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Abstract

The problem Level Planarity asks for a planar drawing of a graph where the y-
coordinates of vertices are fixed. It can be generalized to the problem Constrained
Level Planarity where the left-to-right order of the vertices on a horizontal line is
constrained by a partial order. The problem Ordered Level Planarity is a special
case of Constrained Level Planarity where the orders on the vertices are total.

In this thesis, we investigate reductions from Constrained Level Planarity to
Ordered Level Planarity. Adapting a reduction by Sieper [Sie22] we show that
there are reductions from Constrained Level Planarity to Ordered Level Pla-
narity which preserve various graph properties such as outerplanarity, chordality, per-
fectness, pathwidth, treedepth, maximum degree, and cycle graphs. We also provide a
reduction that, under certain conditions, maintains k-connectivity for arbitrary k.

By modifying a NP-hardness proof from Brückner and Rutter [BR17] that reduces
Planar Monotone 3-Satisfiability to Constrained Level Planarity we show
that Constrained Level Planarity is NP-hard when restricted to cycle graphs as
well as 5-connected graphs. Using the reductions from this thesis we then show that
Ordered Level Planarity is also NP-hard when restricted to cycle as well as 5-
connected graphs.
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Zusammenfassung

Das Problem Level Planarity besteht darin, für einen gegeben Graphen zu entschei-
den, ob es eine planar Zeichnung gibt, in der sich die Knoten auf zuvor festgelegten
horizontalen Linien befinden. Es kann zum Problem Constrained Level Planarity
verallgemeinert werden, bei dem die Reihenfolge der Knoten von links nach rechts durch
eine partielle Ordnung beschränkt ist. Das Problem Ordered Level Planarity ist
ein Spezialfall des Problems Constrained Level Planarity, bei dem die Ordnungen
auf den Knoten total sind.
In dieser Arbeit untersuchen wir Reduktionen von Constrained Level Planarity

auf Ordered Level Planarity. Ausgehend von einer Reduktion von Sieper [Sie22]
zeigen wir, dass es Reduktionen von Constrained Level Planarity auf Ordered
Level Planarity gibt, die unterschiedliche Grapheigenschaften, wie Außenplanarität,
Chordalität, Perfektheit, Pfadweite, Baumtiefe, Maximalgrad und Kreisgraphen, erhal-
ten. Außerdem präsentieren wir eine Reduktion, die, unter gewissen Bedingungen, k-fach
Zusammenhang für beliebige k aufrechterhält.
Durch Modifikation eines NP-Schwere Beweises von Brückner und Rutter [BR17], in

dem Planar Monotone 3-Satisfiability auf Constrained Level Planarity re-
duziert wird, zeigen wir, dass Constrained Level Planarity auch für Kreisgraphen
sowie 5-fach zusammenhängende Graphen NP-schwer ist. Mithilfe der Reduktionen aus
dieser Arbeit folgern wir anschließend, dass Ordered Level Planarity ebenfalls für
Kreisgraphen sowie 5-fach zusammenhängende Graphen NP-schwer ist.
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1 Introduction

When visualizing hierarchical data, such as networks or corporate structures, a top-down
approach is often used to enhance clarity and improve understanding of the data. Due
to crossings diminishing visual clarity and readability, it is desirable to obtain drawings
of a graph that are free of crossings. Additionally, as it is often useful to group the data
on horizontal lines, the question arises as to whether a given graph can be drawn planar
with the vertices on prescribed horizontal lines, known as levels. This problem is known
as Level Planarity. Since it may also be desired to have the vertices placed in a grid
pattern, this leads to the problem of Ordered Level Planarity. Alternatively, a less
strict version of this problem would be to require that the vertices on a level be placed
according to a partial order, a problem known as Constrained Level Planarity.

1.1 Related Work
The problem of Level Planarity has been studied for a long time with Di Battista and
Nardelli [BN88] showing in 1988 that Level Planarity can be solved in polynomial
time for graphs with a single source. This result was later generalized by Jünger et
al. [JLM98] to a linear-time recognition algorithm. Further improvements by Jünger and
Leipert [JL99] led to an algorithm that also determines an embedding in linear time.
As this algorithm is quite complicated, simpler, but asymptotically slower, algorithms
were developed, such as a quadratic-time algorithm by Fulek et al. [FPSŠ13]. Another
quadratic-time algorithm was given by Harrigan and Healy [HH08] which also allows for
constraints on the order of incident edges around vertices.
Over the years, many variations of level planarity have been studied. For example, the

problems Radial Level Planarity, Cyclic Level Planarity and Torus Level
Planarity draw the graph on the surface of a standing cylinder, rolling cylinder, and
torus, respectively, instead of a plane. Bachmaier et al. [BBF05] provided a linear-time
recognition and embedding algorithm for Radial Level Planarity. For strongly-
connected cyclic level graphs, a linear-time testing and embedding algorithm was pro-
vided by Bachmaier and Brunner [BB08]. Angelini et al. [ALB+16] later showed that
Radial Level Planarity and Cyclic Level Planarity reduce in linear time to
Torus Level Planarity and provided a general polynomial-time testing algorithm
for these problems. Forster and Bachmaier [FB04] introduced the problem of Clus-
tered Level Planarity that allows for the visualization of vertex clusterings and
provided an efficient algorithm for the proper case where all edges connect vertices on
adjacent levels. Another variation, T-Level Planarity, where there are restrictions
on which vertices can appear consecutively on a level, was introduced by Wotzlaw et
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al. [WSP12]. They provided a quadratic-time algorithm for proper instances with a con-
stant level-width, i.e. a constant number of vertices per level. Angelini et al. [ALB+15]
managed to generalize the algorithms for Clustered Level Planarity and T-Level
Planarity to proper graphs and also showed that these problems are NP-complete in
the general case. Brückner and Rutter [BR17] introduced the problem of Constrained
Level Planarity, where a partial order is set on the vertices of each level, as well
as Partial Level Planarity, where a drawing of a subgraph is already fixed. They
provided an efficient algorithm for graphs with only one source and showed that both
problems are NP-hard in the general case. The problem Ordered Level Planarity,
where both the x and y-coordinate of vertices are prescribed, was introduced by Klemz
and Rote [KR19]. They showed that Ordered Level Planarity is a special case
of several graph drawing problems, such as T-Level Planarity, Clustered Level
Planarity and Constrained Level Planarity. As the problem Constrained
Level Planarity is NP-hard in the general case there has been research into FPT -
algorithms parametrized by certain graph properties. Recently, Sieper [Sie22] showed
that there are no FPT -algorithms for Constrained Level Planarity parametrized
by the number of levels, pathwidth, or the maximum number of vertices per level as these
cases are NP-hard. In doing so, Sieper also provided a reduction from Constrained
Level Planarity to Ordered Level Planarity.

1.2 Contribution
Seeing as Ordered Level Planarity is a special case of Constrained Level Pla-
narity and there are reductions from Constrained Level Planarity to Ordered
Level Planarity, we further analyze the connection between these two problems.
We start by formalizing the problems and properties which we will use throughout this
thesis in Chapter 2. Adapting the reduction from Sieper [Sie22, Chapter 5], we will
show in Chapter 3 that Constrained Level Planarity can be reduced in polyno-
mial time to Ordered Level Planarity while preserving several graph properties,
such as outerplanarity, chordality, perfectness, pathwidth, treedepth, maximum degree,
and cycle graphs. We also show in Section 3.3 that k-connectivity can be maintained
for arbitrary k under certain conditions.

In Chapter 4 we adapt the NP-hardness proof from Brückner and Rutter [BR17] re-
ducing Planar Monotone 3-Satisfiability to Constrained Level Planarity in
order to show that Constrained Level Planarity is NP-hard even when restricted
to cycle graphs as well as 5-connected graphs. Using the reductions from this thesis we
then show that Ordered Level Planarity is also NP-hard when restricted to cycle
as well as 5-connected graphs. Lastly, we conclude our work and outline questions for
future work in Chapter 5.

6



2 Preliminaries
We will now define the problems which this work focuses on. An example instance for
each problem can be seen in Figure 2.1. The terminology is based on the one used by
Klemz and Rote [KR19].

Definition 2.1 (Level Planarity). An h-level graph G = (G, γ) is a directed graph
G = (V,E) together with a level assignment γ : V → [h] := {1, 2, . . . , h} such that
γ(u) < γ(v) for each edge (u, v) ∈ E. The value h is therefore the height of G. The
set V`(G) := {v ∈ V | γ(v) = `} is the set of vertices on the `-th level of G with width
λ`(G) := |V`(G)|. The level-width λ(G) of G is the maximum width of any level in G.
A level drawing of G is a drawing where the y-coordinate of each vertex v is γ(v) and
each edge e = (u, v) is a y-monotone arc. A crossing-free level drawing of G is a level
planar drawing and G is level planar if and only if it admits a level planar drawing. The
problem Level Planarity asks whether a given level graph is level planar.

As the y-coordinates prescribed by γ act merely as a way to encode a total preorder
of the vertices, Level Planarity is equivalent in terms of realizability to the general-
ization where γ maps to h distinct and arbitrary real numbers. We can also generalize
Level Planarity by enabling the restriction of the order in which vertices are drawn
on each level which yields the following problem.

Definition 2.2 (Constrained Level Planarity). A constrained h-level graph G is a
triple (G, γ, (≺`)1≤`≤h) where (G, γ) is an h-level graph and the vertex order on each level
` ∈ [h] is constrained by the partial order ≺`. A constrained level planar drawing of G is a
level planar drawing compatible with the constraints, i.e. with the left-to-right order of the
vertices in V`(G) being a linear extension of ≺` for each level ` ∈ [h]. For a pair of vertices
u, v ∈ V`(G) we refer to u ≺` v as a constraint on u and v. The graph G is constrained
level planar if and only if it admits a constrained level planar drawing. The problem Con-
strained Level Planarity asks whether a given graph G is constrained level planar.

We define Ordered Level Planarity as a special case of Constrained Level
Planarity with total instead of partial orders. It remains equivalent in terms of real-
izability to the definition by Klemz and Rote [KR19] as prescribing the x-coordinate of
each vertex acts merely as a way to encode a total order of the vertices on each level

Definition 2.3 (Ordered Level Planarity). The problem Ordered Level Pla-
narity corresponds to a special case of Constrained Level Planarity where the
order of the vertices on each level is total. An instance G of Ordered Level Pla-
narity is an ordered level graph. A constrained level planar drawing of G is referred
to as ordered level planar drawing, and we say that G is ordered level planar when it is
constrained level planar.
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Fig. 2.1: (a) A 4-level graph. (b) The same level graph as a constrained level graph. The
constraints are drawn as (red) arrows. (c) The same level graph as an ordered level
graph. The constraints on the vertices of a level are drawn as a single (red) line for
visual clarity since the order of the vertices is total.

Before we can proceed to the main part of this work we will define some additional
terms and conventions. We say that two level graphs G and G′ are equivalent (in terms
of level planarity) if and only if, G is level planar if and only if G′ is level planar. We say
the same for constrained and ordered level graphs.
For a level graph G = (G, γ) with G = (V,E) we define V (G) := V as the set of

vertices, n(G) := |V | as the number of vertices, E(G) := E as the set of edges and
m(G) := |E| as the number of edges. We also set c(G) as the number of constraints in G.
The size of an instance G of Constrained Level Planarity depends on the number

of vertices, edges, and constraints and is therefore in O(n(G)+c(G)+m(G)) ⊂ O(n2(G)).
If G is planar the number of edges must be in O(n(G)) and therefore the size of G is in
O(n(G) + c(G)).
For a level graph G and each vertex v ∈ V (G) we denote the set of outgoing edges as

E+
G (v) := {(v, u) ∈ E(G)}. The outgoing edges connect v with its upward neighbours

N+
G (v) := {u ∈ V | (v, u) ∈ E(G)}. The set E−G (v) := {(u, v) ∈ E | γ(u) < γ(v)} are the

incoming edges which connect to downward neighbours N−G (v) := {u ∈ V | (u, v) ∈ E−G }.
Combining these sets yields the incident edges EG(v) := E+

G (v) ∪ E−G (v) and adjacent
vertices NG(v) := N+

G (v) ∪ N−G (v) of a vertex v ∈ V (G). For an edge e ∈ E(G) with
e = (u, v) we define its upper endpoint as e+ := v and its lower endpoint as e− := u.
A vertex without neighbours is an isolated vertex. The outdegree of a vertex v ∈ V (G)
is the number of outgoing edges deg+

G (v) := |E+
G (v)| and the indegree is the number

of incoming edges deg−G (v) := |E−G (v)|. The degree of a vertex v ∈ V is the number
of incident edges degG(v) := |EG |. We denote the maximum degree of a graph G as
∆(G) := max{degG(v) | v ∈ V }.
In the case that an h-level graph G has no isolated vertices we can partition the set of

vertices V (G) into sources Q(G) := {v ∈ V (G) | deg−G (v) = 0} with only outgoing edges,
sinks S(G) := {v ∈ V (G) | deg+

G (v) = 0} with only incoming edges, and intermediate
vertices R(G) := {v ∈ V (G) | deg−G (v) 6= 0 6= deg+

G (v)} which have both incoming and
outgoing edges, as seen in Figure 2.2a. This partition also applies to each level ` ∈ [h]
with V`(G) being partitioned into Q`(G) := Q(G) ∩ V`(G), R`(G) := R(G) ∩ V`(G) and
S`(G) := S(G) ∩ V`(G).
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Fig. 2.2: (a) A 4-level graph G with its vertices partitioned into sources Q(G) drawn as (red)
squares, sinks S(G) as (blue) circles, and intermediate vertices R(G) as (green) crosses.
(b) The proper version GP of the graph G where the edges spanning multiple levels
have been subdivided. (c) The proper graph can also be drawn straight.

For a constrained level graph G = ((V,E), γ, (≺`)`) we say that a constrained level
graph G′ = ((V ′, E′), γ′, (≺′`)`) is a subgraph of G, in symbols G′ ⊂ G if and only if
V ′ ⊂ V , E′ ⊂ E, γ′(v) = γ(v) for all v ∈ V ′ and for each constraint v ≺′` u in G′ there
is the constraint v ≺` u in G. Note that if G is constrained level planar all its subgraphs
are also constrained level planar. For a subset of vertices U ⊂ V the induced subgraph
of G is G[U ] := ((U, Ē), γ̄, (≺̄`)`) where Ē, γ̄ and ≺̄ are restricted to the vertices in U .

