
Bachelor Thesis

Crossing Reduction in Circular Layouts
under Grouping Constraints

Arash Torabi Goodarzi

Date of Submission: 15. September 2022
Advisors: Prof. Dr. Alexander Wolff

Tim Hegemann, M. Sc.

Julius-Maximilians-Universität Würzburg
Lehrstuhl für Informatik I

Algorithmen und Komplexität

Abstract

Crossing reduction in graph drawing aims to produce readable drawings of graphs by
reducing the number of crossings in them. This is an important aspect for graph drawings
since it impacts the visual clutter directly. A high visual clutter reduces the readability
of a drawing which increases the time and cost when it comes to maintaining a network
using its graph visualization. Crossing reduction in circular layouts is the problem of
creating a graph drawing in which the vertices are placed along the perimeter of a circle
and the number of produced crossings is minimized. This thesis takes on a variation of
this problem where certain vertices of a graph are required to be placed next to each
other. We suggest a fast heuristic algorithm for this NP-complete problem derived from
the work of Brandes and Baur in 2005 and show that our heuristic produces only 4.39%
more crossings than an exact solution through a series of experimental evaluations. We
also present an experimental analysis that shows a case in which the heuristic performs
particularly well.

Zusammenfassung

Kreuzungsminimierung der Graphenzeichnen setzt sich das Ziel, lesbare Visualisierungen
für Graphen zu produzieren, indem die Anzahl der Kantenkruzungen minimal gehalten
werden. Dies ist ein wichtiger Aspekt der Graphenzeichnen, da die visuelle Durchschau-
barkeit der Zeichnung direkt von der Anzahl der Kreuzungen beeinflusst wird. Niedrige
Durchschaubarkeit reduziert die Lesbarkeit. Somit steigen die Zeit und Kosten der Auf-
rechterhaltung von Netzwerken durch Nutzung ihrer Graph-Visualisierung. Kreuzungs-
reduktion in zirkulären Layouts ist das Problem der Zusammenssetzung eines Graphen-
zeichnens, wobei die Knoten des Graphen auf der Umfang eines Kreises platziert werden
und die Anzahl der Kreuzungen möglichst minimiert werden sollen. Diese Arbeit be-
schäftigt sich mit einer Variation dieses Problems, wo bestimmte Knotengruppen neben-
einander platziert werden müssen. Wir schlagen einen schnellen Heuristik-Algorithmus
für dieses NP-völlständiges Problem vor, die sich auf die Arbeit von Brandes und Baur in
2005 basiert. Wir Zeigen dann durch eine Reihe von Experimenten, dass unsere Heuristik
nur 4, 39% mehr Kreuzungen als ein exakter Algorithmus produziert und präsentieren
ebenfalls eine experimentelle Analyse, welche zeigt, dass die Heuristik in einem bestimm-
ten Fall besonders gut funktionieren kann.

2

Contents

1 Introduction 4
1.1 Previous Work . 4
1.2 Contribution . 5
1.3 Organization . 6

2 Preliminaries 7
2.1 Crossings in a Circular Drawing . 7
2.2 Problem Definition . 8

3 ILP Formulation of the Problem 9
3.1 ILP without Groupings . 9

3.1.1 First Type of Variables . 9
3.1.2 Constraints for Transitivity . 9
3.1.3 Objective Function . 10

3.2 ILP with Groupings . 11

4 Algorithm of Brandes and Baur 12
4.1 Initial Layout . 12
4.2 Circular Sifting . 13
4.3 Accelerating the Initialization . 14

5 Supporting Groupings 16
5.1 Grouped Initialization . 16
5.2 Grouped Circular Sifting . 17

6 Experimental Results 18
6.1 Evaluation of Algorithm without Groupings 18
6.2 Evaluation of Algorithm with Groupings 19

7 Conclusion And Future Work 24

Bibliography 25

3

1 Introduction

Graph drawing is one of the most researched fields of graph theory in computer science.
With the expansion of the internet the need for drawing aesthetically pleasing and read-
able graphs is growing. This is an important tool for administrators and enables them
to maintain their networks with lower cost, more ease and more efficiency. There are dif-
ferent criteria that make a graph drawing aesthetically pleasing and more readable such
as total length of edges and grouping of clusters. The most important criteria however,
is the number of crossings in a drawing, since this has a direct impact on visual clutter
and plays an important role in the readability of the graph.

There are many ways to form a graph drawing to create a so called layout. A popular
way is to form a circle. A circular graph layout is a formation for a graph drawing,
in which the vertices are placed along the perimeter of a circle. In such layouts, if we
assume that none of the edges may be drawn outside of the circle, the only structure
needed to specify the drawing is a list establishing the ordering of the vertices. It is an
important objective to order these vertices in a way that the number of occurring edge
crossings in the layout is minimized in order to produce aesthetically pleasing circular
drawings. This is the problem of circular crossing minimization, which is well-known to
be NP-complete [MKNF87].

A variation of this problem is to add further grouping constraints to it, meaning
to require certain subsets of vertices to be placed next to each other. This variation
is particularly useful for industrial network visualizations, where certain nodes often
belong to a sub-network and should therefore be placed close to one another. A real-
world example of this is a company whose network is sub-divided into four sub-nets for
each of the four geographical directions and requires to have a circular drawing of its
network, where it is still possible to recognize each sub-network.

The goal of this thesis is to present and examine a heuristic method drived from the
work of Brandes and Baur [BB05] as well as to evaluate its performance against an
optimal solution with exponential time complexity.

