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Abstract

With progress in digitalization at libraries and archives, large collections of scanned his-
torical maps became accessible. Due to their nature as image data, they are difficult to
automatically search, sort or otherwise extract information from. In order to apply arti-
ficial intelligence and machine learning annotated training data is usually required, but
this is costly to produce. One solution would be crowdsourcing, but this leads to con-
cerns about data quality.

We develop and evaluate a number of algorithmic approaches (based on computer
vision, graph search and hidden Markov models) to create accurate annotations for line
features like roads, waterways or contour lines based on degraded data sets or sketched
human contributions. Those imprecise data are algorithmically optimized to align to
the respective structural features in the scanned map with increased geometric accu-
racy. We compare the results to high-quality data annotated by hand (both qualitatively
and quantitatively) and discuss strategies for optimal parameter estimation. Finally, we
propose an interactive process for human contributors to quickly and accurately anno-
tate historical map sources.
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Zusammenfassung

Dank der fortschreitenden Digitalisierung wird immer mehr historisches Kartenmateri-
al aus den Sammlungen grofler Bibliotheken und Archive als Scans verfiigbar gemacht.
Gescannte Karten, also Bilddaten, sind naturgemafd schwierig automatisiert zu durch-
suchen, zu ordnen oder anderweitig auszuwerten. Ansitze, dies mit kiinstlicher Intelli-
genz und Machine Learning zu l6sen, erfordern in der Regel annotierte Trainingsdaten,
was sie aufwendig und damit teuer macht. Oft wird dann auf Crowdsourcing zurtickge-
griffen, womit man aber nicht immer eine zufriedenstellende Datenqualitat erreicht.

Wir stellen eine Reihe von Algorithmen vor, basierend auf Bildverarbeitung, Suchal-
gorithmen und Hidden Markov Models, und zeigen deren Anwendbarkeit fir die Erstel-
lung hochwertiger digitaler Reprasentationen von Linienobjekten wie Straflen, Wasser-
wegen oder Hohenlinien aus unprizisen Datensétzen oder skizzenhaften Benutzerein-
gaben. Diese Rohdaten werden algorithmisch aufgearbeitet, sodass die in den gescann-
ten Karten erkennbaren Strukturen geometrisch akkurat nachgebildet werden. Weiter
vergleichen wir die gewonnenen Resultate sowohl qualitativ als auch quantitativ mit
handoptimierten Referenzen und leiten daraus Strategien fir die optimale Parameter-
wahl ab. Abschlieffend skizzieren wir einen interaktiven Prozess, der Anwendern eine
schnelle und prizise Annotation historischer Karten ermoglicht.
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1. Introduction

| wisely started with a map,
and made the story fit.

(). R.R. Tolkien)
Historical maps are a great subject of study. Besides their information content, many of
them, especially older ones, are magnificent pieces of art. Huge effort has been invested
into creating silhouettes of the world packed with information that is both valuable by
itself and in what it tells us about the look on the world their creators and their clients
had. With access to affordable digitalization instruments, large inventories of historical
maps have been scanned and often made available in digital libraries. As sources of in-
formation they lack the accessibility of machine readable modern maps, so acquiring the
capabilities to query features of historical maps automatically or in a computer-assisted
way is a major step in developing those sources.

Scanned maps are raster data typically (but not necessarily) stored as a two-dimen-
sional array of pixel values. Features in modern maps such as roads or contour lines
are represented as vector data, parametric descriptions of geometric shapes or metadata.
Those features are also present in the raster data, visible to the human eye but mostly
unusable for computerized processing. The polyline-to-raster matching problem seeks to
identify a vector datarepresentation of a feature that matches a feature in the raster data,
given a close vector data feature for reference.

Many features like road and path networks, rivers and other waterways, borders, or
contour lines would be represented as line strings in contemporary maps. Sequences of
points that when linked together follow the intricate lines that interconnect locations
and show the course of ariver or the rise of a hill. These features are particularly difficult
to obtain from the raster data of scanned old maps.

Example.  Figure 1.1a shows a small detail of a historical map that has an apparent
road feature leading in a wide arc around the city in the center from north west to south
east. In Figure 1.1b the dashed gray line string shows an inaccurate representation of the
road feature. Imagine a contemporary list of old milestones or a human that vaguely
identified this road by three mouse clicks. The red line string is a more precise represen-
tation matching the feature on the map. Obtaining this by an algorithm with only the
map and the gray line as inputs would be considered a good solution for the polyline-
to-raster matching.

Above quote is from Tolkien’s letter to the novelist Naomi Mitchison written in April 1954 [car00].
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(a) The plain raster data. (b) Inputs and output of a sample application.

Fig. 1.1.: Detail of a historical map with a raw sample feature (dashed gray) and a more refined
one matching the raster data (solid red).

This thesis presents several algorithms to provide a simple and reliable toolkit for the
polyline-to-raster matching. Whereas feature extraction is a task nowadays primarily
assigned to machine learning, the lack of large annotated corpora for historical maps
lets the traditional methods seem more promising. Nonetheless, the results of our semi-
automatic approach can lead to the necessary conditions for machine learning to evolve
on this topic.

Our tool uses a combination of image processing and map matching approaches with
focus on geometric precision and runtime. The main attention lies on the optimization
of vague feature descriptions. Feature identification is out of scope of this work and
will be substituted by human contribution and simple heuristics. The algorithms are
embedded in an intended interactive framework for supporting feature annotation and
providing semi-automated solutions for complicated features.

After an introduction of the problem and brief overview over some preliminary topics,
three algorithms are presented that implement the major approaches hidden Markov
models, uninformed searching, and a combined method using both. Some focus falls
on practical considerations in their implementation and the evaluation of their perfor-
mance on historical maps as well as their running time for realistic tasks. Concluding, a
strategy is proposed to combine multiple algorithms in an interactive setting and guide
the user to concentrate their efforts to critical points.



2. Preliminaries

For the polyline-to-raster matching we will first look into the problem of traditional map
matching. Here, both geometrical and statistical solutions have shown good results.
These will be influential to our approach in solving polyline-to-raster matching. Later,
we look into local optimization in the context of scanned documents and related work
in the area of line features on historical maps.

2.1. Map Matching

In the classical map matching problem there is a sequence of points and a road map (a
planar graph embedding). The problem asks for the likeliest path on the roads that the
point sequence has been sampled from. The point’s coordinates may contain noise such
that the point does not precisely conform to a road. A path is more likely if it is close
to the input points and it is valid by the means of the map topography. This is a very
common problem that often has to be solved in real time, for example on navigation
systems.

Example. Trajectories captured from GPS sensors are noisy by nature. The black dots
in Figure 2.1 show the measured points on an imagined drive through an area of dense
road crossings. Independently matching the points to the nearest road is not instru-
mental in finding the original path (the blue line). Although all points perfectly overlay
roads, amap matching algorithm with knowledge of the underlying road network would
assign them to other roads in order to resemble a valid path trough the graph induced
by the map data (either the original, blue colored, or the parallel lane for the opposite
direction).

There is a wide variety of solutions for this problem, especially due to the practical
applications. We will further elaborate two major classes of algorithmic approaches for
the map matching problem because they show relevant principles for the line-to-raster
matching.

The naive approach to this problem is a nearest neighbor matching. Each point in
the input sequence is assigned to the nearest line feature of the road network. Those
are connected by a shortest path algorithm or similar strategies. There is no guarantee
that one can find a valid path connecting the ascribed positions. There is, of course, no
guarantee that such a path existed in the first place. For incomplete or severely distorted
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Fig. 2.1.: The measured locations (black dots) match a consistent route through the road network
(blue) that can be identified by advanced map matching algorithms.

data sets even a skilled expert cannot recover the exact route due to ambiguities. One
can easily imagine situations where this simple strategy fails on feasible input data like
the example shown in Figure 2.1 and the roads selected as most likely are not connected
or only via large detours.

More advanced methods use geometric measures of similarity to weight the possible
solutions. Brakatsoulas et al. [BPSWO05] introduce two such algorithms for map match-
ing. One uses an incremental approach that chooses the next road segment based on
distance and orientation with a local look-ahead to achieve a more global decision. This
strategy is simple and with basically linear complexity fast and usable for online applica-
tions where input data is not available from the start but successively when the position
changes.

2.2. Fréchet Distance

The other algorithm they developed based on original work by Alt et al. [AERWO03] is a
global approach thatlists all possible pathsin the road network and compare them to the
path introduced by the input point sequence using the (weak) Fréchet distance [Fré06].
The original algorithm by Alt runs in O(mnlog®(mn)) time where n denotes the number
of sampled points and m the number of line segments in the road map. The improved
algorithm proposed by Brakatsoulas is faster by a log factor, which still is significantly
slower than the incremental solution.

Definition.  For two curves f,g : [0,1] — R? in the plain the Fréchet distance & is
defined as follows.

Sr(f,g) == inf  max [|fla(z)) —g(b(2))ll,

a:[0,1]—[0,1] t€[0,1]
B:[0,1]—10,1]



with «, B being continuous, surjective, and non-decreasing; «(0) and (0) both be 0, «(1)
and (1) be 1. Here, || - || denotes the Euclidean norm.

The same definition without the requirement for « and 8 being non-decreasing is
called weak Fréchet distance.

A common illustration for the Fréchet distance is a person walking their dog. The
two curves are the paths the person and the dog walk. The parameter ¢ is time and the
functions « and 8 allow them to control their speed as long as they do not go backwards.
(In the case of weak Fréchet distance they are allowed to go backwards). The Fréchet
distance then is the length that the leash between them must have at least.

The algorithm for the computation of the Fréchet distance briefly described below
was proposed by Alt and Godau [AG95]. First consider the decision variant of the global
map matching problem that asks if there exists a path in the road network that has a
Fréchetdistance smaller than e to the input trajectory for a fixed ¢ > 0. The optimization
variant can then be solved by parametric search.

Definition.  For two curvesf, g : [0, 1] — R? the set

F(f.g) == {(s,t) € [0,1” | | fls) — g() | < €}

is called the free space of f and g with respect to €. For two polylines P with n and Q and
m segments the partition of [0, n] X [0, m] into regions of parametrizations in or not in
the free spaces of the respective segments of P and Q is called the free space diagram of P

and Q.

For two polylines shown in Figure 2.2 (on the left) their free space diagram with re-
spect to € is drawn on the right. White patterns show parametrizations in the free space
for those in dark areas the distance between the segments is greater than ¢. The Fréchet
distance of P and Q is smaller than ¢ if and only if there exists a monotone path in the
free space from the lower left corner (0, 0) to the upper right corner (n, m) of the free
space diagram. Such a path is drawn exemplarily in Figure 2.2.

The concept free spaces for polylines can be generalized to planar graph embeddings
with straight lines. This allows efficient calculation of the Fréchet distance for the com-
plete road network.

The evaluations by Brakatsoulas et al. [BPSWO05] show that the global matching ap-
proach based on the Fréchet distance produces better quality at the cost of runtime com-
pared to simpler algorithms. In contrast to the naive algorithm, the sequential character
of the input samples is incorporated better into the algorithm and the space between
two samples becomes relevant for the assessment of possible matchings.
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Fig. 2.2.: Free-space diagram for two sample polylines P and Q taken from the original paper by
Alt and Godau [AG95], revised based on their corrections from 2003 [AERWO03)].

2.3. Hidden Markov Models for Map Matching

Atlow sampling rates the geometric similarity between the input line segments and the
the original road becomes smaller. Two consecutive samples then often no longer lie
on the same road segment so especially corner points produce large mismatches. In
this case one can incorporate other means than geometrical similarity to find likely road
combinations. Especially the transition between road sections can be a valuable source
of information because some transitions are much likelier than others. For example U-
turns from one road segment back on the same segment are uncommon. Also road seg-
ments that are not directly connected are less likely to explain consecutive samples.

Many algorithms use statistical methods to model problems with fuzzy success cri-
teria. For the map matching problem Newson and Krumm [NKO9] introduced an algo-
rithm to solve this problem based on Hidden Markov Models. They improve on prior
work on this approach by Hummel [HumO6] and Krumm et al. [KHLO7], inasmuch as
they introduce a more natural derivation for the transition probabilities from geometric
characteristics of the road network. Their evualuations show the effectiveness of this
approach.

Hidden Markov Models (HMM) assume a process as sequence of unobservable (“hid-
den”) variables that each with a given probability produce an observable event and, with
a known probability, pass on to the next state in the sequence. They have been widely
adopted into different fields of data processing like signal processing, speech and hand-
writing recognition, or natural language processing. This thesis focus on their practical
applications especially for map matching. A more profound introduction by Rabiner and
Juang can be found at [R]86].

The basic structure of the model architecture is shown in Figure 2.3. The hidden states
are the road segments r, to r, that may be chosen for the final path. The Markov pro-
cess is the sequence of input samples p; to p,. The model assumes that the occurrence
of the road segment for any point p; depends solely on the road segment matched for
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Fig. 2.3.: For each observed point p in the input sequence of length #n the Hidden Markov Model
considers all sensible choices for the matching road segment r out of the road network
of size m. Transitions with zero probability are omitted. States that cannot be reached
are white.

point p;_;. This has to be taken into consideration for the transition probabilities that are
visualized as black arrows between states in Figure 2.3. They tell how likely a subject
on one road segment will continue its way on another road segment, maybe via one or
more segments in between. The loose arrows on the left account for the probability of
each state to occur as start of the sequence, called start probability. Each state addition-
ally has an emission probability, that is not in the figure, and states how likely a state will
occur assumed a given point has been sampled.

In Figure 2.3 not every possible transition is populated. In practice to maintain per-
formance, infeasible transitions get a probability of zero. Those are omitted in the fig-
ure. Also road segments that are significantly distant to a sample point result in emis-
sion probabilities of zero. States that are therefore unreachable are white in the fig-
ure whereas vivid states are black. If for any sample point all states become unreach-
able a break in the HMM lattice occurs. For such input sequences the algorithm cannot
compute a matching. Newson and Krumm list possible reasons for HMM breaks which
are missing roads in the map, low probability routes, and GPS outliers. Haunert and
Budig [HB12] propose a variation of the algorithm that is capable of handling incom-
plete road data.

For Newson’s concrete map matching algorithm the probabilities are implemented as
follows:

Emission probability tells how likely a road segment explains the sampling of a given
point. Road segments farther from the measured point are considered more un-
likely. The distance is transferred into a probability via a zero-mean Gaussian dis-
tribution with the standard deviation of GPS noise estimated by experiment.