Since the direction of the edges of a level graph is clear from context, we will treat
them for the sake of simplicity as undirected from now on.
A walk p = 〈v0, . . . , vk〉 of length k ≥ 0 is a finite sequence of vertices in G such that
{vi−1, vi} ∈ E(G) for all i ∈ [k]. If v0 = vk we say that the walk p is closed. If no two
vertices in p are the same, except for the case that v0 = vk, we say that p is a path. We
call a path that is also closed a cycle. A graph that consists solely of a cycle is a cycle
graph. If γ(vi−1) < γ(vi) for all i ∈ [k] or γ(vi−1) > γ(vi) for all i ∈ [k] we say that
the path p is (y-)monotone. We define L+(p) := maxv∈p γ(v) and L−(p) := minv∈p γ(v)
as the lowest and highest levels of a path p and L(p) := {L−(p), . . . , L+(p)} as the set
of levels which p touches. Further, we say that a path p crosses a level ` at a vertex
v ∈ V`(G) with v ∈ p if and only if v is not an endpoint of p. We say that a path
p = 〈v0, . . . , vk〉 is bounded (by its endpoints) if and only if they are the highest and
lowest points of the path, i.e. L−(p) = γ(v0) and L+(p) = γ(vk) or L+(p) = γ(v0) and
L−(p) = γ(vk).
A level graph G is proper if and only if for every edge e ∈ E(G) the incident vertices lie

on consecutive levels, i.e. γ(e+) = γ(e−) + 1. Every h-level graph G can be transformed
into a proper h-level graph GP by subdividing all edges spanning multiple levels, as
seen in Figure 2.2b. A level drawing Γ of G can be similarly transformed into a level
drawing ΓP of GP . Note that G and GP are equivalent. Assuming that G is planar and
h ≤ n(G) the graph GP has O(n2(G)) vertices as G has O(n(G)) edges.
A level drawing Γ of a proper h-level graph G defines total linear orders ≺Γ

` on the
vertices V`(G) of each level ` ∈ [h], given by their left-to-right order in the drawing.
We call this family of orders a level embedding. The embedding derived from a level
planar drawing is a level planar embedding. Jünger et al. [JLM98] argued that a level
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embedding Γ of a proper h-level graph G is level planar if and only if for every pair of
edges {u1, v1}, {u2, v2} ∈ E(G) such that γ(u1) = γ(u2) = ` and γ(v1) = γ(v2) = `+1 as
well as u1 6= u2 and v1 6= v2 it follows from u1 ≺Γ

` u2 that v1 ≺Γ
`+1 v2. As we can obtain

a level planar drawing of G from a given level planar embedding, by realizing all edges
with straight lines and positioning the vertices on each level according to the order from
the embedding, see for example Figure 2.2c, we will from now on mostly use the level
embedding. Jünger and Leipert [JL99] showed that a level planar embedding can be
obtained in linear time. However, since we want all relations between vertices explicitly
encoded in the embedding our embedding can have up to quadratic size compared to the
graph G. We therefore also need quadratic time instead of linear to obtain a level planar
embedding. Since a y-monotone path p has exactly one vertex on each level in L(p) we
can compare it to another y-monotone path p′ on a level ` ∈ L(p) ∩ L(p′) by setting
p ≺Γ

` p
′ if v ≺Γ

` v
′ and p′ ≺Γ

` p if v′ ≺Γ
` v where v and v′ are the respective vertices of

the paths on the level `. This order is defined on all levels where the paths do not share
a point. As we can treat vertices as paths of length 0 we can therefore also compare
paths to vertices. This means that all vertices and edges on a level ` can be compared to
one another except for edges with the same endpoint. We therefore denote for a vertex
v ∈ V (G) the total linear orders on the outgoing and incoming edges as ≺Γ

v+ and ≺Γ
v− ,

respectively. When given a level embedding Γ these orders can be derived from the order
of the edges on the adjacent levels since the edges must have an order on those as we
do not allow multi-edges. These orders are then also included in the order ≺Γ

` where
` = γ(v). This enables us to rewrite the planarity criterion as G is level planar if and only
if for every pair of edges e1, e2 ∈ E(G) and levels `−, `+ ∈ L(e1) ∩ L(e2) with `− < `+

as well as e−1 6= e−2 if `− = L−(e1) = L−(e2) and e+
1 6= e+

2 if `+ = L+(e1) = L+(e2) it
follows from e1 ≺Γ

`− e2 that e1 ≺Γ
`+ e2. Therefore, if the embedding is planar, the order

of two vertex-disjoint monotone paths must be the same on all levels that both paths
touch. We can also compare a bounded path p to each path p′ with L(p′) ⊂ L(p) that is
vertex-disjoint to p. For this, we look at the area between the levels L−(p) and L+(p).
This area is divided by the path p into two halves, as seen in Figure 2.3b. The path p′
has to be completely in one half as it cannot be crossing p since they are vertex-disjoint,
and it also cannot pass above or below p since p′ does not go that high or low. Therefore,
we can say that p′ is to the right of p setting p ≺Γ

` p
′ for every ` ∈ L(p′) if p′ is in the

right half. Otherwise, p′ is to the left of p, and we set p′ ≺Γ
` p. Note that this definition

is consistent with the one for monotone paths.
As we can transform a level drawing of an h-level graph G to a level drawing of its

proper version GP and vice versa we can generalize the level embedding to non-proper
level graphs. We therefore compare the order of edges and even paths in G by comparing
their subdivided equivalents in GP . Since the subdivision does not affect y-monotonicity,
the path pP in GP corresponding to a y-monotone path p in G is also y-monotone. This
means that the path in GP corresponding to an edge in G is always y-monotone. We set
E`(G) := {e ∈ E(G) | e crosses `} for each ` ∈ [h] as the set of edges crossing the level `.
Using this we can equivalently define a level embedding of a (non-proper) level graph G
as the family of total orders over the vertices and crossing edges E`(G) := V`(G)∪E`(G)
on each level ` ∈ [h]. The planarity criterion remains the same for these embeddings.
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(a)
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L−(p)

p′ p

(b)

Fig. 2.3: (a) A graph with the small angles highlighted as dotted (red) arcs and the big angles
highlighted as dashed (green) arcs.
(b) The path p splits the area into a (yellow) left and a (green) right half. As p′ is in
the left half we say that p′ is to the left of p.

We will now define the combinatorial embedding where the cyclic order of the incident
edges of each vertex is given. Let U be a set and C a ternary relation on U , consisting
of triples (x, y, z) with x, y, z ∈ U pairwise unequal. Then C is a cyclic order if and only
if the following properties are fulfilled:

1. C is cyclic: (x, y, z) ∈ C =⇒ (y, z, x) ∈ C

2. C is asymmetric: (x, y, z) ∈ C =⇒ (z, y, x) 6∈ C

3. C is transitive: (x, y, z), (x, z, w) ∈ C =⇒ (x, y, w) ∈ C

4. C is total: x, y, z ∈ U, x 6= y 6= z 6= x =⇒ (x, y, z) ∈ C ∨ (z, y, x) ∈ C

Novák [Nov84] showed that given a cyclic order C and an element x ∈ U we can obtain
two linear orders ≺x, ≺x with x as either the smallest or biggest element. According
to Huntington [Hun35] the order on the elements in U \ {x} is the same in ≺x and ≺x.
We can derive a cyclic order Λv of the edges around each vertex v ∈ V (G) from a level
planar embedding Γ by first joining the linear orders ≺Γ

v+ and ≺Γ
v− , setting the incoming

edges to be before the outgoing edges, and then turning this into a cyclic order. The
family of all the cyclic orders of the vertices in G is a combinatorial embedding Λ of G.
When given a cyclic order Λv of the incident edges of a source v ∈ V (G) and an edge
e ∈ EG(v) the orders ≺e and ≺e correspond to linear orders of the incident edges of v
with e being the left and rightmost edge, respectively.
For a level planar drawing Γ of G, we set F (Γ) as the set of faces in Γ. Given a

face f ∈ F (Γ) we set ∂f := 〈v0, v1, . . . , v0〉 as the boundary of f , i.e. the closed walk
surrounding f . For a vertex v we say, following [GT01], that v is a local source with
respect to f if v has two outgoing edges on ∂f . If v has two incoming edges on ∂f it is a
local sink. The angle α between those two edges is large if α > π and otherwise small, as
seen exemplarily in Figure 2.3a. Note that each vertex can have at most one large angle.
We will now specify a situation that plays an important role in the reductions. Given

a constrained level planar embedding Γ of a constrained level graph G we say that a
vertex u ∈ V (G) is nested in a vertex v ∈ V (G) if and only if there are two bounded
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paths pL = 〈v, . . . , vL〉 and pR = 〈v, . . . , vR〉 such that pL and pR are vertex-disjoint
and pL ≺Γ

γ(u) u ≺Γ
γ(u) pR. For a nested vertex, there cannot be a monotone path

pu = 〈u, . . . , u′〉 with γ(v) ∈ L(pu) that does not contain v and is vertex-disjoint to pL
and pR as then either v ≺Γ

γ(v) pu or pu ≺Γ
γ(v) v. This contradicts Γ being constrained

level planar because of u ≺γ(u) pR and u ≺γ(u) pL which forces pu to cross either pL
or pR. For a vertex u nested in a vertex v we say that u is nested below if γ(u) < γ(v)
and nested above if γ(u) > γ(v). We also say that a vertex u can be nested in a vertex v
if there is a constrained level planar embedding of G where u is nested in v.

Properties We will now introduce some properties of graphs, which we will preserve
in the reductions. First off, a graph G is connected if there is a path between any two
vertices u, v ∈ V (G) otherwise it is disconnected. A graph is k-connected if the graph
remains connected when removing any k − 1 vertices.
For two vertices u, v ∈ V (G) of a graph G the distance dG(u, v) between u and v

corresponds to the length of the shortest path between u and v in G. The diameter
diam(G) := max{dG(u, v) | u, v ∈ V (G)} of a graph G is the longest distance between
two vertices.
A k-coloring of G is a function f : V (G) → [k] such that f(v) 6= f(u) for each edge
{v, u} ∈ E(G). The chromatic number χ(G) is the smallest k such that there is a k-
coloring of G. A set U ⊂ V (G) is a clique if and only if all vertices in U are adjacent to
each other, i.e. {v, u} ∈ E(G) for every u, v ∈ U with u 6= v. The clique number ω(G) is
the size of the biggest clique in G. We say that a graph is perfect if and only if for each
induced subgraph G′ of G it is ω(G′) = χ(G′).
A chordal graph is one where each cycle with a length greater than 3 has a chord, an

edge connecting two vertices of the cycle that is itself not a part of the cycle. A graph
G for which exists a planar drawing where all vertices are incident to the outer face is
level planar is outerplanar.
A tree-decomposition of a graph G, as defined by Robertson and Seymour [RS86], is

a tree T = (VT , ET ) where each node i ∈ VT belongs to a bag Xi ⊂ V (G) with the
following properties:

1.
⋃
i∈VT

Xi = V (G)

2. ∀{u, v} ∈ E(G)∃i ∈ VT : u, v ∈ Xi

3. ∀i, j, k ∈ Vi : j lies on a path of T from i to k =⇒ Xi ∩Xk ⊆ Xj

The last property is equivalent to requiring that the nodes corresponding to bags contain-
ing a vertex v induce a connected subgraph of T . The width of the tree-decomposition
T is w(T ) := max{|Xi| − 1 | i ∈ VT }. The treewidth tw(G) of G is the minimum width
of a tree-decomposition of G. A path-decomposition is a tree-decomposition T where T
is a path and the pathwidth pw(G) of G is the minimum width of a path-decomposition
of G. Therefore, the treewidth is bounded by the pathwidth.
The treedepth td(G) of a graph G, as defined by Nešetřil and Ossona de Mendez [NO06],

is the minimum height of a rooted forest F such that for every edge {u, v} ∈ E(G) there
is an ancestor-descendant relationship between u and v in F .
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3 Reductions Preserving Graph Properties

In this chapter, we will present reductions from Constrained Level Planarity
to Ordered Level Planarity that preserve outerplanarity, chordality, perfectness,
pathwidth, treedepth, maximum degree, cycle graphs, and, under certain conditions,
k-connectivity. We will begin by providing reductions from Constrained Level Pla-
narity to Ordered Level Planarity for some trivial cases.

Lemma 3.1. Let G = (G, γ, (≺`)`) be a constrained h-level graph. In the following
cases we can transform the graph G in quadratic time to an equivalent ordered level
graph G′ = (G, γ, (≺′`)`) by only adding constraints:

1. The graph G contains only isolated vertices.

2. The graph G is not level planar.

Proof. A constrained level graph that only contains isolated vertices is always con-
strained level planar, regardless of the constraints, as an embedding that is on each
level a linear extension of the constraints on the vertices of that level respects the con-
straints and is trivially planar as there are no edges. We therefore can set the total
order ≺′` for each level ` ∈ [h] to be an arbitrary linear extension of the partial order ≺`
thereby obtaining an ordered level planar graph G′.
If the graph G is not level planar it also is not constrained level planar. We therefore

can set the total order ≺′` for each level ` ∈ [h] to be an arbitrary linear extension of
the partial order ≺` thereby obtaining an ordered level planar graph G′. The graph G′
is equivalent to G, as there cannot be an ordered level planar embedding of G′ since this
would also be a constrained level planar embedding of G which contradicts G not being
level planar.
As during the reductions we only add constraints and there are at most O(n2) con-

straints for a graph with n vertices, adding these constraints takes at most quadratic
time.

As we can test if a graph is level planar and contains at least one edge in linear time
we will assume from now on that the graphs are level planar and contain edges. We
will now show that we can further assume that the graph does not contain any isolated
vertices.

Lemma 3.2. Let G = (G, γ, (≺`)`) be a constrained h-level graph and U ⊆ V (G) the
isolated vertices in G. The graph G can be transformed in linear time to the induced
subgraph G′ = G[V (G) \ U ] which does not contain any isolated vertices. Further, the
graphs G and G′ are equivalent.

