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Abstract

Contact representations of graphs are a well studied topic with practical applications in,
for example, VLSI design and architecture. Recently, the partial contact representation
extension problem emerged. It asks whether a given partial contact representation of a
graph can be extended to a contact representation of the graph, that is, for a subset
of the vertices, there are prescribed objects that need to appear in the extended con-
tact representation. We study the partial contact representation extension problem for
rectangle, square and triangle representations. For rectangles and maximal, triangle-free
planar graphs, we show that the partial contact representation extension problem can be
solved in linear time, given a corner edge labeling of the graph that describes the desired
extension in a combinatorial way. In the affirmative, a rectangle contact representation
can be obtained within the same time bound. For square representations, we propose a
linear program that solves the partial square dual extension problem in polynomial time
and that can be used to construct an extension for yes-instances. Regarding triangles,
we define a set of necessary conditions that need to be satisfied for an extension to exist.
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Zusammenfassung

Kontaktrepräsentationen von Graphen sind ein häufig untersuchtes Thema mit prak-
tischen Anwendungen, zum Beispiel im Kontext von VLSI Design oder Architektur.
Vor Kurzem wurde das Kontaktrepräsentationserweiterungsproblem vorgestellt, welches
fragt, ob eine unvollständige Kontaktrepräsentation eines Graphen zu einer Kontaktre-
präsentation erweitert werden kann. Dies bedeuted, dass für eine Teilmenge der Knoten
geometrische Objekte vorgegeben sind, welche in der erweiterten Kontaktrepräsentation
vorkommen müssen. Wir behandeln das Kontaktrepräsentationserweiterungsproblem für
Repräsentationen mit Rechtecken, Quadraten und Dreiecken. Für Rechtecke und maxi-
male, dreicksfreie planare Graphen zeigen wir, dass das Kontaktrepräsentationserweite-
rungsproblem in Linearzeit lösbar ist, gegeben ein Corner Edge Labeling des Graphen,
welches die gesuchte Erweiterung kombinatorisch beschreibt. Sofern eine Erweiterung
existiert, kann diese ebenfalls in Linearzeit konstruiert werden. Für Kontaktrepräsenta-
tionen mit Quadraten stellen wir ein lineares Programm vor, welches das Quadratdual-
Erweiterungsproblem in Polynomialzeit löst und welches dazu verwendet werden kann,
eine Erweiterung zu konstruieren, sofern eine solche existiert. Für Dreickskontaktreprä-
sentationen definieren wir eine Menge von notwendigen Bedingungen, welche erfüllt sein
müssen, damit eine Erweiterung existiert.
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1 Introduction

The visualization of data and information is an important tool to understand the rela-
tionships between entities. A computer or machine is able to process raw information,
but for humans it is easier to identify patterns when the data is visually edited. In the
context of the field of Graph Theory, a graph is an abstract data structure consisting
of a set of objects called vertices, and a set of pairs of vertices, called edges. Graphs
are common to model pairwise relationships between entities, such as people in social
networks, where each vertex represents a person and the edges represent, for example,
friendships or co-workers. Another application for graphs is the design of integrated cir-
cuits in computer micro controllers (VLSI), in which case the vertices represent electronic
nodes and edges the connection between them. Graphs are common to model problems
that have such pairwise relationships and there is a wide range of graph algorithms that
are used to solve the underlying problems. To give an example, industry production
lines can be modeled as graphs with the production steps being represented by vertices
and the edges model the relative order in which those task must the completed for the
production line to efficiently function. Graph algorithms can then be used to optimize
that flow of partially assembled products. To give another example, graphs can be used
to model maps and road networks with cities, landmarks and other points of interest as
vertices and roads connecting them as edges. A common problem for such a model is
finding the shortest path between two points.
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Fig. 1.1: The same graph represented as node-link diagram (left) and as adjacency matrix
(right). The node-link diagram conveys the pairwise relationship for a human reader
while the adjacency matrix is a straightforward representation for graph algorithms.

Graphs are however just mathematical concepts. To convey their information to the
human reader, it is only natural to take a closer look at visualizations of graphs. When it
comes to drawing graphs one common method is to visualize them as node-link diagrams.
Those are drawings in the plane where the vertices are drawn as uniform objects, such
as disks or boxes, with lines connecting the disks as edges. For comparison, another way
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to represent graphs is an adjacency matrix, which is a square matrix where the elements
of the matrix indicate whether two vertices share an edge. Adjacency matrices are
often used to encode graphs in graph algorithms, while node-link diagrams are common
visual representations of graphs. See Figure 1.1 for a node-link diagram of a graph in
comparison to its adjacency matrix.

Graph visualization is a well studied topic in computer science [BETT98, KW03,
NR04]. Since asking whether a drawing of a graph is visually pleasing is subjective,
it is difficult to develop metrics that define what makes a good drawing. However,
one common metric to achieve good drawings in the context of node-link diagrams is
minimizing the number of edge crossings. A graph that can be drawn without an edge
crossing is called a planar graph. Other metrics include minimizing the drawing area,
defined as minimizing the area of the bounding box containing all vertices, or putting
constraints on the shape of the drawing, for example restricting the drawing to use only
straight lines for their edges. Figure 1.2 shows an example of a graph being drawn in
three different ways as node-link diagrams, making use of crossing minimization and
straight lines to improve the drawing.

Fig. 1.2: Three drawings of the same graph. The drawings in the center and on the right are
crossing free. Additionally the right drawing uses only straight lines for the edge
segments.

Contact Representations. While node-link diagrams are common to visualize graphs,
other geometric representations of graphs have been studied. A geometric intersection
representation of a graph G is a mapping that assigns each vertex a geometric object
and two vertices of G are adjacent if and only if their assigned geometric objects inter-
sect. The geometric objects are often restricted to be of the same shape, for example
rectangles, triangles or straight line segments. For a contact representation it is further
required that any two objects have disjoint interiors, that is their boundaries touch, but
do not intersect. While every graph can be drawn as a node-link diagram, it is gener-
ally NP-hard to decide whether a graph admits a contact representation for a particular
given shape. Figure 1.3 shows multiple contact representations of the same graph using
different objects.
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Fig. 1.3: Three different contact representations for the same graph using disks, triangles and
rectangles, respectively.

A historical result regarding contact representations was found by Koebe [Koe36]
with their Circle Packing Theorem. It states that the class of graphs that admit a
contact representation using internally disjoint disks as objects is exactly the class of
planar graphs. Schramm’s Convex Packing Theorem [Sch07] is a strong generalization
of Koebe’s theorem. It states that if each vertex of a triangulated planar graph G
has a convex prototype object, then there exists a contact representation of G where
each vertex is represented by a (possibly degenerate) homothet of its prototype. If the
prototypes have smooth boundaries, then there is no degenerate case.

Problems revolving around contact representations are usually geometric problems.
To make them more accessible from an algorithmic point of view, it is common to use
combinatorial descriptions of contact representations. Think of a contact representa-
tion of a graph as a structure described by coordinates of geometric objects, whereas a
combinatorial description specifies the way in which two objects make contact, for ex-
ample which corners or sides of objects make contact and in what relative order. Since
Schramm’s Convex Packing Theorem, contact representations of graphs with convex
polygon prototypes have seen a lot of attention using combinatorial descriptions. Often,
contact representations of maximal planar graphs, also called triangulated graphs, are
considered, since a contact representation of a graph G induces a contact representation
of any sub-graph of G.

Previous and Related Work. De Fraysseix et al. [dFPP90] studied triangle contact
representation. They observed that Schnyder woods [Sch89, Sch90] can be seen as com-
binatorial descriptions of triangle contact representations of triangulated graphs and
that any Schnyder wood can be used to construct a triangle contact representation. An-
gelini et al. [ACC+19] have shown that any two right-angle axis-aligned triangle contact
representation that have the same Schnyder wood can be morphed into each other. Fol-
lowing from Schramm’s Convex Packing Theorem, Gonçalves et al. [GLP11] proved that
every 4-connected triangulated graph admits a contact representation using homothetic
triangles, that is, every vertex has the same triangle prototype. Felsner [Fel09] proposed
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a system of linear equations which are based on Schnyder woods, such that a solution
to the system yields a triangle contact representation.

Historically, contact representations where all objects are axis-aligned rectangles (rect-
angle contact representations) have been studied due to their application in VLSI design
and architectural floor planning [LL84, YS95, KS15, Ste73]. A combinatorial description
for axis-aligned rectangle contact representations where no four rectangles make contact
at their corners and the union of all rectangles is a rectangle (rectangular dual) was
introduced by Kant and He [KH97]. The regular edge labeling of a rectangle contact
representation is an orientation and 2-coloring of the contact graph that describes, for
two touching rectangles, which of their four sides make the contact. Regular edge la-
belings are also known as transversal structures [Fus09]. Kant and He have shown that
every 4-connected triangulated graph G with four vertices on the outer face admits a
rectangular dual and that the regular edge labeling is a combinatorial description of the
rectangular dual. Klawitter et al. [KNU15] introduced a combinatorial description for
rectangle contact representations of maximal, triangle-free, planar (MTP) graphs called
the corner edge labeling and proved an analogous result: Every MTP graph G admits
an axis-aligned rectangle contact representation of G and the corner edge labeling is a
combinatorial description of said contact representation.

Another historical work regarding square contact representations was made by Brooks
et al. [BSST40], who studied the problem of dissecting rectangles into squares. Later
Schramm [Sch93] showed that every 5-connected inner triangulation of a 4-gon admits a
square contact representation. Following up from Schramm’s result, Felsner [Fel13] pro-
posed, similarly to their system of linear equations for triangle contact representations,
a system of linear equations for square duals, which uses the regular edge labeling.

Felsner et al. [FSS18] considered contact representations of equiangular K-gons and
introduced a combinatorial description called K-contact-structure. In the case of K = 3,
the K-contact-structure is a Schnyder wood and in the case of K = 4, it is a regular edge
labeling. Alam et al. [ABF+12] studied proportional polygon contact representations
of graphs with specified vertex weights that correspond to the area the polygon of a
vertex covers in a contact representation. Specifically, they optimized such contact
representations in regards to polygon complexity, cartographic error and unused area.

