The Complexity of Counting Turns in the Line-Based Dial-a-Ride Problem

SOFSEM 25

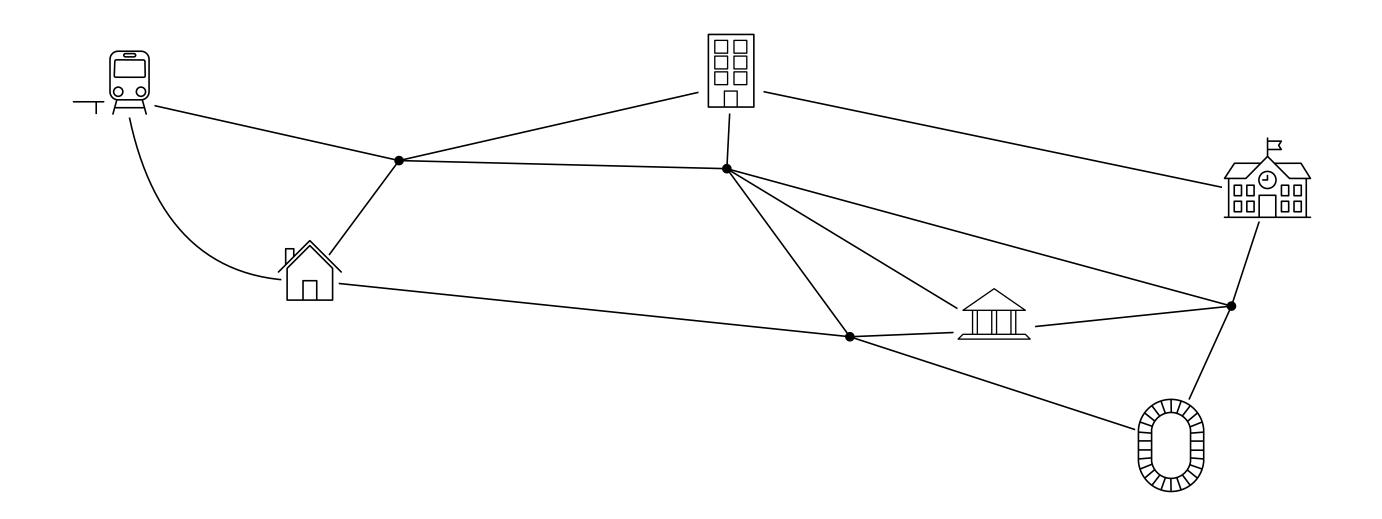