Start probability tells how likely a road segment is at the start of a measured route.
Other implementations usually assume no previous measurement and assign a
uniform distribution. This algorithm instead starts at the second sample point
and takes the emission probability of the first point and the current road segment
as start probability.

Transition probability tells how likely matching a road segment explains the path from
the previous road segment. The intuition is that the length of the path on the road
network is close to the linear distance of the corresponding measurements. The
shortest path therefore is considered likelier than any detour, which is explainable
by the relatively short distances between consecutive points of measurement. In
this case the distance is transferred into a probability via an exponential probabil-
ity distribution established by a histogram over the ground truth data.

2.4. The Viterbi algorithm

Now, to find the most likely explanation for the latent variables, or concretely the most
likely sequence of road segments, one must calculate the probabilities for any possible
sequence. Then, the one that maximizes these probabilities can be obtained. This can be
done efficiently using dynamic programming. The algorithm has been invented multi-
ple times for different problems including famous ones for example by Needleman and
Wunsch [NW70] for finding similarities between amino acid sequences or by Wagner
and Fischer [WF74] for string edit distance. In the context of HMMs the formulation
by Viterbi [Vit67], that originally has been intended for signal decoding, is used and the
algorithm is therefore be known as Viterbi algorithm.

The method is shown in Algorithm 1. The algorithm populates two tables. One hold-
ing the probabilities of the partial sequences and one holding pointers to the most likely
previous state. Typically for dynamic programming the tables are filled by a recursive
formula. Each entry is either the product of start probability times emission probability,
for the first column of states; or the maximum of the product of transition probability
times emission probability of all previous states, for all other entries. The formulation
in Algorithm 1 uses the natural variant filling the table column by column. The solu-
tion then is recovered using backtracking over the table of back pointers starting at the
largest value of the last column, where the probability of the likeliest sequence is found.

The runtime of Viterbi’s algorithm is dominated by the loop filling the dynamic pro-
gramming table. Assuming we can look up the probabilities in O(1), the total runtime
is in O(nm?) for n input points and m road segments. In practice, only a minority of the
road segments is considered for each state and the runtime can be further improved us-
ing multi-threading (e. g. by Song et al. [SLST12]). Koller et al. [KWDG15] further improve
the runtime of Newson and Krumm’s method by replacing the Viterbi algorithm with a
bidirectional Dijkstra search.



Algorithm 1: Viterbi algorithm for the map matching HMM

Input: Points py, . . ., p,, road segments 7, . . . , 7y, functions fan(+), fomic(+, ), and
ftmns('v )

Output: Sequence of matched road segments

T,B < tablesm x n

2 foreach road segmentr; do

3 T[la 1] <_fsmrt(r) 'femit(riapl)

4 | B[i,1] < null

[ury

s foreach pointp;,j > 2 do
¢ | foreachroad segmentr;do

7 T[ivﬂ A 113{925” (T[kvj - 1] 'femit(riapj) 'ftmm(rk’ ri))
8 B[ZJ] < argmax (T[k)] - 1} ',ﬁzmit(rhp]') 'ftmns(rka 7’i))
1<k<m
9 X <—sequencex,...,%,
10 x, ¢ argmax (T[k, n])
1<k<m

u forj=nn—-1,...,2do
12 [ %+ Blx.j

13 return X

Although Newson’s algorithm is globally optimizing, new data can be incorporated
incrementally reusing the old weights in the Viterbi table. Therefore, the algorithm can
be used in online situations with only partially available data. In combination with its
increased precision and reliability, these are the main reasons for its popularity.

2.5. Local Optimization

For many applications there are overall correct but inaccurate data sets that can be al-
gorithmically optimized by unsupervised systems. One such data set, that happened
to be influential for this thesis, are building footprints from a set of historical insurance
atlases. Those are part of the collection of the New York Public Library and have been
scanned and made publicly available'. The building footprints have been identified by
volunteers (often called “crowdsourcing”) and suffer from typical errors like geometric
looseness or semantic misinterpretations. Budig et al. [BVvDFA16] investigated this data
setand used clustering algorithms to improve instances where multiple representations
had been created—a common approach to increase data quality is to have the same en-
tity processed by different volunteers. Van Dijk et al. [vDFH20] proposed an algorithm

ISee http://buildinginspector.nypl.org/
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(a) Volunteer’s contribution. (b) Algorithmically optimized version.

Fig. 2.4.: Algorithmically optimized digitalized building footprints from a crowdsourced project.
Taken from van Dijk et al. [vDFH20].

based on classic local optimization techniques to improve the digitalized building foot-
prints with and without relying on multiple representations.

Figure 2.4 shows their results. Figure 2.4a on the left shows the volunteer’s contribu-
tion that correctly identifies the building’s footprint but fails to accurately position the
polygon’s vertices on the corners of the footprint. The second Figure 2.4b on the right
shows an algorithmically optimized version of the polygon on the left. The vertices are
repositioned in order to have the edges line up with the outline of the building footprint.

Suppose the human contribution is semantically correct, so position and dimension
of the building footprint are identified and the polygon has the correct number of ver-
tices. The algorithm’s task is now to optimize geometrical accuracy. Algorithm 2 details
the optimization process. For a small environment around the vertices different posi-
tions are tried for an improved fitting by a given function. This is often called local search
due to locality and testing different possibilities are the defining characteristics of this
approach. Deliberately, a quite simple algorithm has been chosen because a globally op-
timizing procedure could easily run into semantically distinct structures that rank bet-
ter in the rather unsophisticated measure of quality (the darkness of the pixels under
the polygon outline).

Definition.  The average luminosity (or average darkness) of a line segment on a bitmap
image is the average luminosity (or darkness) of all pixels in the drawing of that line
segment. A line drawing is the set of pixels out of a raster that should be selected to closely
approximate a straight line.

The building footprints are printed ink on paper so one can reasonably argue that

10



Algorithm 2: Randomized Hill Climbing for Polygons

Input: A polygon P, a fitness function f(-) (higher is better), a radius 7, a number
n
Output: The optimized polygon
1140
2 b+ f(P)
3 loop
4 t<t+1
v <— choose a random vertex from P

5

6 Q + Pwithvmoved atrandom on a disk of radius r
7 | x<flQ)

8 if x > bthen

9

| (t,b,P) + (0,x,Q)
10 whilet < n
11 return P

polygon edges matching the outlines should cross mostly darker pixels. For each edge in
the polygon the average luminosity of pixels is calculated using Bresenham’s line draw-
ing algorithm (see Section 2.6). Then, the unweighted average over those values is sub-
tracted from 1. Therefore the measure has a value between 0 and 1 with values closer to
1 being better.

In order to support convergence, van Dijk et al. propose some basic image manipu-
lation. Concretely, a Gaussian blur filter applied at 50 % to the original image seems to
improve both performance as well as runtime of the algorithm. The blurring enables
partial solutions that do not darken the polygon on the original data but are effectively
closer to the outline to get higher ranked. Therefore, they are accepted as intermediate
solution and act as a bridge head to an overall better solution.

2.6. Bresenham’s line drawing algorithm

Determining whether or not a pixel is covered by a straight line segment is equivalent
to drawing thatline on the raster. Bresenham’s algorithm [Bre65] is a contribution from
the very early days of computer graphics. Consequently it is simple, fast, and reliable. It
takes a line segment whose start and end points must lie on the grid. Then, it walks the
line pixel by pixel along the main axis direction, that is the one with the greater coordi-
nate difference, using an integer error measure to determine when to step along in the
minor axis direction.

Example. Figure 2.5 shows an example drawing the line from (1, 1) to (11, 5). The error
measure e is drawn green above each pixel. It is all positive because the example is in

11



(0,0) (12,0)

(0,6)
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o (12,6)

Fig. 2.5.: Line segment from (1, 1) to (11, 5) drawn using Bresenham’s algorithm.

the first octant but can get negative if d, is larger than d,. The critical points are dx/5 and
—dy /5. Because e is always greater than —@y/, in the example we do a step in x-direction
for every pixel. This decreases e by d, in every step. Each time e is greater than dx/5 we
do a step in y-direction and increase e by d,.. The algorithm terminates when the end of
the line is reached.

Unlike the original, this thesis uses a variation of Bresenham’s algorithm from a report
by Zingl [Zin16]. It has a slightly different definition of the error measure and therefore
can be implemented very compact, as Algorithm 3 shows. Notice that the algorithm
takes the drawing function as an input. While it is intended to draw a pixel as deter-
mined by the algorithm, the information about the pixel positions can be useful beyond
that. In the polygon optimizer (see Section 2.5) each invocation of draw initiates a query
of theluminosity of the image pixel at the given position, averaging those after the whole
line segment has been processed.

Bresenham’s algorithm calls draw exactly once for each step in the major axis direc-
tion. Because max(d, d,) is always smaller or equal than the length of the segment the
number of draw calls is in O(||s||) for every segments.

2.7. Related Work

Many of the topics covered by the previous sections must be considered related as they
form the tool belt for map matching, the vector data analogy to the polyline-to-raster
alignment problem. Concerning the raster part, extracting vectorized features from im-
age data has its applications for example in road network recognition for aerial or satel-
lite images. Hu et al. [HRF"07] use traditional image processing. After finding promis-
ing points as seeds, their algorithm tries to expand the network in different angles until

12



Algorithm 3: Bresenham’s line drawing algorithm

Input: A line on the grid from (x;, ) to (x,,3,), a function draw(-, -)
1 (d, dy) <= (Jo2 — |, =2 = 21])
2 (xvy) — (xlayl)
3 e d,+d,
4 loop
s | draw(x,y)
6 | ifx =x,andy = y, then break
7 if d, < 2ethen
8 e<e+d,
9 x < x + sgn(x, — x)
10 if d, > 2ethen
11 e+ e+d,

12 | Yy +sgn(, — )

they hit road boundaries. In a concluding step the networks are pruned from implausi-
ble components. More recent approaches often focus on machine learning. A compre-
hensive overview of those and related techniques has been brought together by Hossain
and Chen [HC19].

Chen et al. [CSV14] combined these techniques with contemporary map data to im-
prove the junction matching performance. For the road network extraction task junc-
tions are critical, the remaining network then can then be derived with minor effort. This
is not limited to images of the earth’s surface but also true for historical maps. Saeed-
imoghaddam and Stepinski [SS19] use convolutional neural networks (CNNs) to iden-
tify road junction points in historical maps. Despite they show impressive accurateness,
those methods due to the trained machine learning models, are often hard to adapt to
other features and other styles of maps.

Duan and Chiang [DC18] work on a CNN based automatic system for extracting a
broader range of vector features from old maps, especially polylines of railroad descrip-
tions. Their system shows promising preliminary results but has not yet been tested
very profoundly. Duan et al. [DCL*19] later published a method for guided training data
generation that uses reinforcement learning and solves a task very similar to this thesis.
Their method was evaluated using comparatively accurate input data. Our method on
the other hand focuses on data of lower quality. Another major difference is, that we can
give concrete models, in terms of whom our algorithms are optimal.
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3. A Hidden Markov Model for
Polyline-to-Raster Matching

The classical map matching and the polyline-to-raster matching have much in common.
Both seek to align a sequence of measured points on a planar structure that provides
information about possible paths. The Hidden Markov Model based solution for map
matching presented in Section 2.3 can be used as a blueprint to solve the polyline-to-
raster matching. The design presented in this chapter is based on the lineman tool by
van Dijk et al. [vDCD20]. For our toolkit we reimplemented the algorithm and proposed
several improvements.

One main concern is the tradeoff between the location facts of the input polyline and
the plausibility of the path given the underlying historical map. Even though the input
is inaccurate (otherwise no matching would be necessary), it is of major importance as
the sole source of high level information of course. The map data on the other hand is
precise (we cannot undergo the map’s resolution) but has conflicting features that must
be differentiated. For example a path has junctions or multiple paths cross. Even more
problematic, the line feature is likely overlaid with labels and other symbols. Funda-
mentally, feature classification is beyond the scope of this thesis. We cannot expect to
avoid matching a letter as part of the path without having a classifier that sorts out such
areas. Even then, the path might actually run along exactly under the label. The Hidden
Markov Model can enable us to balance those information.

The logic model for the HMM is as follows. The input polyline, handled as a sequence
of points, act as the observed values. The hidden variables are the real positions of the
polyline’s vertices that should get aligned to the actual feature on the map. There are
many possible strategies to define the discrete state set for the latent variables. Given
that the resolution of typical scans is not drastically finer than the printed features, a
regular grid with a gap size of one pixel is a reasonable choice. So in this model each
state represents a pixel.

3.1. Emission Probabilities

The emission probabilities give the likelihood that a sample resulted from a given state,
based on the properties of that sample alone. For the lineman tool a pixel in the state
space box explains a vertex in the polyline the better the closer itis to that sample point.
So this is the probability that the vertex should actually be on the position of the pixel.
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Without further knowledge about the cause of inaccuracy of our input polyline, find-
ing a probability distribution for the displacement is difficult. As such, a one-fits-all so-
lution seems implausible. So because we cannot assume the probability distribution
for the vertex displacement, it remains as a parameter of the algorithm. Our concrete
implementation by default uses a simple zero-mean Gaussian distribution with config-
urable standard deviation. The probability density function is scaled by o+/27 in order
to balance emission and transition probabilities. To our algorithm this is irrelevant, but
formally, thisis nolonger a valid probability distribution for example because the values
do not sum up to one. We therefore use the term pseudo probability distribution. The de-
scribed model results in a fixed balancing for the two distributions. Usually one would
introduce a factor (often called &) to regulate two influences. For ease of implementa-
tion and parameter assessment, we rely only on the standard deviation as configurable
balancing factor. All examples in this chapter use the value 15 for ¢ that has proved to
produce solid results in our informal testing.

Recall that the discrete states of the HMM are the pixels of the map. Those scans have
millions of pixels. Solving the HMM for that many states is infeasible under normal time
constraints. Therefore the emission probability for the vast majority of states must be
zero. So assuming thereis a function that for every sample point defines a mask for all the
states, this partitions the state space in a small group of feasible states and a very large
group with zero emission probability. We can ignore the latter in the Viterbi table saving
a significant portion of computational load. For example we could ignore all states with
an emission probability below a given threshold. This heuristic whether or not a state is
feasible makes another parameter of the algorithm.