The discussion about contact representations is usually tied to the shape of the object
representing each vertex and next to polygons, rectangles, squares and triangles, many
other families of shapes have been studied. For example interval graphs [BL76], line
segments [dFdM07, KUV13] or visualizations using cubes [FF11] and boxes [Tho86,
CKU13] for three-dimensional representations.

A natural problem regarding contact representations is the recognition problem, which
asks whether given a graph G, does G admit a contact representation using objects
of a specific shape. Recently, a natural extension of the recognition problem has been
studied. The partial contact representation extension problem ask, whether, for a given
graph G and a partial contact representation C of G, that is, a contact representation
where a subset of the vertices of G are already drawn, C can be extended to form a
contact representation of the entire graph G. Since its introduction, this problem has
been studied for segment contact graphs [CDK+14] and bar-visibility representations
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[CGG+18]. Both problems are NP-complete, however, Chaplick et al. [CKK+21] have
recently studied the extension of partial rectangular duals and with the use of regular
edge labelings, developed a linear time algorithm that decides whether an extension exists
and, for yes-instances, constructs an extension in linear time as well. Related to partial
contact representations, the extension problem for geometric intersection representations
has also been studied for graphs such as interval graphs [KKO+17], circle graphs [CFK13]
and trapezoid graphs [KW17].

Contribution. Our contribution is a follows: We show the close relationship between
regular edge labelings and corner edge labelings. In particular we show that an axis-
aligned rectangle contact representation of an MTP graph and its corresponding corner
edge labeling can be augmented to build a rectangular dual and that the augmented
corner edge labeling is a combinatorial description of that rectangular dual. We use this
relationship and the results of Chaplick et al. [CKK+21] to solve the partial rectangle
contact extension problem, given a corner edge labeling, for an MTP graph G in Chapter
3, that is, we find a rectangle contact extension that admits the given corner edge
labeling.

For square dual contact representations, we follow up on Felsner’s [Fel13] work and
model, given a regular edge labeling, the partial square dual extension problem as a
system of linear (in)equations. A solution to that system yields a square dual extension
that admits the given regular edge labeling, should such an extension exist. Otherwise
there is no solution to the system of linear (in)equalities (Chapter 4).

For partial right-angle axis-aligned triangle contact representations we define a set of
necessary conditions that must be met for an extension to exist (Chapter 5).

In Chapter 2 we properly define contact representations, combinatorial descriptions
and the partial contact representation extension problem. Chapter 6 gives an overview
for the results of this work and open problems for possible future work.
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2 Preliminaries

In this chapter we introduce some precise terminology. A polygon contact system C
is a finite set of polygons in the plane such that no two polygons intersect. The con-
tact system has an exceptional touching if two polygons meet at exactly one of their
corners each. Throughout this work we only consider polygon contact systems without
exceptional touchings.

Fig. 2.1: The contact of two polygons. The left figure depicts a contact forming a line segment
and the right figure shows a contact consisting of a single point.

Types of Contact. For a polygon contact system without an exceptional touching,
every contact is either a line segment or a single-point contact as seen in Figure 2.1.
Note that a single-point contact is different from an exceptional touching as a single-
point contact between two polygons p1 and p2 involves a corner of p1 and a line segment
of p2, whereas an exceptional touching consists of a corner of p1 and p2 each. For contacts
forming line segments we make a further distinction. We call a contact a side contact
if the line segment describing the contact is equivalent to one side of the two touching
polygons. We say a contact forming a line segment is a corner contact otherwise. Side
and corner contacts can be seen in Figure 2.2.

Observation 1. In a polygon contact system without exceptional touchings, every con-
tact between two polygons p1 and p2 is either a side contact, corner contact or single-point
contact.

We call an element of the set {side, corner, single-point} the type of contact between
two polygons.
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side contact corner contact

Fig. 2.2: Side contacts (left) and corner contact (right). Note that the case where two polygons
make contact at their corners is a side contact.

Combinatorial Descriptions. Two polygon contact systems C1 and C2 that have no
exceptional touching are called combinatorial equivalent if C1 can be continuously de-
formed into C2, such that each intermediate state is a polygon contact system without
exceptional touching and the type of contact for all touching polygons is preserved.
This gives rise to an equivalence class C of combinatorial equivalent contact systems and
allows for the following observation:

Observation 2. Let C1 and C2 be two combinatorial equivalent polygon contact systems
and p1 and p2 be two touching polygons in C1 and C2. Then the contact between p1 and
p2 involves the same two sides of p1 and p2 in C1 and C2 for side and corner contact
and the same side and corner for single-point contact.

When C1 and C2 are combinatorial equivalent, every intermediate state when deform-
ing C1 into C2 has to be a polygon contact system without exceptional touchings. It is
therefore not possible to break the contact between p1 and p2, that is, the only defor-
mations in regards to the contact of p1 and p2 that do not alter the type of contact are
sliding them along their touching sides and stretching the touching sides. However, when
trying to change the sides of p1 and p2 that make contact, sliding and stretching will
always create either the case of an intermediate state having an exceptional touching,
or the case of the type of contact between p1 and p2 changing.

Combinatorial equivalency also implies that the relative order of the contacts along a
side of a polygon does not change as seen in Figure 2.3. We call a data structure that
describes a class C of combinatorial equivalent contact systems a combinatorial descrip-
tion of C. In simple terms, while a polygon contact system is defined as coordinates
of the points of a set of polygons, the combinatorial description shows which sides s1
and s2 of two polygons make contact, the type of contact and the relative order of the
contacts along s1 and s2.

Contact Representations. For a polygon contact system C, the contact graph G∗(C)
of C has, for each polygon p ∈ C a vertex v(p) and, for each pair of polygons p1, p2 ∈ C
an edge (v(p1), v(p2)) if and only if p1 and p2 touch. If C has no exceptional touching,
then G∗(C) is planar and it inherits a planar embedding from C. Note that for any
contact system C the contact graph G∗(C) is unique, that is there is exactly one contact
graph for C.
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Fig. 2.3: Three contacts of a polygon contact system C. Following the side of polygon p from
point a to point b, then the relative order in which the contacts appear is {1, 2, 3} for
all combinatorial equivalent polygon contact system of C.

Definition 3 (Polygon Contact Representation). For a planar graph G, a polygon con-
tact system C is called a polygon contact representation C(G) of G, if G∗(C) = G.

For a polygon contact representation C(G) and a vertex v ∈ V (G) we define PC(G)(v)
as the polygon that represents v in C(G). We say G admits a polygon contact represen-
tation if G is the contact graph of a polygon contact system. Throughout this work we
only consider polygon contact representations. For this reason, when we refer to contact
representations we always mean polygon contact representations. We may use the two
terms interchangeably.

Partial Contact Representation Extension Problem. For a graph G and a subset of
vertices U ⊂ V (G), let G[U ] be the sub-graph of G induced by U . Then a partial polygon
contact representation A(G[U ]) is a polygon contact representation of G[U ]. For each
u ∈ U , we call PA(G[U ])(u) a fixed polygon.

The partial polygon contact representation extension problem asks whether, given a
graph G, a subset U ⊂ V (G) and a partial polygon contact representation A(G[U ]),
A(G[U ]) can be extended to a polygon contact representation C(G). In particular we
require, for each vertex u ∈ U , that PA(G[U ])(u) = PC(G)(u). As a natural extension
of the problem, for yes-instances, we further study how the extension C(G) can be
constructed. See Figure 2.4 for an example instance of this problem where all polygons
are axis-aligned rectangles.

In this work, we study the variant of the partial polygon contact representation exten-
sion problem in which we are not only given G, U and A(G[U ]), but also a combinatorial
description of C(G).

12



G

G

C(G)A(G[U ])

Fig. 2.4: Instance of the partial contact representation extension problem using rectangles. The
left figure shows the Graph G, the red vertices the subset U ⊂ V (G) and the red rect-
angles the partial contact representation A(G[U ]). The right figure shows an extension
C(G).
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3 Rectangle Contact Representations

In this chapter we take a closer look at contact representations of graphs using rectangles.
An axis-aligned rectangle is a rectangle in the plane, given by a pair of points (x1, y1)
and (x2, y2) in the plane that define the rectangle as the cross product [x1, x2] × [y1, y2]
of two bounded closed intervals. For sake of simplicity, when we refer to a rectangle, we
always mean an axis-aligned rectangle. Then a rectangle contact system C is a finite set
of rectangles, such that no two rectangles intersect. In other words, a rectangle contact
system is a polygon contact system where all polygons are rectangles. Since a rectangle
is axis-aligned, it is implied that every contact in a rectangle contact system without an
exceptional touching forms a line segment. Therefore, there are no single-point contacts
between two rectangles. Analogously to polygon contact representations, for a graph G,
a rectangle contact representation C(G) is a rectangle contact system C with its contact
graph G∗(C), such that G∗(C) = G.

Following the definition of rectangle contact representations, we can define the par-
tial rectangle contact representation extension problem as a special case of the partial
polygon contact representation extension problem.

Definition 4 (Partial Rectangle Contact Representation Extension Problem). Given
a graph G, a subset U ⊂ V , a partial rectangle contact representation A(G[U ]) and a
combinatorial description of a rectangle contact representation C(G), can A(G[U ]) be
extended to C(G).

Throughout this chapter, we denote the rectangle R of a vertex v ∈ V (G) that repre-
sents v in a rectangle contact representation C as R(v).

3.1 Rectangle Contact Representations and Rectangular Duals
A graph G is called triangle-free if it contains no cycle of length 3 and a triangle-
free graph G is considered maximal if G is not a sub-graph of a triangle-free graph.
We consider rectangle contact representations of maximal, triangle-free, planar (MTP)
graphs and extensions of partial rectangle contact representations of such graphs. As
it is common, we assume that the input graph G has exactly four vertices on the outer
face which act as a rectangular frame for the rectangle contact representation C(G). We
call these vertices outer vertices and all other vertices inner vertices and name them
after their geographic position vN,vE,vS and vW respectively. This implies that R(vN)
is the topmost rectangle, R(vE) the rightmost, R(vS) the bottom most and R(vW) the
leftmost. Let G be an MTP graph with exactly four vertices on the outer face. Then
each inner face has at least degree 4, since G is triangle-free, and at most degree 5, since
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G is maximal. For a rectangle contact representation C(G) that means that each inner
face of G is either represented by a rectangle shaped face in C(G) for inner faces with
degree 4, or by an L-shaped face in C(G) for inner faces with degree 5. Note that inner
faces with degree 5 could also be represented by a rectangle shaped face in C(G), if two
rectangles make contact at their corner. However, we ignore this as a degenerate case
since every rectangle contact representation of an MTP graph with that case present can
be augmented by slightly offsetting the rectangles that make contact at their corners to
again form an L-shaped face in C(G). See Figure 3.5 (left and center) for an example
of a rectangle contact representation of an MTP graph and note the shapes of the faces
of C(G) and their relationship to the faces of G.