1.1 Previous Work
Several methods have been presented to overcome the NP-completeness of the circular
crossing minimization problem, since circular drawings are widely used in the field of
graph drawing. A O(log2 n)-approximation algorithm for the circular layout problem
has been presented by F. Shahrokhi et al. [SSSV95] to overcome this problem.

E. Mäkinen [Mä88] aims to overcome this by presenting a greedy heuristic method
to minimize the circular dilation in the circular layout. Circular dilation is defined as

4

the total edge length for a given circular drawing. This heuristic however, does not
minimize the number of edge crossings and also rather increases this by placing vertices
with higher degrees next to each other to strive for shorter edges.

U. Dogrusoz et al. [DMM96] provide an explanation of the algorithm used by the
Circular Library of the Graph Layout Toolkit, which is a family of graph layout libraries
that are designed to be integrated into GUI programs, as well as some suggestions to
improve their performance. The algorithm gives layouts that are clustered in circular
groups. The time complexity of the algorithm is O(n2 + e), where e is the number of
edges in a graph cluster and n the number of vertices.

J. Six et al. [ST99] give a two-phase heuristic algorithm with a time complexity of
O(m2) to minimize crossings in a circular layout, where m is the number of edges in
the graph. The first phase of their heuristic is inspired by the recognition algorithm
for outerplanar graphs [Mit79] and gives a crossing free circular layout for them. The
complexity of this first phase is O(nm). However, if the input graph is outerplanar
the algorithm finishes in O(n) time. The second phase of the algorithm is a crossing
reduction technique used to reduce the crossing number into a local minimum.

A similar strategy to the strategy of J. Six has been presented by U. Brandes and M.
Baur [BB05]. In that paper another two-phase heuristic has been presented and tested
against the heuristic of J. Six. These tests showed that that the method of Brandes
and Baur performs significantly better than that of J. Six. This method counts as the
current state of the art in circular crossing reduction and is the basis of our work. A
detailed explanation of the algorithm is given in Chapter 4.

1.2 Contribution
We propose a heuristic derived from the state of the art heuristic of Brandes and Baur
for circular crossing reduction that respects grouping constraints. Our contribution in
this thesis is as follows.

• We define the problem of crossing reduction in grouped circular layouts and we give
an integer linear program formulation to solve both this problem and the problem
case of not having groupings.

• We describe the algorithm of Brandes and Baur for crossing reduction in circular
layouts alongside the acceleration methods for its implementation and modify it
to respect grouping constraints.

• We examine the performance of the heuristic against the ILP optimal solution in
an experimental analysis for the both cases of having groupings and not having
grouping constraints.

5

1.3 Organization
In Chapter 2, we start by laying out some ground work definitions and notations used
in the document. We also define our problem at hand formally and discuss its NP-
completeness. In Chapter 3 then, we define the two problems defined in Chapter 2 as
a 0-1-linear integer program. Chapter 4 reviews the algorithm of Brandes and Baur
for crossing reduction in circular layouts. We then modify this algorithm to support
grouping constraints in Chapter 5. In Chapter 6, we perform the experimental evaluation
of the heuristic against the optimal ILP solution.

6

2 Preliminaries

In this Section, we define some notations and review some backgrounds, that will be
used throughout this document.

throughout this paper, we let G = (V, E) be a simple undirected graph with n = |V |
vertices and m = |E| edges. The notation N(v) = {u ∈ V : {u, v} ∈ E} denotes
the set of all neighbours of vertex v ∈ V . A circular layout of G is given by a bijection
π : V → {0, . . . , n−1}, which is to be interpreted as a clockwise sequence for the circular
ordering.

2.1 Crossings in a Circular Drawing
Given a circular drawing π and a reference vertex s ∈ V we obtain a linear ordering of
vertices denoted by ≺π

s and defining it as

u ≺π
s v ⇔ ((π(u) − (s)) mod n) < ((π(v) − π(s)) mod n)

for all u, v ∈ V . This denotes that if we traverse the vertices of the graph along the
circular layout π starting from vertex s in a clockwise manner, we encounter vertex u
before vertex v. Given a such ordering, two edges e1 = {u1, v1} and e2 = {u2, v2} cross
in the circular drawing, if Xπ({u1, v1}, {u2, v2}) = 1, where the function Xπ is defined
as

Xπ({u1, v1}, {u2, v2}) =
{

1 if u1 ≺π
s u2 ≺π

s v1 ≺π
s v2

0 otherwise

assuming that π(ui) < π(vi) for i ∈ {1, 2}. Formulating this into words of natural
language, the end vertices of the two edges e1 and e2 must appear alternately in a
circular traverse for the edges to cross. Note that if the assumption π(ui) < π(vi) is
not given, there are then 8 cases to be checked for every pair of edges that result in a
crossing. Since s is an arbitrary reference vertex, Xπ detects a crossing if one of the
following conditions is given. For this listing, let the edges to be checked for crossing be
e1 = {a, b} and e2 = {c, d}.

1. π(a) < π(c) < π(b) < π(d)

2. π(c) < π(a) < π(d) < π(b)

3. π(a) < π(d) < π(b) < π(c)

4. π(d) < π(a) < π(c) < π(b)

5. π(b) < π(c) < π(a) < π(d)

6. π(c) < π(b) < π(d) < π(a)

7. π(b) < π(d) < π(a) < π(c)

8. π(d) < π(b) < π(c) < π(a)

7

These conditions can be verified in an implementation to check whether a pair of edges
cross in a circular layout implemented in a linked list. Given this, we can now define
the crossing number for a given circular layout as follows. For a circular layout π the
crossing number χ(π) is the number of crossings in layout π.

