly in section 5.2 we present a process of eliminating min-, max-gates of a
(∪,+,×,min,max)-circuit. In section 5.3 we consider (∪,∩,+,×)-formulas, the related
membership problem turns out to be in ∆P

2 , a complexity class part of the polynomial-
time hierarchy. From that we can conclude in section 5.4 that MC(∪,∩,+,×) ∈ ∆EXP

2 ,
the exponential-time analogy to ∆P

2 .

5.1 The case (∩,+,×,min,max) and its subcases

Let O ⊆ {∩,+,×} with O ∩ {+,×} 6= ∅ and M := {min,max}. In this section we
will show MC(O ∪M) ≤log

m MC(O). We will quickly go through the main idea of this
reduction, the claims used here will be shown later in detail.

Let C := (V,E, vC , α) be a (O∪M)-circuit. Notice that for such a circuit C we have for
every gate v ∈ V that |I(v)| ≤ 1. Applying a min- or max-gate on a set consisting of at
most one element does not change the incoming set of its predecessor. This motivates
the idea of substituting the min-, max-gates by either adding 0 or multiplying with
1, both of these operations do not change the incoming set, like the min-, max-gates
before, resulting in an equivalent circuit.

Theorem 5.1
Let O ⊆ {∩,+,×} with O ∩ {+,×} 6= ∅ and M := {min,max}. Then

MC (O ∪M) ≤log
m MC (O)

Proof. Let C := (V,E, vC , α) be a O ∪M-circuit. First we will show |I(v)| ≤ 1 for all
v ∈ V by induction.

22

Base Case: For all input gates v ∈ V we have |I(v)| = |{α(v)}| ≤ 1.

Inductive step: Let v ∈ V be a computational gate and let u resp. u1, u2 be the
predecessors of v.

(i) If α(v) = ∩, then

|I(v)| =
{

1, if I(u1) = I(u2) 6= ∅
0, otherwise

}
≤ 1

(ii) If α(v) ∈ {+,×}, then

|I(v)| =
{

1, if |I(u1)| = |I(u2)| = 1
0, otherwise

}
≤ 1

(iii) If α(v) ∈ {min,max}, then |I(v)| ≤ 1 follows directly from the definition of min-,
max-gates.

So |I(v)| ≤ 1 for all v ∈ V is indeed true, which directly impacts the values at min-,
max-gates, let v ∈ V with α(v) ∈ {min,max} and u ∈ V its predecessor. Consider the
two cases:

(i) If I(u) = {n}. Then

I(v) =

{
min I(u), if α(v) = min
max I(u), if α(v) = max

}
= {n} = I(u).

(ii) If I(v) = ∅. Then

I(v) =

{
min I(u), if α(v) = min
max I(u), if α(v) = max

}
= ∅ = I(u).

We conclude I(v) = I(u) holds for all v ∈ V with α(v) ∈ {min,max}. The reduction
algorithm will eliminate these gates by substituting the min- resp. max-label by a
+-label and adding a 0 input gate as its second predecessor. (If + /∈ O, one can
substitute by a ×-label and multiplying with a 1 input gate.

Algorithm 5.1 Reducing MC(O ∪M) to MC(O) for O ⊆ {∩,+,×},
M = {min,max}, assuming + ∈ O.

Input: Circuit C := (V,E, gC , α)
1: for every v ∈ V do
2: if α(v) /∈ {min,max} then
3: Write v, α(v) as well as all successors of v onto the output.
4: In this case, we do not alter the circuit at all.
5: else if α(v) ∈ {min,max} then
6: Write a new input gate ṽ, α(ṽ) := 0, v onto the output.
7: Write v, α(v) := + as well as all successors of v onto the output.

Analyzing the needed memory space, we need to manage one for-loop, starting in line
3, which we can do in logspace. We conclude MC (O ∪M) ≤log

m MC (O).

23

�

Corollary 5.2
Let O ⊆ {∩,+,×} with O ∩ {+,×} 6= ∅ and M := {min,max}. Then

MF (O ∪M) ≤log
m MF (O)

Proof. Algorithm 5.1 serves as a reduction algorithm again, because if the input circuit
C is a formula, the output generated by this algorithm will be a formula, too. �

5.2 The case (∪,+,×,min,max) and its subcases

Let O ⊆ {∪,+,×} and M := {min,max}. We will show MC(O ∪M) ≤P
m MC(O) in

this section.

Observation 5.3. Let O ⊆ {∪,+,×}, M := {min,max} and let C := (V,E, vC , α)
be a (O∪M)-circuit. Consider the following observations for any computational gate
v ∈ V with predecessor(s) u resp. u1, u2.

(i) If α(v) = ∪, then

min I(v) = min{min I(u1),min I(u2)} and

max I(v) = max{max I(u1),max I(u2)}

(ii) If α(v) = +, then

min I(v) = min I(u1) + min I(u2) and

max I(v) = max I(u1) + max I(u2)

(iii) If α(v) = ×, then

min I(v) = min I(u1) ·min I(u2) and

max I(v) = max I(u1) ·max I(u2)

(iv) If α(v) ∈ {min,max}, then

min I(v) = max I(v) = α(v)I(u)

From that we conclude that the minimum of I(v) (resp. the maximum) is merely
dependent on the minima (resp. maxima) of the predecessor(s) of v. This yields a first
approach for a possible reduction algorithm:

1.) Initialize two lists mmin and mmax. These will fulfill the condition min I(v) =
mmin[v] (resp. max I(v) = mmax[v]).

2.) For input gates v ∈ V set mmin[v] := mmax[v] := α(v).

24

3.) Compute for computational gates v ∈ V the entries mmin[v] and mmax[v] accord-
ing to the rules stated in the above observations.

4.) Read through the computational v ∈ V gates and substitute the min-gates by
an input gate with the value at mmin[v] (resp. the max-gates by mmax[v]).

While this is indeed a correct reduction, one can see based on the example below that
the lengths of mmin resp. mmax can grow exponentially - destroying any hope of this
being a polynomial time reduction.

Example 5.4. (See Figure 5.1.) For n ∈ N+ consider Cn := (Vn, En, vout, αn) with
gates

Vn := {vi,j | 1 ≤ i ≤ j ≤ n} ∪ {vout},

edges

En := {(v1,1, vout)} ∪
n−1⋃
j=1

j⋃
i=1

{(vi,j+1, vi,j), (vi+1,j+1, vi,j)}

and labels α(vout) := max and

α(vi,j) :=

{
2, if j = n
×, otherwise

.

The values of the interpretation function I are given by

I(vi,j) = {22
n−j

},

so the above stated reduction algorithm would need to calculate for the output gate

mmax[vout] = 22
n−1

,

which has length 2n−1. Let us count the size of the input: We have at most n2 + 1-
many gates. Every gate has at most two gates as predecessors, which means the edges
are sparse enough to neglect them. Giving n2 + 1-many gates different names can be
done with names, which have length approximately log(n2 + 1). Putting everything
together yields the input size is O(n2 · log(n2)). There is no polynomial p such that
p(n2 · log(n2)) ≤ 2n−1 for all n ∈ N, so the above stated reduction algorithm is not a
polynomial time algorithm.

25

2

v1,n

2

v2,n

2

v3,n

2

vn−1,n

2 vn,n

×

v1,n−1

×
v2,n−1

×
vn−1,n−1

×

v1,n−2

×

v1,1

×

vout

Figure 5.1: Illustration of the circuit Cn of Example 5.4

However, it is not necessary to calculate the minima (resp. maxima) explicitly, if those
values are too high. In fact, when deciding whether b ∈ I(C), it is sufficient to calculate
the minima (resp. maxima) up to b. Once the values are greater than b, one can simply
set these values to b+ 1. This is sufficient, because {∪,+,×,min,max}-gates are kind
of monotonous: Once a certain threshold is reached, one can never get below that
threshold again1. This will be proven in Lemma 5.6, but before we come to that, we
will proof another Lemma, which will come in handy later on.

Lemma 5.5
Let O ⊆ {∪,+,×}, M := {min,max} and C := (V,E, vC , α) be a (O ∪M)-circuit.
Then I(v) is finite and non-empty for all v ∈ V

Proof. We will show the statement inductively.

Base Case: Let v ∈ V be an input gate. Then |I(v)| = 1, so I(v) is finite and
nonempty.

1There is one exception to this: Multiplying with 0. However, multiplying something with 0 gives 0
as solution, so the actual value we are multiplying with 0 is not relevant.

26

Inductive Step: Let v ∈ V be a computational gate with predecessor(s) u resp.
u1, u2. Then I(u) resp. I(u1), I(u2) are finite and nonempty by the induction hypoth-
esis.

(i) If α(v) = ∪, we have

max{|I(u1)|, |I(u2)|} ≤ |I(v)| ≤ |I(u1)|+ |I(u2)|.

(ii) If α(v) ∈ {+,×}, we have

min{|I(u1)|, |I(u2)|} ≤ |I(v)| ≤ |I(u1)| · |I(u2)|.

(iii) If α(v) ∈ {min,max}, then |I(v)| = 1, as both the minimum and the maximum
of finite, nonempty subsets of N exists. So I(v) is finite and nonempty.