Rectangle contact representations of MTP graphs are similar to another rectangle
contact representation called rectangular duals. A rectangular dual of a graph G is a
rectangle contact representation C(G) for which,

(a) no four rectangles share a point, that is C(G) has no exceptional touchings, and

(b) the union of all rectangles is a rectangle.

Figure 3.2 (left and center) shows an example. Note that G only admits a rectangular
dual if it is internally triangulated. Otherwise there would be an inner rectangle that
does not touch another rectangle on at least one of its sides, which violates property (b)
of rectangular duals. It is known that a plane internally triangulated graph admits a
rectangular dual if and only if its outer face has degree 4 and it contains no separating
triangle, that is there exists no triangle whose removal disconnects the graphs [KK85].
In other words, the graph is 4-connected. Such a graph is called a properly triangulated
planar (PTP) graph. Every rectangle contact representation can be augmented to form
a rectangular dual by adding vertices and edges to the faces of its contact graph to
triangulate said contact graph.

3.2 Combinatorial Descriptions of Rectangle Contact
Representations

We consider combinatorial descriptions of rectangular duals first. A combinatorial de-
scription contains the information which sides of a rectangle make contact, whether the
contact is a corner or side contact and the relative order of contacts along each side of
each rectangle.

Regular Edge Labeling. Let G be a PTP graph and C(G) a rectangular dual. Since a
rectangle R ∈ C(G) has exactly four sides, the information which sides of two rectangles
make contact can be encoded in an orientation and 2-coloring of the edges E(G). Two
colors and a binary orientation yields four possible combinations, one for each side of
R. For two vertices v, u ∈ V (G) that share an edge in G, we color the edge {u, v} blue
if the contact between R(u) and R(v) is a horizontal line segment and we color it red
otherwise. We further orient a blue edge {u, v} as (u, v) if R(u) and R(v) make contact
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at the top side of R(u) and the bottom side of R(v). Analogously we orient a red edge
{u, v} as (u, v) if R(u) and R(v) make contact at the right side of R(u) and the left side
of R(v). The relative clockwise order of the contacts is then depicted as the clockwise
order of the edges around a vertex as seen in Figure 3.1. In such a representation all
edges of a vertex v must abide by the following clockwise local coloring order around a
vertex v:

• Outgoing blue edges,

• Outgoing red edges,

• Incoming blue edges,

• Incoming red edges.

For the outer vertices, vN is adjacent to only incoming blue edges, vE to only incoming
red edges, vS to only outgoing blue edges and vW to only outgoing red edges. This local
coloring rule can be seen in Figure 3.6 (left). Figure 3.2 shows an example of a complete
regular edge labeling for a rectangular dual.

u u

Fig. 3.1: The regular edge labeling as combinatorial description of a rectangular dual for a single
vertex u. The coloring and orientation of the edges adjacent to u shows which sides
of the rectangles make contact. The clockwise order of the edges around u shows the
relative order of the contacts.

This combinatorial description is called a regular edge labeling (REL) and was intro-
duced by Kant and He [KH97]. It is also known as transversal structure. For a graph G,
the type of contact is not encoded in the edges of a regular edge labeling REL(G), but
can be obtained by looking at the inner triangles of REL(G). For example, let v ∈ V (G)
be a vertex of G and ut ∈ V (G) the rightmost top neighbor of v, that is, (v, ut) is a blue
edge and going around v clockwise and starting from (v, ut), the next edge encountered
is an outgoing red edge. Analogously let ub be the rightmost bottom neighbor of v, that
is, (ub, v) is a blue edge and the next edge encountered counter clockwise is an outgo-
ing red edge. Then to determine the type of contact between R(v) and, for a vertex
v′ ∈ V (G) with (v, v′) is a red edge, another rectangle R(v′), we look at the edges (ut, v′)
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and (ub, v′). If either both (ut, v′), (ub, v′) /∈ E(G) or both (ut, v′), (ub, v′) ∈ E(G), then
R(v) and R(v′) make side contact. Next we consider the case where only one of (ut, v′)
and (ub, v′) is an edge of G. Without loss of generality, we assume that (ut, v′) ∈ E(G)
and (ub, v′) /∈ E(G). Should (ut, v′) be a blue edge, then R(v) and R(v′) make side
contact and corner contact otherwise. For a PTP graph G, the regular edge labeling
REL(G) therefore is a combinatorial description of a rectangular dual C(G).

R(vN)

R(vS)

R
(v

W
)

R
(v

E
)

C(G) G REL(G)

vW

vN

vS

vE

vW

vN

vS

vE

Fig. 3.2: A rectangular dual C(G) (left) for the graph G (center) and the corresponding REL(G)
(right).

At first it seems like regular edge labelings can be adapted to build a combinatorial
description of rectangle contact systems of MTP graphs as well by re-utilizing the same
coloring and orientation rules of regular edge labelings for rectangular duals. Since a
combinatorial description preserves the type of contact of two rectangles however, there
exist rectangle contact representations of MTP graphs that have the same regular edge
labeling but are not combinatorial equivalent as seen in Figure 3.3.

v W

vN

vS

v E v W

vN

vS

v E

C1 C2

R1

R2 R2

R1

Fig. 3.3: The transformation of a rectangle contact system C1 into C2. Note that the regular
edge labeling does not change, however C1 and C2 are not combinatorial equivalent
since the type of contact between the rectangles R1 and R2 changes from corner to
side contact.

We therefore use a different combinatorial description of rectangle contact represen-
tations of MTP graphs. Instead of using the sides that make contact to describe the
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rectangle contact representation, it is possible to use the pair of corners that mark the
end points of a contact line segment as seen in Figure 3.4. This idea was used by

b
a a b

Fig. 3.4: Two examples of contacts described by rectangle corners a and b respectively.

Klawitter et al. [KNU15] to define a combinatorial description of rectangle contact rep-
resentations of MTP graphs called corner edge labeling in their work regarding rectangle
contact representations of MTP graphs.

Corner Edge Labeling. For an MTP graph G, the corner edge labeling CEL(G) for a
rectangle contact representation C(G) focuses on the contact at the four corners of each
rectangle. Let V (G) denote the vertices, E(G) the edges and F (G) the inner faces of G.
A corner edge labeling CEL(G) is constructed from G in the following steps:

1. Each edge in E(G) is replaced by a pair of parallel edges, called an edge pair. For
each of the four outer vertices, two half edges are added.

2. For each inner face f ∈ F (G), let A(f) be the set of vertices that are adjacent to
f . Then for each f ∈ F (G) a vertex v(f) is added with single edges (v(f), u) for
each u ∈ A(f). Let W (G) be the set of vertices added in this step.

3. The edges are oriented, such that every vertex v ∈ V (G)∪W has out degree exactly
4.

4. Each edge in E(G) is colored {0, 1, 2, 3}, such that
• around each vertex v ∈ V (G) the four outgoing edges of v are colored 0, 1, 2,

3 in that clockwise order and
• all (incoming) edges between two outgoing edges colored c and c+1 clockwise

around v are colored c + 2 or c + 3, c ∈ {0, 1, 2, 3} and all indices modulo 4.

This induces an inner triangulation of G where every inner face is a triangle or 2-gon for
the edge pairs. Figure 3.5 shows an example for a corner edge labeling and Figure 3.6
(right) shows the local coloring rules for each inner vertices and the four outer vertices.
Klawitter et al. [KNU15] have shown that, for any given MTP graph G, there exists a
corner edge labeling CEL(G) and that it is a combinatorial description of a rectangle
contact representation C(G).
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C(G) G CEL(G)

Fig. 3.5: A rectangle contact representation C(G) (left) for an MTP graph G (center) and the
corner edge labeling CEL(G) (right).

vS

vE

vN

vW

vS

vE

vN

vW

Fig. 3.6: Local coloring rules for regular edge labelings (left) and corner edge labelings (right)

3.3 From Rectangle Contact Representation to Rectangular
Dual

In this section we show the close relationship between rectangle contact representations of
MTP graphs and rectangular duals. Every rectangle contact system C can be augmented
to form a rectangular dual by slicing the inner faces of C and adding those slices as
rectangles. Since every inner face of an MTP graph G has either 4 or 5 vertices adjacent
to it, only at most one slice is necessary to cut the faces of C(G) into rectangles. Precisely,
faces with only 4 adjacent vertices require no slicing since they will always appear as
rectangles in a rectangle contact representation while faces with 5 adjacent vertices
required exactly one slice.

For an MTP graph G and a rectangle contact representation C(G) the, rectangular
dual DG is obtained by augmenting C(G) in the following way: Each inner face f of
C(G) with 4 adjacent rectangles is replaced by a single rectangle that makes contact with
all four neighbors of f . Each inner face g of C(G) with 5 adjacent rectangles is replaced
by two rectangles R1 and R2, such that R1 and R2 have a bottom-to-top contact, i.e. g
is segregated by a horizontal slice.