χ(π) =
∑

e1,e2∈E

Xπ(e1, e2)

Calculating the crossing number in a brute force manner takes O(m2) time. An algorithm
has however been presented by Tollis and Six [ST06] that calculates the crossing number
of a circular layout in O(m + x) time, where x is a variable depending on the layout.
Also this algorithm has a worst case running time of O(m2).

Two vertices u, v ∈ V are consecutive, denoted as u ↷π v, if π(v) − π(u) ≡ 1 mod n.

2.2 Problem Definition
The problem of discussion in this paper is the problem of crossing reduction in circular
layouts under grouping constraints which is a derivation of the problem of simple crossing
reduction in circular layouts. These problems are formally defined as follows.

Crossing Reduction in Circular Layouts (CR)
Input: A graph G = (V, E)
Question: Can we give a circular layout π such that χ(π) is minimized?

Crossing Reduction in Grouped Circular Layouts (CRG)
Input: A graph G = (V, E) and a list S1, . . . , Sg ⊆ V of groups such that

Si ∩ Sj = ∅ for i ̸= j and ⋃g
i=1 Si = V .

Question: Can we give a circular layout π such that χ(π) is minimized and for
every u ∈ Si and v ∈ Sj with i < j it holds that π(u) < π(v)?

The NP-completeness of CR has been shown by Masuda et al. in 1987 [MKNF87].
From this, it is easy to see that CRG is also NP-complete.

Theorem 2.1. Crossing Reduction in Grouped Circular Layouts is NP-complete.

Proof. CR is a special case of CRG where number of groups g is set to one. The
containment in NP can be shown by a brute force algorithm to test all of the at most n!
orderings of vertices in a list. From a such ordering it is possible to construct a circular
layout in polynomial time.

Note that a graph has a planar circular drawing if and only if it is outerplanar. A
recognition algorithm for outerplanar graphs [Mit79] can be extended onto a drawing
algorithm to give a crossing-free circular layout [ST99].

8

3 ILP Formulation of the Problem

Integer linear programs (ILP) are widely used for optimization problems. In this chapter
we present a 0-1 ILP for the problem of crossing reduction both in circular layouts and
grouped circular layouts as defined in Section 2.2 as the basis for our experimental
evaluation in Chapter 6. To learn more about integer linear programming, see [GG11].

3.1 ILP without Groupings
At first, let us focus on the simpler crossing reduction problem without groupings. We
will then modify it to respect grouping constraints afterwards. Let a graph G = (V, E)
be given.

3.1.1 First Type of Variables
The model we use for our ILP uses an ordering similar to the ordering defined in Sec-
tion 2.1. We build an ordered listing of vertices to represent our circular drawings. It is
clear that there are then n such listings that represent the same drawing, but that does
not change our results. So we can treat the listing the same way as π in Chapter 2. For
every pair of vertices u, v ∈

(V
2
)

we define a variable Xuv as

Xuv =
{

1 if π(u) < π(v)
0 otherwise

that denotes whether vertex u comes before v in order. We also define a symmetrical
variable Xvu for the same pair that is the negation of Xuv. That is Xvu is equal to 1
if and only if v comes before u in order and 0 otherwise. We call these variables the
X-variables.

Given a valid assignment of these variables that satisfy the constraints explained in
Section 3.1.2, an ordering with a minimum and a maximum is created from which it is
easily possible to obtain a circular drawing.

3.1.2 Constraints for Transitivity
We add two types of constraints that are needed to ensure that the X-variables retain
an actual ordering.

The first type of constraints were mentioned while defining the X-variables. Since we
have both Xuv and Xvu for every pair of vertices u and v, we must first ensure that they
correspond as the negation of each other. This is easily done by adding a constraint for

9

every pair of vertices u and v to make Xuv = 1 − Xvu. We therefore add the following
constraint.

Xuv + Xvu = 1

The second type of variables needed for the ordering to be retained is that for every 3
vertices, the respective X-variables must be correspondent to that of an ordering. This
is best explained with and example. Let u, v, and r be vertices. The second type of
variables is to ensure that if Xuv = 1 and Xvr = 1, then Xur must be 1. Because if v
comes after u and r comes after v in order then necessarily r comes after u. This is the
transitivity of order. And reversely if Xuv = 0 and Xvr = 0 then Xur = 0 is required.
The exact cases are shown in the following table.

Xuv Xvr Xur

0 0 0
0 1 0 or 1
1 0 0 or 1
1 1 1

These requirement is held if 0 ≤ Xuv + Xvr − Xur ≤ 1 is satisfied for every u, v, r ∈
(V

3
)
.

We therefore add the following two requirements for every triple of vertices u, v, r.

1 ≥ Xuv + Xvr − Xur

0 ≤ Xuv + Xvr − Xur

3.1.3 Objective Function
Our objective is obviously to reduce the number of crossings. Therefore an objective
function that correctly counts the crossings in the circular layout represented by the
X-variables is necessary. For that, we introduce 8 new variables for every pair of vertices
corresponding to the eight cases of crossing discussed in Section 2.1 that are equal to 1 if
the case of crossing has appeared. The name of the variables have the schema Yacbd for
edges {a, b} and {c, d}, where the ordering of the index of the variable is correspondent
to the ordering appeared in the specific case for crossing. We call these variables the
Y-variables. To understand how the constraints for the Y-variables are constructed,
let us take the case of crossing 1 in Section 2.1 for the pair of edges {a, b} and {c, d}.
The case is constructed of three requirements. These are π(a) < π(c), π(c) < π(b) and
π(b) < π(d). Each of these requirements is fulfilled if their correspondent X-variable is
equal to 1. We therefore create the following constraints for this crossing case.