In all cases I(v) is finite and nonempty. �

Lemma 5.6
Let O ⊆ {∪,+,×}, M := {min,max}, b ∈ N and C := (V,E, vC , α) be a (O ∪M)-
circuit. Further let w ∈ V with α(w) ∈ {min,max}, then there is exists n ∈ N such
that I(w) = {n} (by Lemma 5.5). Construct from C a new circuit C̃ := (Ṽ , Ẽ, ṽC̃ , α̃)
in the following way:

• Ṽ := V and ṽC̃ := vC .

• Ẽ := E \ {(u,w) | (u,w) ∈ E}, i.e. if u is a predecessor of w, we delete that
edge.

• α̃(v) :=

 α(v), if v 6= w
n, if v = w and n ≤ b
b+ 1, if v = w and n > b

Then the equivalence
b ∈ I(C)⇔ b ∈ I(C̃)

is true.

Proof. In order to clarify things, we denote by I the interpretation function regarding
the circuit C and Ĩ the interpretation function regarding the circuit C̃. We verify the
equivalence by proofing that for all v ∈ V one of the following statements is true.

(i) I(v) = Ĩ(v).

(ii) I(v)≤b = Ĩ(v)≤b and there exist x, x̃ ∈ N

with x, x̃ > b and x ∈ I(v), x̃ ∈ Ĩ(v),

(5.1)

where for a set M ⊆ N we define M≤b := M ∩ {0, 1, . . . , b}. First, assume v = w, so
α(v) ∈ {min,max} and I(v) = {n} for some n ∈ N as the existence of such a Minimum

27

resp. Maximum is guaranteed by Lemma 5.5. If n ≤ b, we have I(v) = {n} = Ĩ(v), so
(i) of (5.1) is fullfilled.

On the other hand, if n > b, we have I(v) = {n} and Ĩ(v) = {b + 1}. We conclude
I(v)≤b = ∅ = Ĩ(v)≤b and in both I(v) and Ĩ(v) there is an element greater than b, so
(ii) of (5.1) is fulfilled.

For v ∈ V \ {w}, we will show (5.1) inductively.

Base Case: Let v ∈ V \ {w} be an input gate. Then I(v) = Ĩ(v), as the construction
of C̃ does not alter the input gates of C at all.

Inductive step: Let v ∈ V \{w} be a computational gate with predecessor(s) u resp.
u1, u2. First assume via the induction hypothesis (i) of (5.1) is true for u resp. for
both u1 and u2. As α(v) = α̃(v), we conclude I(v) = Ĩ(v), because applying the same
operator on the same sets will always lead to the same solution sets, so again (i) of
(5.1) is satisfied. From now on assume u resp. one of u1 or u2 satisfy (ii) of (5.1).
Without loss of generality let this be u1.

Let’s investigate the different cases regarding the possible labels for v.

(i) If α(v) = ∪, then

I(v)≤b = (I(u1) ∪ I(u2))≤b = I(u1)≤b ∪ I(u2)≤b

= Ĩ(u1)≤b ∪ Ĩ(u2)≤b = (Ĩ(u1) ∪ Ĩ(u2))≤b

= Ĩ(v)≤b,

so the first part of (ii) in (5.1) is true. As u1 satisfies (ii), there exist x ∈
I(u1), x̃ ∈ Ĩ(u1) with x, x̃ > b. As I(v) = I(u1)∪ I(u2) and Ĩ(v) = Ĩ(u1)∪ Ĩ(u2),
we have x ∈ I(v) and x̃ ∈ Ĩ(v), so the second part is also true.

(ii) Assume α(v) = + and let n ∈ I(v)≤b. Then there are x ∈ I(u1) and y ∈ I(u2)
with n = x+y. By using the fact (n = x+y ⇒ x, y ≤ n), we get x, y ≤ b, so x ∈
I(u1)≤b = Ĩ(u1)≤b and y ∈ I(u1)≤b = Ĩ(u2)≤b. This means x+ y = n ∈ Ĩ(v)≤b,

hence I(v)≤b ⊆ Ĩ(v)≤b.

In order to show I(v)≤b ⊇ Ĩ(v)≤b one can argue the exact same way, starting

with n ∈ Ĩ(v)≤b this time, which shows the first part of (ii) in (5.1).

Let b < x ∈ I(u1). In view of Lemma 5.5 I(u2) is nonempty, so there exists a
y ∈ I(u2) and x + y = z ∈ I(v) with z > b. With the same argument, one gets
b < x̃ ∈ Ĩ(u1), ỹ ∈ Ĩ(u2) and x̃ + ỹ = z̃ ∈ Ĩ(v) with z̃ > b, which shows the
second part of (ii).

(iii) Now let α(v) = ×. First assume I(u2) = {0}. Then we have Ĩ(u2) = {0} and
I(v) = Ĩ(v) = {0} satisfying (i) of (5.1).

Next let n ∈ I(v)≤b.

28

(iii.i) First assume n 6= 0. Following the same line of argumentation as in the
case α(v) = +, we get the existence of x ∈ I(u1)≤b = Ĩ(u1)≤b and y ∈
I(u2)≤b = Ĩ(u2)≤b with x · y = n ∈ Ĩ(v)≤b.

(iii.ii) Secondly assume n = 0. As (0 = x · y ⇒ x = 0 ∨ y = 0), we know either
0 ∈ I(u1) or 0 ∈ I(u2). Without loss of generality assume 0 ∈ I(u1).
Using again Lemma 5.5, we get Ĩ(u2) is a nonempty set, so there exists a
z ∈ Ĩ(u2). This means 0 · z = 0 ∈ Ĩ(v). Since 0 ≤ b for all b ∈ N, we
conclude 0 ∈ Ĩ(v)≤b.

Combining both cases yields I(v)≤b ⊆ Ĩ(v)≤b.

Again one can argue in the same way to show I(v)≤b ⊇ Ĩ(v)≤b, so the first part
of (ii) in (5.1) is indeed true.

There exists a number b < x ∈ I(u1) and a 0 < y ∈ I(u2) as I(u2) is again
nonempty and the case I(u2) = {0} was already covered2, so b < x ·y = z ∈ I(v).
For the same reason, there is a z̃ ∈ Ĩ(v), showing the second part of (ii). (Note
that I(u2) = {0} ⇔ Ĩ(u2) = {0}.)

(iv) We move on to the case α(v) = min. As I(u), Ĩ(u) are nonempty, we have
I(v) = {n} and Ĩ(u) = {ñ} for some n, ñ ∈ N and recall that u satisfies (ii) of
(5.1).

There are to cases to distinguish: First assume n ≤ b. Then we conclude n = ñ
as the minima of two sets being identical up to a threshold b are the same as
long as the minima of these sets are less or equal than b. So I(v) = {n} = Ĩ(v)
and (i) of (5.1) is satisfied.

The second case to consider is n > b. Assuming ñ ≤ b would contradict the fact
that I(u)≤b = Ĩ(u)≤b. This yields I(v)≤b = ∅ = Ĩ(v)≤b. In addition, we have
n ∈ I(v) and ñ ∈ I(v) with both n and ñ being greater than b. This yields (ii)
of (5.1).

(v) The last case to consider is α(v) = max. Once again from Lemma 5.5 we know
I(u) and Ĩ(u) are nonempty and finite, so the maximum of both sets exist.
Considering that u satisfies (ii) of (5.1), we know these maxima are greater than
b, so I(v)≤b = ∅ = Ĩ(v)≤b and in both sets there exist elements greater than b,
namely the respectively maxima. So (ii) of (5.1) is satisfied for v.

�

Now we have all the tools at our disposal to proof the main statement of this section.

Theorem 5.7
Let O ⊆ {∪,+,×} and M := {min,max}. Then

MC(O ∪M) ≤P
m MC(O)

2The case I(u1) = {0} is not possible, as this would contradict the assumption u1 satisfies (ii) of
(5.1).

29

Proof. Let C := (V,E, vC , α) be a (O ∪M)-circuit. This reduction is realized by the
following algorithm.

Algorithm 5.2 Reducing MC(O ∪M) to MC(O) for O ⊆ {∪,+,×} and
M = {min,max}.
Input: Circuit C := (V,E, gC , α) and b ∈ N

1: Initialize two lists mmin and mmax.
2: for every v ∈ V do
3: if α(v) ∈ N then
4: Set mmin[v] := mmax[v] := min {α(v), b+ 1}.
5: else if α(v) = ∪ then
6: Find u1, u2 with (u1, v), (u2, v) ∈ E
7: Set mmin[v] := min {mmin[u1],mmin[u2]}.
8: and mmax[v] := max {mmax[u1],mmax[u2]}.
9: else if α(v) = + then

10: Find u1, u2 with (u1, v), (u2, v) ∈ E.
11: Set mmin[v] := min {mmin[u1] +mmin[u2], b+ 1}
12: and mmax[v] := min {mmax[u1] +mmax[u2], b+ 1}.
13: else if α(v) = × then
14: Find u1, u2 with (u1, v), (u2, v) ∈ E.
15: Set mmin[v] := min {mmin[u1] ·mmin[u2], b+ 1}
16: and mmax[v] := min {mmax[u1] ·mmax[u2], b+ 1}.
17: else if α(v) = min then
18: Find u with (u, v) ∈ E.
19: Set mmin[v] := mmax[v] := mmin[u].
20: else if α(v) = max then
21: Find u with (u, v) ∈ E.
22: Set mmin[v] := mmax[v] := mmax[u].