The shape of an inner face of C(G) is encoded in the corner edge labeling CEL(G),
so the corner edge labeling can be augmented as well to form a combinatorial descrip-
tion of DG. Let f be a face of C(G) with 5 adjacent vertices and vertex w ∈ W the
vertex representing f in CEL(G). Then w is replaced by two vertices u1 and u2 that
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CEL(G) CEL(G) CEL(G)

Fig. 3.7: The augmentation of a rectangle contact representation of a MTP graph G to a rectan-
gular dual and the corresponding augmentations of the corner edge labeling CEL(G)
to the augmented corner edge labeling CEL(G)

Fig. 3.8: Top-to-bottom and left-to-right contact of two rectangles. Note the clockwise order of
the edges around the vertices swapping.

are connected by a single, directed edge {u1, u2}, such that the orientation of {u1, u2}
shows the top-to-bottom relationship of R(u1) and R(u2) in DG. This relationship is
determined as follows: The vertex w has exactly four outgoing edges and one incoming
colored edge (v, w) in CEL(G). We consider the case where (v, w) has color 0 and that
the color 0 represents the contact of the top left corner of R(v). Then {u1, u2} is ori-
ented (u1, u2) and, starting from (v, w) and going around w clockwise, u1 inherits the
first two encountered outgoing edges of w. Starting from (v, w) and going around w
counter clockwise, u2 inherits the first three encountered outgoing edges of w. The edge
(v, w) is replaced by the two edges (v, u1) and (v, u2), which are colored 0. Note that one
outgoing edge of w is inherited twice. We call the vertices {u1, u2} a face-vertex pair and
the edges {(v, u1), (v, u2)} the uni-colored edges of {u1, u2}. For the cases of (v, w) being
colored 1, 2 or 3 CEL(G) can be augmented analogously with similar inheritance rules.
See Figure 3.7 for an example of the operation described in this paragraph. We call the
resulting structure the augmented corner edge labeling CEL(G) of G. If we imagine a
contact representation C(G) of an MTP graph G and the vertices added for the corner
edge labeling and augmented corner edge labeling as rectangles to extend C(G) to a
rectangular dual, we see that the augmented corner edge labeling CEL(G) induces a
PTP graph.
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Observation 5. Let G be an MTP graph, C(G) a rectangle contact representation, DG

the rectangular dual obtained by horizontally slicing the faces of C(G) and CEL(G) an
augmented corner edge labeling. Then CEL(G) induces the contact graph of G∗(DG).

3.4 Augmented Corner Edge Labeling and Regular Edge
Labeling

Following up from the definition of augmented corner edge labelings and the relationship
between rectangle contact representations of MTP graphs and rectangular duals, we
show the close relationship between augmented corner edge labelings and regular edge
labelings. Let G be a MTP graph and CEL(G) a corner edge labeling of G. Then
the augmented corner edge labeling CEL(G) can be transformed into the regular edge
labeling REL (G∗(DG)) and vice versa. We describe the transformation processes in the
following paragraphs.

From Augmented Corner Edge Labeling to Regular Edge Labeling.

Proposition 6. For an MTP graph G, every augmented corner edge labeling CEL(G)
induces a regular edge labeling REL (G∗(DG)).

Proof. We construct a regular edge labeling REL (G∗(DG)) from CEL(G) as follows: For
two vertices u, v ∈ V (G), let ((u, v)i, (u, v)j) be an edge pair in CEL(G). The coloring
and orientation of ((u, v)i, (u, v)j) directly translates to a bottom-to-top or left-to-right
relationship between the rectangles R(u) and R(v) as seen in Figure 3.8. We replace
((u, v)i, (u, v)j) with a single, directed and 2-colored edge that represents this relationship
as in the definition of regular edge labelings. The resulting structure is similar to the
partial regular edge labeling seen in Figure 3.3.

By definition of face-vertex pairs, it is known that, for a face-vertex pair {u1, u2}, the
rectangles R(u1) and R(u2) have a top-to-bottom relationship that is encoded in the
orientation of the edge (u1, u2) in CEL(G). We therefore color (u1, u2) blue. One vertex
of {u1, u2} has, disregarding the orientation of the edges, four neighbors in CEL(G) and
the other has five. Without loss of generality, let u1 be the vertex with four neighbors
and u2 the one with five. Since the color and orientation of the directed edge (u1, u2)
is already known, we can deduce the orientation and coloring of the other three edges
adjacent to u1 by the local coloring rules of regular edge labelings seen in Figure 3.6.
For the uni-colored edges {(v, u1), (v, u2)} this means, that the edge {v, u1} gets colored
and oriented. The other edge {v, u2} is then colored blue and inherits the orientation
from {u1, u2}. If {u1, u2} is oriented (u1, u2), then {v, u2} is oriented as (v, u2) and as
(u2, v) otherwise. This leaves u2 with either two incoming or two outgoing blue edges
and the other three edges adjacent to u2 can be colored according to the local coloring
rules of regular edge labelings, see Figure 3.9.

For a vertex w ∈ W with four adjacent vertices, that is a vertex representing a
rectangular face in CEL(G), the coloring and orientation of its four outgoing edges can
be deduced from the edge pairs of the adjacent vertices as seen in Figure 3.11. Since the

21



local coloring rules are satisfied for each vertex, the resulting structure is a regular edge
labeling REL (G∗(DG)).

CEL(G) REL (G∗(DG))

Fig. 3.9: A face-vertex pair in the augmented corner edge labeling CEL(G) and the orientation
and coloring of the adjacent edges in the regular edge labeling REL (G∗(DG)).

From Regular Edge Labeling to Augmented Corner Edge Labeling.

Proposition 7. For an MTP graph G, every regular edge labeling REL (G∗(DG)) in-
duces an augmented corner edge labeling CEL(G).

Proof. For any rectangular dual all inner rectangle contacts form a T-shape. Therefore,
there are exactly four possible contacts between three adjacent rectangles as seen in
Figure 3.10. Let v, u and w be vertices that form a 3-cycle in the regular edge labeling
of REL (G∗(DG)). Since G is triangle-free, at least one of v, u and w represents a face
of the rectangle contact representation of G. Let v and u be vertices that represent a
rectangle in the contact representation of G, that is, let v, u ∈ V (G) be vertices of G and
w ∈ W be a vertex that represents either a vertex of a face-vertex pair or a rectangular
face in the rectangle contact representation. Then the coloring and orientation of the
edges {v, u}, {v, w} and {u, w} in REL (G∗(DG)) induces the contact of one corner of
either v or u. The union of all such induced corner contacts for all inner 3-cycles describes
the corner contact between all rectangles of the contact representation of G, and thus,
the corner edge labeling CEL(G).

For vertices w ∈ W that are not part of a face-vertex pair, it is easily observable that
the operation depicted in Figure 3.11 is reversible, that is, the four edges adjacent to w
are replaced by the four uncolored and outgoing edges that are in CEL(G).

For a face-vertex pair {u1, u2}, the coloring of the uni-colored edges {(v, u1), (v, u2)}
and the orientation of {u1, u2} can be obtained again by corner contact induction. All
other edges adjacent to u1 and u2 are oriented as outgoing.

As a short excursion, note that since corner edge labelings and 4-gon contact struc-
tures introduced by Felsner et al. [FSS18] are similarly defined to corner edge labelings,
Proposition 6 and Proposition 7 emphasize the equivalence of 4-gon contact structures
and regular edge labelings.
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Fig. 3.10: The four contact types in a regular edge labeling inducing the corner contact of the
rectangles.

Chaplick et al. have shown that the partial rectangle contact representation extension
problem for a PTP graph, and given a regular edge labeling REL(G), can be solved in
linear time.

Theorem 8 (Chaplick et al. [CKK+21]). Given a PTP graph G and a regular edge
labeling REL(G), the partial rectangular dual extension problem can be solved in linear
time. For yes-instances, an explicit rectangular dual can be constructed in linear time.

Note that following from Euler’s formula for planar graphs, that is, the number of faces
and edges is linear in the number of vertices, building an augmented corner edge labeling
and transforming an augmented corner edge labeling into a regular edge labeling can be
done in linear time. This allows us to solve the partial rectangle contact representation
problem for MTP graphs in linear time in the following way: For an MTP graph G
and given a corner edge labeling CEL(G), we transform CEL(G) into the augmented
corner edge labeling CEL(G) and CEL(G) into the regular edge labeling REL (G∗(DG)).
The linear time algorithm of Chaplick et al. can then be used to solve the partial rect-
angular dual problem for the graph G∗(DG) and its constructed regular edge labeling
REL (G∗(DG)). Since G is a sub-graph of G∗(DG), this also yields a solution to the
partial rectangle contact representation problem for MTP graphs.

Theorem 9. Let G be an MTP graph and CEL(G) a corner edge labeling of G, then
the partial rectangle contact representation problem can be solved in linear time. For
yes-instances, an explicit rectangle contact representation of G can be constructed within
the same time bound.
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Fig. 3.11: A rectangular face in a rectangle contact representation of an MTP graph G with
an underlying corner edge labeling CEL(G) (normal lines). The dashed lines show
the orientation and coloring of the edges in the corresponding regular edge labeling
REL (G∗(DG)).
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4 Extending Partial Square Duals

Following up from the topic of extending partial rectangle contact representations, we
consider drawing square duals of a graph in this chapter. A square dual is a rectan-
gular dual where all rectangles are squares and the union of all squares is a square.
Throughout this chapter we denote a square representing a vertex u in a contact repre-
sentation as S(u). Similarly to rectangle contact representations and rectangular duals,
we assume that a graph G has exactly four vertices on its outer face and we name them
vN, vE, vS, vW by the geographic position of their squares respectively. Unlike those outer
vertices for rectangular duals, we however further assume that all squares of outer ver-
tices S(vN), S(vE), S(vS), S(vW) have the same side length as seen in Figure 4.1. This
implies that there is no square dual contact representation of G which is why we apply
the conditions for square duals only to inner vertices and their squares. That is, we
consider the sub graph G′ induced by the vertices V (G) \ {vN, vE, vS, vW}. In particular,
we give a solution to the following problem in this chapter.