13



Proof. The transformation can be performed in linear time as isolated vertices can be
found in linear time and removing those vertices and their incident edges as well as the
constraints on these vertices can also be done in linear time.
We will now show that the two graphs are equivalent. If G is constrained level planar

so is G′ as it is a subgraph of G. It remains to show that if G′ is constrained level planar
with embedding Γ′ there is a constrained level planar embedding Γ for G. To achieve
this we transform Γ′ to Γ by adding the isolated vertices into the orders of Γ′. Let u ∈ U
be an isolated vertex and let ` = γ(u). If there is no constraint of the form v ≺` u in G
we can place u at the left of the level `. Similarly, if there is no constraint u ≺` v in G
we place u to the right of all vertices on `. Otherwise, there are constraints vL ≺` u and
u ≺` vR in G. We can assume without loss of generality that vL is the rightmost and vR
is the leftmost vertex with such a constraint. Therefore, it must also be vL ≺` vR, and
we can insert the vertex u between vL and vR. If we apply this iteratively to each vertex
u ∈ U we obtain a constrained level planar embedding Γ for G.

We therefore now have to deal only with graphs that are level planar and free of
isolated vertices. For those, the reductions consist mostly of two parts. The first is
to move the constraints of each level to separate levels, a process we call constraint
expansion. The second part is the so-called vertex expansion where the vertices from
each level, that do not have constraints between them, are moved to distinct levels such
that in the end there is a total order on the vertices of each level. For simplicity, we will
treat the levels as rational numbers instead of natural ones during the reductions, as we
can convert them to natural numbers afterwards in linear time. This especially allows
us to insert new levels between the existing levels without having to reassign the levels
of all vertices above the inserted levels.
We will begin by defining the vertex expansion. For a constrained h-level graph
G = (G, γ, (≺`)`) we say that a level ˜̀ ∈ [h] has been vertex expanded if and only if
the graph G has been transformed to a constrained level graph G′ = (G, γ′, (≺′`)`) such
that in place of the level ˜̀ there are consecutive new levels ˜̀1, . . . , ˜̀

k with the vertices
from ˜̀ distributed between them, i.e. V˜̀(G) = V˜̀1

(G′)∪̇ . . . ∪̇V˜̀
k
(G′). Further, for each

constraint v ≺˜̀ u in G there must be the constraint v ≺′γ′(v) u in G′. With this, we can
now formulate the following lemma.

Lemma 3.3. Let G = (G, γ, (≺`)`) be a constrained h-level graph and G′ = (G, γ′, (≺′`)`)
a constrained level graph that differs from G solely in that a level ˜̀∈ [h] from G has been
vertex expanded in G′. If in every constrained level planar embedding of G′ there is no
nesting between any two vertices v, u ∈ V˜̀(G), the graphs G and G′ are equivalent.

Proof. In order to prove that G and G′ are equivalent we will first show that we can
obtain a constrained level planar embedding Γ′ of G′ from a constrained level planar
embedding Γ of G. The idea is to keep the order from Γ as G′ simply changed the level
assignments of the vertices. For each level ` ∈ [h] \ {˜̀} we set ≺Γ′

` to be the same as ≺Γ
`

since these levels contain the same vertices and edges. For the new levels in G′ we set
the order according to the order of the elements on the level ˜̀ in Γ. This means that
for two elements a, b ∈ E`(G′) on a level ` = ˜̀

i with i ∈ [k] we set a ≺Γ′
` b if a ≺Γ

˜̀ b. We

14



will now show that the obtained embedding Γ′ is constrained level planar. First of all,
all constraints are respected in Γ′. Indeed, for a level ` ∈ [h] \ {˜̀} in G and a constraint
v ≺′` u it is also v ≺` u since we kept the vertices and the constraints on this level. As
we also kept the order from the embedding Γ on the level ` it is also v ≺Γ′

` u due to
v ≺Γ

` u as Γ respects the constraint v ≺` u. For a constraint v ≺′` u on a new level ` = ˜̀
i

for i ∈ [k] there must be the constraint v ≺˜̀ u in G. This indicates that it must also
be v ≺Γ

˜̀ u. Since we copied the order ≺Γ′
` from ≺Γ

˜̀ it is also v ≺Γ′
` u. It remains to

show that the embedding is planar. In order for Γ′ to be planar, we have to show that
for two edges e1, e2 ∈ E(G′) and levels `−, `+ ∈ L(e1) ∩ L(e2) with `− < `+ as well as
e−1 6= e−2 if `− = L−(e1) = L−(e2) and e+

1 6= e+
2 if `+ = L+(e1) = L+(e2) it follows from

e1 ≺Γ′
`− e2 that e1 ≺Γ′

`+ e2. Given such edges and levels with e1 ≺Γ′
`− e2 we will now show

that it also is e1 ≺Γ′
`+ e2. If `− 6= ˜̀

i and `+ 6= ˜̀
j for i, j ∈ [k], we have e1 ≺Γ

`− e2 and
therefore e1 ≺Γ

`+ e2 since these edges appear on the corresponding levels in G and we
copied their order in Γ′. It follows that e1 ≺Γ′

`+ e2. If instead `+ = ˜̀
i for an i ∈ [k] we

have e1 ≺Γ
`− e2, and therefore it must also be e1 ≺Γ

˜̀ e2 since an edge that touches the
level ˜̀

i in G′ touches the level ˜̀ in G. We therefore have e1 ≺Γ′
`+ e2 as for those levels we

copied the order from ≺Γ
˜̀ . This applies analog to the case where `− = ˜̀

i and `+ 6= ˜̀
j

for i, j ∈ [k]. If `− = ˜̀
i and `+ = ˜̀

j for i, j ∈ [k] we must have e1 ≺Γ
˜̀ e2 since ≺Γ′

`− was
copied from ≺Γ

˜̀ . Therefore, it must also be e1 ≺Γ′
`+ e2 as ≺Γ′

`+ was also copied from ≺Γ
˜̀ .

It now only remains to show that if G′ is constrained level planar with embedding Γ′,
we can obtain a constrained level planar embedding Γ for G. This is done by mostly
copying the order from Γ′. For each level ` ∈ [h] \ {˜̀} we set ≺Γ

` to be the same as ≺Γ′
`

since these levels contain the same vertices and edges. For the level ˜̀we cannot directly
copy the order from one of the new levels as the vertices in V˜̀(G) are not all on the same
level in G′. We therefore use the order of the incident edges instead, to set the order
of two vertices. For two elements a, b ∈ E˜̀(G) we set a ≺Γ

˜̀ b if there is an i ∈ [k] such
that for ` = ˜̀

i we have a′ ≺Γ′
` b′ where a′ (b′) is either the same element or, in the case

that a′ (b′) is a vertex, an incident edge. This order is unambiguous. Indeed, this is
clear for edges due to them being y-monotone and therefore having the same order on
all levels which they touch. It remains to show that given two vertices v, u ∈ V˜̀(G) their
order in Γ is also unambiguous. Suppose that this were not the case with there being
v ≺Γ

˜̀ u and u ≺Γ
˜̀ v. Then there would be edges evL, evR ∈ EG′(v) and euL, euR ∈ EG′(u) such

that evL ≺Γ′
` euR and euL ≺Γ′

`′ e
v
R for some levels ` and `′. Assume without loss of generality

that γ′(v) < γ′(u). Then if evL and evR are outgoing edges of v the vertex u is nested in v
due to evL ≺Γ′

γ′(u) u ≺
Γ′
γ′(u) e

v
R which contradicts the fact that there is no nesting between

any vertices v, u ∈ V˜̀(G) in G′. If, on the other hand, evL and evR are incoming edges,
the edges euL and euR must also be incoming edges which leads to euL ≺Γ′

γ′(v) v ≺
Γ′
γ′(v) e

u
R

and therefore v being nested in u, again, a contradiction. Otherwise, let without loss of
generality evL be an incoming and evR an outgoing edge. Connecting them forms therefore
a monotone path pv. It is then euL ≺Γ′

`′ p
v and pv ≺Γ′

` euR which leads to the contradiction
that u ≺Γ′

γ′(u) p
v ≺Γ′

γ′(u) u. Therefore, the order defined by Γ is unambiguous. Currently,
the order set on the level ˜̀ in Γ is not necessarily total. This is because for a source
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v ∈ Q˜̀(G) and a sink u ∈ S˜̀(G) with γ′(v) > γ′(u) there does not exist a level in G′
which is shared by an incident edge of u and an incident edge of v. We therefore choose
an arbitrary linear extension of the current order and use this to set the order between
the remaining elements. It remains to show that Γ is constrained level planar. First
of all, the constraints are respected in Γ. Indeed, for a level ` ∈ [h] \ {˜̀} we kept the
order on the vertices of the level ` which has the same constraints in G′. For a constraint
c = (v ≺˜̀ u) on the level ˜̀ in G there must be a level ` = ˜̀

i for an i ∈ [k] in G′ such
that v ≺′` u. Therefore, it must be v ≺Γ′

` u which means that we set v ≺Γ
˜̀ u thereby

respecting the constraint. In order for Γ to be planar we have to show that for two
edges e1, e2 ∈ E(G) and levels `−, `+ ∈ L(e1) ∩ L(e2) with `− < `+ as well as e−1 6= e−2 if
`− = L−(e1) = L−(e2) and e+

1 6= e+
2 if `+ = L+(e1) = L+(e2) it follows from e1 ≺Γ

`− e2
that e1 ≺Γ

`+ e2. If `− 6= ˜̀ 6= `+ we have e1 ≺Γ′
`− e2 and therefore e1 ≺Γ′

`+ e2 since these
edges appear on the corresponding levels in G′. It follows that e1 ≺Γ

`+ e2. If `+ = ˜̀ then
it must be e1 ≺Γ′

`− e2 and e1 ≺Γ′
` e2 for ` = ˜̀1 since these edges touch the level ˜̀ in G and

therefore must touch the level ˜̀1 in G′ as they cannot end on an earlier level. Therefore,
it is e1 ≺Γ

`+ e2. This is analog for `− = ˜̀ with both edges touching the level ˜̀
k. This

shows that Γ is a constrained level planar embedding of G. Therefore, the graphs G
and G′ are equivalent.

uv
˜̀

(a)

u

v
˜̀
1

˜̀
2

(b)

Fig. 3.1: (a) A constrained level graph G that is not constrained level planar. (b) The graph G′

obtained from G by vertex expanding the level ˜̀ is constrained level planar due to u
being able to be nested in v.

If we did not require in Lemma 3.3 that there be no nesting between vertices from the
level ˜̀ in constrained level planar embeddings of G′ we would have the problem that G′
may be constrained level planar even if G is not, as demonstrated in Figure 3.1. We will
therefore now show a few cases in which nesting between vertices of the vertex-expanded
level is not possible after the expansion. This leads to some concrete methods for vertex
expansion which transform a graph G to an equivalent graph G′.

Lemma 3.4. Let G = (G, γ, (≺`)`) be a constrained h-level graph and ˜̀ ∈ [h] a level
without constraints. Then the following transformations are possible O(λ˜̀(G)) time:

1. The graph G can be transformed to a constrained level graph G′ = (G, γ′, (≺′`)`),
where the level ˜̀ has been vertex expanded into at most three consecutive levels
˜̀
q ≤ ˜̀

r ≤ ˜̀
s, such that the sources Q˜̀(G) are on ˜̀

q, the sinks S˜̀(G) on ˜̀
s and the

intermediate vertices R˜̀(G) on ˜̀
r. The graphs G and G′ are equivalent.
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2. The graph G can be transformed to a constrained level graph G′ = (G, γ′, (≺′`)`),
where the level ˜̀ has been vertex expanded into consecutive levels such that each
vertex v ∈ V˜̀(G) is on a distinct new level. The graphs G and G′ are equivalent if
one of the following conditions apply:
a) All vertices in V˜̀(G) are intermediate vertices.
b) All vertices in V˜̀(G) have degree 1.

Proof. For the first transformation, we expand the level ˜̀ by replacing it with at most
three new consecutive levels ˜̀

q ≤ ˜̀
r ≤ ˜̀

s. We assign all sources Q˜̀(G) to the level ˜̀
q all

intermediate vertices R˜̀(G) to ˜̀
r and all sinks S˜̀(G) to ˜̀

s, which yields the graph G′, as
illustrated in Figure 3.2. As we only reassign the levels of vertices in V˜̀(G) this can be
done O(λ˜̀(G)) time. In order for G′ to be equivalent to G we will now show that there
cannot be nesting between vertices from V˜̀(G) in G′. A source on the level ˜̀

q cannot be
nested in an intermediate vertex on ˜̀

r or a sink on ˜̀
s, as it has an edge going upwards

past ˜̀
s. This is symmetric for the sinks, as they have an edge going downwards past ˜̀

q.
An intermediate vertex also cannot be nested in a source or a sink as it has edges going
upwards past ˜̀

s and downwards past ˜̀
q. Therefore, the graph G′ is equivalent to G

according to Lemma 3.3.

˜̀

(a)

˜̀
s

˜̀
r

˜̀
q

(b)

Fig. 3.2: A level without constraints before (a) and after (b) the vertex expansion with the first
method.

For the second transformation, we expand the level ˜̀ by replacing it with consecu-
tive new levels ˜̀

v for each v ∈ V˜̀(G), setting γ′(v) = ˜̀
v for each v ∈ V˜̀(G). As this

transformation only reassigns the levels of vertices in V˜̀(G) and adds λ˜̀(G) levels the
transformation can be performed in O(λ˜̀(G)) time. In order for the graph G′ to be
equivalent to G according to Lemma 3.3, we have to show that there can be no nesting
between vertices from V˜̀(G) in G′. We will first show that this is the case if all vertices
in V˜̀(G) are intermediate vertices. Given two intermediate vertices u, v ∈ V˜̀(G) they
cannot be nested in each other in G′ as u has an incident edge that crosses γ′(v) and v
has an incident edge crossing γ′(u). In the second case, where all vertices in V˜̀(G) have
degree 1 there also cannot be any nesting, as in order for a vertex u to be nested in a
vertex v there must be two vertex-disjoint paths starting in v. This cannot be the case
when v has only one incident edge.
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Now we will define the constraint expansion. We say that for a constrained h-level
graph G = (G, γ, (≺`)`) a level ˜̀ ∈ [h] has been constraint expanded if and only if the
graph G has been transformed to a constrained level graph G′ in such a way that each
constraint from the level ˜̀ is on its own level in G′. Depending on which constraint
expansion is used in a reduction from Constrained Level Planarity to Ordered
Level Planarity a different set of properties is preserved. We will therefore present
three distinct ways to constraint expand a level of a constrained level graph such that
the resulting graph is equivalent.