23: for every v ∈ V do
24: if α(w) ∈ {min,max} then
25: for every w ∈ V with (v, w) ∈ E do
26: Delete E := E \ {u, v}
27: if α(v) = min then
28: Set α(v) := mmin[v].
29: else if α(v) = max then
30: Set α(v) := mmax[v].

31: return Circuit C and b.

Applying Algorithm 5.2 on C does indeed eliminate all min- and max-gates, resulting in
a O-circuit. The correctness of this reduction algorithm, i.e. that b ∈ I(C)⇔ b ∈ I(C̃)
is given by Observation 5.3 and Lemma 5.6. The algorithm consists of two for-loops,
each applying at most basic arithmetic operations on elements bounded by the size
of b, which is a part of the input. Hence the algorithm is indeed a polynomial time
reduction. �

30

Corollary 5.8
Let O ⊆ {∪,+,×} and M := {min,max}. Then

MF(O ∪M) ≤P
m MF(M)

Proof. Let b ∈ N and F := (V,E, vC , α) be a (O ∪M)-formula. Applying Algorithm
5.2 on (F, b) gives an O-circuit F̃ . This circuit F̃ is in fact a formula, as Algorithm 5.2
does not add any edges to the input formula F while constructing F̃ . So Algorithm
5.2 is a correct polynomial reduction in the context of formulas. �

5.3 (∩,∪,+,×,min,max)-formulas

Let O := {∪,∩,+,×,min,max}, in this section we will show MF(O) ∈ ∆P
2 . Regarding

the lower bound, in section 6.2 we will see that MF(∪,∩,+,min,max) is ∆P
2 -hard,

which immediately results in the ∆P
2 -hardness of MF(O).

The reader may be familiar with the complexity class ∆P
2 , which is part of the

polynomial-time hierarchy, a hierarchy of complexity classes all at least as big as P
but contained within PSPACE. In case the reader is not familiar with this concept,
here is a quick definition of this complexity class.

Definition 5.9. Define the complexity class

∆P
2 := PNP,

meaning ∆P
2 consists of all problems solvable in polynomial time with access to any

oracle B satisfying B ∈ NP.

Let O := {∪,∩,+,×,min,max}. The central idea for proofing MF(O) ∈ ∆P
2 will be

explained in the following. Let b ∈ N and F := (V,E, vF , α) be a O-formula. We
search for a polynomial time algorithm with access to NP-oracles, which decides the
question, if b ∈ I(F). This algorithm searches for the first min-, max-gate v, computes
I(v) explicitly by using (a modified version of) MF(∪,∩,+,×) as an oracle and replaces
the label of v with the computed value. (If I(v) is empty, set the label to ∩, and set
0 and 1 as its predecessor.) After that, continue the same process for the next min-,
max-gate until there are no more left. In the end, C is a (∪,∩,+,×)-formula, the
question if b ∈ I(F) can now be solved by an MF(∪,∩,+,×)-oracle.

Before diving deeper into the details of this algorithm, let us establish an upper bound
for the possible values of a (∪,∩,+,×,min,max)-formula.

Lemma 5.10
Let F := (V,E, vF , α) be a (∪,∩,+,×,min,max)-formula and denote the set of all
input gates by J := {v ∈ V | α(v) ∈ N}. Then for all v ∈ V and all x ∈ I(v) the
inequality

x ≤
∏
j∈J

(α(j) + 1)

31

is true. For the remainder of this section denote by NF this product for a given formula
F .

Proof. McKenzie and Wagner stated in the proof of Lemma 4.1 in [MW07] NF as
an upper bound for (∪,∩,+,×)-formulas. Further notice that for every v ∈ V the
set I(v) is finite. The minimum resp. maximum of a finite set I(v) is always a
value already present in I(v), so adding the option of having min-, max-gates can not
produce any new values. We conclude the stated upper bound holds for the values of
a (∪,∩,+,×,min,max)-formula, too. �

Let us come back to our algorithm and assume for the moment, we want to eliminate a
max-gate named v with predecessor w. Now that we established the upper bound NF ,
one may tempted to eliminate v in the following way. Test for all 0 ≤ k ≤ NF , starting
with NF and going downwards from there, if (Fw, k) ∈ MF(∪,∩,+,×) (remember
Definition 2.5). From Table 3.1 we know MF(∪,∩,+,×) ∈ NP, so we can use this set
as an oracle. However the length of NC is polynomially bounded in the length of the
input, so there would be exponentially many numbers k to test. We have to find a
smarter way.

Instead of testing for a single number k, it would be nice, if we could test for a
whole range of numbers from l to u, l, u ∈ N, if there is a k ∈ [l, u], such that
(Fw, k) ∈ MF(∪,∩,+,×). Start with the range l := 0 and u := NF and test, if there
is a 0 ≤ k ≤ NF such that (Fw, k) ∈ MF(∪,∩,+,×). If the answer is no, we know
that I(v) = ∅, so replace v by a construction computing the empty set. If the answer
is yes, test, if there is a NF/2 ≤ k ≤ NF such that (Fw, k) ∈ MF(∪,∩,+,×). If yes, set
l = NF/2, and if no, set to u = NF/2. Continue searching in the new range [l, u], until
we have l = u. Then we know I(v) = {l}, and we can substitute the label of v by l.
We are basically performing a binary search on the range [0, NF].

Consider the following ranged version of the membership problem of formulas.

Definition 5.11. Let O ⊆ {∪,∩, ,+,×,min,max}. Define the set

MFrange(O) := {(F, l, u) | there exists k ∈ [l, u] with (F, k) ∈ MF(O)}

Lemma 5.12

MFrange(∪,∩,+,×) ∈ NP

Proof. From Table 3.1 we know that MF(∪,∩,+,×) ∈ NP. Using the definition of
the class NP over polynomial projections, this means there exists a B ∈ P and a
polynomial p satisfying

MF(∪,∩,+,×) = {(F, b) | ∃z with |z| ≤ p(|(F, b)|) and (F, b, z) ∈ B}. (5.2)

Without loss of generality let p be monotonically increasing. Based on B define a new
set

Brange := {(F, l, u, k, z) | l ≤ k ≤ u and (F, k, z) ∈ B}.

32

Brange ∈ P, as one has to test, if l ≤ k ≤ u and (F, k, z) ∈ B, both of which are possible
in polynomial time. Further define the polynomial q(x) := id(x) + p(x). Then, if

MFrange(∪,∩,+,×) = {(F, l, u) |∃(k, z) with |(k, z)| ≤ q(|(F, l, u)|)
and (F, l, u, k, z) ∈ Brange} =: A,

is true, we show MFrange(∪,∩,+,×) satisfies the definition of NP-sets. First as-
sume (F, l, u) ∈ MFrange(∪,∩,+,×). This means there exists k ∈ [l, u] such that
(F, k) ∈ MF(∪,∩,+,×). (5.2) implies there exists some z satisfying |z| ≤ p(|(F, k)|)
and (F, k, z) ∈ B. This yields (F, l, u, k, z) ∈ Brange. For the length of (k, z), compute

|(k, z)| = |k|+ |z| ≤ |u|+ p(|(F, k)|) ≤ |(F, l, u)|+ p(|(F, l, u)|) ≤ q(|(F, l, u)|),

where p(|(F, k)|) ≤ p(|(F, l, u)|) follows from the monotony of p. We conclude (F, l, u) ∈
A.

Now let (F, l, u) ∈ A. This implies the existence of (k, z) such that (F, l, u, k, z) ∈
Brange, so one can find k ∈ [l, u] such that (F, k, z) ∈ B, so k ∈ I(F). This yields
(F, l, u) ∈ MFrange(∪,∩,+,×). �

Now we have all the needed tools at our disposal to solve MF(∪,∩,+,×,min,max).

Theorem 5.13
Let O ⊆ {∪,∩,+,×} and M := {min,max}. Then

MF(O ∪M) ∈ ∆P
2

Proof. Without loss of generality let O = {∪,∩,+,×}. Consider algorithm 5.3 on the
next page.

Let F := (V,E, vF , α) and b ∈ N. Further let v ∈ V with α(v) ∈ {min,max} and
predecessor w. If there is no k ∈ [0, NF] with k ∈ I(w), we know from Lemma 5.10
that I(w) = ∅ = I(v), which is exactly what the algorithm constructs in this case. Now
assume there is a k ∈ [0, NF] such that k ∈ I(w), If α(v) = min the algorithm searches
for the smallest kmin ∈ [0, NF] satisfying kmin ∈ I(w). Then we know I(v) = {kmin},
which the algorithm constructs at the gate v. Analogously if α(v) = max we search for
the greatest kmax ∈ [0, NF] satisfying kmax ∈ I(w). In this case Lemma 5.10 ensures
us, there can not be a k > NF , such that k ∈ I(w), so I(v) = {kmax}, which the
algorithm constructs at v. In the end, there are no more min-, max-gates, so we can
use the set MF(∪,∩,+,×) as an oracle to solve the question, if b ∈ I(F).

The upper bound NF can be computed in polynomial time, as it is the product of
factors numbers bounded in the size of the input. Then we perform a binary search
in the range [0, NF], whose number of steps is bounded polynomially. The runtime
of every step is polynomially bounded. Combining all this, results in a polynomi-
ally bounded runtime. We use the sets MFrange(∪,∩,+,×) and MF(∪,∩,+,×) as
oracles, according to Lemma 5.12 and Table 3.1 these sets are in NP. We conclude
MF(∪,∩,+,×,min,max) ∈ ∆P

2 .