The concrete implementation uses axis aligned boxes of configurable size. The grid
sizeis a tradeoff between the size of the expected error and the runtime of the algorithm.
In our experiments, the area of about 25 pixels around the vertices of the polyline has
proven feasible. We refer to this length as the viewport. Consequently, the boxes have a
side length of 50 pixels. Figure 3.1 illustrates an example configuration. For each vertex
the pixels with non-zero emission probabilities are in the blue framed boxes. Where the
boxes overlap, our implementation considers the pixels for multiple vertices. One other
idea is to cut the viewport at half the distance between the states.

For the initial states there is the start probability left to be defined. In this context
the start probability says how likely the first vertex of the sequence has to be shifted to
a pixel position. Again, there are many possible heuristics. For example the first vertex
could be placed by color to a pixel in a neighborhood of some size. The original lineman
tool assumes the first vertex to be correctly placed and therefore applies a probability
of one to the pixel closest to the vertex’ coordinate and zero to any other pixel. In our
reimplementation we use the neighborhood defined by the state space heuristic and the
pseudo probability distribution for color values that Section 3.2 introduces.
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Fig. 3.1.: State space of the lineman HMM (blue boxes) for an input sequence (red). The target
feature is the river Tauber (white).

3.2. Transition Probabilities

For each vertex in the input polyline there is a list of pixels considered for its final place-
ment. The transition probabilities say how likely one pixel has a path in the map from it
to any pixel in the list of the next vertex. Describing these probabilities is a complex task
including more or less recognizing the feature in the map. To handle this complexity, like
in the case study presented in Section 2.5, we rely on local optimization and rather sim-
ple heuristics. As long as the distance between two vertices is small, local optimization
should lead to decent results. The intuition is, that the input polyline already is close
to the desired feature and the local optimization will converge to this feature without
erroneously switching to another undesired feature.

Therefore, we need to sketch two heuristics. One for the path that we assume between
two vertices. Another for the probability of each pixel to be part of the feature or a feature
of the same category. For the lineman we approximate the path using straightlines, that
for small distances give a good guess and are easy to handle. Analogously to the building
footprints, we assume the line feature is ink on paper so the luminosity of pixels is a good
indicator whether the pixel is part of a feature or blank paper.

Figure 3.2 shows a histogram of the pixel luminosity for a sample map. It is overlaid
with the density functions of three pseudo probability distributions that we designed to
classify pixels. Each of them maps a luminosity value of a pixel to a probability between
0 and 1. The histogram shows a considerable negative skew. This is expected because
the majority of pixels are background showing only blank paper. The pseudo probability
distributions show the probability of a pixel being foreground and thus, need a turning
point where to switch from paper to ink. As one can seg, for this map the turning point
can be far on the light side of the spectrum. Our experiments show that this is common
for both historical and contemporary maps.
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Fig. 3.2.: Different pseudo probability distributions overlaid with the histogram of pixel lumi-
nosity values for a sample map. The belly of the histogram shows the luminosity of the
background pixels. Line features should be darker.

The probability density functions f of the pseudo distributions shown in the figure are
defined as follows.
fiy : [0,1] = [0,1]
ﬁinear(x) =
1
fGaussian(x) = g./\/(x,u - Oa 02 = _) - exp(—4x2)
)i=

—_

— X

2v2
fmanually tuned (x exXp ( —ZJTX4)
with AV being the probability density function of the normal distribution.

Note that those functions lack several critical properties of probability distributions.
For our use case thisisirrelevant as they are only loose descriptions of probabilities that
we cannot determine exactly. Their magnitude is also of minor importance because we
balance transition and emission probabilities mostly via the standard deviation param-
eter of the latter. Whereas the original lineman tool uses the linear form, for our exper-
iments we use the manually tuned option, except where explicitly noted otherwise.

The final transition probability is estimated as follows. Given two states, for the line
segment between them the average luminosity is calculated by drawing with Bresen-
hams’s algorithm as described in Section 2.6. For each position the luminosity of the
pixel in the underlying image is queried and they are averaged. The result is transferred
into a probability using one of the aforementioned functions.
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Algorithm 4: Lineman: HMM based algorithm for polyline-to-raster matching
Input: Polyline p, . . ., p,, functions states(+), fomic (), frrans(*, *)
Output: Aligned polyline
T < empty list
append (pos: py, score: 1, ptr:null) to T
3140
foreach pointp;,j > 2 do
T < empty list
6 | foreach statesin states(p;) do

N =

IS

2| [y max(rlF]score fue( s —<I) s (705, )

8 kpax < argmax (T[k].score femie(||pj — |) * furans(T[k].pos, s))
i<k<T.length

9 append (pos: s, score: ), ptr: kg, ) to T

10 i < Tlength
11 | append TtoT

12 X < empty list

13 z < argmax (T[k|.score)
i<k<T.length

14 prepend T|z|.pos to X
15 while T[z].ptr not null do
16 | z < Tlz.ptr]

L prepend T|z].pos to X

18 return X

3.3. A Polyline-to-Raster Matching Algorithm

For the polyline-to-raster algorithm we use Viterbi’s algorithm (see Section 2.4) to get
the likeliest sequence for the HMM. Because of our sparse state space, this formulation
uses a flat array for the Viterbi table. Algorithm 4 has the details.

The inputs are the polyline, the function that decides which states should be con-
sidered, and the functions that calculate the emission and transition probabilities. The
main array can be separated into buckets, of possibly varying sizes, each containing
those states of a column that have a non-zero emission probability. Each entry holds the
pixel coordinate, their partial score, and a pointer to their likeliest predecessor, which
saves us an additional table. Apart from that, the Viterbi algorithm is mostly unmodi-
fied.

Given the implementations described in the previous sections, the runtime can be es-
timated as follows. Suppose the input polyline contains n vertices and has a length of N
pixels. The boxes of the states heuristic have a side length of m and all pairs of consecutive
boxes have a distance of at most k each from their farthest corners.
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Fig. 3.3.: The HMM based optimizer applied to a historical map of the river Tauber region. For an
imprecise input (red) following the river (white) an algorithmically optimized version
(blue) has been established.

The backtracking loop building the output polyline runs at most O(n) times because
there are at most n buckets and each back pointer points into the preceding bucket.
Therefore, it is negligible.

The main loop runs n — 1 times. Each iteration runs through m?* possible states. For
each possible state and each of the m?* directly preceding states, the average luminosity
of the path between them is calculated issuing k pixel queries. The emission probability
can be estimated in O(1). So for the complete algorithm, this gives a runtime in O(n - m*-
k).

This can be simplified when we look at the length of the path that we operate on.
First, operating n times an operation of weight k, in this case, is equal to operating once
an operation of weight n - k. Second, the average distance of pixels in the boxes is N/,,.
There are as many pixels closer to the preceding box as farther away. By replacing k with
N/, we get an amortized runtime in O(m* - N).

Figure 3.3 shows the algorithm in action. Apparently, the blue line is mostly aligned
with the river feature on the map. Although the detail is quite small, as we will show
in Chapter 7, the algorithm works well for long input polylines as well. Looking closer
into this example, one can see that the feature on the map has details that cannot be
reproduced by the aligned polyline. Many river bends are cut because the algorithm
cannot adapt to the level of detail of the raster feature, but is stuck at the resolution of
the input polyline.

A more in-depth analysis will raise some more shortcomings of the plain algorithm
outlined in the previous sections. As already mentioned, the algorithm cannot distin-
guish between conflicting features as long as they are not separated by background pix-
els. Even then, a very dark feature may overpower a short period of white pixels com-
pared to an unsteady or only partially matched feature continuation. Figure 3.4b shows
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Fig. 3.4.: Several examples where the algorithm fails to correctly align with the underlying fea-
ture.

an example where the letter in combination with an offset input vertex gives a better
match than the correct feature. In Figure 3.4a the feature splits and the algorithm takes
the wrong path later rejoining at an opportune position.

If consecutive input vertices are close together and therefore the respective state space
boxes overlap, the algorithm leans to put several vertices in the same favourable posi-
tion. Figure 3.4c shows this case where several vertices linger over the dark area in the
middle. This can lead to undesirable loops and large straight segments with inferior
alignment.

Depending on the guess for the standard deviation ¢ of the emission probability, the
algorithm may under- or overvalue promising groups of dark pixels against the distance
to the input vertex. Therefore, the correct path may be missed because the input line is
too far away or a wrong path will be taken because it contains a very dark object thatin
factis not part of the feature, even if it is unreasonably far off. Some parts of the feature
might not get considered at all, when they are farther away form the input polyline than
the boxes allow.

Growing the boxes is often not an option because of the quartic dependency between
runtime and the boxes’ edge length. Boxes larger than 100 pixels often result in a run-
ning time of several hours on typical consumer hardware for longer input polylines.
Even for smaller boxes, as our evaluations shows, the algorithm is not fast enough for
interactive settings.
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Fig. 3.5.: Invocation of the algorithm using a super-sampled input polyline that has a vertex ev-

ery 7.5 pixels on average (blue). The red line shows the original input that has no arti-
ficial vertices.

3.4. Super-Sampling the Polyline

In order to precisely match the feature outline in the image the number of vertices in the
input polyline often is insufficient. The original lineman tool offers a setting to add a
fixed number of additional vertices at every edge. Because the edges of the input polyline
may have varying lengths, we prefer to add vertices to achieve a given target edge length.
For a target length k every edge that has a length [ greater than 1.5k gets |/ + 0.5] ad-
ditional vertices evenly spaced over the line segment.

As shown in Section 3.3 the runtime of our algorithm does not depend on the num-
ber of vertices but only on the total length. Therefore, the number of additional vertices
added by the subdivision procedure does not affect the runtime. Regardless, edges that
are significantly smaller than the viewport become unprofitable because they will prob-
ably be placed on the same very short very dark sequence of pixels. The fitness function
rewards short edges the same as long edges, so having multiple very good edges over-
powers some mediocre ones.

Subdividing the input polyline in most instances gives smoother results and a better
alignment. Figure 3.5 shows an example applying the lineman algorithm to the same
input as in Figure 3.3 but with all edges subdivided to a target length of 7.5 pixels. This
value has produced good results in development. A detailed evaluation follows in Sec-
tion 7.4. The measure of 7.5 pixels apparently is fine enough to precisely reproduce the
river but already shows areas where vertices are placed too close to be meaningful. This
behavior seems to correlate with the distance the input vertex is off the target line. This
is plausible when the vertexis in the inner side of a bend and the correct path is therefore
a detour that due to is length needs more vertices than expected. This parameter obvi-
ously depends on the characteristics of the target feature. So it should be determined
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with the curvature of line on the map in mind. Nonetheless, our experiments show that
it is rarely harmful to underestimate the target length of the subdivided edges.

3.5. A Fast Heuristic for Promising States

One major aspect this thesis seeks to improve is runtime performance. Recall that the
runtime of lineman is in O(m* - N) for a polyline of length N and a square viewport of
size m. The problematic part of this is the m* term. We will improve this by designing a
heuristic that considers fewer states while not excessively deteriorating the alignment.

Therefore have a look at the candidates, the pixel positions the input vertices might
be moved to. Given that the input polyline is sufficiently subdivided, we can assume
that the segments of the optimal target polyline have almost the same lengths as the
segments the algorithm is working on. As shown in Section 3.3 it is undesirable to move
along the input line segments because we do not change anything—additional vertices
on a straight line are superfluous—and the fitness function does not handle them well.

Assume that the previous vertex is already aligned. In the following drawings this
will be the top left vertex. For the next vertex of the input polyline (solid) there are sev-
eral positions it can have relatively to the optimal target polyline (dashed). The most
favourable directions to move are indicated by a green shade.

First and simplest case, the Vertices overlap. This illustrates
R that the pixel position of the input vertex itself should be
considered a candidate. Optimally, it is not moved at all.

Both curves bend in the same direction, the inner angle of the
input line faces the optimal vertex position. The area of high
probably for favourable moves is in the inner angle keeping
a distance to the line segments.

Both curves bend in the same direction, the inner angle of the
input line opposes the optimal vertex position. The vertex
has a large angle to move to always hitting the target line.
Optimally it is moved towards the point of highest bending,
that is most likely in the middle of the cone.

The curves bend in opposite directions, their inner angles
face each other. Probably the vertex should be moved per-
pendicularly and again, the area of good positions is a cone
tending to its middle axis.
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The curves bend in opposite directions, their inner angles
face different sites. This case is problematic because both
lines go in different directions. Likely this will not happen
because the feature should be roughly approximated by the
input polyline. Still, widening the arc could improve the
alignment so optimally a point outside the bow near the ver-
tex is chosen.

Of course for the heuristic, we cannot determine which case we are in. Therefore a
common denominator has to be identified. Also the heuristic should not depend on the
alignment of previous point because then is has to be recalculated for each previous can-
didate, likely polluting the state space.

Condensing the observations for the cases outlined here, the vertex position itself is
a good candidate as well as a cone both sides the vertex each with a bias towards their
middle axis. Further simplifying this, for each line segment the bisector line of the angle
between this and the consecutive segment seems to be both of limited complexity and
covering the areas of most promising vertex positions. We will refer to this as the bisector
heuristic. Figure 3.6 shows the viewports of this heuristic for an example application.

The analysis suggests, and our experiments confirm this, when using the bisector
heuristic the algorithm significantly profits from a highly subdivided input. In the ex-
ample shown in Figure 3.7 the alignment quality is on par with the original algorithm.
There are only a few places where a placement of the vertex outside the bisector line
would support the alignment. In exchange, the bisector heuristic is more tolerable to
small subdivision, which can be beneficial on fine features.

Given a viewport of size m the bisector heuristic only considers O(m) states. So the
runtime of the alignment algorithm is in O(m? - N) when using this heuristic. For the
recommended viewport size of 50 pixels this means the running time should decrease

Fig. 3.6.: State space created with the faster bisector heuristic. Only pixels on the blue lines are
considered as possible vertex positions.
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Fig. 3.7.: Alignment using a subdivided input and the bisector heuristic (blue).

by three orders of magnitude.