Definition 10 (Partial Square Dual Extension Problem). Given a PTP graph G, a
subset U ⊂ V , a partial square dual A(G[U ]) and a regular edge labeling REL(G), can
A(G[U ]) be extended to a square dual C(G), such that REL(G) is a combinatorial de-
scription of C(G).

vW

vS

vE

vN

Fig. 4.1: The four outer squares that encapsulate the square dual in the middle.
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Given a PTP graph G and a regular edge labeling REL(G), Felsner [Fel13] proposed
a system of linear equalities, such that a solution to the system yields a square dual
C(G) that admits REL(G). Such linear programs are a well known tool to solve difficult
problems. A linear program consists of a linear objective function and a set of linear
(in)equalities, called linear constraints, for a set of variables. A solution to a linear
program is a non-negative assignment of the variables, such that all linear constraints
are satisfied and the objective function is optimized. Note that due to their objective
function, linear programs inherently model optimization problems. However, they can
also be used for decision problems, that is, we are not interested in the objective func-
tion, but just want to know whether a valid assignment of the variables that satisfies
all constraints exists. For solving the square dual recognition problem using a linear
program, Felsner used variables for each edge of the input PTP graph G which would
decide the length of the contact of the two corresponding rectangles. Felsner’s approach
is the following: For every vertex u ∈ V (G) we define B(u) as the set of neighbors of u
where for all v ∈ B(u) the edge (u, v) is blue in REL(G). That is S(u) and S(v) make
bottom-to-top contact with S(u) being the bottom square. Analogously we define R(u)
as the set of neighbors of u where for all v ∈ B(u) the edge (u, v) is red in REL(G).
Further, let α(u) be to right-most top neighbor of u, β(u) be the left-most top one, γ(u)
the top-most right neighbor and δ(u) the bottom-most right neighbor of u, see Figure 4.2
left. We define B′(u) and R′(u) analogously for the neighbors of u with incoming blue
and incoming red edges respectively.

Felsner then uses variables le, with e ∈ E(G) an edge of G, that describe the length
of a contact between the squares of the two vertices of e, see Figure 4.2 right. Then
the sum ∑

v∈B(u) l(u,v) is the side length of S(u). The same is true for R(u), B′(u), and
R′(u) for the right, bottom, and left side of S(u) respectively. To get proper squares, all
four sides of a square have to be the same length:

∑
a∈B(u)

l(u,a) =
∑

b∈R(u)
l(u,b) =

∑
c∈B′(u)

l(u,c) =
∑

d∈R′(u)
l(u,d). (4.1)

This approach is however not sufficient for the partial square dual extension problem,
since it is difficult to represent the given, fixed squares in the model. Since the length
of each fixed square is known, it is possible to use the sums in 4.1 to guarantee that
the rectangle has the correct size. However there is no easily observable correlation
between the length of a contact of two squares and their exact geometric position, i.e.
their coordinates. We therefore propose a different linear program.

4.1 Linear Program for the Partial Square Dual Extension
Problem

A square can be described by the x and y coordinates of one of its corners and the length
of its side, which are three numeric properties. Since a variable in a linear program holds
a numeric value, it is therefore beneficial to choose variables that directly represent these
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u

γ(u)

δ(u)

β(u)α(u)

B(u)

R(u)

u
l(u,v∈R(u)\{γ(u),δ(u)})

l(u,δ(u))

l(u,γ(u))

Fig. 4.2: The sets B(u) and R(u) of a vertex u (left). The variables of type le representing the
length of a contact (right).

properties. We introduce, for a vertex u ∈ V (G), variables of type xu and yu that define
the coordinates of the bottom left corner of S(u) and variables wu, with linear constraint
wu > 0, to represent the side length of S(u). In the context of the partial square dual
extension problem it is now straightforward to model the fixed squares: Let u ∈ U be a
vertex of the subset U ⊂ V (G), A(G[U ]) a partial square dual and S(u) ∈ A(G[U ]) the
fixed square of u. Further, let x′

S(u) and y′
S(u) be the x-y-coordinates of the lower left

corner of S(u) and w′
S(u) its side length. Then the following constraints will guarantee

that the fixed squares are represented properly in the linear program and the resulting
drawing:

xu = x′
S(u) ∀u ∈ U, (4.2)

yu = y′
S(u) ∀u ∈ U, (4.3)

wu = w′
S(u) ∀u ∈ U. (4.4)

Any assignment of the variables that satisfies these constraints yields a drawing where
the fixed squares are properly represented and where every rectangle is a square. However
these constraints do not make the resulting drawing a square dual, as they do not
constrain the contact of two squares.

Vertical Alignment. A vertical contact is the contact of two squares at their left and
right side respectively. They are the contacts represented by the red edges in the regular
edge labeling REL(G). Let u, v ∈ V (G) be two vertices. For their respective squares
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S(u) = (x′
S(u), y′

S(u), w′
S(u)) and S(v) = (x′

S(v), y′
S(v), w′

S(v)) to touch at their left and
right side respectively, the following two conditions must be met:

• The x-coordinates of the left and right side of S(u) and S(v) respectively must be
equal as can be seen in Figure 4.3 (left).

• The closed intervals [y′
S(u), y′

S(u) + w′
S(u)] and [y′

S(v), y′
S(v) + w′

S(v)] must overlap as
can be seen in Figure 4.3 (right).

Fig. 4.3: Vertical alignment conditions for a square.

The first condition can be directly translated to a single type of linear constraint as
indicated by the red (vertical) lines in Figure 4.3:

xu + wu = xv ∀u ∈ V (G′), v ∈ R(u). (4.5)

The second condition requires two constraints as indicated by the green (horizontal)
lines in Figure 4.3. It is sufficient to only constrain the first and last element of R(u)
since the correct vertical contact of S(u) and S(v) with v ∈ R(u)\{γ(u), δ(u)} is covered
by the horizontal alignment of the squares of all vertices in R(u):

yδ(u) + wδ(u) > yu ∀u ∈ V (G′), (4.6)
yu + wu > yγ(u) ∀u ∈ V (G′). (4.7)

Note that S(u) may have only one right neighbor γ(u) = δ(u).
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Horizontal Alignment. Analogously to vertical contacts a horizontal contact is is the
contact of two squares at their top and bottom side respectively. These contacts are
represented by the blue edges in REL(G). For two squares S(u) = (x′

S(u); y′
S(u); w′

S(u))
and S(v) = (x′

S(v); y′
S(v); w′

S(v)) to touch at their top and bottom side respectively, the
following two conditions must be met. Note the close relationship to vertical contacts:

• The y-coordinates of the top and bottom side of S(u) and S(v) respectively must
be equal as can be seen in Figure 4.4 (left).

• The closed intervals [x′
S(u), x′

S(u) + w′
S(u)] and [x′

S(v), x′
S(v) + w′

S(v)] must overlap as
can be seen in Figure 4.4 (right).

Fig. 4.4: Horizontal alignment conditions for a square.

The first condition is again represented by a single constraint that is visualized by the
blue (horizontal) lines in Figure 4.4:

yu + wu = yv ∀u ∈ V (G′), v ∈ B(u), (4.8)

whereas the second condition requires two constraints represented by the green (ver-
tical) lines in Figure 4.4:

xβ(u) < xu + wu ∀u ∈ V (G′), (4.9)
xu < xα(u) + wα(u) ∀u ∈ V (G′). (4.10)

This concludes the set of constraints for the contact of all inner squares. A summary
of the vertical and horizontal constraints can be seen in Figure 4.5.

Outer Squares. For a square dual, the union of all squares is a square. We introduced
four squares S(vN), S(vE), S(vS), S(vW) placed around the dual that act as a frame as
seen in Figure 4.1. We use those squares to force the resulting drawing into a proper
square dual by utilizing the analogous constraints for horizontal and vertical alignment.
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(4.8)

(4.8)

(4.8)

(4.5)(4.5)(4.5)

α(u)
β(u)

γ(u)

δ(u)

u

Fig. 4.5: Visual summary of the vertical and horizontal alignment constraints.

Since vS has only blue outgoing edges in REL(G) and vW has only red outgoing edges, it
is possible to the define the sequences R(vW) and B(vS) and use constraints analogously
to inner squares.

xvW + wvW = xu ∀u ∈ R(vW) (4.11)
yδ(vW) + wδ(vW) > yvW (4.12)

yvW + wvW > yγ(vW) (4.13)

yvS + wvS = yu ∀u ∈ B(vS) (4.14)
xβ(vS) < xvS + wvS (4.15)

xvS < xα(vS) + wβ(vS) (4.16)

For vE and vN an equivalent set of constraints can be defined using the sets of neighbors
with incoming edges R′(vE) and B′(vN) respectively. Let γ′(vE) be the topmost left
neighbor of vE and δ′(vE) the bottom-most left one. Then the following constraints
confine the vertical contact of S(vE) and each S(u) with u ∈ R′(vE):

xu + wu = xvE ∀u ∈ R′(vE), (4.17)
yδ′(vE) + wδ′(vE) > yvE , (4.18)

yvE + wvE > yγ′(vE). (4.19)
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Further let α′(vN) be the leftmost bottom neighbor of vN and β′(vN) the rightmost
bottom one. Then the following constraints confine the horizontal contact of S(vN) and
each S(u) with u ∈ B′(vN):

yu + wu = yvN ∀u ∈ B′(vN), (4.20)
xβ′(vN) < xvN + wvN , (4.21)

xvN < xα′(vN) + wα′(vN). (4.22)

Lastly the outer squares have the same side length:

wvN = wvE = wvS = wvW . (4.23)

These sets of horizontal and vertical contact constraints for the outer squares guarantee
that the union of all squares is a rectangle. It is possible, that there is a gap between two
outer squares as seen in Figure 4.6. To only allow square duals to be the result of the
LP, constraints that force the outer squares to make contact at their corners are added,
that is we force exceptional touchings:

xvS + wvS = xvE , (4.24)
yvE + wvE = yvN , (4.25)

xvN = xvW + wvW , (4.26)
yvW = yvS + wvS . (4.27)

This concludes the set of constraints for the linear program. Since the partial square
dual extension problem is not an optimization problem, there is no need for an objective
function. To show the existence of a partial square dual extension it is just of interest
whether there is a configuration of the variables that satisfies all constraints. If such
a configuration exists, then it is trivial to get the resulting drawing of the complete
square dual by checking the assigned values of a solution to the linear program. For a
vertex u ∈ V (G′) the values of xu and yu designate the x-y-coordinates of its square
S(u) and the value of wu decides its side length. Since a linear program can be solved
in polynomial time, we can conclude this section with the following theorem:

Theorem 11. The partial square dual extension problem can be solved in polynomial
time. For yes-instances a square dual extension can be computed within the same time
bound.