33

Algorithm 5.3 Solving MF(∪,∩,+,min,max)

Input: (∪,∩,+,×,min,max)-formula F = (V ;E, vF , α) and b ∈ N
1: Compute the upper bound NF :=

∏
input gates v α(v) + 1.

2: for every v ∈ V do
3: if α(v) ∈ {min,max} then
4: Initialize l := 0, u := NF and let w be the predecessor of v.
5: if (Fw, l, u) /∈ MFrange(∪,∩,+,×) then
6: Add two new gates v1, v2 to F and set (v1, v), (v2, v) ∈ E as well as
7: α(v1) = 1, α(v2) = 0. Overwrite α(v) = ∩, find the edge (u, v) ∈ E
8: and delete it. Break this for-loop and continue with the next v.

9: if α(v) = max then
10: while l 6= u do
11: Set m := du+l/2e.
12: if (Fw,m, u) ∈ MFrange(∪,∩,+,×) then
13: Set l := m.
14: else
15: Set u := m− 1.

16: else if α(v) = min then
17: while l 6= u do
18: Set m := bu+l/2c.
19: if (Fw, l,m) ∈ MFrange(∪,∩,+,×) then
20: Set u := m.
21: else
22: Set l := m+ 1.

23: Find the edge (u, v) ∈ E and delete it from E.
24: Overwrite the label α(v) := l.

25: if (F, b) ∈ MF(∪,∩,+,×) then
26: Return true.
27: else
28: Return false.

�

5.4 (∩,∪,+,×,min,max)-circuits

Let O ⊆ {∪,∩,+,×} and M := {min,max}. Wagner and McKenzie showed that
MC(O) ∈ NEXPTIME (Table 3.1) by arguing that a given O-circuit C can be un-
folded into a potentially exponential large formula, and then applying the algorithm
for solving MF(O), which they showed to be NP-complete. We will argue in the same
way, while providing a more in detail analysis of how a given circuit can be unfolded
into an equivalent formula.

In analogy to the polynomial-time hierarchy, there exists the exponential-time hier-

34

archy. Solving a problem by exponentially unfolding the problem into a ∆P
2 -problem

may unsurprisingly lead to the set complexity set ∆EXP
2

Definition 5.14. Define the complexity class

∆EXP
2 := EXPNP,

meaning ∆EXP
2 consists of all problems solvable in exponential time with access to any

oracle B satisfying B ∈ NP.

So let C := (VC , EC , vC , αC) be a (∩,∪,+,×,min,max)-circuit and let b ∈ N. Unfold
this circuit into a formula F := (VF , EF , vF , αF) in the following way. Consider an
empty work tape. On this tape, we start writing a modified encoding of the unfolded
formula F , which will not be topologically ordered (for the moment). Additionally, we
create a new entry for every gate, in order to store the information, which gate it is
associated to in the original circuit. We start the process by writing the output gate
of C, giving it the new name 0 and ignoring any potential successors of vC . We write:

0, vC , α(vC)

Next, we look for the predecessor(s) of vC . Assume, there are two predecessors u1, u2.
They will get the new names 1 and 2, and we set 0 as their successor:

0, vC , α(vC)− 1, u1, α(u1), 0− 2, u2, α(u2), 0

After that we keep on jumping to the next gate on the work tape (at first the gate 1,
then gate 2, etc.) and repeat the process of finding the predecessors of their associated
gates in C and writing those predecessors down on the work tape as new entrys.
In case there are no predecessors, i.e., it is in an input gate, do not write anything
and jump immediately to the next gate. If there is no more next gate on the work
tape, this process will terminate. (This is going to happen, as C is acyclic, so every
predecessor-chain will run into an input gate at some point.)

In the end, reverse the ordering of the gates on the work tape and delete the second
entry of every gate, i.e. the associated gate in C. Additionally mark 0 as the output
gate. This will result in a correct encoding of a topologically ordered formula F ,
satisfying I(C) = I(F).

In the end apply Algorithm 5.3 for solving MF(∪,∩,+,×,min,max) with input (F, b)
and return the same answer.

Before we describe the algorithm formally, we first introduce a Lemma, which we will
need later to proof exponential runtime.

Definition 5.15. Let C := (V,E, vC , α) be a circuit. For the remainder of this section
define for every gate v ∈ V

l(v) := the length of the longest path from v to vC in C,

35

Lemma 5.16
Let C := (V,E, vC , α) be a (∪,∩,+,×,min,max)-circuit and and define the set

V (k) := {v ∈ V | l(v) ≤ k}.

Then
|V (k)| ≤ 2k.

Proof. We show the statement inductively.

Base Case: Consider W (0). As C is acyclic, there is exactly one gate v ∈ V satisfying
l(v) ≤ 0, namely v = vC , so

|V (0)| = 1 ≤ 21.

Inductive Step: Let v ∈ V (k + 1) and notice that all the successors wi ∈ V of v
satisfy wi ∈ V (k), otherwise there would exist a longer path than k + 1 from v to
vC . So the number of elements in V (k + 1) is bounded by the number of possible
predecessors the gates in V (k) can have.

By the induction hypothesis, there at most 2k many possible successors of v. By
definition of circuits, every gate has at most two predecessors, so there can be at most
2 · 2k-many gates having one of the wi as their predecessors, showing

|V (k + 1)| ≤ 2 · 2k = 2k+1.

�

Theorem 5.17
Let O ⊆ {∪,∩,+,×} and M := {min,max}. Then

MC(O ∪M) ∈ ∆EXP
2

Proof. Without loss of generality let O = {∪,∩,+,×}. Let C := (V,E, vC , α) be a
(O ∪M)-circuit and b ∈ N. Algorithm 5.4 on the next page realizes the above stated
construction of a (O ∪M)-formula F satisfying I(F) = I(C).

The runtime of every step in the while-loop starting in line 3 is polynomially bounded.
But how many steps does the while-loop take? For that denote for every gate v ∈ V

n(v) := the number of gates associated to v in F.

We will show
n(v) ≤ 2l(v)

for all v ∈ V inductively over the size of l(v).

Base Case: Only v = vC satisfies l(v) = 0. The algorithm is initialized by writing a
gate associated to vC , so n(v) ≥ 1. Further n(v) > 1 would contradict the fact that C
is acyclic, so

n(v) = 1 = 20 = 2l(v).

36

Algorithm 5.4 Solving MC(∩,∪,+,×,min,max)

Input: (∩,∪,+,×,min,max)-circuit C := (VC , EC , vC , αC) and b ∈ N
1: Write 0, vC , α(vC) onto an empty work tape.
2: Initialize two variables m := 0 and n := 1.
3: while m 6= n do
4: Find gate m on the work tape and look up its associated gate v ∈ VC
5: for every gate u ∈ VC with (u, v) ∈ EC do
6: Create a new entry n, u, α(u),m on the work tape.
7: Increment n by 1.

8: Increment m by 1.

9: Reverse the ordering of the gates on the work tape, while deleting the second entry
10: of every gate and Set 0 as the output gate.
11: Name the formula on the work tape F , start Algorithm 5.3 with input (F, b)
12: and return the same answer.

Inductive step: Let v ∈ V with l(v) = k + 1 and let wi ∈ V be the successors of v
in C. Every gate of F associated to one of the wi creates exactly one gate associated
with v and other gates can not create gates associated to v, so

n(v) =
∑
i

n(wi).

As covered in the proof of Lemma 5.16, we know that l(wi) ≤ k, applying the induction
hypothesis we get

n(v) =
∑
i

n(wi) ≤
∑
i

2l(wi) ≤
∑
i

2k.

By Lemma 5.16 the number of successors wi is bounded by 2k, so

n(v) ≤
∑
i

2k = 2k · 2k = 2k+1 = 2l(v),

which concludes the induction.

For every gate v ∈ V the number l(v) is bounded by |V |, as the longest path from v
to vC can not be longer than the number of gates present in C. This yields for the
number of steps performed in the while-loop∑

v∈V
n(v) ≤

∑
v∈V

2l(v) ≤
∑
v∈V

2|V | ≤ |V |2|V |.

Additionally, we apply Algorithm 5.3 on an input, whose length is exponentially
bounded. As seen in Theorem 5.13, Algorithm 5.3 has polynomially runtime, resulting
in exponential runtime in total. Of Algorithm 5.3 uses the set MFrange(∪,∩,+,×) as
a NP-oracle, which have to take into account here also, which shows

MC(∪,∩,+,×,min,max) ∈ EXPNP.

�

37

6 Problems with either + or ×
Let � ∈ {+,×}, O ⊆ {∪,∩, ,�} and M := {min,max}. In this chapter we will
discuss problems of the form MC(O ∪M) as well as their formula counterparts. A
lot of cases, namely MC({�} ∪ M), MC({∪,�} ∪ M) and MC({∩,�} ∪ M), were
already covered in the previous chapter as subcases of MC({∪,+,×} ∪ M) resp.
MC({∩,+,×} ∪M). (See Theorem 5.1 resp. Theorem 5.7.)