Lemma 3.5. Let G = (G, γ, (≺`)`) be a constrained h-level graph and ˜̀ ∈ [h]. The
graph G can be transformed to an equivalent constrained level graph G′ = (G′, γ′, (≺′`)`)
where the level ˜̀∈ [h] has been constraint expanded. This can be achieved in one of the
following ways, illustrated exemplarily in Figure 3.3:

1. For each constraint c = (v ≺˜̀ u) there is a new constraint level ˜̀
c added directly

below ˜̀. On this level, there are only the two constraint vertices vc and uc with the
constraint vc ≺′˜̀

c
uc. Further, the constraint edges {vc, v} and {uc, u} are added.

The constraint c is then removed from ≺′˜̀. This transformation can be performed
in time linear to the number of vertices and constraints on ˜̀ in G.

2. For each constraint c = (v ≺˜̀ u) there is a new constraint level ˜̀
c added directly

below ˜̀. On this level, there are only the two constraint vertices vc and uc with
the constraint vc ≺′˜̀

c
uc. Further, there are additional constraint vertices ṽc and ũc

added to the level ˜̀ with constraints v ≺′˜̀ ṽc and ũc ≺′˜̀ u as well as constraint
edges {vc, ṽc} and {uc, ũc}. The constraint c is then removed from ≺′˜̀. Moreover,
a total order is set on the bundle b(v) := {v} ∪ {ṽc | c is a constraint on v in G},
consisting of v and its constraint vertices on the level ˜̀, of each vertex v ∈ Vl̃(G).
This transformation can be performed in time quadratic to the number of vertices
and constraints on ˜̀ in G.

3. The level ˜̀ is replaced with two new levels ˜̀
b and ˜̀

s with ˜̀
b < ˜̀

s. The sources and
intermediate vertices Q˜̀(G)∪R˜̀(G) are assigned to the level ˜̀

b and the sinks S˜̀(G)
to the level ˜̀

s. For each intermediate vertex and source v ∈ Q˜̀(G) ∪ R˜̀(G) one
outgoing edge is designated as the constraint path pv. The same is done for each
sink v ∈ S˜̀(G) where one incoming edge is designated as constraint path pv. For
each constraint c = (v ≺˜̀ u) there is a constraint level ˜̀

c added between ˜̀
b and ˜̀

s.
On this constraint level are two constraint vertices vc and uc which subdivide the
constraint paths pv and pu, respectively, and have the constraint vc ≺′˜̀

c
uc. This

transformation can be performed in time linear to the number of vertices and con-
straints on ˜̀.

Proof. We will provide a separate proof for each constraint expansion method.
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uv
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˜̀
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Fig. 3.3: A level ˜̀ (a) of a constrained level graph is constraint expanded with the first (b),
second (c) and third (d) method.

1. For the first method, we begin by showing that if G is constrained level planar so
is G′. Let Γ be a constrained level planar embedding of G. We can obtain a constrained
level planar embedding Γ′ for G′ by copying the order on the elements of each level ` ∈ [h]
since these levels remained unchanged in G′. In order to also have an order on the added
constraint edges we set for each vertex v ∈ V˜̀(G) the order ≺Γ′

v− on the incoming edges,
which includes the constraint edges, to be a linear extension of ≺Γ

v− . We then set for a
constraint level ˜̀

c the order on the edges touching that level to be the same as on ˜̀, since
all edges that touch the level ˜̀

c also touch ˜̀ and therefore can be compared using ≺Γ′
˜̀ .

We now have to show that the embedding Γ′ respects the constraints and is level planar.
For a constraint v ≺′` u with ` 6= ˜̀ it is also v ≺` u and therefore v ≺Γ

` u and v ≺Γ′
` u

since we copied the order on the vertices of each level ` ∈ [h] from Γ. Assume that for
a constraint c = (v ≺˜̀ u) the corresponding constraint vc ≺′˜̀

c
uc in G′ is not respected

by Γ′. Then it must be uc ≺Γ′
˜̀
c
vc as well as v ≺Γ

˜̀ u since Γ respects the constraint c.
This leads to a contradiction as it forces the constraint edges {vc, v} and {uc, u} to cross.
Therefore, the constraints on the constraint levels are also respected in Γ′ which means
that Γ′ respects the constraints. The embedding is also planar. Indeed, due to the order
on each constraint level being the same as on ˜̀ and Γ′ having the same order as Γ on
each level ` ∈ [h] all edges run in parallel.
It remains to show that G is constrained level planar if G′ is constrained level planar.

If G′ is constrained level planar with embedding Γ′ we can obtain a constrained level pla-
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nar embedding Γ for G by setting v ≺Γ
` u if v ≺Γ′

` u for each pair of vertices u, v ∈ V`(G)
and level ` ∈ [h]. This embedding respects the constraints, as for each constraint v ≺` u
with ` 6= ˜̀ it is also v ≺′` u which is respected by Γ′, and therefore it is v ≺Γ

` u. For a
constraint c = (v ≺˜̀ u) it is vc ≺′˜̀

c
uc and therefore vc ≺Γ′

˜̀
c
uc. Because of the constraint

edges {vc, v} and {uc, u} it must also be v ≺Γ′
˜̀ u. The embedding is also planar as

all edges in G are also in G′ and their order was directly copied. Therefore, the first
method transforms G to an equivalent constrained level graph G′ where the level ˜̀ has
been constraint expanded.
This transformation can be performed in time linear to the number of vertices and

constraints on ˜̀ in G as for each constraint on ˜̀ we add a new level, two vertices, two
edges and one constraint.

2. For the second method, we begin by showing that if G is constrained level planar so
is G′. Let G be constrained level planar with embedding Γ. We can obtain a constrained
level planar embedding Γ′ for G′ by first copying the order on all levels ` ∈ [h] from Γ.
The order on the vertices of the level ˜̀ in G′ is not yet total as we added constraint
vertices to this level. For a constraint vertex ṽc we therefore set its order to be the
same order as that of the vertex v in Γ. As this does not establish an order between the
vertices of the bundle b(v) of each vertex v ∈ V˜̀(G) we set the order on the vertices of b(v)
according to the constraints in G′ which form a total order on these vertices. This order
on the elements of the level ˜̀ is then copied to the constraint levels. We now have to show
that Γ′ is a constrained level planar embedding of G′. First off, the embedding Γ′ respects
the constraints in G′, as for a constraint v ≺′` u with ` 6= ˜̀ it is also v ≺` u and therefore
v ≺Γ

` u and v ≺Γ′
` u since we copied the order on those vertices from Γ. A constraint

v′ ≺′˜̀ v′′ is also respected as there are only constraints between vertices in the bundle b(v)
of a vertex v ∈ V˜̀(G) in G′, and we set the order in Γ′ according to these constraints.
Suppose that for a constraint c = (v ≺˜̀ u) in G the corresponding constraint vc ≺˜̀

c
uc

is not respected by Γ′. Then it must be uc ≺Γ′
˜̀
c
vc as well as v ≺Γ

˜̀ u since Γ respects
the constraint c. This leads to a contradiction as it forces the constraint edges {vc, ṽc}
and {uc, ũc} to cross. Therefore, all constraints are respected in Γ′. The embedding is
also planar, as we set the order on each constraint level to be the same as on ˜̀ and Γ′
has the same order as Γ on each level ` ∈ [h] which leads to all edges running in parallel.
It remains to show that G is constrained level planar if G′ is constrained level planar.

If G′ is constrained level planar with embedding Γ′ we can obtain a constrained level pla-
nar embedding Γ for G by setting v ≺Γ

` u if v ≺Γ′
` u for each u, v ∈ V`(G) and ` ∈ [h]. This

embedding respects the constraints, as for each v ≺` u with ` 6= ˜̀ it is also v ≺′` u and
therefore v ≺Γ′

` u. For a constraint c = (v ≺˜̀ u) it is vc ≺′˜̀
c
uc and therefore vc ≺Γ′

˜̀
c
uc. As

there are constraint edges {vc, ṽc} and {uc, ũc} this means that it also must be ṽc ≺Γ′
˜̀ ũc

and because of the constraints v ≺′˜̀ ṽc and ũc ≺′˜̀ u it must be v ≺Γ′
˜̀ ṽc ≺Γ′

˜̀ ũc ≺Γ′
˜̀ u and

therefore v ≺Γ
˜̀ u. The embedding is also planar as all edges in G are also in G′ and their

order was copied from Γ′. Therefore, the second method transforms G to an equivalent
constrained level graph G′ where the level ˜̀ has been constraint expanded.
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Regarding the time of this transformation, we add for each constraint a new con-
straint level with two vertices, two edges and one constraint. However, since we also
add two new vertices on ˜̀ which have a constraint with each vertex in their respective
bundles, the number of constraints added in total is up to quadratic compared to the
number of constraints on ˜̀ in G. Therefore, this transformation takes up to quadratic
time regarding the number of vertices and constraints on ˜̀ in G.

3. For the third method, we will begin by showing that if G is constrained level planar
so is G′. Given a constrained level planar embedding Γ of G we can obtain a constrained
level planar embedding Γ′ of G′ by maintaining and extending the orders from Γ. For
each level ` ∈ [h] \ {˜̀} we set ≺Γ′

` to be the same order as ≺Γ
` as these levels contain the

same edges and vertices. For the levels ˜̀
b and ˜̀

s as well as the constraint levels we copy
the orders from ≺Γ

˜̀ . We thereby set the order for the constraint paths according to the
order of the original edge in Γ. This embedding respects all constraints in G′ since for
constraints on levels other than ˜̀ the constraints remained the same, and we copied the
order of Γ. For a constraint vc ≺′˜̀

c
uc there is a constraint c = (v ≺˜̀ u) in G. Therefore,

it must be v ≺Γ
˜̀ u. This means that it is pv ≺Γ′

˜̀
c
pu thereby respecting the constraint.

The embedding Γ′ is also planar since we copied the orders on all levels other than ˜̀
and for the constraint levels as well as ˜̀

b and ˜̀
s we copied the order from the level ˜̀,

therefore maintaining the edges parallel.
It remains to show that G is constrained level planar if G′ is constrained level planar.

Let G′ be constrained level planar with embedding Γ′. We can construct a constrained
level planar embedding Γ for G by first copying the order on all levels other than ˜̀. For
two elements a, b ∈ E˜̀(G) we set a ≺Γ

˜̀ b if a′ ≺Γ
˜̀
b
b′ where a′ (b′) is either a (b) or pa (pb)

if a (b) is a sink, as a (b) is then on ˜̀
s in G′. This embedding respects the constraints on

all levels since on levels other than ˜̀ the order was copied from Γ′ and there are the same
constraints in G′. Suppose that Γ does not respect a constraint c = (v ≺˜̀ u). Then it is
u ≺Γ

˜̀ v, and therefore it must be pu ≺Γ′
˜̀
b
pv. This indicates that it is also pu ≺Γ′

˜̀
c
pv which

contradicts Γ′ being constraint level planar because of vc ≺′˜̀
c
uc. The embedding Γ is

planar as for a pair of edges that do not touch the level ˜̀ in G the order in Γ was copied
for each level from Γ′ where they run in parallel. For edges that touch ˜̀ in G, the order
on ˜̀ in Γ was copied from ˜̀

b which all edges touching ˜̀ in G touch in G′. The only
exceptions to that are the edges that were chosen as constraint paths. However, since
the constraint paths are monotone these edges also run in parallel. Therefore, the third
method transforms G to an equivalent constrained level graph G′ where the level ˜̀ has
been constraint expanded.
This transformation takes time linear in the number of vertices and constraints on ˜̀

in G as for each constraint on ˜̀ two paths are subdivided with two new vertices which
have a single constraint. Further, the levels of the vertices on ˜̀ are reassigned which
takes O(λ˜̀(G)) time.

With this, we now have all the necessary components to reduce Constrained Level
Planarity to Ordered Level Planarity while preserving various graph properties.
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3.1 Outerplanarity, Chordality, Perfectness, Diameter,
Pathwidth & Treedepth

We will start by presenting a simple reduction that preserves various properties such as
outerplanarity, chordality, and perfectness. It also increases the diameter by at most 2.

Theorem 3.6. An instance G of Constrained Level Planarity can be reduced in
linear time to an instance of Ordered Level Planarity with level-width 2 and height
in O(n(G) + c(G)) while preserving outerplanarity, chordality, clique number, chromatic
number and perfectness. It also increases the diameter by at most 2, the pathwidth and
treedepth by at most 1 and keeps a connected graph connected.

Proof. Let G = (G, γ, (≺`)`) be a constrained h-level graph. In order to transform G to
an equivalent ordered level graph we will begin by using the first constraint expansion
method from Lemma 3.5 iteratively on each level ` ∈ [h] to obtain the graph G̃. The
constraint levels in G̃ have already a total order on their vertices since they only consist
of two vertices with a constraint. It therefore only remains to vertex expand the original
levels to obtain an ordered level graph. To be able to use Lemma 3.4 we will transform all
vertices on each level ` ∈ [h] into intermediate vertices. This is achieved by adding two
new levels `q and `s for each level ` ∈ [h] with the levels `q < ` < `s being consecutive.
For each source v ∈ Q`(G̃) we add a vertex vd on `q and an edge {vd, v}. For each sink
v ∈ S`(G̃) we similarly add a vertex vd on `s and an edge {v, vd}, as seen exemplarily
in Figure 3.4a. Adding these edges maintains constrained level planarity as we can
always draw them directly below respective above the corresponding vertex. The level `
can then be vertex expanded according to Lemma 3.4 without modifying constrained
level planarity, as seen for example in Figure 3.4b, as it only contains intermediate
vertices. The levels `q and `s can also be expanded according to the same lemma as
they only contain vertices with degree 1. Let G′ = (G′, γ′, (≺`)`) be the graph obtained
after iteratively expanding all levels. It is an ordered level graph as all levels without
constraints contain only one vertex and there is a total order on the two vertices of each
constraint level. Therefore, its level-width is 2. As we added a new level for each vertex
v ∈ V (G) as well as new levels for the vertices vd for each source and sink v and a level
for each constraint the height of G′ is in O(n(G) + c(G)). The transformation can be
performed in linear time as the constraint and vertex expansions take in total linear
time. The graph G′ is also equivalent to G as the constraint expansion and the vertex
expansion did not modify constrained level planarity making the reduction valid.