4.2 Linear Program as a System of Difference Constraints
In this section, we study the relationship of the LP proposed in Section 4.1 and a solution
to the partial rectangular dual extension problem. A system of difference constraints is
a linear program where, for two variables xi and xj and a constant bk, every constraint
can be written as xi − xj ≤ bk. A system of difference constraints can be interpreted
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vW

vS

vE

vN

Fig. 4.6: Gap between outer squares. Note that the dual in the middle is a rectangular dual,
but not a square dual.

from a graph-theoretic point of view. Let n be the number of variables in a system of
difference constraints. The constraint graph of the system of difference constraints is a
weighted, directed graph and has a vertex ui for each variable xi with i = 1, 2, . . . , n. The
constraints are modeled as directed edges. For each difference constraint xi − xj ≤ bk

there is an edge (uj , ui). Formally, let there be a system of difference constraint, then
the constraint graph is a weighted, directed graph G where

• V (G) = {u0, u1, u2, . . . , un} are the vertices of G and

• E(G) = {(uj , ui) : xi − xj ≤ bk is a constraint} ∪ {(u0, u1), (u0, u2), . . . , (u0, un)}
are the edges of G.

Note that G has an additional vertex u0 from which all other vertices are reachable. If
xi − xj ≤ bk is a constraint, then the weight of an edge (uj , ui) is ω(uj , ui) = bk. The
weight of all edge (u0, ui) with i = 1, 2, . . . , n is ω(u0, ui) = 0. A solution for the linear
program can then be obtained by finding the shortest path weights δ(u0, ui). Precisely
the vector x = (δ(u0, u1), δ(u0, u2), δ(u0, u3), . . . , δ(u0, un)) is a solution for the system of
difference constraints and the system does not have a feasible solution when G contains
a negative cycle. Let m be the number of constraints, then the shortest path weights can
be found by using a slightly modified version of the Bellman–Ford algorithm in O(mn)
time. This is an improvement over algorithms that solve general linear programs.

We attempt to express the linear program proposed in Section 4.1 as a system of
difference constraints. Consider a slight adjustment of the proposed linear program.
Instead of having a square be defined by the coordinates of its bottom-left corner and
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its width, we now define it as the coordinates of its bottom-left and top-right corner.
This definition of squares closely follows the definition of rectangles in Chapter 3 as the
cross product of two bounded closed intervals. Let G be a PTP graph and u ∈ V (G) a
vertex of G. For the square S(u), let xu

1 and yu
1 be variables for the coordinates of the

bottom-left corner of S(u) and xu
2 and yu

2 be variables for the coordinates of the top-right
one. A rectangle is a square if it has equal side lengths, which can be expressed as the
following linear constraint:

xu
2 − xu

1 = yu
2 − yu

1 ∀u ∈ V (G). (4.28)

Using an additional variable wu, we can break up constraint 4.28 into multiple constraints
that resemble difference constraints:

xu
2 − xu

1 ≤ wu,

yu
2 − yu

1 ≤ wu,

xu
1 − xu

2 ≤ −wu,

yu
1 − yu

2 ≤ −wu ∀u ∈ V (G). (4.29)

Sadly, these are not difference constraints, since wu is a variable and not a constant.
However, considering the constraints for vertical and horizontal contact in this new
system, it becomes evident that the partial rectangular dual extension problem can be
modeled as a system of difference constraints. For the vertical contacts:

xu
2 − xv

1 = 0 ∀(u, v) ∈ E(G), (u, v) is a red edge in REL(G), (4.30)

y
γ(u)
1 − yu

2 < 0, (4.31)

yu
1 − y

δ(u)
2 < 0 ∀u ∈ V (G), (4.32)

and for the horizontal contacts:

yu
2 − yv

1 = 0 ∀(u, v) ∈ E(G), (u, v) is a blue edge in REL(G), (4.33)

x
β(u)
1 − xu

2 < 0, (4.34)

xu
1 − x

α(u)
2 < 0 ∀u ∈ V (G). (4.35)

Note that an equality constraint xi − xj = bk can be transformed into two inequalities
xi − xj ≤ bk and xj − xi ≤ −bk. A strict inequality constraint xi − xj < bk can
be augmented by subtracting a sufficiently small constant ϵ, such that the constraint
becomes xi − xj ≤ bk − ϵ. Fixed rectangles can be modeled similarly to the LP in
Section 4.1. In revision of their work, Chaplick et al. [CKK+21] proposed a system of
difference constraints using this idea.

Since it seems like we cannot model the partial square dual extension problem as a
system of difference constraint, we conjecture that it cannot be solved in linear time.
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5 Triangle Contact Representations
In this chapter we consider contact representations using triangles. A right-angled axis-
aligned triangle is a right-angled triangle, for which the two short sides are x-axis aligned
and y-axis aligned respectively, and the hypotenuse faces towards the upper-left. Another
way to imagine a right-angled axis-aligned triangle is as the lower-right half of an axis-
aligned rectangle. Similarly to rectangles in Chapter 3, when we refer to a triangle,
we always mean a right-angled axis-aligned triangle. Then a triangle contact system C
is a finite set of triangles, such that no two triangles intersect and C does not have an
exceptional touching. For a triangulated graph G, a triangle contact representation C(G)
is a triangle contact system C, such that the contact graph G∗(C) = G. Note that,
similarly to rectangles in Chapter 3, the types of contact between two rectangles in a
triangle contact system is limited. Where for rectangles there was only side and corner
contact, every contact between triangles is a single-point contact. Similar to rectangle
representations we can augment a graph to have exactly three vertices on the outer
face which will be denoted as v1, v2 and vn throughout this chapter. Analogously to
Chapter 3 we call these three vertices outer vertices and all other vertices inner vertices
and assume that the triangles representing the outer vertices are arranged as seen in
Figure 5.1 (right). For a triangle contact representation C(G), we further require that
each triangle that represents an inner vertex makes contact at its three corners. Note
that for a triangulated graph, every inner vertex has at least three neighbors.

Following the definition of triangle contact representations we can define the partial
triangle contact representation extension problem as a special case of the partial contact
representation extension problem.

Definition 12 (Partial Triangle Contact Representation Extension Problem). Given a
triangulated graph G, a subset U ⊂ V , a partial triangle contact representation A(G[U ])
and a combinatorial description of a triangle contact representation C(G), can A(G[U ])
be extended to C(G).

While we cannot give a solution to this problem, we define a set of necessary conditions
for an extension to exist in this chapter. Throughout this chapter, we denote the triangle
T of a vertex v ∈ V (G) that represents v in a triangle contact representation C(G) as
T (v).

5.1 Canonical Order Constraints
For a triangulated graph G, the canonical order π(G) = (v1, v2, . . . , vn) is an ordering of
the vertices V (G) with v1, v2 and vn being the outer vertices, such that for each k with
2 ≤ k ≤ n the following holds true:
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v2v1

vn

Gk

vk+1

vn

v2

v1

Fig. 5.1: Visualization how a canonical order is defined (left). An example triangle contact
representation and the three outer vertices v1, v2 and vn (right).

1. The vertices {v1, v2, . . . , vk} induce an internally triangulated, bi-connected graph Gk.
Let V (Gk) be the vertices of Gk.

2. The edge {v1, v2} is on the outer face of Gk.

3. For k < n, the vertex vk+1 lies on the outer face of Gk and all neighbors vi ∈ Vk

of vk+1 lie on the boundary of Gk consecutively.

Such an order was first used by De Fraysseix et al. [dFPP90] and later by Kant [Kan96]
to create straight line drawings of planar graphs on a grid, see Figure 5.1. De Fraysseix
et al. have shown, that for any triangulated graph there exists a canonical order. We call
a canonical order π(G) = (v1, v2, . . . , vn) based on v1 and v2 since those are the first two
vertices. By rotating the embedded graph it is also possible to base a canonical order
on v1 and vn or on v2 and vn. The definitions of those canonical orders with different
bases follows the definition above analogously.

For a triangle contact system C and and a triangle T ∈ C, let (x(T ), y(T )) be the
lower right corner of T .

Lemma 13. Let G be a triangulated graph and C(G) a triangle contact representation
of G. Further let Ti, Tj be two triangles in C(G) with y(Ti) ≤ y(Tj). Then there exists
a canonical order π (G) = (v1, v2, . . . , v(Ti), . . . , v(Tj), . . . , vn).

Proof. To prove this Lemma, we make a crucial observation. Since for every trian-
gle contact representation C(G), each inner triangle Tp ∈ C(G) makes contact at its
three corners, we can deduce that Tp has at least two adjacent triangles Tl and To with
y(Tl) < y(Tp) and y(To) < y(Tp). Precisely, Tl and To are the triangles that make contact
at the two lower corners of Tp.

We build the desired canonical order by reverse induction, removing the triangle T
with the largest y(T ) and its corresponding vertex v(T ) in each step and we show that
the resulting sub-graph of G satisfies all required conditions of a canonical order. By
definition, T (vn) is the topmost triangle in C(G). By the maximality of G, the graph
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Gn−1 is a triangulated, bi-connected graph and the neighbors of vn form the boundary
of Gn−1.

Let Tk be the triangle that is removed in step k with 2 < k < n. By our previous
observation, removing v(Tk) from Gk will yield the triangulated, bi-connected graph
Gk−1 since all remaining inner triangles have at least two adjacent triangles remaining.
Again by the maximality of Gk, the graph Gk−1 has all neighbors N of v(Tk) with
N ⊆ V (Gk−1) on its outer boundary.

Since v1 and v2 are the triangles with the smallest y-coordinates, they will be removed
last and are on the outer boundary of each Gk.

An analogous result, for two triangles Ti, Tj ∈ C(G), regarding the order of the x-
coordinates x(Ti) and x(Tj) for canonical orders based on v2 and vn can be shown. For
that, imagine removing the triangle Tk with the smallest x(Tk) in each step. The proof
then follows analogously to Lemma 13.

Lemma 14. Let G be a triangulated graph and C(G) a triangle contact representation
of G. Further let Ti, Tj ∈ C(G) be two triangles in C(G) with x(Ti) ≤ x(Tj). Then there
exists a canonical order π (G) = (v2, vn, . . . , v(Tj), . . . , v(Ti), . . . , v1).

By combining Lemma 13 and Lemma 14, we conclude this section with a constraint
that needs to be satisfied for a solution to the partial triangle contact representation
problem to exist.

Theorem 15. Let G be a triangulated graph, U ⊂ V (G) a subset of vertices and A(G[U ])
a partial triangle contact representation. Then for an extension of A(G[U ]) to exist,
both a canonical order π (G) = (v1, v2, . . . , vn) that admits the y-coordinate order of
the triangles in A(G[U ]) and a canonical order π (G) = (v2, vn, . . . , v1) that admits the
x-coordinate order of the triangles in A(G[U ]) must exist.