In section 6.1, we will show MC({∪,∩, ,+} ∪ M) ∈ PSPACE, which immediately
yields MC({∪,∩,+} ∪ M) ∈ PSPACE. In section 6.2 we will show ∆P

2 is a lower
bound for MF({∪,∩,+}∪M), giving us a lower bound for MF(∪,∩, ,+},∪M), too.
It would have been nice to conclude this chapter by solving MC({∪,∩, ,×}∪M) and
their subcases, however, section 6.3 argues why that is quiet difficult.

6.1 The case of (∪,∩, ,+,min,max)-circuits

The goal of this section is to show MC(∪,∩, ,+,min,max) ∈ PSPACE by explic-
itly finding a PSPACE-algorithm solving MC(∪,∩, ,+,min,max). From McKen-
zie & Wagner (Table 3.1) we know there exists a PSPACE-algorithm for solving
MC(∪,∩, ,+); let us call that algorithm oracle(C, b). Now let b ∈ N and C :=
(V,E, vC , α) be a {∪,∩, ,+,min,max}-circuit. The idea now is to eliminate the min-
resp. max-gates one-by-one.

First consider a min-gate v ∈ V with predecessor u ∈ V . Then test whether (Cu, i) ∈
MC(∪,∩, ,+) by calculating oracle(Cu, i), where i starts at 0 and is incremented each
time until the threshold 2|C|. (The reason why we use this threshold will be given in
Lemma 6.2.) Once this test is successful, set v as an input gate with label i. If this
test is never successful, we can be sure that I(u) = ∅ and we substitute the gate v by
a construction computing the empty set.

For a max-gate test at first if (Cu, 2
|C|+1) ∈ MC(∪,∩, ,+,min,max). If the answer is

yes, we can conclude that I(u) is infinite, we substitute v by a construction computing
the empty set. If the answer is no, continue in the same way as described in the
min-case, this time counting i down from 2|C| to 0.

In the end we will have eliminated all min-, max-gates resulting in a (∪,∩, ,+)-circuit.
Compute oracle(C, b) and return its answer.

Definition 6.1. Let C := (V,E, vC , α) be a circuit. For a gate v ∈ V denote by C(v)
the subcircuit, which results from C by deleting all gates, from which v can not be
reached.

38

Lemma 6.2
Let C := (V,E, vC , α) be a (∪,∩, ,+,min,max)-circuit. Then for every v ∈ V either

I(v) ⊆ {0, . . . , 2|C|} or I(v) ⊆ {0, . . . , 2|C|}.

Proof. We will show the statement

I(v) ⊆ {0, . . . , 2|C(v)|} or I(v) ⊆ {0, . . . , 2|C(v)|}

inductively. As |C(v)| ≤ |C| for all v ∈ V , this proofs the lemma.

Base Case: Let v ∈ V be an input gate. Then I(v) = {α(v)} = {2log(α(v))}. As
C(v) contains the encoding of the value α(v), we have log(α(v)) ≤ |C(v)|, so I(v) ⊆
{0, . . . , 2|C(v)|}.

Inductive step: Let v ∈ V be a computational gate with predecessor(s) u resp.
u1, u2 and assume the induction hypothesis is true for these predecessor(s). Notice
that 2|C(u)|+2 ≤ 2|C(v)| as every gate in C(u) appears in C(v), too, but the gate v
does not appear in C(u) and the length of the entry v is at least two. With the same
argument, we get 2|C(u1)|+2 ≤ 2|C(v)| and 2|C(u2)|+2 ≤ 2|C(v)|.

(i) Let α(v) = ∪.

(i.i) First, if I(u1) ⊆ {0, . . . , 2|C(u1)|} and I(u2) ⊆ {0, . . . , 2|C(u2)|}, then

I(v) = I(u1)∪ I(u2) ⊆ {0, . . . , 2|C(u1)|} ∪ {0, . . . , 2|C(u2)|} ⊆ {0, . . . , 2|C(v)|}

(i.ii) Secondly, we have the case that for at least one ui, we have I(ui) ⊆
{0, . . . , 2|Cui

|}. Without loss of generality assume i = 1. Then

I(v) = I(u1) ∪ I(u2) = I(u1) ∩ I(u2) ⊆ I(u1) ⊆ {0, . . . , 2|C(u1)|}
⊆ {0, . . . , 2|C(v)|}.

(ii) Let α = ∩.

(ii.i) Consider the case, where for at least one ui we have I(u1) ⊆ {0, . . . , 2|Cui
|},

without loss of generality i = 1. Then

I(v) = I(u1) ∩ I(u2) ⊆ I(u1) ⊆ {0, . . . , 2|Cui
|} ⊆ {0, . . . , 2|C(v)|}.

(ii.ii) Now consider the case I(u1) ⊆ {0, . . . , 2|C(u1)|} and I(u2) ⊆ {0, . . . , 2|C(u2)|},
then

I(v) = I(u1) ∩ I(u2) = I(u1) ∪ I(u2) ⊆ {0, . . . , 2|C(u1)|} ∪ {0, . . . , 2|C(u1)|}
⊆ {0, . . . , 2|C(v)|}.

(iii) Let α(v) = , then either

I(v) = I(u1) ⊆ {0, . . . , 2|Cu|} ⊆ {0, . . . , 2|C(v)|} or

I(v) = I(u1) ⊆ {0, . . . , 2|Cu|} ⊆ {0, . . . , 2|C(v)|}.

39

(iv) Let α(v) = +. Assume I(u1) 6= ∅ 6= I(u2), otherwise we have

I(v) = ∅ ⊆ {0, . . . , 2|C(v)|}.

(iv.i) First consider I(u1) ⊆ {0, . . . , 2|C(u1)|} and I(u2) ⊆ {0, . . . , 2|C(u2)|}. With-
out loss of generalit let |C(u1)| ≥ |C(u2)| then

I(v) = I(u1) + I(u2) ⊆ {0, . . . , 2|C(u1)|}+ {0, . . . , 2|C(u2)|}
= {0, . . . , 2|C(u1)| + 2|C(u2)|} ⊆ {0, . . . , 2 · 2|C(u1)|}
= {0, . . . , 2|C(u1)|+1} ⊆ {0, . . . , 2|C(v)|}.

(iv.ii) Consider the case where for at least one ui we have I(ui) ⊆ {0, . . . , 2|Cui
|},

without loss of generality i = 1. Notice that if I(u2) ⊆ {0, . . . , 2|C(u2)|}
or I(u2) ⊆ {0, . . . , 2|C(u2)|} in both cases there is an a ∈ I(u2) satisfying
a ≤ 2|C(u2)|+1. Now consider for x > 2|C(v)| the sum x = (x−a)+a. If we
can show x−a > 2|C(u1)|, then we get x−a ∈ I(u1) and x ∈ I(u1)+I(u2) =
I(v) for all x > 2|C(v)|, so subsequently I(v) ⊆ {0, . . . , 2|C(v)|}. Without
loss of generality let |C(u1)| ≥ |C(u2)|, then we have

2|C(u1)| + (2|C(u2)| + 1) ≤ 2 · 2|C(u1)| + 1 = 2|C(u1)|+1 + 1 ≤ 2|C(v)|.

We use that to calculate

x− a > 2|C(v)| − a ≥ 2|C(u1)| + (2|C(u2)| + 1)− a ≥ 2|C(u1)| + a− a
= 2|C(u1)|

(v) Let α(v) = min. If I(u) = ∅, then I(v) = ∅ ⊆ {0, . . . , 2|C(v)|}, so let I(u) 6= ∅.
As already seen above, there exists an a ∈ I(u) with a ≤ 2|C(u)| + 1, so

I(v) ⊆ {0, . . . , 2|C(u)| + 1} ⊆ {0, . . . , 2|C(v)|}.

(vi) Let α(v) = max.

(vi.i) If I(u) ⊆ {0, . . . , 2|C(u)|}, then max I(u) ∈ {0, . . . , 2|C(u)|}, so

I(v) = {max I(u)} ⊆ {0, . . . , 2|C(u)|} ⊆ {0, . . . , 2|C(v)|}

(vi.ii) If I(u) ⊆ {0, . . . , 2|C(u)|}, then the set I(u) is infinite, so

I(v) = ∅ ⊆ {0, . . . , 2|C(v)|}.

�

Theorem 6.3
Let O ⊆ {∪,∩, ,+} and M := {min,max}. Then

MC(O ∪M) ∈ PSPACE.

40

Proof. Let C := (V,E, vC , α) be a (∪,∩, ,+,min,max)-circuit and b ∈ N . Further
let oracle(C, b) be a PSPACE-algorithm for solving MC(∪,∩, ,+), which is possible
due to [MW07]. Consider the following algorithm

Algorithm 6.1 Solving MC(∩,∪, ,+,min,max)

Input: (∩,∪, ,+,min,max)-circuit C := (V,E, vC , α) and b ∈ N
1: Add two new gates v0, α(v0) := 0 and v1, α(v1) := 1 at the beginning of C.
2: for every v ∈ V do
3: if α(v) = min then
4: Find the predecessor u of v and delete the edge (u, v) from E.
5: for 0 ≤ i ≤ 2|C| do
6: if oracle(Cu, i) returns true then
7: Overwrite the label α(v) := i.
8: Continue the outer for-loop with the next v ∈ V .

9: Set v as successor of v0 and v1 and overwrite the label α(v) = ∩.