Properties We will now show that this reduction preserves the aforementioned proper-
ties, starting with the clique and chromatic number. Assume without loss of generality
that ω(G) ≥ 2 and χ(G) ≥ 2. Otherwise, G consists only of isolated vertices and can be re-
duced to an ordered level planar graph by only adding constraints, therefore maintaining
the clique number and chromatic number, according to Lemma 3.1. Since G is a subgraph
of G′ all cliques from G are in G′. Further, the added cliques have all a size of 2 as they
consist of a vertex v ∈ V (G) and either a constraint vertex vc or, for sources and sinks, the
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`q
` v

vd

(a)

`s

`q

v

vd

(b) The fully expanded level

Fig. 3.4: A level with the added (green) edges (a) to prevent nesting after the level is vertex
expanded (b).

vertex vd. Therefore, the clique number remains the same. As an added vertex vc or vd
is only adjacent to the vertex v it can be colored with a color not used by v. As χ(G) ≥ 2
we do not need any additional colors. The chromatic number is therefore also preserved.
We will now show that perfectness is preserved. Assume G is perfect and let G′[U ′]

be an induced subgraph of G′ for an arbitrary U ′ ⊂ V (G′). In order for G′ to be
perfect we have to show that ω(G′[U ]) = χ(G′[U ]). We know that since G is perfect
it must be ω(G[U ]) = χ(G[U ]) where U = U ′ ∩ V (G). If ω(G[U ]) = χ(G[U ]) ≥ 2, it is
also ω(G[U ]) = ω(G′[U ′]) = χ(G′[U ′]) = χ(G[U ]) as G[U ] = G′[U ] ⊂ G[U ′] and U ′ \ U
only contains vertices added during the reduction. For those we already argued that
when adding them the clique number and chromatic number are maintained if they
are at least 2. If ω(G[U ]) = χ(G[U ]) < 2 and G′[U ′] contains only isolated vertices, it
is ω(G′[U ′]) = χ(G′[U ′]). Otherwise, we have a clique of size 2 and also need 2 colors
for G′[U ′] which leads to ω(G′[U ′]) = 2 = χ(G′[U ′]). Therefore, perfectness is preserved
by the reduction.
If G is chordal then G′ is also chordal, as we retained the chords of the cycles in G

since G is a subgraph of G′, and we added no new cycles since we only added vertices
with a single incident edge.
The reduction also preserves outerplanarity as for an outerplanar graph G the added

vertices can always be drawn in the outer face of a planar drawing of G as they each
have only one edge connecting them to an original vertex.
If G is connected so is G′ as all added vertices are connected to a vertex v ∈ V (G).

Since they are directly connected to v the diameter only increases by at most 2. Let
v′, u′ ∈ V (G′) \ V (G) be two added vertices that are adjacent to v, u ∈ V (G), respec-
tively. Then it is d(v′, v) = 1 and d(u, u′) = 1 which means that the distance between v′
and u′ is d(v′, u′) = d(v, u) + 2 ≤ diam(G) + 2. Therefore, it is diam(G′) ≤ diam(G) + 2.
It remains to show that the pathwidth and treedepth increase by at most 1. Let

T = (VT , ET ) be a minimal path-decomposition of G. We will now construct a path-
decomposition for G′ with an increase in width of at most 1. For each vertex v ∈ V (G)
let i ∈ VT be a node whose bag Xi contains v. Let further without loss of generality iL
and iR be the nodes adjacent to i. In the case that v has no new adjacent vertices in G′
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we do not change anything. Otherwise, let {v1, . . . , vk} = NG′(v) \ NG(v) be the set of
newly adjacent vertices of v. We replace the node i with k new nodes i1, . . . , ik and set
the new bags to be Xij = Xi∪{vj} for j ∈ [k]. Then, for each incident edge of v there is
a bag containing said edge. In the tree T we replace the edges {iL, i} and {i, iR} with the
edges {iL, i1}, {i1, i2}, . . . , {ik, iR}. This yields a valid path-decomposition as the tree is
still a path, and we further added all vertices to bags. Also, every edge is inside a bag
and since Xi ⊂ Xij the bags containing a vertex u still induce a connected subgraph. As
the added bags contain one element more than the original bag the pathwidth increases
by at most 1.

We will now show that the treedepth increases by at most 1. Let F be a mini-
mum height rooted forest such that for every edge {u, v} ∈ E(G) there is an ancestor-
descendant relationship between u and v in F . We modify this forest to a forest F ′ that
is a valid minimum height rooted forest for G′. Since in G′ we only added edges incident
to vertices v ∈ V (G) we only have to add relationships from each vertex v ∈ V (G) to its
newly adjacent vertices. This can be achieved, by making each newly adjacent vertex
v′ ∈ NG′(v) \ NG(v) of v the child of v in F ′. Since in F ′ we only added children to
vertices of F the height of F ′ is at most one greater than the height of F . Therefore,
the treedepth of G′ increased by at most 1 compared to G.

By using the second constraint expansion method from Lemma 3.5, we can preserve
pathwidth and treedepth at the cost of losing connectivity and an increased level-width.
Due to how we represent the graph it also takes quadratic time instead of linear.

Theorem 3.7. An instance G of Constrained Level Planarity can be reduced
in quadratic time to an instance of Ordered Level Planarity with level-width in
O(n(G)) and height in O(n(G) + c(G)) while preserving pathwidth and treedepth.

Proof. Let G = (G, γ, (≺`)`) be a constrained h-level graph. In order to transform G to
an equivalent ordered level graph we will perform the following steps iteratively for each
level ˜̀∈ [h]: First, we use the second constraint expansion method from Lemma 3.5 to
obtain the equivalent graph Ḡ˜̀. As the added constraint levels have already total orders
it therefore remains to vertex expand the level ˜̀. When vertex expanding the level ˜̀
we have to keep the vertices in the bundle b(v) of each vertex v ∈ V˜̀(G) together on
the same level, as there is a total order set on them through constraints. In order for
a vertex expansion of the level ˜̀ to not modify constrained level planarity according to
the Lemma 3.3 we have to prevent nesting between the vertices of V˜̀(Ḡ) after the vertex
expansion. For this, we add so-called claws to each sink and source in V˜̀(Ḡ), as seen in
Figure 3.6a, obtaining the graph Ǧ˜̀ = (Ǧ, γ̌, (≺̌`)`). A claw is a star consisting of the four
vertices vM , vL, vR and vT with vM being the center vertex, as illustrated in Figure 3.5.
A claw added to a sink v ∈ S˜̀(Ḡ) has the level assignments γ̌(vL) = γ̌(vR) = γ̌(v),
γ̌(vM ) = ˜̀

sm, γ̌(vT ) = ˜̀
st where ˜̀

sm and ˜̀
st are new consecutive levels directly above ˜̀

with ˜̀
sm < ˜̀

st. The claw further adds constraints vL≺̌`v≺̌`vR, forcing the vertex v to be
nested in vM . We therefore say that the claw holds the vertex v. Further, we add con-
straints vL≺̌`u and vR≺̌`u for each constraint v≺̌`u and analog constraints for each u≺̌`v.
A claw for a source v ∈ Q˜̀(Ḡ) is similar with the level assignments γ̌(vM ) = ˜̀

qm and
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vL

vM

vR

vT

Fig. 3.5: A claw

γ̌(vT ) = ˜̀
qt where ˜̀

qm and ˜̀
qt are consecutive levels directly below ˜̀with ˜̀

qm > ˜̀
qt. As

adding these claws maintains constrained level planarity since the claws can be drawn di-
rectly above or below their respective vertices, the graph Ǧ˜̀ is equivalent to the graph Ḡ˜̀.
We can now vertex expand the level ˜̀ into levels ˜̀

v for each v ∈ V˜̀(G) with the vertices
on ˜̀

v being the vertices from the bundle b(v) plus the endpoints of the claws holding
vertices of said bundle, as seen in Figure 3.6b. Therefore, such a level ˜̀

v has a width
in O(n(G)). Let G̃˜̀ = (G̃, γ̃, (≺̃`)`) be the graph obtained after vertex expanding the
level ˜̀, which, as we will show, is equivalent to Ǧ˜̀. We then vertex expand the lev-
els ˜̀

qt, ˜̀
qm, ˜̀

sm and ˜̀
st which can be done according to Lemma 3.4 without modifying

constrained level planarity as ˜̀
qm and ˜̀

sm have only intermediate vertices and ˜̀
qt and ˜̀

st

only have vertices with degree 1. This leads to all the added levels having total orders.
Let G′ = (G′, γ′, (≺′`)`) be the ordered level graph obtained after performing these

steps iteratively for each level ˜̀ ∈ [h]. The reduction takes quadratic time due to the
second constraint expansion taking quadratic time in total. As we added a new level for
each constraint and up to three levels for each vertex the height of G′ is in O(n(G)+c(G)).
In order for G′ to be equivalent to G it remains to show that for each level ˜̀ ∈ [h]

the graph G̃˜̀ is equivalent to Ǧ˜̀. For this, we show that there is no nesting between the
vertices V˜̀(Ǧ˜̀) in a constrained level planar embedding Γ̃ of G̃˜̀. First off, an intermediate
vertex u ∈ R˜̀(Ǧ) cannot be nested in another vertex v ∈ V˜̀(Ǧ), as u has edges going
above ˜̀

st and below ˜̀
qt in G̃˜̀. Having an incident edge that extends past ˜̀

st is also the
reason why a source in Q˜̀(Ǧ) cannot be nested in sinks or below intermediate vertices
from V˜̀(Ǧ) in G̃˜̀. For sinks in S˜̀(Ǧ) it is an edge going down past ˜̀

qt that prevents them
from being nested in sources or above intermediate vertices from V˜̀(Ǧ) in the graph G̃˜̀. It
therefore only remains to show that a source cannot be nested in another source or above
an intermediate vertex and that a sink cannot be nested in another sink or below an in-
termediate vertex. A vertex cannot be nested in a claw endpoint or a constraint vertex as
these have a degree of 1. If a source v is an endpoint of a claw, the claw must be holding a
sink v′. This implies that if v is nested in a source or above an intermediate vertex u, the
rest of the claw must also be nested in u since all outgoing edges of u go above ˜̀

st. There-
fore, the sink v′ must also be nested above u which, as we already argued, is not possible.
If the source v is not an endpoint of a claw then it must have a claw holding it. Let eL
and eR be the edges incident to the vertex u between which v is nested and vL, vR, vM , vT
the vertices of the claw holding v. If u is an intermediate vertex it must have an edge ed
going down past ˜̀

qm. Assume without loss of generality that it is ed ≺Γ̃
˜̀
qm

vM . This

contradicts Γ̃ being constrained level planar because of vL ≺Γ̃
γ̃(v) v ≺

Γ̃
γ̃(v) eR which forces
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Fig. 3.6: A level with the added (green) claws (a) to prevent nesting after the levels are vertex
expanded (b).

a crossing between evl = {vM , vL} and eR or ed. If instead, u is a source, it must also
have a claw holding it. Let uL, uR, uM , uT be the vertices of the claw holding u. Then
it is without loss of generality vM ≺Γ̃

˜̀
qm

uM as well as eL ≺Γ̃
γ̃(v) v ≺

Γ̃
γ̃(v) vR and therefore

u ≺Γ̃
γ̃(u) evr with evr = {vM , vR}. Together with uL ≺Γ̃

γ̃(u) u this forces the edges evr and
eul = {uM , uL} to cross thereby contradicting Γ̃ being constrained level planar. In the
case that u is a sink the situation is analog for u being nested in a sink or below an inter-
mediate vertex. Therefore, there is no nesting between the vertices V˜̀(Ǧ˜̀) in the graph G̃˜̀.

Properties It remains to show that this reduction preserves pathwidth and treedepth.
If G has only isolated vertices it has pathwidth 0 and a treedepth smaller than 2, and
we can reduce it to an equivalent ordered level graph with the same pathwidth and
treedepth according to Lemma 3.1. Otherwise, the pathwidth is at least 1 and the re-
duction preserves pathwidth as we only added claws, which have a pathwidth of 1, that
are not connected to the original graph. As G has a treedepth of at least 2 and since
the added claws have treedepth 2, the treedepth of the resulting graph G′ is the same as
the treedepth of G. This is because we can use a separate tree for each claw thereby not
increasing the height of the forest.

3.2 Maximum Degree & Cycle Graphs
We will now provide a method to reduce an instance of Constrained Level Pla-
narity to an instance of Ordered Level Planarity by subdividing edges. This can
be used in reductions that maintain the maximum degree of an instance, or to transform
a constrained level cycle graph into an ordered level cycle graph.

Theorem 3.8. An instance G = (G, γ, (≺`)`) of Constrained Level Planarity can
be reduced in O(n(G) + c(G) + ∆3(G) · n(G)) time to an instance G′ = (G′, γ′, (≺′`)`)
of Ordered Level Planarity with level-width λ(G′) ≤ 3 and G′ being a subdivision
of G. The height of G is in O(n(G) + c(G) + ∆3(G) · n(G)).
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Fig. 3.7: A constraint expanded level with the added wedge-chains.

Proof. Let G = (G, γ, (≺`)`) be a constrained h-level graph. We will transform G to
an equivalent ordered level graph by doing the following steps iteratively for each level
˜̀ ∈ [h]: First, we use the third constraint expansion method from Lemma 3.5 on ˜̀ to
obtain the graph Ḡ˜̀ = (Ḡ, γ̄, (≺̄l)l). Next, we will vertex expand the new levels ˜̀

b and ˜̀
s.