Antonio Lauerbach

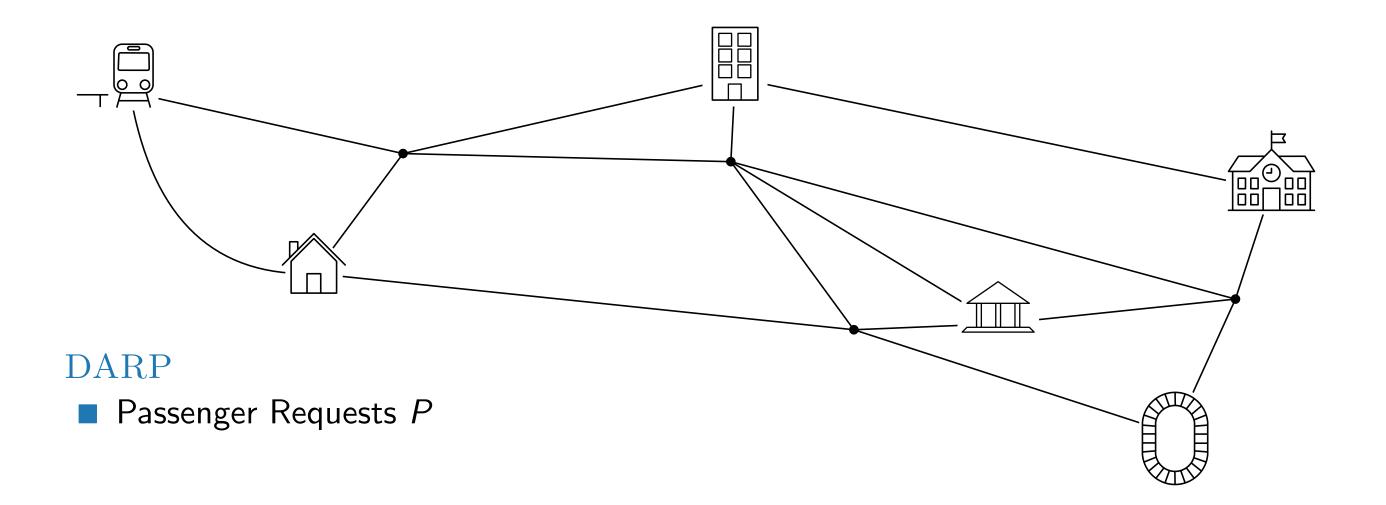
Kendra Reiter

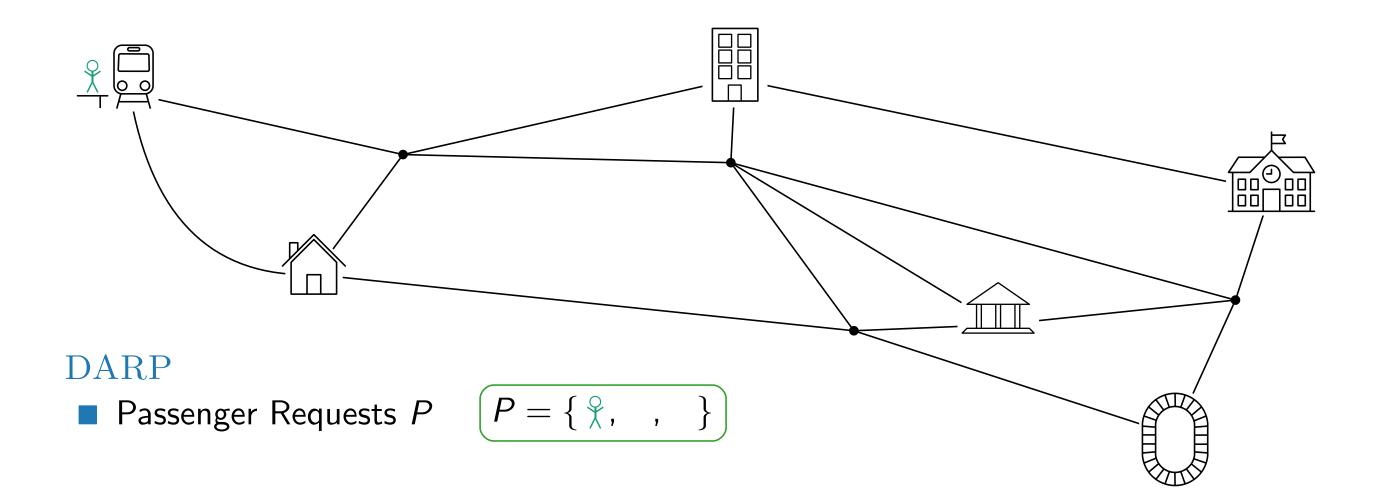
Marie Schmidt