5.2 Schnyder Wood Constraints
Regular edge labelings and corner edge labelings in Chapter 3 describe the combinatorial
aspects of rectangle contact representations. Such a description also exists for triangle
contact representations in the form of Schnyder woods [Sch89, Sch90], which are also
known as Schnyder Realizers. Let G be a triangulated graph. A Schnyder wood of G is
a partition of the edges E(G) that contain at least one inner vertex, into three subsets
S1, S2 and S3 of directed edges, such that for each inner vertex v ∈ V (G),

1. v has exactly one outgoing edge in S1, S2 and S3 each and

2. the counter clockwise order of edges incident to v are outgoing S1, incoming S3,
outgoing S2, incoming S1, outgoing S3 and incoming S2 as seen in Figure 5.2
(right).

Figure 5.2 (left) shows a complete Schnyder wood. The subsets S1, S2 and S3 are trees
rooted at the three outer vertices respectively. Throughout the rest of this chapter, we
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assume that S1 is rooted at vn, that S2 is rooted at v2 and that S3 is rooted at v1. Note
that the edges (v1, v2), (v2, vn) and (vn, v1) are not in any of the three subsets. Canonical
orders and Schnyder woods are closely related. In fact, it is well-known that both are in
bijection, for example, see [dFdMR94].

In triangle contact representations, there are only single-point contacts. By mapping
the outgoing edges of each tree S1, S2 and S3 to one of the three corners of a triangle, a
Schnyder wood induces a combinatorial description as seen in Figure 5.3. Following up
from the proof of Lemma 13 and Schnyder woods, we can define a set of constraints on
colored paths in a Schnyder wood.

v2v1

vn

Fig. 5.2: A Schnyder wood (left) and its local coloring rules (right).

vn

v2

v1

Fig. 5.3: A graph G and a Schnyder wood as a combinatorial description of a triangle contact
representation C(G).

Colored Paths. From the observation in the proof of Lemma 13, we have seen that,
for a triangulated graph G, a triangle contact representation C(G) and two touching
triangles Ti, Tj ∈ C(G), there are certain limitations for the x-y-coordinates of Ti and Tj

depending on the corner that is involved in the contact. Precisely, let Tj be the triangle
that touches Ti at the lower right corner of Ti. Then the point (x(Tj), y(Tj)) is bound
to be in the region defined by the half-spaces x(Tj) − x(Ti) > 0 and y(Ti) − y(Tj) > 0.
These half-spaces are open, that is, the linear inequalities are strict, since non-strict
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behavior could lead to degenerate triangles, for x(Ti) = x(Tj) and y(Ti) = y(Tj), and
exceptional touchings, for either x(Ti) = x(Tj) or y(Ti) = y(Tj).

Since the color of an edge in a Schnyder wood decides which corner of a triangle makes
contact, we can extract a set of constraints for the coordinates of a triangle from colored
paths in a Schnyder wood. Let G be a triangulated graph, vi, vj ∈ V (G) vertices of G and
{S1, S2, S3} be a Schnyder wood of G. Further, let there be a path (vi, . . . , vj) ∈ S2 from
vi to vj in the Schnyder wood. Then, for any vertex vk on that path with vk ̸= vi, the
values of x (T (vk)) and y (T (vk)) need to iteratively get larger and smaller respectively.
For paths in S1 and S3, similar region constraints can be deduced. This observation
suggests the following set of rules for partial triangle contact representations.

Corollary 16. For an instance of the partial triangle contact representation extension
problem with a given Schnyder wood {S1, S2, S3} and two fixed triangles Ti, Tj ∈ A(G[U ]),
the coordinates of the lower right corner of Ti and Tj must admit the following rules for
an extension to exist:

• If there is a path (v(Ti), . . . , v(Tj)) ∈ S1, then
x(Tj) − x(Ti) > 0 and y(Tj) − y(Ti) > 0.

• If there is a path (v(Ti), . . . , v(Tj)) ∈ S2, then
x(Tj) − x(Ti) > 0 and y(Ti) − y(Tj) > 0.

• If there is a path (v(Ti), . . . , v(Tj)) ∈ S3, then
x(Ti) − x(Tj) > 0 and y(Ti) − y(Tj) > 0.

For paths in S1 and S3 it is obvious that these rules can be further refined by defining
the constricting half-planes not by the coordinates of the lower right corner, but by
the coordinates of the lower left corner for S3 and the top corner for S1. For sake of
simplicity, we will refrain from explicitly establishing those more strict rules. We will
however take a closer look at paths containing edges of two Schnyder trees.

In the case of a path containing edges of two Schnyder trees, an analogous set of rules
can be defined. Precisely, we observe that in the rules stated in Corollary 16, the rules
for S1 and S2 and the rules for S2 and S3 share an inequality each and can be combined.
This yields the following set of rules.

Corollary 17. For an instance of the partial triangle contact representation extension
problem with a given Schnyder wood {S1, S2, S3} and two fixed triangles Ti, Tj ∈ A(G[U ]),
the coordinates of the lower right corner of Ti and Tj must admit the following rules for
an extension to exist:

• If there is a path (v(Ti), . . . , v(Tj)) ∈ S1 ∪ S2, then x(Tj) − x(Ti) > 0.

• If there is a path (v(Ti), . . . , v(Tj)) ∈ S2 ∪ S3, then y(Ti) − y(Tj) > 0.

See Figure 5.4 for a visual representation of the rules. If any two fixed triangles
violate one of those rules, then there exists no extension. This concludes the set of
necessary constraints that need to be satisfied for an extension of a partial triangle
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contact representation to exist. We are unaware whether the constraints proposed in
Section 5.1 and Section 5.2 are sufficient to prove that a triangle contact representation
extension exists, and hence, whether they solve the partial triangle contact representation
extension problem or not.

(x(T (v)), y(T (v)))
v

Fig. 5.4: Colored paths leading from a vertex v. The colored regions depict where the triangles
representing the vertices can appear.
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6 Conclusion

Contact representations of graphs remain an actively studied topic. In this work, we
have taken a closer look at different variants of the partial polygon contact representation
problem.

We have seen that, for an MTP graph G, the corner edge labeling is closely related
to the regular edge labeling of an inner triangulation of G. Based on this, we have
shown that, using the linear time algorithm to solve the partial rectangular dual ex-
tension problem introduced by Chaplick et al. [CKK+21], the partial rectangle contact
representation problem can be solved in linear time as well and that for yes-instances an
extension can be computed within the same time bound.

We further proposed a linear program for the partial square dual extension problem,
such that a solution to the LP yields an extension, if an extension exists, otherwise there
is no solution. We then have seen that the proposed linear program can be slightly
modified to form a system of difference constraints, such that solving the modified linear
program solves the partial rectangular dual extension problem.

Both the partial rectangle contact representation problem and the partial square dual
extension problem remain open when no corner edge labeling or regular edge labeling
respectively is specified. For the square dual contact representation recognition problem,
given a regular edge labeling, Felsner [Fel13] proposed a system of linear equations and,
should there be no solution that satisfies all equations, a method to alter the specified
regular edge labeling and try again. While Felsner conjectured that this iterative process
terminates independent of the choice of the initial regular edge labeling, they could not
prove the termination. It might be possible to adapt Felsner’s iteration process to solve
the partial rectangle contact representation extension problem and the partial square
dual extension problem without given combinatorial descriptions.

The partial polygon contact representation problem remains open as well. For that,
K-gon contact structures introduced by Felsner et al. [FSS18] for equiangular contact
systems could be a good candidate for a combinatorial description.

For right-angle axis-aligned triangle contact representations we have proposed a set of
necessary constraints that need to be satisfied for a triangle contact extension to exist.
We do not know whether these constraint are sufficient. However, we conjecture that
they are not. The partial triangle contact representation problem remains open.

40



Bibliography

[ABF+12] Muhammad Jawaherul Alam, Therese Biedl, Stefan Felsner, Michael Kauf-
mann, and Stephen G. Kobourov. Proportional contact representations of
planar graphs. In Marc van Kreveld and Bettina Speckmann, editors, Proc.
Graph Drawing and Network Visualization (GD), pages 26–38. Springer,
2012. doi:10.1007/978-3-642-25878-7_4.

[ACC+19] Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, Giordano Da Lozzo,
and Vincenzo Roselli. Morphing contact representations of graphs. In Gill
Barequet and Yusu Wang, editors, Proc. 35th International Symposium on
Computational Geometry (SoCG), volume 129 of LIPIcs. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. arXiv:1903.07595.

[BETT98] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tollis.
Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall
PTR, 1998.

[BL76] Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones
property, interval graphs, and graph planarity using PQ-tree algorithms.
Journal of Computer and System Sciences, 13(3):335–379, 1976. doi:10.
1016/S0022-0000(76)80045-1.

[BSST40] R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte. The dissection
of rectangles into squares. Duke Mathematical Journal, 7(1):312–340, 1940.
doi:10.1215/S0012-7094-40-00718-9.

[CDK+14] Steven Chaplick, Paul Dorbec, Jan Kratochvíl, Mickael Montassier, and
Juraj Stacho. Contact representations of planar graphs: Extending a partial
representation is hard. In Dieter Kratsch and Ioan Todinca, editors, Proc.
Graph-Theoretic Concepts in Computer Science, pages 139–151. Springer,
2014. doi:10.1007/978-3-319-12340-0_12.

[CFK13] Steven Chaplick, Radoslav Fulek, and Pavel Klavík. Extending partial rep-
resentations of circle graphs. In Stephen Wismath and Alexander Wolff,
editors, Proc. Graph Drawing and Network Visualization (GD), pages 131–
142. Springer, 2013. doi:10.1007/978-3-319-03841-4_12.

[CGG+18] Steven Chaplick, Grzegorz Guśpiel, Grzegorz Gutowski, Tomasz Krawczyk,
and Giuseppe Liotta. The partial visibility representation exten-
sion problem. Algorithmica, 80(8):2286–2323, 2018. doi:10.1007/
s00453-017-0322-4.