Assumed the manually tuned distribution for the transition probabilities works well
on that particular map, for practical use there are three more parameters that we have to
estimate. The target length for the input line subdivision should be chosen rather small
at about twice the width of the line feature. The viewport size should be set as small as
possible to maintian runtime performance but has to be greater than the expected dis-
placement of the input polyline. The standard deviation o of the emission probabilities
should be similar to the viewport size. On instances with rather accurate input data a
smaller o will help to avoid alining to unwanted nearby features.
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4. Polyline-to-Raster Matching
Using Uniform-Cost Search

Our intuition is, and our experiments in Section 7.4 confirm, that subdividing the input
polyline leads to significant improvements in the alignment. Both the classic and the bi-
sector heuristic—to its credit the bisector heuristic is more reliable in this issue—show
undesirable behavior when the subdivision is too eager, and the line segments become
too small. Pointless accumulation of vertices and arbitrary loops being the most com-
mon side effects, that can bee seen in Figure 3.4c and at some places in Figure 3.5 and
Figure 3.7 in the previous chapter.

For optimal results the features in the raster data should be reconstructed at pixel
precision. Additionally, tuning the subdivision parameter is tedious and it is clearly an
advantage if we could drop it. Recall what the HMM based algorithm optimizes: It looks
for arepositioning of all vertices that has maximum average darkness while maintaining
locality to the original polyline. At pixel precision this can be reformulated as finding a
path of pixels thatis dark on average and follows a polyline. Path finding is a well known
field in algorithms.

4.1. Uniform-Cost Search

Finding a path through a large—or possibly infinite—number of virtual states is a fun-
damental task in classical artificial intelligence. Those algorithms that do notrely on in-
formation beyond identifying their goal state and expanding adjacent states are called
uninformed search strategies. Of those, uniform-cost search (UCS) is a generalized form
of graph search based on Dijkstra’s algorithm [Dij59], although some authors like Fel-
ner [Felll] argue that both describe the same algorithm. The polyline-to-raster match-
ing algorithm proposed in this chapter will be a UCS variation augmented for the con-
crete problem domain.

Algorithm 5 has a formulation of UCS based on the on in Artificial Intelligence A Mod-
ern Approach [RN09]. Uninformed search algorithms mainly differ in the order they
expand states. To expand here means, the state is examined whether or not it is a goal
state, that successfully terminates the algorithm, and what adjacent states, also referred
as actions that lead to other states, are accessible from this state.

Beginning at an initial state start the algorithm will expand states based on their path
cost, the sum of all step costs for every state passed on the path beginning at start. This
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Algorithm 5: Uniform-cost search

Input: Initial state start, functions goal_test(-), actions(-), and step_cost(-,")
Output: The goal state or null if no goal state is reachable

1 node < (state: start, path_cost: 0)

2 frontier <— priority queue ordered by path_cost

3 frontier.push(node)

4 explored < empty set

loop

wv

6 | 1if frontier is empty then return null
7 node < frontier.pop_lowest
s | if goal_test(node.state) then return node.state
o | explored.add(node.state)
10 | foreach action in actions(node.state) do
11 child < (state: action.apply(node.state), path_cost: node.path_cost +
step_cost(node.state, action))
12 if child.state not in explored or frontier then
13 ‘ frontier.push(child)
14 else if child.state in frontier with higher path_cost then
15 L frontier.update(child)

is assured by a priority queue data structure that allows accessing the best element by
the means of a given measure. When a state is expanded and it is not a goal state, the
actions applicable from this state are used to generate new states that are added to the
priority queue. Notice that a state is only assessed to be a goal state on expansion not on
creation. This ensures that if a better path to this or any other goal state is found while
expanding other states, the path costs are updated and the correct state is returned. In
order to reproduce the path itself, one must introduce another data structure that for
each state holds a back pointer to its preceding state. Many implementation instead
achieve this by adding a third field to the records saved in the frontier data structure.

Provided that all step costs are positive, Uniform-cost search is optimal in general,
meaning that out of any goal states reachable from start, UCS finds the one with lowest
path costs (and therefore the shortest path) or terminates if no such state exists. Any
non-positive cycle in the state graph will cause the UCS algorithm to loop indefinitely.
According to Russell and Norvig [RN09], the algorithm has a space and time complexity
of O(b'*1L¢7¢l), where b is the branching factor, that is the maximum number of actions
taken in any expansion, C* is the path cost of the best path and ¢ is the minimum step
costof any state. As one can easily see, the runtime does not depend on the total number
of states, which is possibly infinite anyway.
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4.2. Designing the Algorithm

Suppose we search for a pixel of a given color on a bitmap image. A UCS instance for this
problem mightbe structured as follows. The states are the pixels of theimage. Theinitial
state is not important, we use the point of origin or the upper left edge of the bounding
box. The goal test for any pixel assesses if the pixel is of the wanted color. For the step
costs we choose a constant function (for a constant greater than zero). When expanding
a pixel, the actions are walking to any connected pixel. Thanks to the explored set we
never expand a pixel twice so the same pixel may be suggested as new state multiple
times without causing problems.

There are several concepts of connected pixels. We
will account for two of them, 4-connected or N, and 8-
connected or Ng. They can be defined as follows

Ny(x,y) = {(x+iy+j) [ -1 <i,j <1, [i] # Jj]}
N8<x7y) = {(x+i7y+j) | _1§i’j§17ﬂ(i:j:0)} .

for i and j being integers. Figure 4.1illustrates those for a
square set of pixels. For the pixel in the middle all the 4-
connected (Figure 4.1a) respectively all the 8-connected
(Figure 4.1b) pixels are highlighted.

This algorithm will find a pixel of the wanted color if
any such pixel exists, potentially expanding all pixels in
the image. It would also find a shortest path from the
initial pixel to the colorful one with respect to either the
Manhattan distance (in the N, case) or the chessboard
distance (in the Ny case).

Add a single line segment to the picture. We seek to
find the darkest path that connects start and end point
of the segment without accepting too obscure detours.
Change the step cost to the luminosity of the pixel plus
the distance to the line scaled by a balancing factor. Now,
the algorithm finds a path along the line segment with- (b) N
out collecting more light than strictly necessary.

This strategy can be generalized to polylines. For each
segment of the polyline an extra layer is introduced. The
search space, so far the pixel plane, therefore becomes
three-dimensional. An additional action is introduced
that allows to change the layer to the next higher layer. Switching the layer means the
segment of reference changes and the distance score is now calculated with respect to
that segment. For the step cost of a layer change refer to Section 4.3 where all config-
urable parameters are discussed in detail. Figure 4.2 illustrates the search space and

(2) Ny

Fig. 4.1.: Some types of connec-
tivity for a regular grid
of pixels
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Fig. 4.2.: Schematic of the imagewalk algorithm walking through three segments (red) with
layer changes (dotted black lines). The solid black line shows the produced pixel trail
per layer.

how the shortest path switches layers at critical points around the vertices. The output
of the algorithm is a polyline with segments of length 1 pixel (or up to /2 pixels for the
Ny case). We will call such polylines a pixel trail.

Algorithm 6 has the detailed instructions. The algorithm starts at the first vertex of
the polyline and at the first layer. Then step by step the search space is expanded both
the connected pixels and the next layer. Of course, thus far away from the next segment
states in the next layer are not attractive due to their hight step costs, so the algorithm
will first expand in this layer until the states are closer to the next segment. Then a layer
change is beneficial. The algorithm terminates when in the last layer the last vertex of
the polyline is reached and returns the pixel trail by backtracking through the states’
back pointers.

Note that using different layers is crucial to the correctness of the alignment. Assume
we would only use the distance to the polyline and the pixel luminosity as step costs.
Then, the resulting polyline would still follow the input polyline but there is no guaran-
tee that all segments are followed. Take a feeder road that often forms a loop with the
highway. To the error model without layers it is beneficial to cut the loop because this is
shorter and at least as close to the polyline as taking the loop. Even if the input does not
cross itself but only has a dominant u-turn. Without the layers in between as guidance,
the algorithm probably would take the short segment of light pixels in order to avoid
the darker but much longer bend.

Asoutlined in Section 4.1 the runtime of uniform-cost search is determined by the branch-
ing factor, the path cost of the shortest path, and the minimum step cost. While this
analysis is handy for infinite state spaces, this case is different. The branching factor is
9 (or 5 if we consider only 4-connected pixels). But the cost of a shortest path could be
very high when large detours are necessary and the step costs can be very low for dark
pixels on the polyline. With naive definitions of path and step costs, this analysis likely
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Algorithm 6: Imagewalk: UCS based polyline-to-raster matching

Input: Polyline py, . . ., p,, function step_cost(:,-)
Output: The aligned polyline
1 node <— (pos: py, path_cost: 0, seg_idx: 1, parent: null )
2 frontier <— priority queue ordered by path_cost
3 frontier.push(node)
4 explored < empty set
s loop
6 | 1if frontieris empty then return null
7 node < frontier.pop_lowest
8 if node.pos = p, and node.seg_idx = n then return best_path(node)
o | explored.add({node.pos, node.seg_idx))
10 | foreach step in Ng(node.pos) U {CHANGE_LAYER} do

11 if step = CHANGE_LAYER then

12 child + (pos: node.pos, seg_idx: node.seg_idx + 1, parent: node,
path_cost: node.path_cost + step_cost(node, step))

13 else

14 child < (pos: step, seg_idx: node.seg_idx, parent: node,
path_cost: node.path_cost -+ step_cost(node, step))

15 if (child.pos, child.seg_idx) not in explored or frontier then

16 ‘ frontier.push(child)

17 else if (child.pos, child.seg_idx) in frontier with higher path_cost then

18 L frontier.update(child)

19 Function best_path(node) :

20 | path < empty list

21 | path.prepend(node.pos)

22 | while node.parent not null do

23 node <— node.parent
24 path.prepend (node.pos)
25 | returnpath
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results in an exponential runtime. Luckily, the search space is finite.

Because no state is expanded more than once, their total number can be simply esti-
mated by the number of pixels times the number of layers, respectively line segments.
From the analysis of the traditional Dijkstra algorithm we know that on a graph of ver-
tices V and edges E its runtime is in O((|E| + |V]) log |V]). So for a map with w X & pixels
and an input polyline with n segments, |V| isin O(w - & - n). As our state space is a lay-
ered square grid graph with five edges per vertex (or nine if we consider 8-connected
vertices), four (eight) edges to connected pixels plus one into the next layer, |E| is in
O(|V]). Therefore, the runtime can be expressed as O(xlogx) for x equalsw - & - n.

Map scans usually have a very high resolution, so this quickly becomes unwieldy in
practice. Like with the lineman algorithm, for a better runtime performance itis reason-
able to limit the viewport, meaning the area where pixel are considered connected, for
every segment.

If one limits the search space per layer to pixels that are in a distance of at most m
around the segment, the number of states is bounded by the number of pixels in those
areas. Each segment with length k counts with a rectangular area of 2m X k pixels and
the “line caps” with a combined area of 7m*. Summing the areas for all segments, the
number of pixelsis in O(m?-(N+n)) for a polyline of total length N. So in the constrained
case, the total runtime is in O(x'logx’) for x’ equals m* - (N + n). This is worse than
the runtime of lineman with the bisector heuristic but considerably better than lineman
with the classic heuristic.

4.3. Parameter Estimation

The previous section outlined the algorithm but left out concrete definitions for some
crucial parameters. Our main concern are the step costs for the UCS algorithm. As al-
ready mentioned, these must be positive real numbers that are calculated based on a
state transition. We consider three aspects. The color of a pixel that the algorithm is
entering, the distance to the current line segment, and the cost we charge for a layer
change.

Color Score

The component of the step costs that honors the pixel color (or more precisely pixel lu-
minosity) is quite similar to the transition probabilities discussed in Section 3.2, so we
reuse the pseudo probability distributions. They are tuned to gradually reward pixels
below a threshold that is suitable for most maps, as our experiments show. Because
they only produce values between 0 and 1, that should make balancing the scores easier.
The manually tuned option—as well as the one derived from the normal distribution—
also has the advantage that it stays positive even for completely white pixels. Therefore,
even when the other partial costs are zero the step cost remains positive which is a re-
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quirement of the UCS. As for the lineman algorithm we stick with the manually tuned
option.

Contrary to the Viterbi algorithm that seeks to maximize probabilities, the UCS tries
to minimize costs. Whereas a high probability is beneficial, high step costs are consid-
ered adverse. In order to use the pseudo probability functions for step costs, we use the
negative logarithm of the probability as the edge weight. For the Viterbi algorithm, as
outlined in Chapter 6, we use a similar trick (without negation) to achieve numerical
stability, where we borrowed this idea.

Distance Score

The second component of the step costs weights the distance to the input polyline in
order to avoid detours and switching to undesired features. It can be seen as a loose
analogy to the emission probabilities discussed in Section 3.1, except that it is calculated
based on the line distance between the pixel position of the state and the current seg-
ment.

Definition.  Due to its importance for some of the following algorithms, we briefly
recall the definition we use for the distance between a point P and a line segment s, also
referred to as line distance. It is the minimum of the Euclidean distances between P and
Q for any point Q on s. This is equivalent to the distance to the line except for when the
projection of P on the line would be outside s. Then it is the distance between P and the
respective endpoint of s.

Again as we cannot assess the precision or behavior of the input polyline, a zero-mean
Gaussian distributionis assumed as a first guess. To balance with the pseudo probability
distribution for the color the Gaussian is scaled by o+/27. Beside that, balancing is left
to the choose for the standard deviation. As for the lineman algorithm a value of 15 has
been used for all examples in this chapter. In Section 7.6 we will have a closer look at
this parameter. In order to convert the probability to a weight, the same trick as for the
color score is applied.

Layer Change Score

States that only change their pixel coordinates but stay within the same layer get step
costs equal to the sum of color score and distance score. This corresponds to the product
of the probabilities. Layer changes on the other hand are different.

Changing the layer is already considered in the distance score because when the seg-
ment of reference changes, the distance adapts correspondingly. Out of this logic an
additional layer change score is optional. Ideas to have layer changes appear primarily
at places where they are beneficial include adding a constant value to the distance score
and adding the color score. The color score does not change when switching layers and
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(2) An undesirable shortcut. (b) Penalizing beneficial shortcuts can lead to loops (e.g. top right).

Fig. 4.3.: Two examples where the imagewalk algorithm (blue) fails to align with the underlying
feature (dotted black) by taking undesirable shortcuts or loops.

including it penalizes switching layers on light pixels which follows the intuition of our
fitness function.