Yacbd ≥ 0

Yacbd ≥ Xac + Xcb + Xbd − 2

Given these two constraints the Y-variable will definitely become 1 if the crossing case
is given. That is if the corresponding X-variables are all equal to 1. Such variables

10

are created with the mentioned two constraints for every of the eight crossing cases for
every pair of edges. In total that makes 8 ·

(m
2

)
Y-variables and 16 ·

(m
2

)
constraints. The

objective function is the sum of all Y-variables. Given that this objective function is to
be minimized, each Y-variable will be equal to 0 whenever this is possible. With this, a
correct ILP formulation for our ungrouped problem is given.

3.2 ILP with Groupings
The same ILP described in Section 3.1 can be easily modified to support groupings. Let
us assume that a grouping S1, . . . Sg with The constraints described in the definition of
CRG in Section 2.2 is given. A grouping requires for every u ∈ Si and v ∈ Sj with i < j
to hold that π(u) < π(v). We can translate this easily using the X-variables defined in
the last section. For every u ∈ Si and v ∈ Sj with i < j we add the following constraint.

Xuv = 1

A correct ILP formulation of the grouped problem is thusly given.
The described ILPs in this chapter can be written in a desirable ILP solver such as

CPLEX or Gurobi [Cpl09] [Gur22]. These solvers will then return a vector that gives a
valid assignment of X and Y-variables for a given input graph such that the objective
function is minimized and all of the set constraints are fulfilled. The assignments given
for the X-variables provide a full ordering for the vertices of the graph. A sorting
algorithm that sorts the vertices according to this ordering then brings us the listing of
vertices that represents the desired circular drawing. The number of crossings can also
be calculated easily by adding up all of the Y-variables. We used an implementation of
these two ILPs to obtain the circular layouts in Figure 3.1

Fig. 3.1: A graph with 12 vertices and 11 edges has been circularly drawn in a circle using the
ILP with no groups (left). The vertices of the same graph have been grouped randomly
into 4 groups and drawn in a circle using the ILP with groupes (right). Groups have
been visualized with colors.

11

4 Algorithm of Brandes and Baur

Ulrik Brandes and Michael Baur proposed a heuristic algorithm for crossing reduction
in circular layouts [BB05]. This algorithm is the basis of the algorithm we propose
in Chapter 5 to support grouping constraints. In this chapter, we therefore give a
brief explanation of how the algorithm of Brandes and Baur works and discuss its time
complexity.

The heuristic proposed by Brandes and Baur works in two stages. First, it creates an
inital drawing using a greedy appending paradigm. The second stage is then an adaption
of the sifting procedure for layered layouts, which is a method for local optimization.

4.1 Initial Layout
The basic idea for creating the initial layout in the Brandes and Baur heuristic is the
following.

Algorithm 1: General Greedy-Append Heuristic
1 place start vertex s ∈ V arbitrarily;
2 remove s from V ;
3 while V ̸= ∅ do
4 greedily choose v ∈ V ;
5 append v at either end of the layout;
6 remove v from V

At line 1, a starting vertex should be chosen. In the implementation used for the
experiments done in Chapter 6, we decided to choose the starting vertex randomly. Two
other degrees of freedom are yet to be discussed. First, how exactly the next vertex
to append should be chosen and second, to which end should the chosen vertex be
appended. Several paradigms for each degree of freedom have been proposed and tested
by Brandes and Baur. We will however only discuss the paradigms that performed best
in their experimental evaluations.

During the procedure of greedy-append some vertices are placed and others are not.
An open edge is an edge that has exactly one placed end. An edge is called closed if
both its endings are placed.

The following paradigm is used for determining the insertion sequence for line 4 in
Algorithm 1.
Connectivity. At each step a vertex with the least number of unplaced neighbors is

12

selected. If a tie appears it is broken in favor of the vertex with higher number of placed
neighbors.

The paradigm used for the second degree of freedom is the following.
Crossings. Each chosen vertex is appended to the end that yields fewer crossings of the
edges being closed and the open edges.

Experiments done in the original paper suggest a significant gain in performance
compared to other tested paradigms, when using the connectivity and the crossings
paradigms in combination. Both the mentioned paradigms can be implemented with
their respective acceleration strategies. These are explained in Section 4.3. Using these
acceleration methods, the initialization algorithm can be implemented in O((n+m) log n)
time.

4.2 Circular Sifting
Circular sifting is a local round-based optimization process for crossing reduction in
circular layouts. The general idea of the process is the following.

Each vertex v is moved along the layout, and the crossing number is calculated in each
position. v is then placed in the position with the lowest calculated crossing number.
One round of circular sifting does this process for each vertex, changing the layout in
every step.

In every step of one round of circular sifting, a vertex is swapped with its consecutive
vertex. The change of crossing number then only depends on the edges that are incident
to the two vertices that are being swapped, because the edges not incident to the two
swapping vertices do not change their crossing status when two consecutive vertices are
being swapped. We therefore define the crossing number

cuv(π) =
∑

x∈N(u)

∑
y∈N(v)

Xπ({u, x}, {v, y})

for every pair of consecutive vertices u ↷π v ∈ V , to count the number of edge crossings
that are between the edges incident to u and the edges incident to v. The following
lemma then gives an exchange property to track the number of crossings.