First, we vertex expand the level ˜̀
b into the two levels ˜̀

q < ˜̀
r with the sources on ˜̀

q and
the intermediate vertices on ˜̀

r without modifying constrained level planarity according to
Lemma 3.4. Before we can vertex expand the levels ˜̀

q and ˜̀
s we have to prevent nesting

in the expanded graph. For this, we add a so-called wedge-chain to each source v ∈ Q˜̀(G)
which subdivides each incident edge with so-called wedges. This gadget prevents nesting
between the vertices after the level ˜̀

q is expanded and is also used upside down for each
sink in S˜̀(G), as seen in Figure 3.7. Let Ǧ˜̀ = (Ǧ, γ̌, (≺̌`)`) be the graph obtained after
adding the wedge-chains. As the wedge-chains do not impose any restrictions on the
orders of the incident edges of v in level planar embeddings, the graph Ǧ˜̀ is equivalent
to Ḡ˜̀. We then vertex expand the levels ˜̀

q and ˜̀
s into consecutive levels ˜̀

v for each
v ∈ V˜̀

q
(Ǧ) and consecutive levels ˜̀

v for each v ∈ V˜̀
s
(Ǧ) while not modifying constrained

level planarity according to Lemma 3.3, as the wedge-chains prohibit nesting between
sources V˜̀

q
(Ǧ) as well as sinks V˜̀

s
(Ǧ) in the resulting graph. The level ˜̀

r is also vertex
expanded without modifying constrained level planarity according to Lemma 3.4 as it
only contains intermediate vertices.
Let G′ be the graph obtained after performing these steps iteratively for each level

` ∈ [h]. Then G′ is an ordered level graph and equivalent to G. As each wedge-chain
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adds at most ∆3(G) levels, and we add one level for each constraint as well as one for
each vertex v ∈ V (G), the height of G′ is in O(n(G)+c(G)+∆3(G) ·n(G)). The reduction
can therefore be performed in O(n(G) + c(G) + ∆3(G) · n(G)) time.

Technical Details In order to create the wedge-chain for a source v ∈ Q˜̀(G) we first add
the consecutive levels ˜̀v

1, . . . ,
˜̀v
deg(v)+1 directly above ˜̀

q. Let {e1, . . . , edeg(v)} = EG(v) be
the incident edges of the vertex v. For each edge ei we add a wedge Υ∗i , see Figure 3.8a,
consisting of the vertices vL, vM , vR with the level assignments γ̌(vL) = γ̌(vR) = ˜̀v

i+1 and
γ̌(vM ) = ˜̀v

i . The edge ei = {v, u} is then replaced by the path pi = 〈v, vL, vM , vR, u〉.
We then chain those wedges together for each level ` = ˜̀

i+1 with i ∈ [deg(v) − 1] by
setting the order vL≺̌`v′M ≺̌`vR where vL and vR are the left and right vertices from the
wedge Υ∗i and v′M is the middle vertex from the wedge Υ∗i+1. As there is no wedge above
the wedge Υ∗deg(v) we only set the order vL≺̌`vR for the two vertices on ` = ˜̀deg(v)+1. With
this, the wedge-chain already prevents nesting between different sources in a constrained
level planar drawing Γ′ of the graph G′ where the level ˜̀

q has been vertex expanded. This
is because a source u ∈ Q˜̀(G) with γ′(u) > γ′(v) that is nested between two paths pi
and pj of v would have at least one outgoing edge eu. Since γ′(u) is below the levels of the
wedge-chain of v, the edge eu would need to pass between the wedges Υ∗i and Υ∗j which
is not possible, as seen exemplarily in Figure 3.8b. Indeed, let without loss of generality
j = i + 1 such that the vertex u is nested between the paths pi and pj of v, where pi
and pj correspond to the now subdivided edges ei and ej . Then the edge eu is to the right
of pj and the left of pi and therefore needs to pass directly between the two wedges Υ∗i
and Υ∗j . This requires the edge eu to go above vL and below v′M where vL is the left
vertex of Υ∗i and v′M the middle vertex of Υ∗j . Since γ′(vL) = γ′(v′M ) it follows that eu
is not y-monotone, a contradiction to Γ′ being a constrained level planar embedding.

vL

vM

vR

(a)

Υ∗1

Υ∗2

Υ∗3

˜̀v
1

˜̀v
2

˜̀v
3

˜̀v
4

p1p2p3

(b)

Fig. 3.8: A wedge (a) is used to construct a wedge-chain (b). Any path located between the
paths of the wedge-chain, such as the dashed (orange) path, must pass between the
wedges and cannot be y-monotone.
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Since an edge cannot pass between two wedges, the order of the incident edges of v
is currently prescribed by the levels of the wedges, with the left-to-right order of the
incident edges corresponding to the top-to-bottom order of the wedges. In order to
avoid restricting the order of the incident edges of v we therefore add additional wedges
which allow the now subdivided edges to pass between the already present wedges. To
achieve this we add between every consecutive pair of levels ˜̀v

i ,
˜̀v
i+1 for i ∈ [deg(v)]

in total deg2(v) new consecutive levels, deg(v) for each edge incident to v. We set
these levels to be ˜̀v

i,1,1 < · · · < ˜̀v
i,1,deg(v) < ˜̀v

i,2,1 < · · · < ˜̀v
i,deg(v),deg(v). For each

k ∈ [deg(v)] and each j ∈ [deg(v)] we subdivide the path pk that correspond to the
edge ek and insert a wedge Υi,j

k consisting of the vertices vL, vR and vM with the
level assignments γ̌(vL) = γ̌(vR) = ˜̀v

i+1,j,k and γ̌(vM ) = ˜̀v
i,j,k. As these wedges allow

paths to switch sides by passing between wedges we call them switch-wedges to separate
them from the fixed-wedges that were added beforehand. With this, the wedge-chain
no longer restricts the order of the incident edges of v, as exemplified in Figure 3.9.
Indeed, let Γ be a constrained level planar embedding of G and i ∈ [deg(v) − 1]. Let
ei+1 ≺Γ

v+ ei and e2, . . . , ed be the edges between ei and ei+1 in the order from Γ, such that
ei+1 ≺Γ

v+ ed ≺Γ
v+ · · · ≺Γ

v+ e2 ≺Γ
v+ ei. Then the paths p2, . . . , pd that correspond to the

edges e2, . . . , ed must be to the left of the vertex vL corresponding to the wedge Υ∗i when
they first touch the level ˜̀v

i but to the right of the wedge Υ∗i+1 when they first touch the
level ˜̀v

i+1. Therefore, they must pass between the wedges Υ∗i and Υ∗i+1. The path pj uses
its wedge Υi,j

k , with k being the index of the edge ek corresponding to the path pj , to
switch sides. If instead ei ≺Γ

v+ ei+1, let similarly e1, . . . , ed+1 be the edges from ei to ei+1
including ei and ei+1 such that ei = e1 ≺Γ

v+ e2 ≺Γ
v+ · · · ≺Γ

v+ ed+1 = ei+1. The paths
p1, . . . , pd+1 corresponding to these edges must now pass between the wedges Υ∗i and Υ∗i+1
from right-to-left. The path pj therefore uses its wedge Υi,j

k with k being again the index
of the corresponding edge ek. This works even though when a path pj uses its wedge Υi,j

k

to switch sides, all paths from p1 to pj now must also pass between Υ∗i and Υi,j
k . This

is due to the fact that the paths pj′ in between, with 1 ≤ j′ < j, use the wedge Υi,j′

k′ ,
with k′ being the index of the corresponding edge ek′ , which is located between Υ∗i
and Υi,j

k . As paths corresponding to edges that are incident to other sources u ∈ Q˜̀(G)
have no subdivisions on these levels they still cannot pass between the wedges of the
wedge-chain, which means that nesting is still prevented in every level planar drawing
of the vertex-expanded graph. In order for the wedge-chain to have total orders on each
level, it remains to vertex expand the levels of the wedge-chain that do not contain
constraints, which are precisely the levels of the switch-wedges. This can be done using
the first method from the Lemma 3.4 as each level ˜̀v

i,j,k contains at most one source v′M
from the wedge Υi,j

k as well as at most one intermediate vertex vR and one sinks vL from
the lower wedge Υi−1,j

k . The levels ˜̀v
i with fixed-wedges already have a total order on

their up to three vertices. Therefore, there are at most three vertices on a level of the
wedge-chain. We have thus shown that wedge-chains prevent nesting between different
sources in the expanded graph and inserting them maintains constrained level planarity.
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Υ1,2
2

Υ1,1
1
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˜̀v
1,1,1

˜̀v
1,1,2

˜̀v
1,1,3

˜̀v
2,1,1

˜̀v
1,2,1

Υ1,1
2

...

...

Υ1,3
2

p1 p2p3

Fig. 3.9: A wedge-chain with the (blue) switch-wedges added. As the order of the paths does
not match the order of the wedges the paths p1 and p2 have to switch sides.

We can now use this as part of a reduction from Constrained Level Planarity
to Ordered Level Planarity that maintains the maximum degree.

Theorem 3.9. Constrained Level Planarity can be reduced in polynomial time
to Ordered Level Planarity while maintaining the maximum degree.

Proof. Let G = (G, γ, (≺`)`) be a constrained h-level graph. We can easily determine the
maximum degree of G in linear time. If the graph has a maximum degree greater than 1
we can use Theorem 3.8 to transform it in polynomial time to an equivalent ordered
level graph by only subdividing edges. Since the degree of the original vertices does not
change and the added vertices have degree 2 the maximum degree is maintained. If G
has instead a maximum degree of 0 it only consists of isolated vertices and can therefore
be transformed to an equivalent ordered level graph in quadratic time by only adding
constraints, thereby keeping the maximum degree at 0, according to Lemma 3.1.
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(a) (b)

Fig. 3.10: (a) A level of a constrained level graph with maximum degree 1. (b) The level after
being constraint and vertex expanded.

If instead G has maximum degree 1 we can construct an equivalent ordered level graph
G′ = (G′, γ′, (≺′`)`) by doing the following: First we use the second constraint expansion
method from Lemma 3.5 iteratively on every level ` ∈ [h]. Let G̃ be the resulting graph.
As in G̃ the constraint levels have total orders it only remains to vertex expand the
original levels. We do this by replacing each level ` ∈ [h] with vertex levels `v for each
vertex v ∈ V`(G) and assigning all vertices in the bundle b(v) to the level `v as seen in
Figure 3.10. We also transfer the total order on the vertices of the bundle b(v) to the
level `v. Let G′ be the graph obtained by iteratively vertex expanding all original levels
in G̃. The graph G′ has total orders on each level, as the constraint levels have two
vertices with a constraint and the vertex levels contain the bundle b(v) of an original
vertex v ∈ V`(G) with a total order set as well. Thus, G′ is an ordered level graph.
It was obtained in polynomial time due to the constraint and vertex expansion taking
polynomial time. There also cannot be any nesting between vertices in a level planar
embedding of G′ since they all have degree 1. This means that the graph G′ is equivalent
to the graph G̃ according to Lemma 3.3. Therefore, G′ is also equivalent to G. As a
result, an instance of Constrained Level Planarity can be reduced in polynomial
time to an instance of Ordered Level Planarity while maintaining the maximum
degree.

The reduction from Theorem 3.8 can also be used to transform a constrained level
cycle graph to an equivalent ordered level cycle graph.

Corollary 3.10. An instance of Constrained Level Planarity that is a cycle graph
can be reduced in linear time to an instance of Ordered Level Planarity that is also
a cycle graph.

Proof. Let G be a constrained level cycle graph. We can transform it according to
Theorem 3.8 to an equivalent ordered level graph G′ in O(n(G) + c(G) + ∆3(G) · n(G))
time. As G is a cycle it is therefore ∆(G) = 2 which means that the transformation takes
place in O(n(G) + c(G)) and therefore linear time. Since the graph G′ is obtained from G
by subdividing edges it is also a cycle, as subdividing a cycle yields a cycle.
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3.3 Connectivity
In this section, we will show that a k-connected instance of Constrained Level Pla-
narity can be reduced to a k-connected instance of Ordered Level Planarity for
arbitrary k as long as nesting is prevented in the resulting graph. The basic idea of the
reduction is to use the third constraint expansion method from Lemma 3.5. However,
as this subdivides edges we lose k-connectivity for k ≥ 3. We remedy this by using a
gadget, see Definition 3.13, which enables us to increase the connectivity of the graph.
Since its use heavily restricts the level planar drawings we will first show that for a
3-connected graph the level planar drawings are already fairly restricted.

Lemma 3.11. Let G be a 3-connected level planar graph. In every level planar drawing
of G, the set of faces is the same. Further, there are at most two faces that appear as
an outer face in level planar drawings of G. Moreover, if two distinct faces appear as
an outer face in level planar drawings of G they must be incident to the edge from the
lowest to the highest vertex.

Proof. The first point, that in every level planar drawing of G there is the same set of
faces, follows from the fact that 3-connected planar graphs have a unique combinatorial
embedding, up to reflection, as shown by Whitney [Whi32] and Fleischner [Fle73].
We will now show that there are at most two faces that appear as an outer face in

level planar drawings of G. Let vB and vT be the lowest and highest vertex of G. Since
in level planar drawings, all edges must be drawn y-monotone, there cannot be an edge
drawn above vT or below vB. Therefore, both of these vertices are incident to the outer
face and the outer face is bounded by two vertex-disjoint paths from vB to vT , as each
crossing point of the paths would be a cut vertex. Let f1 and f2 be two faces that appear
as outer faces in level planar drawings of G. Let Γ be a level planar drawing where f1 is
the outer face and let V f2

L be the set of vertices drawn to the left of f2 and V f2
R the set

of vertices drawn to the right of f2, as illustrated in Figure 3.11a. Since vB and vT are
incident to the face f2, it splits the graph in two. This forces all paths between vertices

f2
f1

vB

vT

V f2
L

V f2
R

(a)

f2
f1

vB

vT

V f2
L

(b)

f2

vB

vT

V f2
L

f1

(c)

Fig. 3.11: (a) A level planar drawing where f1 is the outer face and the sets V f2
L and V f2

R contain
the vertices to the left and right of f2, respectively. (b) The set V f2

R is empty as in
its place is the edge {vB , vT }. (c) A level planar drawing with f2 as the outer face.
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in V f2
L and V f2

R to go through either vT or vB. Therefore, one of those sets must be empty
as otherwise vT and vB form a separation pair which contradicts 3-connectivity. This
implies that one of the paths from vB to vT incident to f2 must be the edge {vB, vT }, as
shown in Figure 3.11b. As this argument also applies to f1 in a level planar drawing Γ′
where f2 is the outer face, see Figure 3.11c, both faces f1 and f2 must be incident to
the edge {vB, vT }. Since an edge can only be incident to two faces, there are at most
two faces that appear as an outer face in level planar drawings of G.

We will now show that not only the outer face of a 3-connected level graph is restricted
in level planar drawings, but also the order on the incident edges of a vertex.