Irrespective of which option is taken, the imagewalk algorithm has a fundamental
weakness. Because each path costis the sum of the step costs, the algorithm favors short
paths. A short but light path can achieve the same score as a long, dark, and probably
better one. This is not entirely bad. We do not want the algorithm to produce unnec-
essary detours. But it also favors unwanted shortcuts, especially on low contrast map
images like the one shown in Figure 4.3. The path shown in Figure 4.3a is a good exam-
ple for this. The shortcut is both light and distant to the reference line. But because the
orange of the line feature—in the figure it is marked by black dots for clarity—is only
slightly darker than the background, the shortcut is profitable.

The layer change score can be utilized to have the algorithm stick to aline for anumber
of steps that depends on the segment’s length. Therefore, for every state the algorithm
has to remember the number of steps along this particular line segment so far. Techni-
cally, holding this information in the state expands the state space, but we can consider
states that conform in the three original coordinates as equal for the explored set, so the
number of expanded states does not change.

With this change implemented, premature (and also late) layer changes are now pe-
nalized by the algorithm. This raises another problem. When a shortcut is beneficial,
either because there are dark pixels on it or because the inaccurate input polyline like-
wise cuts short, the algorithm postpones consecutive layer changes until a cheap detour
is possible. This leads to artifacts like the one shown in Figure 4.3b.

In our experiments the algorithm’s preference for shortcuts appeared less bad than
the substitutionalloops when shortcuts were penalized. To the human perception short-
cuts often are better than loops. Therefore, we implemented the layer change score by
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Fig. 4.4.: Heatmap of the constrained imagewalk algorithm. Pixels that are expanded are dyed

blue with increasing opacity for a higher number of expansions.

a simple constant. In practice, the exact value does not seem to affect the accuracy by
much so we went with a value of 1.

Cutting Costs

As discussed in Section 4.2, the runtime of the algorithm is rather high because it likely
scans the whole image multiple times. In order to improve the running times, we con-
strained the algorithm such that for every layer only pixels thathad a maximum distance
of m to the line segment where considered connected. We also limited the layer changes
to positions that had a maximum distance of m to the end of the segment, meaning the
point where the next segment connects.

Figure 4.4 illustrates the multiple expansion of pixel states. States that get expanded
are dyed blue. The color intensifies if the state is expanded multiple times. One can
see half-circular artifacts around each input vertex where the algorithm “prepares” for
alayer change.

Similar to the limited viewport of the lineman algorithm, alignments with the im-
agewalk algorithm get considerably faster when these constraints are applied. Also the
limits can improve the precision of the alignment when it prevents the algorithm from
jumping to unwanted features. All examples in this chapter are generated with m set
to the value 25 which in pre-evaluation tests gave fast executions and visually pleasing
results.

4.4. Simplifying Pixel Trails

The output of the imagewalk algorithm is a pixel trail which is not always a convenient
representation. A polyline that should precisely reproduce a feature needs not neces-
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Algorithm 7: Douglas-Peucker algorithm for polyline simplification

Input: Polyline py, . . ., p,, positive real number &
Output: Simplified polyline

1 Function recurse(s, t) :

2 | i< argmax line_distance(py, Line(ps, p;))
s<k<t

3 | d <« line_distance(p;, Line(ps, p;))
4 | ifd > ethen

5 S < recurse(s, 1)

6 T < recurse(i, t)

7 recurnSU{i}UT
8 else return &

o

M < recurse(1,n)
return {p; | j € ({1} UM U {n})}

1

(=}

sarily have segments of length 1 pixel. Given the nature of line features, most likely the
orientation of the feature will not change often. So straight lines can resemble these
without loss of accuracy.

Simplifying polylines is a well established task. For example when zooming out a dig-
ital map, the lines like streets or borders become more general and in the same way less
detailed. The line simplification task is to identify vertices that can be removed without
changing the course of the polyline by more than a given threshold. A simple but widely
adopted algorithm has been discovered independently by Ramer [Ram72] as well as by
Douglas and Peucker [DP73] and is traditionally named after the latter. Algorithm 7 has
a detailed formulation.

Given a parameter &, the Douglas-Peucker algorithm decides whether to keep a vertex
or not based on their distance to a straight line that recursively converges to the original
line. Starting with the first and the last vertex, for two vertices the algorithm defines a
split node with greatest distance to the line between the two vertices. If the distance
is greater ¢ the split vertex is fixed as part of the result and the algorithm recursively
continues. Otherwise, it ignores all vertices in between. Those all have a distance below
¢ to the line and, because this line will be part of it, to the resulting polyline.

In the worst case the algorithm splits at every vertex and before every splitlooks at all
vertices for the greatest distance. So for a polyline of length # the simplification can be
computed in O(n?). In the best case, when the polyline is always split evenly, it finishes
after O(nlogn) steps.

The Douglas-Peucker algorithm is not optimal in the number of vertices it removes.
One can construct instances where Douglas-Peucker retains an arbitrarily high percent-
age of unnecessary vertices. Think of a zigzag line of width 2¢ where all vertices can be
replaced by a straight line but with cleverly constructed start and end vertices, Douglas-
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Fig. 4.5.: Simplified polyline (blue) after aligning the red polyline to the river feature (white).

Peucker will retain all but one vertices. In practical instances, this almost never occurs.
Furthermore, a quick processing time for our use case is much more favorable over a
optimally small number of vertices.

Because the simplification reduces the precision of the alignment, € should be chosen
as small as possible. In our experiments for the pixel trails, a relatively small value for
¢ is sufficient to drastically reduce the number of vertices. The example shown in Fig-
ure 4.5 uses a value of v/2, the length of a pixel diagonal. While maintaining a compara-
ble alignment quality, the number of vertices is reduced by about 30 percent compared
to the subdivided lineman figures in the previous chapter.
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5. A Uniform-Cost Search Based
Transition Probability Estimator

Setting parameters by hand is an unappreciative task, especially when there are no in-
tuitive features in the input that guide a good guess. The lineman algorithm needs four
parameters, the luminosity distribution, the distance distribution, the size the input is
subdivided into, and the viewport size. For the imagewalk instead of subdividing, a cost
function for layer changes has to be identified. The probability distributions in particu-
lar are notvery intuitively to select. In this section we seek to develop an algorithm based
on the lineman and the imagewalk concepts that only requires one parameter that has
an intuitive counterpart in the input data.

Out of the previously enumerated parameters in our perception the viewport size has
the strongest connection to the dataset. Its practical implications are easy to compre-
hend and good to visualize, for example in a way like Figure 4.4. Particularly when the
maximum error of the input polyline is known, this makes a straightforward candidate
for the viewport.

A Hidden Markov Model For Choosing the Right Trail

The backbone of the algorithm is an HMM like the one in the lineman for an unchanged
(thatis not super-sampled) input polyline. For any polyline from a human contribution
we can assume that those have a reasonable number of vertices which are strategically
placed. Also for line feature from other sources these assumptions are reasonable. The
hidden states again are pixels and the measurements are vertices in the input polyline.
Going for an HMM has the advantage that we do not need to bother with a mechanism
like the layer changes of the imagewalk. The HMM naturally fits sequential data. This is
the use case it has been designed for.

For the lineman the emission probabilities of the hidden states were estimated by the
distance to the input vertices. As we will use the viewport size to regulate the area of
interest, the distance as a guiding attribute looses significance. Given the viewport is
tight, the pixels inside should have very similar chances that they are part of the feature
when their color matches. Therefore, a uniform distribution is assumed for all pixels
inside the viewport. Previously, the start probabilities were estimated using the first
vertex of the polyline. For uniformly distributed emissions this is the same as assuming
no knowledge at all for the start probabilities. With this design, as it uses only uniform
distributions, the formerly used o parameter becomes superfluous.
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Searching a Way Through Pixels

The lineman model for state transitions is inadequate for the new algorithm. Remember
that the input does not get subdivided. Instead of straight lines each state transition is
described by a pixel trail. In order to calculate these we modify the uniform-cost search
with one line segment described in Section 4.2. Given the state transition from a state
a into another state b for an input line segments. The states are pixels. Note, that these
are not the same states as the states of the HMM. We will refer to them solely as pixels to
avoid confusion. We take the set of all pixels that have a line distance smaller or equal
the viewport size to s as the viewport. Pixels outside the viewport are not considered
connected.

The UCS starts at g; a state is a goal state if and only if it equals b. The step cost for
entering a pixel is the luminosity of that pixel. Therefore, it is beneficial to enter dark
pixels that are likely part of a feature. There are multiple options to define path costs.
Analogously to the traditional UCS formulation one can sum up the step costs. Alter-
natively also averaging and taking the maximum are feasible. Analyzing the imagewalk
has shown that summing the step costs often leads to alignments with undesired short-
cuts due to the penalization of long trails. When averaging the pixel’s luminosities, this
rewards building long trails over darker, often unrelated features. Therefore the algo-
rithm has been implemented to take the maximum with the distance to the end vertex b
as a tiebreaker. All examples in this chapter use this option. Despite the particularly
good results, this makes the algorithm unusable for interrupted features like dashed
lines without preprocessing.

For this algorithm the transition probabilities are the only probabilities of the HMM
thatare notuniformly distributed. The Viterbi algorithm does not depend on the weights
being probabilities; neither on their multiplication. In fact, the multiplication in practice
isharmful as will be shown in Chapter 6. Therefore, the transition weights will simply be
the path cost of the pixel trail that the UCS found and instead of the product their sum
is optimized. For the best sequence of states, as determined by the Viterbi algorithm,
the pixel trails are obtained as described in Section 4.1 and then concatenated. The re-
sulting pixel trail can be simplified using the techniques shown in Section 4.4. Being a
combination of the lineman and imagewalk concepts, we will refer to this algorithm as
linewalk.

A Heuristic for Further Reducing the State Space

Using such an elaborate model for state transitions has a cost in complexity. To reduce
the runtime not every pixel in the viewportis examined. To achieve a good running time,
especially when in interactive environments, the complexity of the effective state space
has to be constant. For the lineman a quadratic and a linear heuristic were presented.
Consequently, both are unsuitable for this task. This one considers only five places in
the viewport. The pixel closest to the input vertex as well as the darkest pixel for every

40



X X

S

/ input vertex

X

X

darkest
in quadrant Fig. 5.1: The state space heuristic for the

linewalk algorithm and a viewport

Sils

of size m. For every input vertex only
five states are considered.

quadrantin a coordinate originated at the vertex. Figure 5.1 illustrates the concept.

For the UCS we defined a viewport area of all pixels with constant distance m from a
line segment. For the start point only this makes a circle. In order to ease implemen-
tation, only the axis aligned square inscribed into that circle is used. This is grouped
into four quadrants by a coordinate system originated at the vertex. For each quadrant
the darkest pixel is located. These plus the pixel closest to the vertex make up the effec-
tive state space. The four dark pixels can be computed in O(m?) once for every vertex in
advance.

Complexity

For the UCS part the same calculations as for the constrained variantin Section 4.2 apply.
For each segment with length k the number of pixels x is in O(m* + m - k) covering the
rectangle around the segment and two halve circles on the ends. Therefore like for the
imagewalk, the complexity of the UCSisin O(xlogx).

Because with the proposed heuristic the effective number of states, meaning the num-
ber of states with non-zero weights, is constant, the number of state transitions is in the
order of O(n). As the transition costs—the replacements for the probabilities in the tra-
ditional HMM formulation—are calculated by UCS invocations, the Viterbi table only
has O(n) entries. With our simplified HMM structure considering only the transition
costs no other calculations are necessary.

While the imagewalk additionally has layers that add up as additional factor of n, the
Viterbi algorithm for the n vertices tries a constant number of states and therefore a con-
stant number of darkest path queries. Because as stated above the runtime of the UCS
per layer and per state transition is the same, both result in the same runtime complex-
ity. Due to the repeated searches and its multi-step design, the linewalk probably has
higher constant factors.
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Fig. 5.2.: Example alignments by the linewalk (blue) and imagewalk (orange) algorithms of the

river feature (white). The input polyline is marked red.

Results

While Chapter 3 already showed that we can improve the running times of polyline-
to-raster matching by choosing proper heuristics, the problem remained that many pa-
rameters of the algorithm had to be estimated by a skilled expert with knowledge of the
target map and feature. In a first step the target segment size, necessary for using super-
sampling, could be replaced by introducing pixel trails. This can be seen as the limit of
super-sampling but having a too detailed result is not a problem because, as showed in
Section 4.4, simplification is an opportunity.

With the linewalk concept presented in this chapter, the parameters necessary to bal-
ance contrast characteristics of the map and locality of the search strategy, introduced
by the emission and transition probabilities of the HMM formulation or the equivalent
partial scores in the UCS, could be replaced by a simpler search strategy with only the
search horizon or maximum displacement as a parameter. Despite this only works for
continuous features, we consider it a substantial improvement especially because this
parameter is an obvious part of the strategy and can be intuitively visualized for example
as shown in Figure 4.4.

Compared to the other algorithms this one has a stronger intent to follow dark at the
cost of giving up the locality score. In Figure 5.2 we see some areas where this strategy is
beneficial compared to the imagewalk concept. As we can see in Figure 5.2a the image-
walk has a tendency to shortcuts that in the example is backed by the vertex position.
For the lineman we deliberately chose another strategy that does not penalize detours
and therefore follows the line better. Figure 5.2a show examples where the imagewalk
accepts short light segments in order to follow unassociated lines that are closer to the
input. Here, again the imagewalk follows the feature more consistently.
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Fig. 5.3.: Examples where the linewalk (blue) takes arbitrary detours over dark pixels while

aligning with the contour line feature (black dots).

This strategy can lead to undesired behavior when a feature allows avoiding a light
pixel by taking detours. The examples in Figure 5.3 show that. In Figure 5.3a a state has
been chosen that is on a darker area on another more dominant feature and therefore
the UCS forms a loop to reach it. When this happens for multiple vertices in a row like
in Figure 5.3b, this can lead to multiple feature changes over the same area and there-
fore large detours or even loops. These cases are rare and an experienced annotator can
anticipate them. For a precisely placed vertex the correct placement is always at least
considered.
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6. Implementation

Although the analytical considerations already gave plenty of insights into the funda-
mentals and properties of the presented polyline-to-raster alignment algorithms; in or-
der to geta comprehensive comparison all algorithms wereimplemented as well as some
auxiliary tooling to support fast and reproducible experiments. The data was prepared
so that all raster data was available in the Portable Network Graphics (PNG) image for-
mat and for all vector data, particularly the polylines, the GeoJSON format was used.
The latter supports polylines in the form of the LineString feature type. All tools were
implemented in the Rust programming language, mainly because of its modern feature
set and runtime efficiency. In order to support the handling of geographic primitives as
well as the GeoJSON format the geo crate! was used. Additionally libraries for reading
PNG files and for stochastic primitives were used. The source code and build instruc-
tions are provided alongside this thesis.