Lemma 4.1. Let u ↷π v ∈ V to be consecutive vertices in the circular drawing π. Let
π′ be the drawing obtained when u and v are swapped. Then it holds

χ(π′) = χ(π) − cuv(π) + cuv(π′)
= χ(π) −

∑
x∈N(u)

|{y ∈ N(v) : y ≺π
x u}| +

∑
y∈N(v)

|{x ∈ N(u) : x ≺π
y v}|.

Proof. Figure 4.1 shows the second equality. See [BB05] for a more detailed proof.

These two sums can be calculated easily in an implementation. Algorithm 2 in [BB05]
gives an accelerated suggestion to implement the circular sifting in O(nm). The sifting
can be repeated and in each repetition the number of crossings can only be reduced. It

13

is possible to repeat the sifting process so many times, that the number of crossings does
no longer improve. In this case, the complexity is O(nm · w), where w is the number of
repetitions done.

Fig. 4.1: After swapping two consecutive vertices (right) exactly those incident edges cross that
did not cross before (left).

4.3 Accelerating the Initialization
In this section, we explain the acceleration methods mentioned in theorem 2 of [BB05].

The connectivity insertion order presented in Section 4.1 can be realized using a two-
dimensional priority queue for unplaced vertices, where the first key stores the number
of unplaced neighbors and the second key the number of placed neighbors. This priority
queue can be sorted increasingly by the first key and then decreasingly by the second
key to break ties in O(n log n). Each extraction and update operation requires O(log n)
time. On the other hand, each vertex is extracted once and each edge causes exactly
one update operation. The total time needed is therefore O((n + m) log n) for greedy
choosing.

The crossing paradigm needs the crossings between open and closed edges to be calcu-
lated. When creating the initial layout, we implement the circular layout in a linked list.
The decision to be made is whether we should insert the chosen vertex at the beginning
of the linked list or at its end. The prefix sum at a vertex v is the number of open edges
that are before v in the list. The suffix sum is the number of open edges that are after
v in the list. Both numbers are calculated with exclusion of the open edges of v itself.
Using prefix and suffix sum at each vertex, it is possible to calculate the number of
crossings between open edges and edges being closed when appending a vertex at either
end. These sums can be efficiently calculated and maintained for every vertex using a
balanced binary tree as follows. The tree will store in its leaves the number of open edges
for each placed vertex. The inner nodes store the sum of the values of their two children.
The prefix sum at a vertex is then the sum of the values of the left children of the nodes
that are on the path from the root to that vertex’s correspondent leaf, excluding the
nodes on the path themselves. The suffix sum can be calculated symmetrically. With
this structure the calculation of the prefix and suffix sum to decide the insertion takes

14

O(log n) time and O(d(v) log n) is needed to update the tree after each insertion. Since
exactly n insertions are done, the total time complexity is O((n + m) log n).

As an example, in Figure 4.2 we are adding vertex a to the layout which connects with
the vertices b, d and f and we are trying to decide which end of the layout it should
be added to. To decide this, the number of edge crossings with open edges that would
be created for either end should be calculated. This can be calculated using the prefix
and suffix sums at the connecting nodes to a, obtained from the balanced binary tree
in Figure 4.3, as follows. For addition to the right suffix sum is used and for the left,
we use the prefix sum. Let us consider the case of adding to the right. The suffix sum
of f is zero, so an addition to the right side of f does not produce any crossings with
open edges. At d, the suffix sum is 2, but one of the open edges after d is connected to
f and is being closed by a. So the number of crossings produced by the connection to d
is 1. Lastly, the suffix sum of b is 6 and two of the edges after b are being closed by a,
this means that the number of produced crossings with open edges by the connection of
a and b is 4. This adds up to 5 crossings with open edges for an addition to the right.
This number can be calculated for the addition to the left symmetrically using the prefix
sum and based on that, the decision can be made.

Fig. 4.2: Vertex a should be appended at the right because this makes 5 crossings with open
edges while adding to left would make 8 crossings with open edges.

Fig. 4.3: "P" denotes the prefix sum at each node and "S" denotes the suffix sum.

15

5 Supporting Groupings

In this chapter, we present a modification of the Brandes and Baur heuristic explained in
Chapter 4 to support grouping constraints as explained in Section 2.2. To do so, we mod-
ify the initialization and the sifting stages each. The main idea for these modifications
is to do the same as in ungrouped layouting separately for each group at every stage,
while calculating the crossing numbers in a way that cross-group crossings are as well
considered. We therefore represent our grouped circular layouts in a two-dimensional
linked list in contrast to the one-dimensional lists for the ungrouped normal circular
layout. A circular layout as defined in Chapter 2 can be obtained from a 2D-list by
appending every inner list to one linked list for our circular layout, and honoring the
ordering of the groups while doing so.

The precise modifications necessary to achieve grouping constraints in the heuristic
are explained in the following.

5.1 Grouped Initialization
The initialization used by Brandes and Baur is a greedy-append heuristic. Our goal is
to do the same heuristic for each group separately, while keeping the layout together for
the calculation of crossing numbers.

Let G = (V, E) be an instance of CRG with the g groups S1, . . . Sg ⊆ V as defined
in Section 2.2. Algorithm 1 begins by choosing one vertex randomly to start with. We
modify this by starting with g random vertices each from one of the given groups. We
use these vertices to create the first initialization of our inner lists according to the
ordering of Si. These inner lists are stored in a list that represents our two-dimensional
grouped layout. We then modify the greedy choosing by applying it g times for each
group and every time using the connectivity paradigm explained in Section 4.1. Having
chosen the vertices to append we then decide which end of each group to append them
to using the crossings paradigm explained in Section 4.1. These modifications bring us
our grouped initialization heuristic. The precise definition of the modified algorithm is
shown in Algorithm 2.