Lemma 3.12. Let G = (G, γ, (≺`)`) be a 3-connected constrained level graph that is level
planar. The following holds:

1. For each intermediate vertex v ∈ R(G) the linear orders on the incoming edges and
on the outgoing edges of v are unique, up to reflection.

2. Let v ∈ Q(G) (v ∈ S(G)) be a source (sink) in G. There is an edge e ∈ E+
G (v)

(e ∈ E−G (v)) incident to v such that it is in any level planar embedding of G the
left- or rightmost incident edge of v. We call such an edge e an outer edge of v.

We can obtain the unique linear orders for all intermediate vertices and the outer edges
for all sources and sinks in polynomial time.

Proof. Since G is 3-connected it has a unique combinatorial embedding Λ in the plane,
up to reflection, as shown by Whitney [Whi32] and Fleischner [Fle73]. Since all edges
are drawn as y-monotone arcs, for an intermediate vertex v ∈ R(G) all outgoing edges
are drawn above the level γ(v) while all incoming edges are drawn below. This indicates
that in the cyclic order Λv of the incident edges of v, all outgoing edges must appear
consecutively just as all the incoming edges must appear consecutively. This establishes
unique linear orders, up to reflection, on the incoming edges and on the outgoing edges
of v. As we can obtain a level planar embedding of G in quadratic time we can obtain the
order of the incoming and the outgoing edges of an intermediate vertex in polynomial
time.
It therefore only remains to show that for each source and sink, there exists an outer

edge and that we can obtain such an edge in polynomial time. We will show this only
for sources as it is analogous for sinks. If v is the lowest vertex, and the outer face is the
same in all level planar embeddings, the order of the incident edges of v is always the
same. This is because the incident edges of v that are part of the boundary of the outer
face must be the left and rightmost edges since the outer face has a big angle at v as v is
the lowest vertex. Therefore, the leftmost incident edge would be an outer edge. If there
are level planar embeddings of G with distinct outer faces, the graph G must contain the
edge e = {v, vT }, where vT is the highest vertex, according to the Lemma 3.11. As each
face that appears as an outer face in a level planar embedding of G must be incident to
the edge e, the edge e must be the left or rightmost edge in every level planar embedding
of G. This makes e an outer edge of v.
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If v is not the lowest vertex and the order on the incident edges of v is the same in every
level planar embedding, the leftmost edge is an outer edge. If, on the other hand, there
are several level planar embeddings with distinct linear orders on the incident edges of v,
we will show that there is also an outer edge. To do this, we will list some conditions
that must be satisfied when there are several level planar embeddings with distinct linear
orders on the incident edges of v. In order to do that, we must first introduce the setting.
Let Γ be a level planar embedding of G and let eL and eR be the left and rightmost

edges of v in Γ, respectively. We can characterize the linear orders on the incident edges
of v by the face which has a big angle at v, as the left and rightmost incident edges of v
must be incident to this face. Let therefore f be the face with which v has a big angle
in Γ, as illustrated in Figure 3.12a. Let ∂f = 〈v, u, v3, . . . , vk, v〉 be the directed boundary
of f . Let ut be the vertex with the highest level in ∂f before the first vertex with a level
below or equal to γ(v) called u`. Let vB be the vertex with the lowest level, which must be
below γ(v) since v is not the lowest vertex. Further, let wt be the vertex with the highest
level after the last vertex with a level below or equal to γ(v) called w`. Assume without
loss of generality that γ(ut) ≤ γ(wt) (otherwise we can look at the horizontally reflected
situation where the roles are switched). Because G is 3-connected there has to be a path p′
from v to vB that is vertex-disjoint to the paths 〈v, u, . . . , vB〉 and 〈v, . . . , wt, . . . , vB〉
along the boundary of f . Let v′ be the first vertex on this path p′ above γ(ut) and let pv be
the path from v to v′ along p′, as seen in Figure 3.12a. Due to how we chose v′ the path pv
does not go below γ(v). A similar argument can be made for each vertex x nested in v be-
tween the paths pL = 〈v, . . . , ut〉 and pR = 〈v, . . . , wt〉. It must also have a path to a ver-
tex x′ with γ(x′) > γ(ut) that does not go below γ(v) nor includes v and is vertex-disjoint
to the paths 〈v, u, . . . , vB〉 and 〈v, . . . , wt, . . . , vB〉 along the boundary of f . If such a path
did not exist the vertices v and ut or v and wt would be a separation pair depending on
if x is on the left or right of the path pv which separates the area between γ(v) and γ(ut).

v

u

ut

u`

vB

f

v′

eL eR

pv

wt

w`

pR p′R

pLp′L

(a)

v

u

wt

u` w`

vB

f

eLeR

pR p′R

p′L

(b)

Fig. 3.12: Two level planar embeddings Γ (a) and Γ′ (b) with distinct orders on the incident
edges of v. For Γ′ to be level planar it must be u = ut as well as γ(u) < γ(wt).
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Let Γ′ be a level planar embedding of G with a different order on the incident edges of v
than Γ. As eL and eR are the outermost edges in Γ this means that in Γ′ the edge eL is
to the right of eR. If γ(ut) = γ(wt) this is not possible. Indeed, if eL is to the right of eR
the path p′R = 〈wt, . . . , w`〉 has to be to the left of the path pR as otherwise it would lead
to a contradiction. This is because, it would be pR ≺Γ′

γ(v) pL ≺
Γ′
γ(v) p

′
R if p′R is to the right

of pR and therefore pR ≺Γ′
γ(wt) pL ≺

Γ′
γ(wt) p

′
R which is equivalent to the impossible order

wt ≺Γ′
γ(wt) ut ≺

Γ′
γ(wt) wt. If the path p′R is to the left of pR, all the other outgoing edges

of v must have either their upper endpoint nested below wt, since p′R goes below γ(v),
or be to the right of pR with their upper endpoint nested below ut, as we will soon show.
This leads to a contradiction, as there is a vertex v′ with γ(v′) > γ(ut) = γ(wt) which is
connected via a bounded path pv to v and would therefore also have to be nested in ut
or vt since it cannot get out due to pv not going below γ(v). The vertices to the right
of pR have to be nested in ut, as otherwise the path p′L = 〈ut, . . . , u`〉 would have to be
to the left of the path pL. This would, similarly to the path p′R being on the left of pR,
force the bounded path pR to be on the right of the path pL which means that the order
of the incident edges of v is as before, a contradiction to there being a distinct order
in Γ′. This shows that there cannot be several distinct orders on the incident edges of v
in level planar embeddings if γ(ut) = γ(wt).
We will now show that unless ut = u we also have a contradiction. Take a look at

the situation in Γ′ where the edge eL is to the right of eR. Suppose ut 6= u. This means
that u is nested in v in Γ. As shown previously there must be a path pu from u to a
vertex u′ with γ(u′) > γ(ut) that does not go below γ(v) nor through v. The vertex u′
therefore cannot be nested below ut in Γ′. As all paths that start in u must be drawn
between the paths pL and p′L in Γ′, due to p′L being to the right of pL, the path from u
to u′ would need to go below γ(v) or cross another edge to reach u′, a contradiction
to Γ′ being constrained level planar. The path p′L must be to the right of pL in Γ′, as
otherwise that would, similarly to before, establish the order from Γ instead. Therefore,
when there are several level planar embeddings with distinct orders on the incident edges
of v it must be u = ut and γ(u) < γ(wt).
We will now show that the orders for Γ and Γ′ can only differ by one edge. Suppose

that the orders from Γ and Γ′ differ by more than one edge. Let eLR = {v, uLR} be the
edge directly to the right of eL in Γ. Then eLR must also be to the right of eR in Γ′ as
the order from Γ′ differs by more than one edge from the order in Γ. Further, it is either
γ(uLR) > γ(u) = γ(ut) or there is a path from uLR to a vertex u′LR above γ(u) that does
not go below γ(v) nor through v and is vertex-disjoint to the paths 〈v, u, . . . , vB〉 and
〈v, . . . , wt, . . . , vB〉. As we have shown that if pL is to the right of pR the path p′L can-
not be to the left of pL, it therefore follows that the path 〈v, uLR, . . . , u′LR〉 must cross
either pL or p′L thereby contradicting Γ′ being constrained level planar. This shows
that the different orders can only differ by one edge and that therefore if u = ut and
γ(u) < γ(wt) the edge eL is an outer edge of v since it is the rightmost edge in Γ′, as
illustrated in Figure 3.12b.
We can therefore obtain an outer edge for each source v by checking if the above

requirements for there being more than one order on the incident edges of v, u = ut and
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γ(u) < γ(wt), apply. If so we directly obtain the outer edge {v, u}. Otherwise, the order
is always the same, and we choose the leftmost edge as it is an outer edge. For sinks, we
perform a similar procedure as the situation is symmetric. As we can obtain a level planar
embedding in quadratic time, we can choose all outer edges in polynomial time.

We will now present the gadget which we will use the increase the connectivity of a
graph after it was constraint expanded.

Definition 3.13 (Hourglass). An hourglass H consists of 46 vertices vH1 , . . . , vH46, with
each vertex vHi being on a distinct level `i, as illustrated in Figure 3.13a. On its own,
an hourglass is only 3-connected as the four corner vertices vH1 , vH5 , vH42, v

H
46 have a degree

of 3. An hourglass can be made 5-connected by adding two edges to the left and right
side as well as a vertex vHb below that is connected to the bottom side and a vertex vHt
above that is connected to the top side, as shown in Figure 3.13b.

vH46

vH5

vH42

vH1

(a)

vHb

vHt

(b) (c)

Fig. 3.13: (a) An hourglass. Due to the (red) corner vertices, it is only 3-connected. (b) An
hourglass with additional (blue) edges making it 5-connected. For the sake of visual
clarity, we usually draw the hourglass upright. (c) Two hourglasses connected by
their sides form a 5-connected graph.

In order to build a 5-connected graph out of hourglasses, we can connect two hour-
glasses by running five parallel edges between two of their sides, as seen exemplar-
ily in Figure 3.13c. Note that if we have two hourglasses that share the same lev-
els, i.e. γ(vH1

i ) = γ(vH2
i ) = `i for all i ∈ [46] as well as γ(vH1

t ) = γ(vH2
t ) = `t and

γ(vH1
b ) = γ(vH2

b ) = `b, there cannot be nesting between their vertices when we vertex
expand these levels. We are now equipped to show how to reduce Constrained Level
Planarity to Ordered Level Planarity while maintaining k-connectivity for 3, 4,
and 5-connected graphs.

Theorem 3.14. A k-connected instance G of Constrained Level Planarity with
3 ≤ k ≤ 5 and height h reduces in polynomial time to a k-connected instance G′ of
Ordered Level Planarity with level-width λ(G′) ≤ 2 and height in O(n2(G)), as
long as for each level ` ∈ [h] there is no nesting between its sources as well as between its
sinks in any level planar embedding of a graph where the level ` has been vertex expanded.
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Proof. If the graph G is not level planar, which we can test in linear time, we can
reduce G to an equivalent k-connected ordered level graph according to Lemma 3.1 as
this reduction only adds constraints. Otherwise, G is level planar, and we can transform G
to an equivalent ordered level graph G′ by doing the following: First, we determine the
order of the incident edges for each intermediate vertex as well as the outer edge for
each source and sink according to Lemma 3.12. Subsequently, we perform the third
constraint expansion from Lemma 3.5 for each level ` ∈ [h] and make sure that the
constraint path is not the selected outer edge of its vertex. This can be done without a
problem, as the constraint path must merely be an incident edge of the vertex and each
vertex has at least three incident edges. This implies that there are at least two edges
other than the outer edge that can be used as a constraint path. We then vertex expand
for each ` ∈ [h] the level `b that was added during the constraint expansion, into the two
levels `q and `r with the sources being on `q and the intermediate vertices on `r without
modifying constrained level planarity according to Lemma 3.4.
To obtain an ordered level graph it only remains to vertex expand the levels `q, `r

and `s for each ` ∈ [h]. We can use the level expansion from Lemma 3.4 to vertex expand
the level `r as it only contains intermediate vertices. We can also vertex expand the
level `q into separate levels `v for each source v on `q, as exemplified in Figure 3.14a. The
resulting graph is equivalent to the previous according to Lemma 3.3 as we required that
there be no nesting between the sources from the level ` in any level planar embedding of
a graph where the level ` has been vertex expanded. This applies analog to the sinks on
the level `s. After expanding all the levels iteratively we therefore obtain an equivalent
ordered level graph.
This graph is not necessarily k-connected as we subdivided the constraint paths when

performing the constraint expansion. In order to obtain a k-connected graph, we replace
each vertex with its so-called wide version yielding an equivalent k-connected ordered
level graph, as seen for example in Figure 3.14b. As the constraint and vertex expansion
as well as the replacement of the vertices with their wide counterparts did not modify
constrained level planarity, the resulting ordered level graph G′ is equivalent to the
graph G. The height of G′ is in O(n2(G)) as for each constraint, edge, and vertex
a constant number of levels were added. Regarding the time of the reduction, the
constraint and vertex expansion take polynomial time, as does determining the orders
of the incident edges of intermediate vertices and the outer edges of sources and sinks.
Since replacing the vertices with their wide versions can be done in polynomial time, the
reduction takes place in polynomial time.

Technical Details To convert a vertex v to a wide vertex we use hourglasses. If v is an
intermediate vertex, the linear order of the incoming as well as the outgoing edges of v
is unique, up to reflection, according to Lemma 3.12. Let et,1, . . . , et,k+ be the outgoing
edges of v from left-to-right and eb,1, . . . , eb,k− be the incoming edges from left-to-right.
We then substitute v with k = max(k+, k−) hourglasses Hv

1 , . . . ,H
v
k where Hv

i has a
connection from its left side to the right side of Hv

i+1 for all i ∈ [k − 1]. We further
replace each edge et,i with five edges originating from the top of Hv

i , and we replace
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each edge eb,i with five edges connecting to the bottom of Hv
i . These edges run either in

parallel to another hourglass, in case the other endpoint of the edge was also replaced
with an hourglass, or otherwise converge on the singular endpoint.
If v is a source we use the same process as with intermediate vertices on all edges

except the outer edge eo. We then add a vertex vo below the hourglasses and connect it
with five edges to the underside of Hv

1 (since v has at least three incident edges there are
at least two hourglasses added for v). We then replace the edge eo with one or multiple
edges starting at vo, depending on if the other endpoint got converted into an hourglass.
The resulting vertex is internally 5-connected. For sinks, we proceed similarly.