10: if α(v) = max then
11: Find the predecessor u of v and delete the edge (u, v) from E.
12: if oracle(Cu, 2

|C| + 1) returns true then
13: Set v as successor of v0 and v1 and overwrite the label α(v) = ∩.
14: Continue the outer for-loop with the next v ∈ V .

15: for 2|C| ≥ i ≥ 0 do
16: if oracle(Cu, i) returns true then
17: Overwrite the label α(v) := i.
18: Continue the outer for-loop with the next v ∈ V .

19: Set v as successor of v0 and v1 and overwrite the label α(v) = ∩.

20: Return oracle(C, b).

With Lemma 6.2 in mind, we see that this algorithm substitutes all min-, max-gate
with the proper value. Let us analyze the needed space. First we add two new gates
to C, whose number of possible successors is bounded by |V |, so this can be done in
polynomial space. Next the algorithm generates numbers up to 2|C|+ 1, whose length
is bounded by |C|+1. Then the algorithm computes oracle, where the size of its input
is bounded polynomially, resulting in polynomially bounded space. �

Corollary 6.4
Let O ⊆ {∩,∪, ,+} and M := {min,max}. Then

MF(O ∪M) ∈ PSPACE

Proof. Let F := (V,E, vF , α) be a (O ∪M)-formula and b ∈ N. Applying Algorithm
6.1 solves the question, if (F, b) ∈ MF(O ∪M). �

41

6.2 (∪,∩,+,min,max)-formulas

Previously in section 5.3 we found ∆P
2 as an upper bound for MF(∪,∩,+,×,min,max).

In this section, we will see that ∆P
2 is also a lower bound for MF(∪,∩,+,min,max)

regarding many-one polynomial time reductions.

We will show the ∆P
2 -hardness of MF(∪,∩,+,min,max) by showing

MAX SOSodd ≤P
m MF(∪,∩,+,min,max).

Here MAX SOSodd is a variation of the problem MAX SOS, which is in turn the
generalized version of the famous Sum-of-subsets problem (SOS) defined now

SOS = {(a1, . . . , an, b) |n, a1, . . . , an, b ∈ N and there exists

αi ∈ {0, 1} such that

n∑
i=1

αi · ai = b}.

The ∆P
2 -completeness of MAX SOSodd was shown by Wagner in [Wag87].

Definition 6.5. Define

MAX SOS := {(a1, . . . , an, b, c) |n, a1, . . . , an, b, c ∈ N and

maxMSOS(a1, . . . , an, b) ≥ c},

where MSOS(a1, . . . , an, b) := {
∑n
i=1 αi · ai | α1, . . . , αn ∈ {0, 1} and

∑n
i=1 αi · ai ≤ b}

denotes the set of all possible sums over a1, . . . , an being less or equal than b. This
means a list of numbers (a1, . . . , an, b, c) is an element of MAX SOS if and only if the
biggest possible sum over a1, . . . , an being less or equal than b is also greater or equal
than c. From that we define

MAX SOSodd := {(a1, . . . , an, b, c) |(a1, . . . , an, b, c) ∈ MAX SOS and

maxMSOS(a1, . . . , an, b) is an odd number},

so a list of numbers (a1, . . . , an, b, c) is in MAX SOSodd if and only if the biggest
possible sum over a1, . . . , an being less or equal than b is greater or equal than c and
additionally odd.

So let (a1, . . . , an, b, c) be a list of numbers and a possible instance of MAX SOSodd.
The goal now is to find a function f ∈ FP such that

(a1, . . . , an, b, c) ∈ MAX SOSodd ⇔ f(a1, . . . , an, b, c) ∈ MF(∪,∩,+,min,max),

where f(a1, . . . , an, b, c) = (F, b) with a formula F and a number b. We describe this
formula F by using the following subformulas as building blocks. We will explain how
to generate these subformulas (especially in polynomial time) later on. Let

• SUMa1...,an := {
∑n
i=1 αi · ai | αi ∈ {0, 1}} be the sum of all possible sums over

the list of numbers a1, . . . , an.

42

• INTc,b := [c, b] be the natural, closed interval from c to b.

• ODDINTc,b := [c, b] ∩ 2N + 1 be the set of all odd numbers between c and b.

From that define F by

F := (max (SUMa1,...,an ∩ INTc,b) ∩ODDINTc,b) + INT0,b−c.

Then
(a1, . . . , an, b, c) ∈ MAX SOSodd ⇔ b ∈ I(F).

Before proofing this claim, we first take a look at how to generate these subformulas
in polynomial time. The question is: How do we generate formulas in polynomial time
that compute the desired sets? For example taking the naive approach for the interval
[c,b] by taking the union of all numbers INTc,b = c ∪ (c+ 1) ∪ · · · ∪ b one needs b− c-
many gates. Considering a sufficiently large b and a small c one can see, that these
are exponentially many gates, which would violate the polynomial time restriction!

Lemma 6.6
Let (a1, . . . , an) ∈ Nn be a list of numbers Then the formula

SUMa1,...,an :=

n∑
i=1

(0 ∪ ai)

can be generated in polynomial time and for its computed set, we get

I(SUMa1,...,an) =

{
n∑
i=1

αi · ai | αi ∈ {0, 1}

}

Proof. Let x ∈ I(SUMa1,...,an). Then

x =

n∑
i=1

xi, where xi ∈ {0, ai}.

We can rewrite this sum as

x =

n∑
i=1

αi · ai, with αi ∈ {0, 1},

so I(SUMa1,...,an) ⊆ {
∑n
i=1 αi · ai | αi ∈ {0, 1}}. One can show the other direction

analogously, so the equality

I(SUMa1,...,an) =

{
n∑
i=1

αi · ai | αi ∈ {0, 1}

}

is true. The construction is realized by the following algorithm, its runtime is bounded
by O(n). See Figure 6.1 for a visualization of this algorithm.

43

Algorithm 6.2 Algorithm for generating SUMa1,...,an

Input: A list of numbers (a1, . . . , an) ∈ Nn.
1: if n = 0, i.e. the input is an empty list, then
2: Write the gate v1, 0 onto the output and set v1 as the output gate.
3: Stop here the algorithm and return this formula consisting of a single gate.

4: for 1 ≤ i ≤ n do
5: Write the gate vi, ai, ci onto the output.
6: Write the gate zi, 0, ci onto the output.

7: if n = 1 then
8: Write the gate c1,∪ onto the output and set it as the output gate.
9: At this point the formula is complete, so stop here.

10: Write the gate c1,∪, p2 onto the output.
11: for every 2 ≤ i ≤ n do
12: Write the gate ci,∪, pi onto the output.

13: for every 2 ≤ i ≤ n− 1 do
14: Write the gate pi,+, pi+1 onto the output.

15: Write the gate pn,+ onto the output and set it as the output gate.

�

a1
v1

0

z1

a2
v2

0

z2

a3
v3

0

z3

an
vn

0

zn

∪
c1

∪
c2

∪
c3

∪
cn

+

p2

+

p3

+

pn

Figure 6.1: Visualization of Algorithm 6.2

Before continuing with the next building blocks, consider the following Lemma.

Lemma 6.7
Let F and G be two formulas.

(i) If I(F) = [0, n] and I(G) = [0,m] for some n,m ∈ N. Then

I(F +G) = [0, n+m]

44

(ii) If I(F) = [0, n] ∩ 2N and I(G) = [0,m] ∩ 2N for some n,m ∈ N. Then

I(F +G) = [0, n+m] ∩ 2N

Proof. (i) Let x ∈ I(F + G), i.e. x = f + g for some f ≤ n and g ≤ m. Then
x ≤ n+m and x ∈ [0, n+m], so I(F +G) ⊆ [0, n+m].

Now let x ∈ [0, n + m]. Without loss of generality let n ≤ m. Consider the
following cases.

– If x ≤ n, then x = x+ 0 with x ∈ [0, n] = I(F) and 0 ∈ [0,m] = I(G).

– If n < x ≤ n + m, then x = n + (x − n) with n ∈ [0, n] = I(F) and
x− n ∈ [0,m] = I(G).

In both cases we get x ∈ I(F +G), so [0, n+m] ⊆ I(F +G).

(ii) Let x ∈ I(F + G), i.e. x = f + g for some f ≤ n and g ≤ m both being even.
Then x ≤ n + m, so x ∈ [0, n + m] and x is even as it is the sum of two even
numbers. So I(F +G) ⊆ [0, n+m] ∩ 2N.

Now let x ∈ [0, n+m] ∩ 2N. Without loss of generality let n ≤ m. Consider the
following cases.

– If x ≤ n, then x = x+ 0 with x ∈ [0, n] ∩ 2N = I(F) and 0 ∈ [0,m] ∩ 2N =
I(G).

– If n < x ≤ n + m, distinguish the following cases. If n is even, then
x = n+ (x−n) with n ∈ [0, n]∩ 2N = I(F). Further x−n is even as x and
n are even, so x− n ∈ [0,m] = I(G).

If n is odd, then [0, n]∩ 2N = [0, n− 1]∩ 2N and x ≤ (n− 1) +m. Consider
x = (n− 1) + (x−n+ 1), then n− 1 ∈ [0, n]∩ 2N = I(F). As x is even and
n is odd, x− n+ 1 is even, so x− n+ 1 ∈ [0,m] = I(G).