The time complexity of the greedy-append heuristic does not change with the mod-
ifications done. Choosing the beginning vertices takes O(g) time and it is sensible to
assume g ≤ n. This part therefore has a loose time complexity of O(n). The choose and
append part of the algorithm takes place exactly n times and the accelerations explained
in Section 4.3 can still be used in the grouping case. We therefore do not exceed the
time complexity of O((n + m) log n).

16

Algorithm 2: General Grouped Greedy-Append Heuristic
1 Let list L = [S′

1, . . . , S′
g], where S′

i is a list of vertices;
2 foreach S′

i ∈ L do
3 place start vertex s ∈ Si in S′

i chosen arbitrarily;
4 remove s from Si;
5 while S1, . . . , Sg ̸= ∅ do
6 foreach S′

i ∈ L do
7 if Si ̸= ∅ then
8 greedily choose v ∈ Si;
9 append v at either end of S′

i;
10 remove v from Si;

5.2 Grouped Circular Sifting
Circular sifting in the Brandes and Baur heuristic is essentially the process of dragging
each vertex around the circular layout one-by-one and putting it in its locally optimal
position. We modify this heuristic to drag each vertex inside of its group. The precise
way to achieve this is the following. For each vertex, we first move it forward through
the other vertices one-by-one and then after arriving at the end of the group, we move it
backward towards the first index of its group. During this sifting process, we keep track
of the crossing number as explained in Section 4.2 and put each vertex in its locally
optimal position. This can be done because in this manner, we only swap consecutive
vertices and therefore the change of the crossing number depends only on the edges that
are incident to these two consecutive vertices. This means that Lemma 4.1 holds for this
manner of grouped circular sifting.

The worst case of grouped circular sifting is the case of having one group only, which
is equivalent to the ungrouped case discussed in Section 4.2. Using the grouped sifting
method mentioned, we would do twice as many sifts as the ungrouped algorithm. Hence,
the time complexity for one round of grouped circular sifting does not succeed the
O(nm) margin with an efficient implementation that uses adjacency lists that are sorted
according to the circular layout. This process can again be repeated until the crossing
number does not improve by one round of sifting and the time complexity would then
be O(nm · w), where w is the number of repetitions.

17

6 Experimental Results

In this chapter, we are going to review the extensive experiments performed to test
the performance of the heuristics presented in Chapters 4 and 5. As a measure for
the performance, we used an implementation of the integer linear program defined in
Chapter 3 with the Gurobi solver [Gur22].

All the tested algorithms have been implemented by myself in Java using the iPraline
Library for Java from University of Würzburg [WZ21] as the graph data structure. The
Oracle Standard-JDK 17.0.2 was the development kit of choice. The instances of the
ILP were also created using the Java-API of Gurobi. The experiments were performed
on a laptop with the following specifications.

• Manufacturer/Model: Dell Alienware m15 R1

• CPU: Intel Core i7-8750H @4.1 Ghz – 6 Cores and 12 Threads

• RAM: 32 GB of DDR4

• Operating System: Windows 11 21H2 64 bit

The charts were drawn using Matplotlib on Python 3.10, where each data point is the
average the the results for each size and the result for each graph is the average of the
results of 10 runs with a different random initialization process.

The following set of graphs were used for the experimental evaluations. These are
available for public to download at http://www.graphdrawing.org/data.html.

• Rome graphs. A set of 11534 graphs with a size of 10 to 107 vertices.

6.1 Evaluation of Algorithm without Groupings
The ungrouped heuristic of Chapter 4 has been tested by Brandes and Baur extensively
in [BB05] in comparison to other heuristics for circular crossing reduction. We have
however, tested it against the ILP described in Chapter 3. Because of the long running
time required by the ILP to find an optimal solution, we have only done the comparison
for smaller graphs of the data sets.

The following chart in Figure 6.1 shows the result of the implementation tested on the
Rome Graphs with a size of 10 to 80 vertices. Each data point represents the average of
the crossings made for the graphs of each size.

The charts in Figure 6.2 show the performance of the heuristic in comparison to the
ILP for the Rome Graphs that have less than or equal to 26 vertices. The ILP took

18

10 20 30 40 50 60 70 80
Number of Vertices

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f C
ro

ss
in

gs

Ungrouped Rome Graphs

Fig. 6.1: Result of heuristic - A total of 9409 Rome Graphs with the size of 10 to 80 vertices
were plotted.

longer than the allowed 3 minutes per graph for bigger graphs to find an optimal solution
and the test could therefore only be done for smaller graphs. In average, 23.29% more
crossings were produced by the heuristic than the ILP amongst the tested Rome Graphs.

The following Figure 6.3 is the result drawing produced by the heuristic in comparison
to that of the ILP on a Rome Graph with 15 vertices and 16 edges to give a feeling of
the results.

The tendency is that with growing number of vertices, the heuristic will have a harder
time finding an optimal solution. This was also confirmed in our single tests with graphs
that had higher number of vertices.