We also replace each constraint vertex vc with an hourglass Hv
c and use five parallel

edges between the constraint vertices on the same constraint path. As at least one end
of the constraint path has an hourglass, since we added hourglasses at the endpoint of
each edge that is not an outer edge, the constraint vertices are connected through five
vertex-disjoint paths with the rest of the graph, as seen in Figure 3.14b. For a constraint
vc ≺`c uc we set constraints between the corresponding vertices of the hourglasses Hv

c

and Hu
c instead. This process does not modify constrained level planarity, as two hour-

glasses cannot be nested in each other, and therefore the situation remains equivalent
to there being single vertices.
In order for the wide vertices to have total orders on their levels, as the hourglasses

used when converting a vertex to a wide vertex share the same levels, we vertex expand
these hourglasses without modifying constrained level planarity according to Lemma 3.3
as we noted that there is no nesting between the vertices of these hourglasses after vertex
expanding the levels shared by them. Therefore, there are at most two vertices per level
and the level-width is λ(G′) ≤ 2.

The restriction in the previous theorem could be removed if a way is found to prevent
nesting between vertices that were on the same level after that level is vertex expanded.
Lifting this restriction would also greatly improve the following result.

Corollary 3.15. An instance G of Constrained Level Planarity with height h
reduces in polynomial time to an instance G′ of Ordered Level Planarity while
maintaining k-connectivity for all k ∈ N0, with the restriction that if 3 ≤ k ≤ 5 there
must not for any level ` ∈ [h] be any nesting between its sources as well as between its
sinks in any level planar embedding of a graph where the level ` has been vertex expanded.

Proof. It is well known, see for example [Ski20, Chapter 18.8], that for a given graph the
connectivity k can be computed in polynomial time. If k ≤ 2 we can use Theorem 3.8
to reduce G to an equivalent ordered level graph G′ in polynomial time by subdividing
edges. As when subdividing multiple vertex-disjoint paths they remain vertex-disjoint,
the connectivity remains the same for k ≤ 2. Note that for k ≥ 6 the graph G cannot be
planar, and we can therefore reduce it to an equivalent k-connected ordered level graph
in polynomial time according to Lemma 3.1. Otherwise, the graph G is k-connected with
3 ≤ k ≤ 5 which means that it can be reduced to an equivalent k-connected ordered
level graph in polynomial time according to Theorem 3.14.
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Fig. 3.14: (a) A level after constraint and vertex expansion, where the (orange) outer edges have
not been used as constraint paths. The vertices are then replaced by hourglasses (b).
For the sake of visual clarity, the constraints between two hourglasses have not been
drawn individually but are drawn instead as a (red) band.

39



4 Hardness of Cycle and 5-Connected
Graphs

We will now show that Constrained Level Planarity is NP-hard for cycle and
5-connected graphs by adapting the proof of Brückner and Rutter [BR17] which reduces
Planar Monotone 3-Satisfiability to Constrained Level Planarity. Amono-
tone 3-Satisfiability formula ϕ = (V, C), where V is a set of variables and C a set of clauses,
is a formula that only contains positive or negative clauses. This means that each clause
either only contains positive literals or only negative literals. A planar 3-Satisfiability
formula ϕ = (V, C) is one where the variable-clause graph Gϕ = (V∪̇C, E) is planar.
This graph only contains edges between variables and clauses {v, c} ∈ E if the clause
c ∈ C contains a literal v or ¬v of the variable v ∈ V. The problem Planar Mono-
tone 3-Satisfiability asks whether a given planar monotone 3-Satisfiability formula
is satisfiable. It was shown to be NP-complete by De Berg and Khosravi [DBK12].
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Fig. 4.1: The variable-clause graph (a) and a different drawing of the variable-clause graph with
y-monotone edges (b). To ensure that the graph is connected additional edges can be
inserted between the variables, visualized as dotted (purple) lines.
(c) The construction to have each literal appear at most three times in clauses.

Given an instance of Planar Monotone 3-Satisfiability it is possible to draw
the variable-clause graph such that all variables are drawn as boxes on a single vertical
line, positive clauses are drawn as rectangles to the right of the variables and negative
clauses are drawn as rectangles to the left of the variables, as seen in Figure 4.1a. The
drawing can be modified such that the edges are y-monotone arcs that connect from the
bottom of the clause rectangles to the top of the variable boxes, as seen in Figure 4.1b.
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We can assume that each literal appears in at most three clauses. Otherwise, we can
split a variable into two equivalent variables. This is achieved by adding for a variable v,
whose literal appears more than three times, the variables v′ and v′′ as well as the
clauses (v ∨ v′), (¬v ∨ ¬v′), (v′ ∨ v′′) and (¬v′ ∨ ¬v′′). As then v is equivalent to v′′ we
can use the literals of v′′ instead of the literals of v. As this procedure used each literal
from v once but added two literals of v′′ which can be used instead, we can repeat this
process until each literal appears at most three times in clauses.
In order to convert an instance of Planar Monotone 3-Satisfiability to an in-

stance of Constrained Level Planarity we will replace each variable with a so-called
variable gadget, each clause with a clause gadget and each edge with a pipe gadget.

`t

`h

`m

``

`b

pL pR

vL
vR

(a)

`p

`t

`h

`m

``

`b

(b)

Fig. 4.2: (a) A (black) gate with a (blue) path passing through it in a zigzag manner.
(b) A gate that is blocked by a (green) plug.

These gadgets all consist of gates. A gate, as seen in Figure 4.2a, consists of two
paths pL and pR running in parallel that have their order fixed through constraints on
the levels `t and `b. A gate restricts the number of paths that can be drawn between pL
and pR to one, by having two vertices vL and vR on the level `m that connect to pR
and pL, respectively. There is also the constraint vL ≺`m vR fixing vL to the left of vR.
With this, a path can only pass through the gate by changing direction at the levels `h
and ``. This is the reason that only one path can pass through a gate, as a second path
that also changes directions at `h and `` would cross the first path. Therefore, we can
use plugs, paths that only pass through a gate and end directly after, as in Figure 4.2b,
to make a gate impassable for other paths.
A pipe gadget, illustrated in Figure 4.3a, consists of two channels which are divided by

a path in the middle, and one conductor which starts on the lower right side of the pipe
and flows through either the left or right channel to the upper left. To connect the middle
path to the outer walls of the pipe, the channels are divided into a lower and upper part
with the conductor being split into a claw on top and a tip below. We force the two parts
of the conductor to be drawn in the same channel by putting constraints on the claw
and the tip such that the tip has to be drawn inside the claw. On each end of a channel,
there is a gate. We can therefore use these pipes to pass the values of literals, by saying
that the passed value is true if the conductor uses the left channel and otherwise false.
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clause

variable

(a)

variable

(b)

Fig. 4.3: (a) The pipe gadget with the (blue) conductor flowing through the left channel trans-
mitting the value true. (b) The lower half of a pipe that is used when a literal occurs
less than three times. The (black) parts of the pipe, that are not the conductor, are
fixed with constraints that are omitted in these drawings for the sake of visual clarity.

+ pipe− pipe − pipe − pipe + pipe + pipe

ps `s
`bvb

vp `p

Fig. 4.4: A variable gadget that is configured as true with the (green) plugs on the left side
of ps. It can be connected to the other variable gadgets via the dotted (purple) lines.
The constraints on the gates are omitted in the drawing.
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The variable gadget, illustrated in Figure 4.4, consists of the merged lower ends of six
pipes with the pipes of positive literals on the right being separated from the pipes of
negative literals on the left by the path ps going down to the level `s. In case a literal
appears less than three times we still add a pipe but only its lower half, shown in Fig-
ure 4.3b. Each gadget then has three plugs, connected at the vertex vp at the level `p
which in turn is connected to the lowest vertex vb of the gadget on the level `b. The
vertex vb also connects to the outermost pipes. Since the plugs are bounded paths with
their lowest vertex being their common vertex vp at the level `p, they must all be either
completely to the left or completely to the right of the separating path ps. Further, each
plug has to plug exactly one gate since they cannot be drawn outside the variable gadget,
as there are constraints on vp forcing it to be drawn inside. All plugs are also forced
into the left channels of the pipes since if a plug is inside the right channel of a pipe the
conductor of said pipe cannot be drawn planar. Therefore, we can say that the variable
gadget is configured as true or false depending on if the plugs are on the left or right
side of the gadget. This is because all conductors on that side are forced into the right
channels, therefore transmitting the value false for those literals, while the conductors
on the other side can flow through the left channels and transmit the value true. To
make sure that the resulting graph is connected regardless of the clauses, we further add
edges between the vertex gadgets, as illustrated schematically in Figure 4.1b.

pipe 3pipe 2pipe 1

`p
`t

vt

vp

(a)

pipe 2pipe 1

`p
`t

vt

vp

(b)

Fig. 4.5: The clause gadgets for a clause containing three (a) and two (b) literals. The con-
straints on the gates are omitted for the sake of visual clarity.

The clause gadget, illustrated in Figure 4.5, consists of one upper pipe end for each
literal as well as a single plug. The outermost paths of the pipes connect to the highest
vertex vt of the gadget on the level `t. The plug is forced to be drawn inside the gadget
by putting constraints on its vertex vp on the level `p below the level `t. Therefore,
the plug must go into the right channel of a pipe forcing the conductor of said pipe to
flow through the left channel. This means that at least one pipe that ends in the clause
gadget must transmit the value true in a level planar drawing.
Given an instance ϕ of Planar Monotone 3-Satisfiability we can obtain the

corresponding Constrained Level Planarity instance G in polynomial time. We
will now show that ϕ is satisfiable if and only if G is constrained level planar. If there is a
constrained level planar drawing of G, then for each negative clause at least one pipe must
transmit the value true with its conductor flowing through the left channel. Therefore,
the variable on the other end of that pipe must be configured as false. Otherwise, the
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conductor would be forced to flow through the right channel leading to a contradiction.
This applies similarly to positive clauses. Therefore, ϕ must be satisfiable. If ϕ is
satisfiable, we can configure all variables according to a satisfying assignment. Then
for a negative clause, at least one of its literals must be true and therefore one of the
adjacent variables is configured as false. This means that the conductor connecting the
two can flow through the left channel and therefore the plug of the clause can go into the
right channel without violating constrained level planarity. The situation is analogous
for positive clauses. This shows that ϕ is satisfiable if and only if there is a constrained
level planar drawing of G. Therefore, Planar Monotone 3-Satisfiability reduces
in polynomial time to Constrained Level Planarity which is therefore NP-hard
in the general case.
By replacing the edges with a cycle, as seen in Figure 4.6, we can reduce an in-

stance of Planar Monotone 3-Satisfiability in polynomial time to an instance of
Constrained Level Planarity that is a cycle. We therefore obtain the following
theorem.

Theorem 4.1. The problem Constrained Level Planarity is NP-hard even when
restricted to cycle graphs.

As we have previously shown in Corollary 3.10 that we can transform a constrained
level cycle graph into an ordered level cycle graph in polynomial time it follows that
Ordered Level Planarity is also NP-hard for cycle graphs.

Corollary 4.2. The problem Ordered Level Planarity is NP-hard even when
restricted to cycle graphs.

If we instead replace the vertices in the variable, pipe, and clause gadgets with hour-
glasses and each edge with five parallel edges, as seen in Figure 4.7, the resulting graph
is 5-connected.

Theorem 4.3. The problem Constrained Level Planarity is NP-hard even when
restricted to 5-connected graphs.

Using the fact that there is no nesting between the vertices of different hourglasses that
share the same levels in a graph where these levels were vertex expanded, we can reduce
the 5-connected constrained level graph, obtained from reducing an instance of Pla-
nar Monotone 3-Satisfiability in polynomial time to an instance of Constrained
Level Planarity, to an instance of Ordered Level Planarity in polynomial time
while preserving 5-connectivity.

Corollary 4.4. The problem Ordered Level Planarity is NP-hard even when
restricted to 5-connected graphs.
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(a)

(b)

(c)

Fig. 4.6: The clause (a), pipe (b) and variable (c) gadget for a cycle graph. The pipe gadget
transmits the value false while the variable gadget is configured as true. The con-
straints on the gates are omitted in the drawings.
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(a)

(b)

(c)

Fig. 4.7: The clause (a), pipe (b) and variable (c) gadget for a 5-connected graph. The pipe
gadget transmits the value false while the variable gadget is configured as true. The
constraints on the gates are omitted in the drawings, while the constraints between
the claw and the tip are visualized as a (red) band.
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5 Conclusion

In this thesis, we investigated reductions from Constrained Level Planarity to
Ordered Level Planarity that preserve several properties of graphs. We were able
to preserve outerplanarity, chordality, and perfectness as well as pathwidth, treedepth,
maximum degree, and cycle graphs. We also showed that k-connectivity can be pre-
served under certain conditions. It would therefore be an intriguing subject for future
work to try and find a reduction that maintains k-connectivity unconditionally. Another
interesting aspect for a future investigation would be to see if the diameter can be main-
tained, as we only were able to provide a reduction that increases the diameter by at
most 2. It would also be interesting to see if there are reductions that are able to pre-
serve even more properties at once, thereby bringing Constrained Level Planarity
and Ordered Level Planarity more closely together. Seeing as Ordered Level
Planarity is a special case of several other graph drawing problems, such as Clus-
tered Level Planarity and T-Level Planarity, it would be interesting to see
how Constrained Level Planarity relates to them. There is also room to improve
the reductions. For example, the reduction that maintains the maximum degree cur-
rently greatly increases the size of the graph for a non-constant maximum degree. The
reductions could also be used to extend FPT -algorithms for Ordered Level Pla-
narity that are parametrized by one of the maintained properties to Constrained
Level Planarity.
We also modified a proof by Brückner and Rutter [BR17] reducing Planar Mono-

tone 3-Satisfiability to Constrained Level Planarity in order to show NP-
hardness of Constrained Level Planarity even when restricted to cycle as well
as 5-connected graphs. We then used the reductions from this thesis to show that
Ordered Level Planarity is also NP-hard when restricted to cycle as well as 5-
connected graphs. It remains to see if Constrained Level Planarity and Ordered
Level Planarity are NP-hard for other special cases, such as a constant treedepth.
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