41

https://doi.org/10.1007/978-3-642-25878-7_4
http://arxiv.org/abs/1903.07595
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1215/S0012-7094-40-00718-9
https://doi.org/10.1007/978-3-319-12340-0_12
https://doi.org/10.1007/978-3-319-03841-4_12
https://doi.org/10.1007/s00453-017-0322-4
https://doi.org/10.1007/s00453-017-0322-4


[CKK+21] Steven Chaplick, Philipp Kindermann, Jonathan Klawitter, Ignaz Rutter,
and Alexander Wolff. Extending partial representations of rectangular duals
with given contact orientations. In Proc. Algorithms and Complexity: 12th
International Conference, pages 340–353. Springer International Publishing,
2021. arXiv:2102.02013, doi:10.1007/978-3-030-75242-2_24.

[CKU13] Steven Chaplick, Stephen G. Kobourov, and Torsten Ueckerdt. Equilateral
L-contact graphs. In Andreas Brandstädt, Klaus Jansen, and Rüdiger Reis-
chuk, editors, Proc. Graph-Theoretic Concepts in Computer Science, pages
139–151. Springer, 2013. doi:10.1007/978-3-642-45043-3_13.

[dFdM07] Hubert de Fraysseix and Patrice Ossona de Mendez. Representations by
contact and intersection of segments. Algorithmica, 47(4):453–463, 2007.
doi:10.1007/s00453-006-0157-x.

[dFdMR94] Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl.
On triangle contact graphs. Combinatorics, Probability and Computing,
3(2):233–246, 1994. doi:10.1017/CBO9780511662034.019.

[dFPP90] Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a
planar graph on a grid. Combinatorica, 10(1):41–51, 1990. doi:10.1007/
BF02122694.

[Fel09] Stefan Felsner. Triangle contact representations. In Midsummer Combina-
torial Workshop, Praha, 2009. URL: http://page.math.tu-berlin.de/
~felsner/Paper/prag-report.pdf.

[Fel13] Stefan Felsner. Rectangle and square representations of planar graphs. In
Thirty Essays on Geometric Graph Theory, pages 213–248. Springer, 2013.
doi:10.1007/978-1-4614-0110-0_12.

[FF11] Stefan Felsner and Mathew C Francis. Contact representations of planar
graphs with cubes. In Proc. 27th Annual Symposium on Computational
Geometry, pages 315–320, 2011. doi:10.1145/1998196.1998250.

[FSS18] Stefan Felsner, Hendrik Schrezenmaier, and Raphael Steiner. Equiangular
polygon contact representations. In Andreas Brandstädt, Ekkehard Köhler,
and Klaus Meer, editors, Proc. Graph-Theoretic Concepts in Computer Sci-
ence, pages 203–215. Springer, 2018. doi:10.1007/978-3-030-00256-5_
17.

[Fus09] Éric Fusy. Transversal structures on triangulations: A combinatorial study
and straight-line drawings. Discrete Mathematics, 309(7):1870–1894, 2009.
doi:10.1016/j.disc.2007.12.093.

42

http://arxiv.org/abs/2102.02013
https://doi.org/10.1007/978-3-030-75242-2_24
https://doi.org/10.1007/978-3-642-45043-3_13
https://doi.org/10.1007/s00453-006-0157-x
https://doi.org/10.1017/CBO9780511662034.019
https://doi.org/10.1007/BF02122694
https://doi.org/10.1007/BF02122694
http://page.math.tu-berlin.de/~felsner/Paper/prag-report.pdf
http://page.math.tu-berlin.de/~felsner/Paper/prag-report.pdf
https://doi.org/10.1007/978-1-4614-0110-0_12
https://doi.org/10.1145/1998196.1998250
https://doi.org/10.1007/978-3-030-00256-5_17
https://doi.org/10.1007/978-3-030-00256-5_17
https://doi.org/10.1016/j.disc.2007.12.093


[GLP11] Daniel Gonçalves, Benjamin Lévêque, and Alexandre Pinlou. Triangle con-
tact representations and duality. In Ulrik Brandes and Sabine Cornelsen,
editors, Proc. Graph Drawing and Network Visualization (GD), pages 262–
273. Springer, 2011. doi:10.1007/978-3-642-18469-7_24.

[Kan96] G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
16(1):4–32, 1996. doi:10.1007/BF02086606.

[KH97] Goos Kant and Xin He. Regular edge labeling of 4-connected plane graphs
and its applications in graph drawing problems. Theoretical Computer Sci-
ence, 172(1-2):175–193, 1997. doi:10.1016/S0304-3975(95)00257-X.

[KK85] Krzysztof Koźmiński and Edwin Kinnen. Rectangular duals of planar
graphs. Networks, 15(2):145–157, 1985.

[KKO+17] Pavel Klavík, Jan Kratochvíl, Yota Otachi, Toshiki Saitoh, and Tomáš
Vyskočil. Extending partial representations of interval graphs. Algorith-
mica, 78(3):945–967, 2017. doi:10.1007/s00453-016-0186-z.

[KNU15] Jonathan Klawitter, Martin Nöllenburg, and Torsten Ueckerdt. Combinato-
rial properties of triangle-free rectangle arrangements and the squarability
problem. In Proc. Graph Drawing and Network Visualization, pages 231–
244. Springer, 2015. doi:10.1007/978-3-319-27261-0_20.

[Koe36] Paul Koebe. Kontaktprobleme der konformen Abbildung. Berichte über die
Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig.
Math.-Phys. Klasse, 88:141–164, 1936.

[KS15] Vincent Kusters and Bettina Speckmann. Towards characterizing graphs
with a sliceable rectangular dual. In Proc. Graph Drawing and Net-
work Visualization, pages 460–471. Springer, 2015. doi:10.1007/
978-3-319-27261-0_38.

[KUV13] Stephen Kobourov, Torsten Ueckerdt, and Kevin Verbeek. Combinatorial
and geometric properties of planar laman graphs. In Proc. ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1668–1678. SIAM, 2013.
doi:10.1137/1.9781611973105.120.

[KW03] Michael Kaufmann and Dorothea Wagner. Drawing Graphs: Methods and
Models. Springer, 2003. doi:10.1007/3-540-44969-8.

[KW17] Tomasz Krawczyk and Bartosz Walczak. Extending partial representations
of trapezoid graphs. In Hans L. Bodlaender and Gerhard J. Woeginger,
editors, Proc. Graph-Theoretic Concepts in Computer Science, pages 358–
371. Springer, 2017. doi:10.1007/978-3-319-68705-6_27.

[LL84] Sany M Leinwand and Yen-Tai Lai. An algorithm for building rectangular
floor-plans. In 21st Design Automation Conference Proceedings, pages 663–
664. IEEE, 1984. doi:10.1109/DAC.1984.1585874.

43

https://doi.org/10.1007/978-3-642-18469-7_24
https://doi.org/10.1007/BF02086606
https://doi.org/10.1016/S0304-3975(95)00257-X
https://doi.org/10.1007/s00453-016-0186-z
https://doi.org/10.1007/978-3-319-27261-0_20
https://doi.org/10.1007/978-3-319-27261-0_38
https://doi.org/10.1007/978-3-319-27261-0_38
https://doi.org/10.1137/1.9781611973105.120
https://doi.org/10.1007/3-540-44969-8
https://doi.org/10.1007/978-3-319-68705-6_27
https://doi.org/10.1109/DAC.1984.1585874


[NR04] Takao Nishizeki and Md Saidur Rahman. Planar Graph Drawing, volume 12.
World Scientific Publishing, 2004. doi:10.1142/5648.

[Sch89] Walter Schnyder. Planar graphs and poset dimension. Order, 5(4):323–343,
1989. doi:10.1007/BF00353652.

[Sch90] Walter Schnyder. Embedding planar graphs on the grid. In Proceedings
of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pages
138–148, 1990.

[Sch93] Oded Schramm. Square tilings with prescribed combinatorics. Israel Journal
of Mathematics, 84(1):97–118, 1993. doi:10.1007/BF02761693.

[Sch07] Oded Schramm. Combinatorically Prescribed Packings and Applications to
Conformal and Quasiconformal Maps. PhD thesis, Princeton University,
2007. Modified version of PhD thesis from 1990. URL: https://arxiv.
org/abs/0709.0710.

[Ste73] Philip Steadman. Graph theoretic representation of architectural arrange-
ment. Architectural Research and Teaching, 2(1):161–172, 1973.

[Tho86] Carsten Thomassen. Interval representations of planar graphs. Jour-
nal of Combinatorial Theory, Series B, 40(1):9–20, 1986. doi:10.1016/
0095-8956(86)90061-4.

[YS95] Gary K. H. Yeap and Majid Sarrafzadeh. Sliceable floorplanning by graph
dualization. SIAM Journal on Discrete Mathematics, 8(2):258–280, 1995.
doi:10.1137/S0895480191266700.

44

https://doi.org/10.1142/5648
https://doi.org/10.1007/BF00353652
https://doi.org/10.1007/BF02761693
https://arxiv.org/abs/0709.0710
https://arxiv.org/abs/0709.0710
https://doi.org/10.1016/0095-8956(86)90061-4
https://doi.org/10.1016/0095-8956(86)90061-4
https://doi.org/10.1137/S0895480191266700


Erklärung

Hiermit versichere ich die vorliegende Abschlussarbeit selbstständig verfasst zu haben,
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben, und die
Arbeit bisher oder gleichzeitig keiner anderen Prüfungsbehörde unter Erlangung eines
akademischen Grades vorgelegt zu haben.

Würzburg, den December 14, 2021

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
Peter Markfelder

45


	Title Page
	Abstract
	1 Introduction
	2 Preliminaries
	3 Rectangle Contact Representations
	3.1 Rectangle Contact Representations and Rectangular Duals
	3.2 Combinatorial Descriptions of Rectangle Contact Representations
	3.3 From Rectangle Contact Representation to Rectangular Dual
	3.4 Augmented Corner Edge Labeling and Regular Edge Labeling

	4 Extending Partial Square Duals
	4.1 Linear Program for the Partial Square Dual Extension Problem
	4.2 Linear Program as a System of Difference Constraints

	5 Triangle Contact Representations
	5.1 Canonical Order Constraints
	5.2 Schnyder Wood Constraints

	6 Conclusion
	Bibliography
	Erklärung