6.2 Evaluation of Algorithm with Groupings
In this section, we will test the heuristic presented in Chapter 5 for solving the problem of
crossing reduction in circular layouts under grouping constraints as defined in Section 2.2
and evaluate its performance against the ILP formulation for the problem presented
in Chapter 3. For this, we have used the Rome Graphs and grouped their vertices
randomly in 4 groups such that the number of vertices per group is distributed as evenly
as possible. Since the number of possible orderings for the circular layout is significantly
lower because of the grouping constraints, the ILP was able to find the optimal solution
for all of the Rome Graphs in less than 3 minutes in our experiments. This enabled
us to get a better vision of the performance of the heuristic. The results are plotted in
Figures 6.4 and 6.5. This is also one of the reasons that the grouped heuristic is expected
to perform better.

19

10 12 14 16 18 20 22 24 26
Number of Vertices

0

1

2

3

4

5

6

7

Nu
m

be
r o

f C
ro

ss
in

gs

Heuristic vs. ILP: Ungrouped Rome Graphs
ILP Result
Heuristic Result

10 12 14 16 18 20 22 24 26
Number of Vertices

0

10

20

30

40

50

Pe
rc

en
t m

or
e

cr
os

sin
gs

 in
 h

eu
ris

tic
 th

an
 p

er
fe

ct
 re

su
lt

Heuristic vs. ILP - Ungrouped Rome Graphs

Fig. 6.2: A total of 2000 Rome Graphs with the size of 10 to 26 vertices were plotted.

Fig. 6.3: The ILP (left) produced 5 crossing while the heuristic (right) produced 9 crossings.

20 40 60 80 100
Number of Vertices

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f C
ro

ss
in

gs

Heuristic Results: Grouped Rome Graphs
Heuristic Grouped Result

20 40 60 80 100
Number of Vertices

0

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r o

f C
ro

ss
in

gs

ILP Results: Grouped Rome Graphs
ILP Grouped Result

Fig. 6.4: Results of the heuristic (left), results of ILP (right)

20

20 40 60 80 100
Number of Vertices

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f C
ro

ss
in

gs

ILP Results: Grouped Rome Graphs
ILP Grouped Result
Heuristic Grouped Result

Fig. 6.5: Result of heuristic vs. ILP - A total of 11534 Rome Graphs with the size of 10 to 107
vertices were plotted.

In average, 4.39% more crossings were produced by the heuristic among all of the
tested graphs. This percentage of difference had an almost consistent behavior across
all sizes of graphs and was in the 2 to 6 percent range. See Figure 6.6. For the Rome
Graphs with less than or equal to 26 vertices, 3.83% more crossings were produced by
the heuristic, which is about 20% less crossings in average than ungrouped case and
16.5% better performance. The grouped graphs with 40 to 107 vertices have a number
of vertices per group that is close to the number of vertices in our ungrouped testing and
there are therefore a comparable number of orderings possible in both. The performance
however, is significantly better in the grouped testing.

Given the charts in Figures 6.5 and 6.6, we can suspect that the performance of the
heuristic improves when there are more crossings in an optimal solution. To evaluate
this suggestion we plotted the percentage of the accuracy of the heuristic dependant on
the number of crossings per vertex in Figure 6.7. This plot supports the hypothesis.
This observation explains why the ungrouped evaluation does a worse performance than
the grouped evaluation because there are fewer crossings in a layout without groupings.

The tendency however, was again that the heuristic had a harder time finding the
optimal solution with growing number of vertices. This is visualized in Figure 6.6.

The running time of the heuristic is better than the ILP by a great margin. See
Figure 6.8 for an experimental comparison.

The following Figure 6.9 is the result of the heuristic against that of the ILP on a
graph with twelve vertices to give a feeling of the performance. In this case, an optimal
solution has been produced by the heuristic.

21

20 40 60 80 100
Number of Vertices

4

6

8

10

12

Pe
rc

en
t m

or
e

cr
os

sin
gs

 in
 h

eu
ris

tic
 th

an
 p

er
fe

ct
 re

su
lt

Heuristic vs. ILP - Grouped Rome Graphs

20 40 60 80 100
Number of Vertices

0

20

40

60

80

100

120

140

M
or

e
cr

os
sin

gs
 in

 h
eu

ris
tic

 th
an

 p
er

fe
ct

 re
su

lt

Heuristic vs. ILP - Grouped Rome Graphs

Fig. 6.6: Heuristic vs. ILP: Performance in percentage of crossings (left), performance by cross-
ing number (right)

2 4 6 8 10 12 14 16
Number of Crossings per Vertex (X / n)

0

1

2

3

4

5

Pe
rc

en
t m

or
e

cr
os

sin
gs

 in
 h

eu
ris

tic
 th

an
 p

er
fe

ct
 re

su
lt

Heuristic vs. ILP - Grouped Rome Graphs

Fig. 6.7: Result of heuristic vs. ILP - The same data was used as in Figures 6.5 and 6.6. Each
data point is the average of all data in a period of 1 unit

22

20 40 60 80 100
Number of Vertices

0

500

1000

1500

2000

2500
M

illi
se

co
nd

s T
im

e
Re

qu
ire

d

Running Time of ILP vs Heuristic: Grouped Rome Graphs
Running time of heuristic
Running time of ILP

Fig. 6.8: Average time per each graph size needed by the ILP and the heuristic

Fig. 6.9: The ILP (left) produced 6 crossings and the heuristic (right) produced an almost
equivalent optimal solution.