Implementing the algorithms that were presented or mentioned as foundational in
the previous chapters mostly is a straightforward task. So this chapter in small notes
will focus on those aspects where theoretical formulation and implementation diverge
or where design decisions have been made that have not been previously addressed.

Bresenham’s Algorithm

For the implementation of Bresenham’s algorithm the simplified formulation shown in
Section 2.6 is used. Traditionally the algorithm is implemented in a procedural style like
the pseudocode in Algorithm 3. Instead, we use the iterator pattern to traverse the set of
pixels of the line drawing. Consequently, the items of the iterator are pixel coordinates.
When evaluated our iterator produces a sequence of pixels equivalent to the drawing
of the input line segment. The line and therefore it’s slope define the iterator instance
thatis constant over each invocation of the next function. The current position and error
measure build the iterator state that changes with each invocation and is therefore used
to calculate the next pixel coordinate alongside the next state and so on.

Viterbi Algorithm

In the previous chapters already different variations of the Viterbi algorithm are de-
scribed. The different alignment algorithms that use HMM-like structures have most
of the details presented in the respective sections. One common aspect is the handling

lin Rust libraries are called crates. For geo see https://docs.rs/crate/geo
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of probabilities and therefore the multiplication of small numbers. For modern compu-
tation models using floating-point numerics, that has some problems with numerical
precision. For the implementation of the Viterbi algorithm commonly the log probabili-
ties are used instead the plain ones, as described for example by Slade [Slal3]. So instead
of multiplying the emission and transition probabilities, for each state sequence the log-
arithm of each probability is taken and they are summed. Due to the monotony of the
logarithm the most likely sequence in the Viterbi table using log probabilities is also the
most likely one using plain probabilities.

Uniform-Cost Search or Dijkstra’s Algorithm

Researchinto theimplementation techniques of Dijkstra’s algorithm, and therefore UCS,
has a long history. As already mentioned, Felner [Felll] studied the differences of the
formulation known as Dijkstra’s algorithm and the UCS as it is used mostly in artificial
intelligence. He discovered that it is harmful to the performance when adding all ver-
tices to the frontier data structure in advance. Instead he advises to only include the start
vertex and add the rest on the fly as they are discovered as adjacent to expanded vertices.

Already in their early analysis of the algorithm Goldberg and Tarjan [GT96] showed
that using binary heaps as a data structure for the frontier is expected to have a better
practical performance than Fibonacci heaps even for sparse graphs. Chenetal. [CCRT07]
further investigated thatissue concluding that, especially for sparse graphs, one should
ignore the decrease key or update operations and instead add the state another time
with its updated cost and rely on the internal sorting of the heap structure. While this
results in more push and pop heap operations, the overhead introduced by the decrease
key (or update) operations has been larger in their experiments. Our implementation is
guided by all these findings so we use a binary heap and never delete from it except by
pop-ing the lowest item.

Shortest-Path Trees

While our implementation is single-source, single-target; Dijkstra’s algorithm can be
used to produce a shortest-path tree. A shortest-path tree of a graph and a source vertex is
a spanning tree where every path is a shortest path in the graph from the source. Instead
of using discrete Dijkstra invocations for every pair of states in the linewalk algorithm, a
partial shortest-path tree can be built for every previous state such that all target states
are in the tree. With the presented state space heuristic, instead of 5% = 25 Dijkstra invo-
cations only five would be necessary. This is not yet implemented in our tools, but could
improve the running times for the future.

Douglas-Peucker Algorithm

Our implementation of the Douglas-Peucker algorithm is taken from the geo crate. See
their Simplify trait for details.
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/. Evaluation

7.1. Ground Truth Data

To evaluate the alignment algorithms we use scans of three different historical maps.
These differ in resolution, contrast, and the colors used for the line features as well as
colored parts of the background. As such, they cover a range of common styles and do
not form a positive selection. High quality representations of line features as reference
are difficult to obtain so a systematic review of the entire variety of map styles is a task
for future research. Instead, our evaluation focuses on the effect of different algorithm
parameters.

For each map a characteristic line feature was chosen that has a winding curvature in
order to make the alignment more challenging. The maps are:

Wiirzburg The oldest map we test on is a map of the district Wiirzburg in Bavaria, Ger-
many from 1885 [Wen85]. The scale of 1:200 000 is rather large and the resolu-
tion is only decent. The map is available as a digital reproduction by the Bayrische
Staatsbibliothek Munich under the terms of the Creative Commons BY-NC-SA 4.0
licence.! The map shows mostly rural areas, except from the city of Wirzburg it-
self that, due to the large scale, is not very present. Dominant features are larger
paved roads as well as the river Main. Figure 7.1a shows a detail depicting one of
the larger roads and a medium sized river. We will focus on medium sized features
that are more difficult to identify, like smaller rivers and roads.

Louisville The second map is a topographical map of the Louisville quadrangle pro-
duced by the U.S. Geological Survey (USGS) [usg65] from 1965 named after the
village of Louisville in Colorado, United States as part of their 7.5 minute series?.
Digital copies of the series’ maps were made available as public domain. The maps
of this series have a scale of 1:24 000 and are very detailed containing many ge-
ographic features. We look particularly at the contour lines, as their curvature
makes them challenging for polyline alignment. Additionally, this map is one of
the older ones of the USGS and its contrastis particularly low. A detail can be found
in Figure 7.1b.

lsee https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
2Each map of the 7.5’ series is bounded by two meridians and two parallels spaced 7.5 arc minutes apart,
hence the name.
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(a) Wiirzburg district, GER1885.  (b) Louisville, Colorado, US 1965. (c) Bray, California, US 2001.

Fig. 7.1.: Details from the maps used to evaluate the alignment tools; all at the same resolution.

Bray The newest map is also a topographical map from the USGS 7.5 minute series that
was made in 2001 [usgO1]. It covers the Bray quadrangle, an area in the county of
Siskiyou in the north of California. With the same 1:24 000 scale, it is very detailed
and contains many features of excellent contrast as shown in Figure 7.1c. Again,
we focus on contour lines of that plenty are present in this mountainous region.

The algorithms run on smaller parts of the maps thathave been chosen representative
for the complete map, because those are easier to handle especially in development and
multiple evaluations can be done within a reasonable amount of time. For each map as
a ground truth a line feature has been annotated by hand in a geographic information
system. The features were selected by their assumed difficulty for the algorithms. They
are, compared to other features on the map, relatively long and winding so the approxi-
mating polyline has to be accurately placed to cover them. In each case there is another
feature nearby thatis darker or more pronounced and the algorithms might be tempted
to switch to that feature.

Some major parameters are outlined in Table 7.1. As discussed, the resolution of the
map details is a tradeoff between covering complete features and running the evalua-
tion within a manageable amount of time and memory. The table for each reference

Map Resolution Feature Vertices Width Length
Wiirzburg 1656 x 1722  river 267 3—4px 2792px
Louisville 1347 x 1351 contour line 327 2px 5367 px
Bray 800 x 790 contourline 150 1-2px 1525px

Tab. 7.1.: For each map a representative feature has been selected.
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Fig. 7.2.: In order to create test inputs for the evaluation, the reference polyline (withe) was sim-
plified with an £ of 15 px and Gaussian noise was applied (red).

polyline has the number of vertices and the summed Euclidean length of all segments.
The feature width is difficult to measure on the scans so the values are rather estimations
and only apply in the average case because the features are not always painted precisely.
Also only the darkest pixels were counted and about one pixel per side is of a luminosity
in between the feature center and the background, so one could add another two pixels
if those were counted in. Figure 7.2 has a zoomed in version of a feature on the Wirzburg
map where the feature width is highlighted.

7.2. Degraded Data

For the evaluation we need suitable input data to test our algorithms. While for the
development a set of hand-crafted polylines is sufficient (and often instrumental in de-
bugging), a more quantitative approach is required.

A common path towards worse data is dropping points of the polyline (e.g. used by
Newson and Krumm [NKO09]). Whereas in the setting of sampling GPS points at a given
rate thisis a plausible approach, we want to be able to quantify the accuracy of our input
data. Therefore, instead of sub-sampling the reference lines, we use a simplification al-
gorithm to get a degraded version of the polyline with constrained deviation. For conve-
nience, the algorithm by Douglas and Peucker from Section 4.4 was reused for this task.
Via the € parameter we can regulate the degradation of the polyline per experiment.

For some instancesitis undesirable to have the vertices placed perfectly on the feature
because this benefits some of the algorithms but is implausible for real-world inputs.
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Fig. 7.3.: Matching principles based on Heipke et al. [HMW]97].

Unfortunately, this is the case after applying the simplification algorithm. So for some
experiments we additionally apply Gaussian noise to the coordinates of each vertex. Of
course this further degrades the data but the parameters are chosen conservatively with
d=(0,0) and fi = (6 px, 6 px). This ensures a displacement outside the feature for a sig-
nificant number of vertices while avoiding a false attribution to another feature where
possible. An example using noise generated with the described parameters and other-
wise created by simplification of the reference polyline with an ¢ of 15 px can be found in
Figure 7.2.

7.3. Quality Measures

In order to evaluate the quality of different methods, there have been many approaches
to define numerical measures that make different strategies easily comparable. The rise
of data driven science gave these an additional impetus. Especially the evaluation of
binary classifiers can be an archetype for our task.

For defining the matching principles we rely on the work by Heipke et al. [HMW]97]
about evaluating road networks extracted from digital imagery. Alongside the evalua-
tion of binary classifiers, they define true positive (TP) and true negative (TN) for values
that have been correctly classified as part of the feature (true) and not part of the feature
(false). Furthermore, there are two types of misclassification. False positive (FP) for items
wrongly classified true and false negative (FN) for those wrongly classified false.

For an optimized polyline / and a ground truth line 7, TP, FP, and FN are estimated as
shown in Figure 7.3. First, a buffer of given size is sampled around r. The parts of [ over-
lapping the buffer are considered correctly classified as part of the feature, and therefore
TP. The parts outside the buffer were wrongly classified as parts of the feature, which
is FP. Then, the buffer is sampled around [ and the parts of » not overlapping the buffer
were wrongly classified negative (FN). True Negatives are not covered by this model and
therefore not considered in our evaluation.

As primary measures of quality the correctness (also called precision) and the complete-
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ness (also called recall) are calculated as follows.

TP
correctness := ————
TP + FP

TP
completeness := ———
TP 4+ FN

Instead of the measure called “quality” in Heipke’s paper, for a comparison in one
number we use the F;-score [Chi92]. It was originally introduced for comparing machine
text understanding approaches and is often used in information retrieval when the FN
cannot be determined precisely—notice the parallels to the road extraction task. The
F-score is defined as the weighted harmonic mean of precision and recall, where the
weight factor of 1 means a balanced score calculated as follows.

i correctness™" + completeness ™\ ' B 2TP
T 2 ~ 2TP+ FP + FN

Evaluating polyline-to-raster matching is simpler than evaluating road network ex-
traction, inasmuch as one does not need to consider roads junctions. Therefore, in con-
trast to Heipke et al. we calculate the buffer analytically instead of drawing the lines and
counting pixels. Also, because our lines are continuous we consider the circles around
every vertex into the buffer including the endings. With respect to the feature width
presented in Section 7.1, we use a buffer size of 2 pixels for the evaluations in this chap-
ter. Our reference polylines are aligned to the centerline of the feature so this covers a
feature width of 4 pixels.

The polyline-to-raster alignment algorithms work on pixels. Any coordinate there-
fore has toberounded to whole pixels, in our case by discarding all decimal digits. Hence,
after the alignment the resulting polyline has integer coordinates that each represent a
pixel. In order to emphasize that connection, before quality assessment the coordinates
are moved to the pixel center by adding the vector (0.5, 0.5).

7.4. Super-Sampling

For the lineman algorithm in Section 3.4 we proposed to super-sample the input poly-
line. This increases the number of vertices available to the algorithm for constructing
a more detailed alignment. In order to assess the effect we will look at both heuristics
for the state space and different subdivisions of the input polyline. The settings of our
experiment are simplified polylines with an € of 15 and the default noise applied as de-
scribed in Section 7.2. The two lineman variants use a ¢ of 15 and a viewport size of
25 pixels, meaning the square (or line) of the viewport has a (side) length of 50 pixels.
Table 7.2 has some details important for interpreting the results. Due to the simpli-
fication, the number of vertices is decreased compared to the reference path. Together
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Vertices Average segmentlength Baseline

Map

simplified reference simplified F;-score
Wirzburg 33 10.46px 84.60px 24.11%
Louisville 52 16.41px 103.21px 24.77%
Bray 14 10.17px 108.92px 19.96%

Tab. 7.2.: Baseline measurements for the super-sampling experiment.

with the noise applied, this makes the difficulty for the algorithms. The average seg-
ment length for the reference is between 10 and 15 pixels. So for the super-sampling
we expect best results when the line is split into segments of about this length. For the
simplified input the segments consequently are much longer with about 100 pixels on
average. Because super-sampling at a lower rate than the input is meaningless, we stop
the experiment at 233 pixels targeted segment size. At this rate no additional vertex is
added.

The baseline for the algorithm is the quality rating for the degraded input lines. By
chance the input overlaps parts of the reference line. Therefore the quality measures
defined in Section 7.3 can be measured for these. The algorithms are expected to out-
perform the plain input by a large margin.

Figure 7.4 has the results. Because the baselines for all three settings were close to-
gether, only their average is included into the plot. As expected, the alignment quality
increases with finer super-sampling until a maximum near the average segment length
of the reference path. Then, especially on the Louisville map, the alignment quality de-
creases with even shorter segments. This phenomenon can be explained by the accu-
mulation of points on very dark foreign features. This results in lots of very short but
positively rated segments that outperform the correct alignment. The alignment quality
decreases because rather far points are moved on the dark area leading to long segments
outside the target feature.

Also the data show an advantage of the classic heuristic over the bisector heuristic
when the targeted segment size is large. This advantage shrinks when the segments
become shorter. As expected, the bisector heuristic is overall weaker than the classic
heuristic with a notable exception for the Louisville map and short segments. With a
well chosen super-sampling the differences between the heuristics are smaller than the
differences between the three features.