In all cases, we get x ∈ I(F +G), so [0, n+m] ∩ 2N ⊆ I(F +G).
�

Lemma 6.8
Let (b, c) ∈ N2 satisfying c ≤ b. Further let b− c =

∑k
j=0 βj · 2i with βj ∈ {0, 1} be the

binary representation of b− c and let J := {j | βj = 1} be the set of the indices equal

1 of said representation. Analogous let Ĵ := {j | β̂j = 1} be the indices equal 1 of the
binary representation of c − b − 1. Then the following formulas can be generated in
polynomial time and the stated equalities are true.

(i) Define

INTc,b :=
∑
j∈J

(
2j ∪

j−1∑
i=0

(0 ∪ 2i)

)
+ c.

Here for j = 0 the empty sum is defined as
∑0−1
i=0 (0∪ 2i) = 0. For the computed

set we get
I(INTc,b) = [c, b].

45

(ii) If c is odd, define

ODDINTc,b :=
∑
j∈J
j 6=0

(
2j ∪

j−1∑
i=1

(0 ∪ 2i)

)
+ c.

If c is even, define

ODDINTc,b :=
∑
j∈Ĵ
j 6=0

(
2j ∪

j−1∑
i=1

(0 ∪ 2i)

)
+ c.

In both cases we get

I(ODDINTc,b) = [c, b] ∩ 2N + 1.

Proof. (i) Considering the inner sum of the left side for some fixed j ∈ J , with
Lemma 6.6 we get

2j ∪
j−1∑
i=0

(0 ∪ 2i) = 2j ∪

{
j−1∑
i=0

αi · 2i | αi ∈ {0, 1}

}
= 2j ∪

[
0, 2j − 1

]
=
[
0, 2j

]
.

Now we compute

∑
j∈J

(
2j ∪

j−1∑
i=0

(0 ∪ 2i)

)
+ c =

∑
j∈J

[0, 2j]

+ c = [c, b]

⇔
∑
j∈J

[0, 2j] = [0, b− c],

where the last line is indeed true as
∑
j∈J 2j = b − c and applying Lemma 6.7

iteratively.

(ii) If c is odd, we have

∑
j∈J
j 6=0

(
2j ∪

j−1∑
i=1

(0 ∪ 2i)

)
+ c = [c, b] ∩ 2N + 1

⇔
∑
j∈J
j 6=0

(
2j ∪

j−1∑
i=1

(0 ∪ 2i)

)
= [0, b− c] ∩ 2N.

For some fixed j ∈ J , we get from Lemma 6.7

2j ∪
j−1∑
i=1

(0 ∪ 2i) = [0, 2j] ∩ 2N. (6.1)

46

This yields for the whole sum

∑
j∈J
j 6=0

(
2j ∪

j−1∑
i=1

(0 ∪ 2i)

)
=
∑
j∈J
j 6=0

(
[0, 2j] ∩ 2N

)
= 1

∑
j∈J

(
[0, 2j] ∩ 2N

)
= [0, b− c] ∩ 2N.

(6.2)

If c is even, then c− 1 is odd, so applying the argumentation in (6.1) and (6.2)
immediately yields

∑
j∈Ĵ
j 6=0

(
2j ∪

j−1∑
i=1

(0 ∪ 2i)

)
= [0, b− c+ 1] ∩ 2N.

We conclude

∑
j∈Ĵ
j 6=0

(
2j ∪

j−1∑
i=1

(0 ∪ 2i)

)
+ c = [c, b] ∩ (2N + 1)

⇔ ([0, b− c] ∩ 2N) + c = [c, b] ∩ (2N + 1)

⇔ ([0, b− c] ∩ 2N) = ([0, b− c] ∩ 2N)

Before implementing the generation of these formulas, consider first the following poly-
nomial time algorithm for efficiently creating a list representing the binary represen-
tation of a given number.

Algorithm 6.3 Algorithm for generating the binary representation of n.

Input: A number n ∈ N.
1: Set e := 0, p := 1, x := n and initialize an empty list J .
2: while 2 · p ≤ x do
3: Increment e by 1 and double the value of p.

4: for 0 ≤ i ≤ e do
5: if x > p then
6: Set x := x− p and store J [e− i] := 1.
7: else
8: Store J [e− i] := 0.

9: Double the value of x.
10: Return the list J .

This is indeed a polynomial time algorithm, as the number of steps performed in the
while-loop (as well as the for-loop by construction) is bounded by O(|p|), which is in
turn bounded by O(|n|).

1As for j = 0 the inner term would be [0, 1] ∩ 2N = {0}.

47

Now we state an algorithm for generating both INTc,b and ODDINTc,b as these
algorithms are very similar. Next to a pair of numbers (b, c) the algorithm will have
a variable k ∈ {0, 1} as its input, which signals, if INTc,b or ODDINTc,b shall be
generated. (If k = 0, then INTc,b will be generated, if k = 1, then ODDINTc,b will
be generated.) Check Figure 6.2 for a visualization of this algorithm.

Algorithm 6.4 Algorithm for generating INTc,b and ODDINTc,b.

Input: A pair of numbers (c, b) ∈ N2 satisfying c < b and k ∈ {0, 1}.
1: if k = 0 or b− c is odd then
2: Apply Algorithm 6.3 on the input b− c and store its result in the list J .
3: else
4: Apply Algorithm 6.3 on the input b− c− 1 and store its result in the list J .

5: Let lJ be the length of J and set l := lJ − 1.
6: for k ≤ j ≤ l do
7: if J [j] = 1 then
8: Compute the list S := (2k, 21+k, . . . , 2j−1).
9: Let Fj be the output of Algorithm 6.2 applied on the list S.

10: Write Fj onto the output and set cj as the successor of F ’s output gate.
11: Write the gate uj , 2

j , cj onto the output.
12: Write the gate cj ,∪, pj onto the output.

13: Let k ≤ j1 be the first entry of J , such that J [j1] = 1.
14: Write the gate v, c, pj1 onto the output
15: for j1 ≤ j < l do
16: if J [j] = 1 then
17: Find the next greater j′ such that J [j′] = 1.
18: Write the gate pj ,+, pj′ onto the output.

19: Write the gate pl,+ and mark this gate as the output gate.2

First Algorithm 6.3 is performed on the input b−c or b−c−1, whose length is bounded
by the length of the input (c, b). We already stated above that the runtime of this
algorithm is polynomially bounded.

Next the number of steps performed in the two for-loops (starting in line 6 resp. line
15) is essentially equal to the length l of the list J . This length is bounded by the
length of b− c, so we can conclude the number of iterations performed by the two for
loops is polynomially bounded by the length of the input.

Concerning the runtime within these iterations, the critical parts are lines 8 and 9.
The list S computed in line 8 has at most l-many elements of size at most 2l−1, whose
length is l−1. So the total length is bounded by l2 + l, which is polynomially bounded
by the length of the input. Then in line 9 we perform on this polynomially bounded list
Algorithm 6.2, which has according to Lemma 6.6 a polynomially bounded runtime.
In total this yields polynomially bounded runtime for one of our iterations.

2As by construction, we did not store leading zeros in J , so we know that J [l] = 1.

48

In recap, we have to perform a polynomially bounded number of iterations, where
each iteration has polynomially runtime. This yields the runtime of Algorithm 6.4 is
polynomially bounded. �

F0 20

u0

F2 22

u2

F5 25

u5

Fl 0

ul

c

v

∪
c0

∪
c2

∪
c5

∪
cl

+

p0

+

p2

+

p5

+

pl

Figure 6.2: Visualization of Algorithm 6.4. In this example, assume INTc,b is being
computed and the list J start with the sequence (1, 0, 1, 0, 0, 1).

Remark. Consider Algorithm 6.4. Technically, the iterative calls of Algorithm 6.2
create the same gate names over and over again, leading to not unique gate names in
our final formula. This issue can be circumvented easily by modifying Algorithm 6.2 in
the following way. Create a new input number n and attach this number to every gate
name generated by the algorithm. In Algorithm 6.4 add the variable j to the input
when calling Algorithm 6.2. Then the name of every gate generated by the subroutine
Algorithm 6.2 contains the information, in which iterative call it was created - leading
to unique names again.

A similar issue will arise in the upcoming algorithm, too. However, we can resolve this
issue in the same way.

Theorem 6.9
MF(∪,∩,+,min,max) is ∆P

2 -hard regarding polynomial time many-one reductions.

Proof. As already stated, we will proof this statement by showing

MAX SOSodd ≤P
m MF(∪,∩,+,min,max).

We are searching for a function f ∈ FP such that the equivalence

(a1, . . . , an, b, c) ∈ MAX SOSodd ⇔ f(a1, . . . , an, b, c) ∈ MF(∪,∩,+,min,max)

49

is true. Define f via

f(a1, . . . , an, b, c) :=

{
(F, b), if b ≥ c
(G, 1), otherwise

with formulas

F := (max(SUMa1,...,an ∩ INTc,b) ∩ODDINTc,b) + INT0,b−c and

G := 1 + 1.

Let (a1, . . . , an, b, c) ∈ Nn+2. First consider the case c > b. Then there exists no
number greater or equal than c and less or equal than b. Consequently (a1, . . . , an, b, c)
can not be an element of MAX SOSodd. In this case, f returns the formula G =
1 + 1 and the number 1 ∈ N. We see that 1 /∈ I(G), so (G, 1) is not an element of
MF(∪,∩,+,min,max).