23

7 Conclusion And Future Work

In conclusion, we presented an ILP-formulation for the circular layout problem with and
without grouping constraints where the number of crossings in the layout is to be mini-
mized. We reviewed the heuristic of Brandes and Baur [BB05] for the case of not having
groupings and modified this heuristic to support grouping constraints. Our modifica-
tions did not exceed the original time complexity of O((n+m) log n) for the initialization
phase and O(nm · w) for the optimization phase. We then tested the performance of
these heuristics against the ILP in a series of experimental evaluations and saw that the
performance of the heuristic is improved when supporting groupings on the graphs of
same size. We then explained this observation using the number of crossings in an op-
timal solution. The chart in Figure 6.7 showed us that the performance of the heuristic
improves when there are more crossings in an optimal solution.

With this, we have presented a heuristic for the problem of crossing reduction in cir-
cular layouts under grouping constraints that performs quite well and in most tested
cases is on pair with the optimal solution. Our work can however be further examined.
First and for most, one can examine the performance of the heuristic while taking the
best result out of n runs for a graph with n vertices. The best result should be taken
out of n runs because each vertex is then expected to be taken as the first vertex of the
initialization once. Other than that, we have also noticed that the initialization process
often creates a crossing-free drawing when the input graph is outerplanar. One could
examine certain graph classes that will always result in a crossing-free circular drawing
by the initialization. J. Six has presented an initialization algorithm that always makes a
crossing-free drawing for outerplanar graphs [ST99]. One could modify this algorithm to
support grouping constraints to use it as the initialization process and combine this with
the grouped circular sifting of Section 5.2, and then evaluate to see if the performance
improves.

Our work provides a fast method for creating circular drawings with or without groups
with a performance fairly close to that of an exact solution. This helps network admin-
istrators to draw their networks more efficiently and enables them to focus more on the
network rather than spending time to read the network graph.

24

Bibliography
[BB05] Michael Baur and Ulrik Brandes: Crossing reduction in circular layouts. In

Juraj Hromkovič, Manfred Nagl, and Bernhard Westfechtel (editors): Graph-
Theoretic Concepts in Computer Science, pages 332–343. Springer Berlin
Heidelberg, 2005, 10.1007/978-3-540-30559-028.

[Cpl09] IBM ILOG Cplex: V12. 1: User’s manual for cplex, 2009.

[DMM96] Ugur Dogrusoz, Brendan Madden, and Patrick Madden: Circular layout in
the graph layout toolkit. pages 92–100, 1996, 10.1007/3-540-62495-340.

[GG11] Krasimira Genova and Vassil Guliashki: Linear integer programming meth-
ods and approaches–a survey. Cybernetics and Information Technologies, 11,
2011.

[Gur22] Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual, 2022.
https://www.gurobi.com.

[Mit79] Sandra L. Mitchell: Linear algorithms to recognize outerplanar and maxi-
mal outerplanar graphs. Information Processing Letters, 9(5):229–232, 1979,
10.1016/0020-0190(79)90075-9, ISSN 0020-0190.

[MKNF87] Sumio Masuda, Toshinobu Kashiwabara, Kazuo Nakajima, and Toshio Fuji-
sawa: On the np-completeness of a computer network layout problem. Pro-
ceedings: IEEE International Symposium on Circuits and Systems, 1987.

[Mä88] Erkki Mäkinen: On circular layouts. International Journal of Computer
Mathematics, 24(1):29–37, 1988, 10.1080/00207168808803629.

[SSSV95] Farhad Shahrokhi, Ondrej Sýkora, László A. Székely, and Imrich Vrt’o: Book
embeddings and crossing numbers. In Ernst W. Mayr, Gunther Schmidt,
and Gottfried Tinhofer (editors): Graph-Theoretic Concepts in Computer
Science. Springer Berlin Heidelberg, 1995, 10.1007/3-540-59071-453.

[ST99] Janet M. Six and Ioannis G. Tollis: Circular Drawings of Biconnected Graphs,
pages 57–73. Springer Berlin Heidelberg, 1999, 10.5555/646678.702166.

[ST06] Janet M. Six and Ioannis G. Tollis: A framework and algorithms for circu-
lar drawings of graphs. Journal of Discrete Algorithms, 4(1):25–50, 2006,
10.1016/j.jda.2005.01.009, ISSN 1570-8667.

[WZ21] Alexander Wolff and Johannes Zink: ipraline: Interactive problem analysis
and solving in complex industrial networks, 2021. go.uniwue.de/ipraline.

25

http://dx.doi.org/10.1007/978-3-540-30559-0_28
http://dx.doi.org/10.1007/3-540-62495-3_40
https://www.gurobi.com
http://dx.doi.org/10.1016/0020-0190(79)90075-9
http://dx.doi.org/10.1080/00207168808803629
http://dx.doi.org/10.1007/3-540-59071-4_53
http://dx.doi.org/10.5555/646678.702166
http://dx.doi.org/10.1016/j.jda.2005.01.009
go.uniwue.de/ipraline

	Title Page
	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Previous Work
	1.2 Contribution
	1.3 Organization

	2 Preliminaries
	2.1 Crossings in a Circular Drawing
	2.2 Problem Definition

	3 ILP Formulation of the Problem
	3.1 ILP without Groupings
	3.1.1 First Type of Variables
	3.1.2 Constraints for Transitivity
	3.1.3 Objective Function

	3.2 ILP with Groupings

	4 Algorithm of Brandes and Baur
	4.1 Initial Layout
	4.2 Circular Sifting
	4.3 Accelerating the Initialization

	5 Supporting Groupings
	5.1 Grouped Initialization
	5.2 Grouped Circular Sifting

	6 Experimental Results
	6.1 Evaluation of Algorithm without Groupings
	6.2 Evaluation of Algorithm with Groupings

	7 Conclusion And Future Work
	Bibliography