7.5. Emission and Transition Probabilities

The major parameter for the lineman algorithm is the standard deviation of the emission
probabilities. We use this to balance the influence of the locality and the luminosity
of underlying pixels. For the assessment we tested the alignment quality for different
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Fig. 7.4.: Alignment quality of the different lineman heuristics for super-sampled input poly-
lines.

levels of degradation over a range of different values for ¢ and the viewport size. For
each level of degradation we tested with and without noise and used super-sampling
for a target segment length of 7.5 pixels. Using a normal distribution for modeling the
locality, we scaled the viewport size along the standard deviation at a rate such that
viewport size equals 20. Therefore, we expect that more than 95 % of all points sampled
from the respective distribution would overlap the viewport. Due to its poor running
times, for the classic heuristic we capped the viewport scaling at 26 pixels (therefore at
o =13). For larger values of o the viewport size was kept constant.

Asin Section 7.4 a baseline quality can be established for all inputs. With each feature,

Wiirzburg Louisville Bray

w/onoise w/noise w/onoise w/noise w/onoise w/noise

3 94.09% 30.34%  93.27% 28.45% 90.31% 33.27%
13 48.24% 26.50%  40.20% 25.12%  42.74% 35.12%
55 18.07 % 9.95% 14.53% 13.63% 11.99% 14.55%

Tab. 7.3.: Baseline F;-scores for all experiments that use different levels of simplification with
and without noise.
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each value for ¢, and the potentially applied noise, a different input polyline is generated.
For all combinations the baseline F;-scores can be found in Table 7.3. These demonstrate
the spectrum of degradation we test.

Figure 7.5a has the results for the classic heuristic and Figure 7.5b for the bisector
heuristic. For the first setting with very minor displacement of at most 3 pixels by the
simplification, we see, as expected, a very high alignment performance. Also we see that
applying the default noise with a standard deviation of 6 is completely healed by the
algorithm at a ¢ of 21. On the other side when ¢ is chosen too high the performance de-
creases because the algorithm chooses nearby features without honouring locality. The
bisector heuristic here shows a more massive collapse which might be because at these
values we already stopped scaling the viewport of the classic heuristic, due to runtime is-
sues. Therefore, in the setting using the classic heuristic the algorithm could not choose
features that far aside.

For more degraded input data the results are similar. A maximum displacement of
13 pixels could still be aligned perfectly with a similar standard deviation. The even
worse setting with at most 55 pixels displacement was uncorrectable but with massive
improvements when choosing appropriate parameters. Also apart from the very high
values for o, the performance characteristics were similar for both heuristics. The data
show that the displacement of the input polyline has a rather small impact on the op-
timal value for 0. Large displacements need a higher o than smaller but the alignment
quality equally suffers from high o values.

On the other hand, the point of optimality highly depends on the map. While on the
Wiirzburg map optimal values for ¢ are at about 21, on the Bray map the range 8 to 13,
and on the Louisville map the range 5 to 8 showed better alignments. For details see Fig-
ures A.1to A.4 in the appendix. This can be explained by the feature density of the maps.
When there are other features in range, locality becomes more important and especially
contour lines, the features we focus on for the Bray and Louisville maps, by their nature
are close together. But also the contrast of the maps influences the optimal choice of
o because the transition probabilities vary based on the luminosity difference of feature
and background and therefore the emission probabilities become more influential when
contrast is low.

Another observation is that there is a relatively large plateau of equally high qual-
ity. This makes it plausible that a close-to-optimal choice for ¢ can be achieved with
few guesses. Especially for small displacements a user-selected value for this parameter
likely results in decent alignment quality when it is chosen close to the maximum error.

Concluding, we can say that the quality difference between the two heuristics are neg-
ligible. The classic heuristic overall produces a better quality but the lead usually is be-
low 5 % and with some settings, especially on the Louisville map, the restricted viewport
of the bisector heuristic even benefits the alignment.
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(b) Lineman using the bisector heuristic.

Fig. 7.5.: Alignment quality of lineman on the Wiirzburg map for different values of o in the emis-
sion probability distribution.
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7.6. Color and Distance Scores

In Section 4.3 the construction of the step costs for the uniform-cost search has been in-
troduced based on the emission and transition probabilities of the hidden Markov model
based lineman algorithm. Analogously, evaluating their influence on the quality of the
alignment is based on the experiments in Section 7.5. In both cases the problem is bal-
ancing locality and pixel luminosity, the measure we use to identify affiliation with a
map feature. With a constant layer change score and the manually tuned distribution
as color score, the only parameter influencing the step costs is the standard deviation o
of the distance score.

We test different levels of input data degradation, namely simplification with an €
of 3, 13, and 55 pixels as well as applying additional noise as described in Section 7.2.
Therefore, the baselines from Table 7.3 apply. Again, the viewport size was linked to
the standard distribution of the locality model at 20. The running times allowed a scal-
ing over the complete experiment range of 0. The imagewalk algorithm does not need
super-sampling of the input polyline, so this was not a concern. In a real-world applica-
tion pixel trails are unwieldy, so we simplified the output with an ¢ of v/2 as described
in Section 4.4.

Figure 7.6 has the results for the Wiirzburg map. The other two setups can be found in
the appendix (Figures A.5 and A.6). We see some recurring patterns. The setting without
noise is, except for one outlier, consistently better than with noise, which is expected
because the noise obviously lowers data quality and increases the difficulty to align the
feature. The results mimic the behaviour of the lineman, that uses the same error model,
with anearly optimal alignment at a ¢ of 13 for the slightly and medium distorted inputs.
The strongly distorted input could be aligned with decent quality and bestresultsata o
of about 21.

One apparent difference is the performance at higher o values. The imagewalk com-
pletely looses track on this map as of a o of 89. On purpose we choose a feature thatis
not as dominant as other features on the map so this behaviour is expected at extreme
parameters. Still, the focus switch happens more often than with the lineman and once
switched the algorithm tends to stay on the wrong feature for longer.

Both observations hold for the other two maps. When looking at the Louisville map,
the alignment quality is better with smaller values for o so emphasis on locality (mean-
inglow o) hereisimportant. On the Bray mapitis mostly the same except for the severely
distorted setting where the imagewalk algorithm finds an alignment thatis significantly
better than with other algorithms. Here, the global search can show its strength.

Still, it is difficult to recommend a strategy for choosing o. Like for the lineman, due
to the overall high quality, especially with low quality inputs, at small displacements a
value close to the expected displacement is a good guess. For maps with low contrast or
features that are only lightly painted ¢ should be bit smaller.
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Fig. 7.6.: Alignment quality of imagewalk on the Wiirzburg map for different values of ¢ in the
distance score.

7.7. Linewalk: Viewport Size As Single Parameter

As outlined in Chapter 5, we designed the linewalk algorithm to reduce the necessity
of finding good sets of parameters for different settings. In the same setting as for the
experiments in Sections 7.5 and 7.6 the algorithm proved a competitive alignment qual-
ity, while relying only on a single parameter that has a strong connection to measurable
properties of the input. The viewport size as single parameter designates the scope we
allow the input displacements to have. In our experiment this scope is limited by the ¢
parameter of the simplification algorithm used to create the artificial inputs. Therefore,
we expect the optimal alignment quality when € and viewport size match, or at a slightly
greater viewport when additional noise is applied.

Because the input polylines are the same, the baselines from Table 7.3 can be con-
sulted for reference. As in Section 7.6 the output pixel trail was simplified with an ¢ of
/2 to get more convenient polylines. Figure 7.7 has the results for the Wiirzburg map.
Again, for the other maps the respective plots can be found in the appendix (Figures A.7
and A.8).

We see that the alignment quality is more sensitive to the viewport than with the
other algorithms. Considering that this is the only tunable parameter, this seems ac-
ceptable. At the respective sweet spots the alignment quality is comparable to the line-
man and imagewalk algorithms, except for the severely distorted input on the Wiirzburg
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Fig. 7.7.: Wiirzburg map linewalk epsilon vs viewport

map. In this setting the other algorithms reach higher scores at smaller viewports. The
linewalk concept does not produce good partial solutions when a continuous path of
dark pixels is not present in the viewport. On the other maps the severely distorted set-
ting where €is 55 is better aligned by the linewalk than on the Wiirzburg map and it no
longer falls behind the other two algorithms.

When recalling the experiment in this section as well as those from Sections 7.5 and 7.6,
we often see similar results. Considering the error model those algorithms have—they
all model misalignmentin a similar way—this is as sign that our implementations con-
sistently solve the task. Looking at the maximum alignment quality we see that, given
an optimal selection of parameters as precisely as we can estimate them from our experi-
ments, there are still differences. Table 7.4 shows the results when from the experiments
with varying o and viewport size parameters we choose only the best by alignment qual-
ity for two given settings on each map.

In order to select a realistic level of degradation, we opted for simplified inputs with
13 px and 55 px maximum displacement and Gaussian noise applied as described in Sec-
tion 7.2. The relevant parameters can be found below the respective scores. We see every
algorithm favours another map. On the Wiirzburg map the lineman is a little stronger.
On the Louisville map the linewalk massively profits from its incentive not to leave path
and on the Bray map the imagewalk leads the field.

One important observation therefore is, the lineman and imagewalk algorithms do
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Wiirzburg Louisville Bray

£ 13 55 13 55 13 55
Lineman classic 98.06% 61.69% 6822% 36.58% 8582% 30.21%
o 21 21 5 13 8 8
Lineman bisector 97.68% 68.76% 69.91% 38.82% 84.46% 33.54%
o 21 34 5 13 8 34
Imagewalk 96.76 % 63.02% 6696% 41.37% 96.96% 73.63%
o 21 21 5 13 13 55
Linewalk 96.46% 58.56% 79.91% 67.52% 87.34% 62.58%
viewport size 21 55 21 55 21 55

Tab. 7.4.: Alignment quality using the best parameters from the experiments from Sections 7.5
to 7.7.

not generally profit from tuning more parameters. Even when choosing the best of all
runs the linewalk, that only has the viewport size as an adjustable input, does not dras-
tically fall behind the other two algorithms. We see a very strong standing with the low
displacement setting and good results with an ¢ of 55 on the Louisville map, where the
performance overall was class leading, as well as on the Bray map where the lineman
could be surpassed by a large margin. On the Wiirzburg map the results were not as
good but with small manual adjustments to the input the results improved, so this is
not a general problem with this map.

7.8. Alternative Approaches for Handling Pixel
Luminosity

For all other experiments in this chapter we used a fixed setting for the transition prob-
abilities (respectively color score). In Section 3.2 we introduced two alternative pseudo
probability distributions. The one with the linear characteristic line has been used in
the original lineman formulation by van Dijk et al. [vDCD20]. The second based on the
Gaussian distribution is an attempt to establish a theoretic foundation for this parame-
ter.

In order to evaluate the differences, we set up an experiment using a simplified input
polyline with noise for the three maps with the default parameters of 15 for € and (6,6)
for ii. All algorithms used a o of 15 and a viewport sized 25 pixels. For the two lineman
variants the input was super-sampled to a target segment size of 8 pixels taking some
values from the super-sampling experiment in Section 7.4. Having the same input pa-
rameters, the baselines from Table 7.2 also apply here.

Table 7.5 has the results. The differences are larger than expected by looking at the
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Map Algorithm Linear Gaussian Manually tuned

Lineman classic 95.12% 96.81% 96.58 %
Wirzburg Lineman bisector 94.35% 97.71% 96.95%
Imagewalk 88.79 % 91.01 % 96.28 %
Lineman classic 62.74% 53.63% 44.42 %
Louisville Lineman bisector 64.19% 57.97% 50.11 %
Imagewalk 80.55% 57.39% 59.92 %
Lineman classic 6997% 64.25% 82.60 %
Bray Lineman bisector 75.10%  66.18% 78.27 %
Imagewalk 81.76 % 74.69 % 83.63 %

Tab. 7.5.: Alignment quality using different pseudo probability distributions for the transition
probabilities or color score.

plot in Figure 3.2. We see that the manually tuned variant performs good on both the
Wiirzburg and the Bray map, but the Louisville map again is a difficult candidate. Espe-
cially the combination of the imagewalk algorithm and the linear pseudo distribution is
an outlier, to the positive but still, that is very sensitive to parameter changes.

From the experiments in Sections 7.5 and 7.6 we know, that the value of 15 for s isnot a
good choice and the alignment quality benefits from lower values. When repeated with
ao of 8, the F;-scores settle between 67 % and 79 % and the large discrepancies no longer
occur.

When designing the linewalk we used the maximum luminosity instead of average lu-
minosity. Therefore staying on a path becomes more important for the score than the
absolute darkness. This approach can be used also for the lineman’s state transitions.
Figure 7.8 has the results as difference in the F,-score between using maximum and av-
erage luminosity. Positive values mean the maximum luminosity and negative values
mean the average luminosity resulted in a better alignment quality.

Although the negative effect clearly dominates, it highly depends on the map and the
length of the segments. For very small segments the differences become insignificant
because the scores can easily be compensated by other segments. When in the super-
sampling the target segment size is chosen longer, this changes. While alignments on
the Bray map become significantly worse, this effect is not as distinct on the other maps.
On the Louisville map, and only when the bisector heuristic is used, taking the maxi-
mum luminosity increases alignment quality for segments of small to medium length.
For longer segments maps with high contrasts seem favour average luminosity more
than low contrast maps. For shorter segments the differences are negligible with the
bisector variant on the Louisville map as an outlier.
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Fig. 7.8.: Difference in alignment quality when using maximum luminosity instead of average
luminosity for scoring state transitions.

7.9. Running Times

One major concern of the original lineman was that it is rather slow, so improving on
that was a critical design objective for all the algorithms. All performance testing was
done using a workstation running Fedora Linux 34 with Kernel 5.14.11 on an AMD Ryzen 9
3900X with 64 GiB of memory. In order to use independent tooling, we measured the
complete time from starting the executable until its termination. Thisincludes overhead
for loading the map which was 63.4 ms for the Wiirzburg map, 37.4 ms for the Louisville
map, and 16.6 ms for the Bray map. For consistent results each experiment has been re-
peated atleast 10 times in a row (or for atleast 1s when the running time was very short)
and the average of all runs has been taken. We paid special attention to the variance of
the runs rejecting all experiments that may have been influenced by external events.