Now consider the case b ≥ c, where f returns the formula F as well as the number b ∈
N. How does the set I(F) look like? Let us use our knowledge about the subformulas
SUMa1,...,an , INTc,b and ODDINTc,b established in Lemma 6.6 and Lemma 6.8.

I(F) = (max(SUMa1,...,an ∩ INTc,b) ∩ODDINTc,b) + INT0,b−c

=

(
max

({
n∑
i=1

αi · ai | αi ∈ {0, 1}

}
∩ [c, b]

)
∩ ([c, b] ∩ (2N + 1))

)
+ [0, b− c]

(6.3)

First assume that (a1, . . . , an, b, c) ∈ MAX SOSodd. Then the greatest value of the set
{
∑n
i=1 αi · ai | αi ∈ {0, 1}} ∩ [c, b] exists, so

I(F) = (x ∩ ([c, b] ∩ 2N + 1)) + [0, b− c].

Additionally, we know x is odd (otherwise (a1, . . . , an, b, c) /∈ MAX SOSodd), so

I(F) = x+ [0, b− c] = [x, b− c+ x].

We know c ≤ x ≤ b, so the left limit of the interval is never greater than b, while the
right limit of the interval is never smaller than b − c + c = b. We conclude b ∈ I(F)
and f(a1, . . . , an, b, c) = (F, b) ∈ MF(∪,∩,+,min,max).

Now assume that (a1, . . . , an, b, c) /∈ MAX SOSodd and consider (6.3) once again. This
means either that the set {

∑n
i=1 αi · ai | αi ∈ {0, 1}}∩ [c, b] is empty (i) or the greatest

value in this set is even (ii). In case (ii) call this value again x.

(i) Then we have

I(F) = (∅ ∩ ([c, b] ∩ (2N + 1))) + [0, b− c] = ∅+ [0, b− c] = ∅,

(ii) Then we have

I(F) = (x ∩ ([c, b] ∩ (2N + 1))) + [0, b− c] = ∅+ [0, b− c] = ∅,

50

In both cases, we get b /∈ I(F), so f(a1, . . . , an, b, c) = (F, b) /∈ MF(∪,∩,+,min,max).
We conclude that f is indeed a correct reduction. Further, f is realized by the following
algoritm

Algorithm 6.5 Reducing MAX SOSodd to MF(∪,∩,+,min,max).

Input: A list of numbers (a1, . . . , an, b, c) ∈ Nn+2.
1: if b < c then
2: Generate the formula F := 1 + 1 and return it along the number 1.

3: Let F1 be the output of Algorithm 6.2 applied on the list (a1, . . . , an).
4: Write F1 onto the output and set c1 as the successor of its output gate.
5: Let F2 be the output of Algorithm 6.4 applied on (c, b) and k = 0.
6: Write F2 onto the output and set c1 as the successor of its output gate.
7: Write the gate c1,∩,m onto the output.
8: Write the gate m,max, c2 onto the output.
9: Let F3 be the output of Algorithm 6.4 applied on (c, b) and k = 1.

10: Write F3 onto the output and set c2 as the successor of its output gate.
11: Write the gate c2,∩, p onto the output.
12: Let F4 be the output of Algorithm 6.4 applied on (0, b− c) and k = 0.
13: Write F4 onto the output and set p as the successor of its output gate.
14: Write the gate p,+ onto the output and set it as the output gate.

This algorithm’s runtime is polynomially bounded in its input size, as it applies poly-
nomial runtime Algorithms (see Lemma 6.6 and Lemma 6.8) on inputs, whose sizes
are bounded by the size of its own input. This shows f ∈ FP, which concludes this
proof. �

6.3 The difficulty of MC(∪,∩,×,min,max) and
MC(∪,∩, ,×,min,max)

Let O ⊆ {∪,∩,×} and M := {min,max}. Trying to find complexity classes for
the problems MC(O ∪ M), MC({ } ∪ O ∪ M) as well as their respective formulas
counterparts either as lower or upper bounds turned out to be rather difficult.

Remember Theorem 6.3 for solving MC(∪,∩,+,min,max), the idea there was to elimi-
nate a min, max-gate v of a given circuit C by testing for i ∈ N up to (resp. downwards
in case of a max-gate) a certain threshold, if i ∈ I(v). This was possible in polynomial
space because the length of this threshold was polynomially bounded. If we have ×
instead of + however, one would have to consider all values up to threshold, whose
length is only exponentially bounded. Using this idea leads to EXPSPACE as an up-
per bound. However with Theorem 5.17 we have already found a better upper bound
in ∆EXP

2 .

McKenzie & Wagner showed MC(∪,∩,×) ≤P
m MC(∪,∩,+) by the following idea.

Let C := (V,E, vC , α) be a (∪,∩,×)-circuit. Decompose all numbers into a product
of coprime numbers, resulting in a vector of exponents for all values. Instead of

51

multiplying two numbers, one can now add the elements of these vectors pairwise.
Adding min-, max as possible gate labels this idea may fail, as it is unclear how to
determine which of two decomposition describes the greater number in an effective
way.

52

7 Conclusion

Let M := {min,max}.Then the results of this thesis are listed in the following table.

O MC(O ∪M) MF(O ∪M)
lower bound upper bound lower bound upper bound

∪, ∩, , +, × NEXP ? PSPACE ?
∪, ∩, +, × NEXP ∆EXP

2 5.17 ∆P
2 6.9 ∆P

2 5.13
∪, +, × PSPACE PSPACE 5.7 NP NP 5.8
∩, +, × P co-R 5.1 L L 5.2

+, × P P 5.1 L L 5.2
∪, ∩, , + PSPACE PSPACE 6.3 PSPACE PSPACE 6.4
∪, ∩, + PSPACE PSPACE 6.3 ∆P

2 6.9 ∆P
2 5.13

∪, + NP NP 5.7 NP NP 5.8
∩, + C=L C=L 5.1 L L 5.2

+ C=L C=L 5.1 L L 5.2
∪, ∩, , × PSPACE ? PSPACE ?
∪, ∩, × PSPACE ∆EXP

2 5.17 NP ∆P
2 5.13

∪, × NP NP 5.7 NP NP 5.8
∩, × C=L P 5.1 L L 5.2

× NL NL 5.1 L L 5.2
∪, ∩, P P 4.2 L P 4.2
∪, ∩, P P 4.2 L P 4.2
∪, P 4.7 P 4.2 L P 4.2
∩, NL NL 4.4 L L 4.5
∅ L L 4.8 L L 4.8

Here the lower bounds without citation are taken from Table 3.1, the studies of McKen-
zie and Wagner in [MW07]. Note that while MC(∪,min,max) is P-hard, we have seen
in Theorem 4.6 that MC(∪,min) ∈ NL and MC(∪,max) ∈ NL.

The following questions could not be answered in this thesis and remain open.

(i) Is MF({∪,∩, } ∪M) ∈ L?

(ii) Is MC({∪,∩, ,×}∪M) ∈ PSPACE and/or MF({∪,∩, ,×}∪M) ∈ PSPACE?
Is MC({∪,∩,×} ∪M) ∈ PSPACE? Is MF({∪,∩,×} ∪M) ∆P

2 -hard?

(iii) Is MC({∪,∩,+,×} ∪M) ∆P
2 -hard?

53

References

[SM73] L. J. Stockmeyer, A. R. Meyer, Word problems requiring exponential
time(preliminary report). Proceedings of the fifth annual ACM symposium
on Theory of computing - STOC ’73 (1973), doi:10.1145/800125.804029

[Gol77] L. M. Goldschlager, The monotone and planar circuit value problems
are log space complete for p. ACM SIGACT News. 9, 25–29 (1977),
doi:10.1145/1008354.1008356. .

[Wag87] K. W. Wagner, More complicated questions about maxima and minima,
and some closures of np. Theoretical Computer Science. 51, 53–80 (1987),
doi:10.1016/0304-3975(87)90049-1.

[MW07] P. McKenzie, K. W. Wagner, The complexity of membership problems for
circuits over sets of natural numbers. computational complexity. 16, 211–244
(2007), doi:10.1007/s00037-007-0229-6.

54

Erklärung

"Hiermit versichere ich, dass ich die vorliegende Arbeit in allen Teilen selbstständig angefertigt und

keine anderen als die in der Arbeit angegebenen Quellen und Hilfsmittel benutzt habe. Sämtliche

wörtlichen oder sinngemäßen Übernahmen und Zitate sind kenntlich gemacht und nachgewiesen."

.
Ort, Datum, Unterschrift

	Introduction
	Definitions
	Concerning circuits and formulas
	Membership problems
	The encoding of circuits and formulas

	Solving membership problems with minimum and maximum
	Problems with only set operators
	An upper bound
	Intersection with min and max
	Union with min and max
	The case of only min-, max-gates

	Problems with both + and x
	The case (n,+,x,min,max) and its subcases
	The case (u,+,x) and its subcases
	(n,u,+,x)-formulas
	(n,u,+,x)-circuits

	Problems with either + or x
	The case of (u,n,no,+,min,max)
	(u,n,+,min,max)-formulas
	The difficulty of MC(u,n,no,+,min,max) and MC(u,n,no,+,min,max)

	Conclusion
	References