As we now from the theoretical considerations, the runtime of the algorithms, due to
its asymptotic behaviour, mainly depends on the viewport size. So for our experiments
we will focus on settings that vary this parameter. The runtime of our algorithms also
depends on the length of the input polyline and the number of vertices in it. For our map
samples the total length can be found in Table 7.1. We used the same simplified polylines
as inputs as in Section 7.4 so the number of vertices can be found in Table 7.2. For the
lineman we super-sampled to a target segment size of 7.5 px, so in this case the samples
have 347 (Wirzburg), 702 (Louisville), and 193 (Bray) virtual vertices.
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Viewport Maximum viewport s.t. £ < ...

M Algorith :
ap gorthm sized 26 px 125ms 250ms 500ms Is

lineman classic 2m29s 4 px 5 px 7 px 8 px
Wiirzburg %ineman bisector 104 ms 32px  49px  67px  88px
imagewalk 365 ms 8px  19px 33px  54px
linewalk 764 ms <2px 3px 16px  34px
lineman classic 4m52s 3 px 5 px 6 px 7 px
Louisville %ineman bisector 115ms 28px  41px 55px  73px
imagewalk 545ms 7 px 14 px 25px  40px
linewalk 1400 ms <2px 2 px S5px 19px
lineman classic Im20s 5 px 6 px 8 px 9 px
Bra lineman bisector 38.5ms 50px 66px  85px 110px
Y imagewalk 145 ms 23px  40px 66 px 168px
linewalk 294 ms 4px 21px  41px 67px

Tab. 7.6.: Running times for a representative viewport and maximal viewport sizes for chosen
response times in an interactive environment.

In our experiments we used two settings. First, we chose a viewport of 26 pixels that
is representative for our free hand sketches. Second, we tested how large the viewport
may be at most to finish in a given time. Because our algorithms are meant forinteractive
settings, the response time should be imperceptible or atleast not annoying. The results
can be found in Table 7.6.

The running times of the classiclineman have been addressed several times. Here the
numbers confirm that this algorithm is not a match for interactive applications. For our
average setting the running time of over a minute is clearly too long. The bisector heuris-
tic as expected shows massive improvements. Also the two other algorithms finish after
areasonable amount of time.

In the other setting also the scaling is tested. We see that when increasing the time
limit for all algorithms, except for lineman with the classic heuristic, significantly larger
viewports become feasible. The linewalk implementation as outlined in Chapter 6 has
potential for improvements. Especially the baseline running times are rather high, even
higher than the classic lineman which seems unnecessary and often implies a subopti-
mal implementation. With more time budget the linewalk supports larger viewports, so
the scaling as expected based on the runtime analysis is better.

Another observation is the total length of the input polyline for linemanis not as influ-
ential as for the other two algorithms that work on a pixel level. This makes the lineman
with bisector heuristic very lightweight and suitable for low latency applications. On
the other hand when the features are short, the linewalk concept is fast enough even for
larger viewports and needs less setup.
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8. Strategies for Interactive Matching

Reading and understanding maps is a complex task even for humans. For the foresee-
able future algorithms will have a supporting role in that process. While we rely on hu-
mans to identify a feature of interest, more sophisticated tools may automate this. But
a human reviewer will have to check the results and take actions on wrongly attributed
elements. This task should be made as simple and as efficient as possible.

Our algorithms are designed for a batch-processing setup. For a given set of maps
input polylines have to be present and the algorithms optimize them by moving their
vertices. Considering that the alignment is not always perfect, the setting should in-
stead expect the process of generating inputs and reviewing outputs to be interleaved, so
feedback loops allow continuous adaption. Human annotators mark features for tran-
scription by clicking rough polylines along the course of the lines. Then an alignment
algorithm performs optimization steps, followed by an examination of the results by
the annotator. If the alignment is not adequate the input can be modified followed by
another round of optimization and examination.

There are two straightforward points where this feedbackloop can be enhanced. First,
the examination process may be guided by a measure of confidence for the segments of
the polyline, so the reviewer can focus on points where there are doubts that the algo-
rithm performed well. Second, in case an annotator found an area of misalignment the
algorithm should not just be rerun with a refined input but the annotator might add ad-
ditional points to the input polyline that lie on the feature and must not be moved by
the algorithm.

Incorporating Fixed Points

The algorithms presented in this thesis produce the alignment by moving (potentially
super-sampled) vertices according to given parameters. In order to support fixed ver-
tices some changes are necessary. Suppose that, as part of the input, we know which
vertex should be fixed as an augmentation of the polyline.

For the algorithms based on hidden Markov models we already introduced the con-
cept for example for the start vertex in Section 3.1. A vertex that should be fixed induces
a probability of one for the closest pixel and of zero for all other pixels. The Viterbi ta-
ble than has only one non-zero entry in the corresponding column and the optimal se-
quence has to contain exactly this entry. So for the lineman and linewalk algorithms we
can use this to ensure a given vertex is not moved in the output—to be precise, it will
be moved to pixel closest to the vertex but no further. Both implementations have been
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extended to support fixed points as inputs so we can test the processes presented in this
chapter.

The imagewalk algorithm is based on uniform-cost search. Here, the concept of fixed
points is more difficult to incorporate. Our approach is to split the input at each fixed
pointand run the alignmentindependently. We know that with this algorithm the input
and output polyline share the start and end vertex. Therefore, we can obtain a consistent
output by concatenating the separate polylines. With respect to our assumptions in the
definition of the imagewalk algorithm, this is optimal. Despite this is not much more
effort than adopting the HMM based algorithms and because for a first evaluation we
do not need all the algorithms, due to time constraints the implementation has been
postponed.

Measuring Alignment Confidence: The Naive Approach

In order to provide guidance for finding areas of misalignment, we need to provide a
measures of alignment confidence. One naive approach is to find the lightest segment
of the output polyline. Using the average luminosity defined in Section 2.5 this can be
implemented with already established techniques. For each segment the line drawing
is calculated for example using Bresenham’s algorithm as suggested in Section 2.6. Av-
eraging the luminosity of the pixels from the drawing gives a ranking where the dark-
ness of a segment means we are more confident that this segment aligns with the fea-
ture. Where dark segments show confidence, light segments probably show cases where
there is a misalignment or a change to another feature.

This approach gives us the points on the polyline where the algorithm made a wrong
decision or corrected a former mistake by changing back to the feature. Where we seek
to identify areas of misalignment, the segments that are light because the algorithm
switches to another feature (or back from one) only point at the start (or end) of such an
area. As a feedback to the annotator, one could argue the center of the misaligned area
is preferable. With the luminosity only, we cannot determine where and if we align with
the target feature versus an undesired one. So we cannot find the center of that area.

Measuring Alignment Confidence Via Disagreement

Another approach is to use the fact that our toolkit provides us with more than one al-
gorithm for the task. Assuming that those make different mistakes, we can run two al-
gorithms with the same input and find areas where the results diverge. For finding the
largest gap between two polylines the Fréchet distance can be used. As discussed in
Section 2.2, the Fréchet distance is difficult to calculate. Therefore we use a simpler for-
mulation, the discrete Fréchet distance, as proposed by Eiter and Mannila [EM94].
Other than the original, the discrete Fréchet distance only looks at the vertices of the
polylines and ignores the segments in between. Therefore, for polygonal curves the orig-
inal Fréchet distance is always smaller or equal the discrete variant. If the leash is long
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Algorithm 8: Discrete Fréchet distance

Input: Polylines sy, ..., Sy, t, ..., tn
Output: Indices i, j of the two gap vertices
1 C 4+ tablen xm
for1 <i<ndo
for1 <j <mdo
d  |si, o]
ifi=1andj=1thenC[i,j] + d
elseif i = 1then C[i, j] <— max(C[i,j — 1], d)
elseif j = 1 then C[i,j] + max(C[i — 1,/],d)
else C[i,j] < max(min(C[i — 1,7 — 1], C[i,j — 1], C[i — 1,7]),4d)

w N

0 N s

return arg min i + j such that C[i, j] = Cln, m]

)

enough to span the distance between the endpoints it is also long enough to span any
minimal distance in between. Eiter and Mannila also show that the difference is not
larger than the length of longest segment of the polyline. For our use case the polylines
have rather small segments either at the length they were super-sampled at or at one
pixel length. Because of that, we do not expect consequences on the geometrical preci-
sion of our method by using the discrete Fréchet distance instead of the exact Fréchet
distance.

Algorithm 8 has a detailed description of discrete Fréchet distance. Notice that com-
pared to the formulation by Eiter and Mannila we also backtrack the dynamic program-
ming table to find the location of the gap responsible for the distance. That is the po-
sition in the table where the first time the final distance appears. Apart from that the
algorithm is a straightforward application of dynamic programming. As a result we get
the indices of two vertices. The midpoint of the segment between them is our approxi-
mation for the center of the gap.

Evaluation

In order to quantify the effect of interactive alignment we set up a small experiment that
is a simplified fully autonomous version of the interactive process. We use a degraded
input like in Chapter 7 using the Doublas-Peucker algorithm with € equals 34 to sim-
plify a hand-annotated reference and apply Gaussian noise as described in Section 7.2
with the zero vector as mean and a standard deviation of (6 px, 6 px). This input then
is aligned to the map by applying the Lineman algorithm with the bisector heuristic as
well as the linewalk algorithm—those we prepared for incorporating fixed points.
Then, in order to find the worst segment we started using the naive approach sepa-
rately for each algorithm. In another setting we used the combined strategy based on
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Separate Combined

Lineman Linewalk Lineman Linewalk

Start 81.89% 69.98%
Wiirzburg  Steps 3 4 10
End 82.63% 74.38% 85.10% 83.42%

Start  49.27%  59.65%
Louisville  Steps 5 8 10
End 5491% 69.70% 55.53% 63.69%

Start 40.01% 64.58%
Bray Steps 4 6 13
End 48.54% 78.72% 84.34% 88.11%

Tab. 8.1.: F-scores before and after several steps of automated refinements.

the discrete Fréchet distance. With the coordinate of the center of lowest confidence we
take the closest segment and the closest point in the reference. This segment then is
patched with the reference point to produce a refined input.

The refined inputis again aligned and we find new areas of low confidence. The above
procedure is repeated and a more and more patched input is produced of that we expect
better alignments. The alignment quality is determined for every step and algorithm as
described in Section 7.3. We repeat the procedure until either the alignment is perfect
(meaning an F;-score of 99 % or more in our case) or the same reference point is selected
twice which would result in an infinite loop. The results are presented in Table 8.1.

For each map the table has the two settings (separate and combined) and the baseline
F,-score before the first patching step (which is the same for both settings), the number
of steps before we stopped, and the resulting score after the last patch. We can see none
of the experiments stopped with a perfect alignment but the quality could be increased.

Recall that the second condition under that the procedure stops means the patch did
not improve the alignment and the same area is still likely poorly aligned. So having
more successful steps is positive and usually results in a better alignment. As we can see
the combined method leads to better results than only evaluating the segment lumi-
nosity. When reviewing the results, the recommendations for badly aligned areas to us
appeared useful. Other than our autonomous setup, a human would have strategically
chosen better patches from the reference. So this has to be considered as a weakness of
the experiment that might have had a negative influence on the results. In practice with
a real human selecting the fixed points, we expect an overall better alignment after the
refinement steps.
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9. Conclusion

Aligning polylines to line features on raster data of historical maps can be done with
good geometric accuracy using the tools we presented. On real scans of historic maps
from different centuries we showed that our algorithms are ready for application. Based
on prior work we implemented an algorithm that uses hidden Markov models (HMMs)
andlocal optimization techniques. Our evaluation shows that thisis a match for the task
and displacements of 3—4 times the feature width can be reliably compensated. With
super-sampling also inputs with low complexity can be processed. For this algorithm
we found good heuristics that reduce the running time by three orders of magnitude for
real-world instances compared to prior implementations.

Because the existing algorithms, including our first approach, depend on multiple
critical parameters we introduced enhanced algorithms that provide fast and accurate
alignments while requiring less domain knowledge and tuning. The first algorithm uses
uniform-cost search (UCS) to find good paths through pixels alongside the input maxi-
mizing the achievable geometric precision to one pixel without depending on additional
user input for super-sampling.

Combining those approaches, we designed a third algorithm that uses HMMs for the
large scale and UCS for the fine adjustments. This realizes a feasible tool with only one
adjustable parameter—the search range or maximum displacement—that can be er-
gonomically integrated in an annotator interface for example by highlighting the cov-
ered area. In future versions the algorithm can be implemented with variable viewports
to enable users to choose the maximum displacement per line segment. Our evaluation
shows that alignment quality and performance is comparable to the other approaches
as long as the line feature is continuous. An enhancement to enable aligning discon-
tinuous features like dashed lines or similar patterns is one important task for future
research. We also presented an idea how in future work the running time can be im-
proved using search strategies that cover multiple targets. Parallelization is a promising
approach to further reduce running times that, as shown in the literature review, has
been successfully implemented for related tasks.

Besides the running time, the alignment quality is the most important property of
these algorithms. Weimplemented abenchmarking harness based on established guide-
lines to assure and compare the quality of different implementations. Our experiments
show how the different parameters affect the alignment depending on different proper-
ties of the maps and targeted features. Also we could evaluate how critical the precision
of the inputis and for what grade of line displacement an accurate reconstruction of the
line feature can be expected.
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Our algorithms use the luminosity as a measure for whether a given pixel belongs to
a feature on the map or not. For colored maps a multispectral approach seems more
promising. When the color of the target feature is known, the algorithms can use a dis-
tance measure in the color space instead. More research into this approach is necessary.
Especially the automatic deduction of the feature color from imprecise input is an open
question that overlaps the greater question of automated feature detection. Also other
visual properties like saturation could be taken into account to enhance the classifica-
tion step. Even more enhanced techniques based on machine learning when available
can be installed that use our algorithms to create the vector representation from pixel
classification.

To get an intuition for real-world usage we simulated an interactive process for pro-
ducing annotations with local optimization by our algorithms. The results show that
measures of confidence can guide users to areas of misalignment and reduce the effort
necessary for obtaining data of highest quality. These findings can be used as best prac-
tices for future designs of interactive feature annotation software.
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Fig. A.6.: Alignment quality of the imagewalk algorithm on the Bray map. See Section 7.6 for
details.
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Alignment quality of the linewalk algorithm on the Louisville map. See Section 7.7 for
details.
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Alignment quality of the linewalk algorithm on the Bray map. See Section 7.7 for details.
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