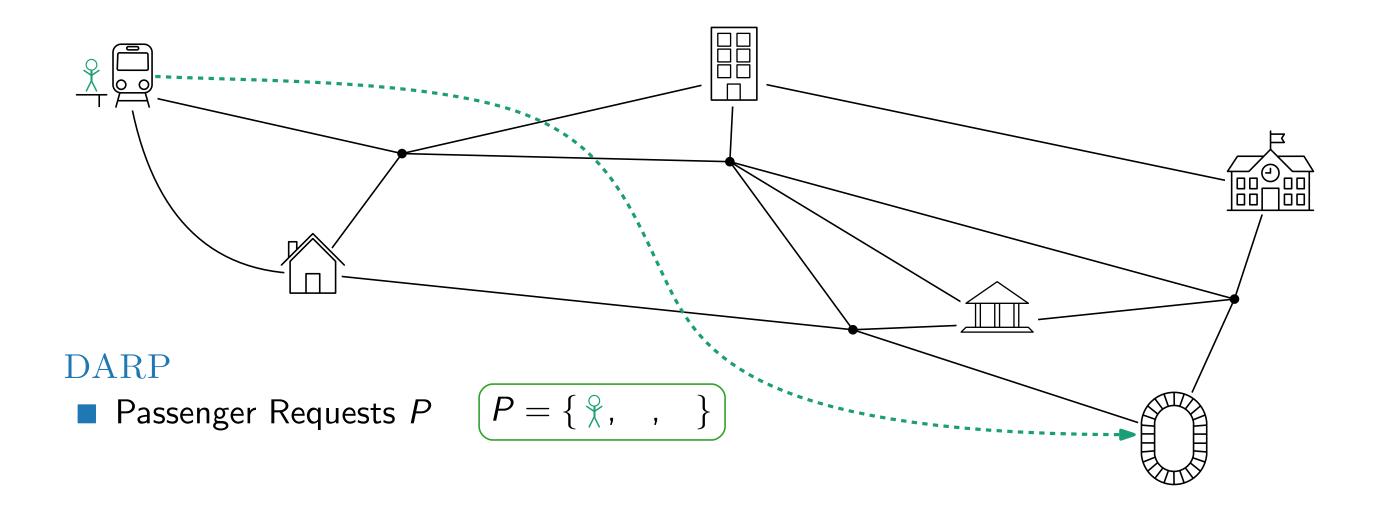
Dial-a-Ride-Problem (DARP)

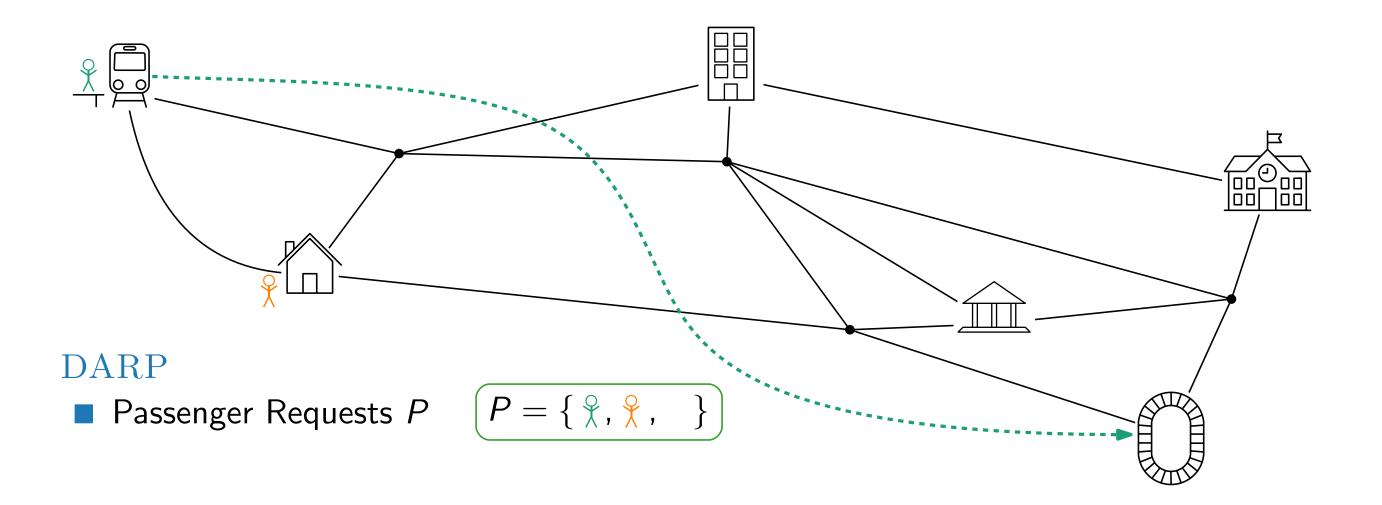
Dial-a-Ride-Problem (DARP)

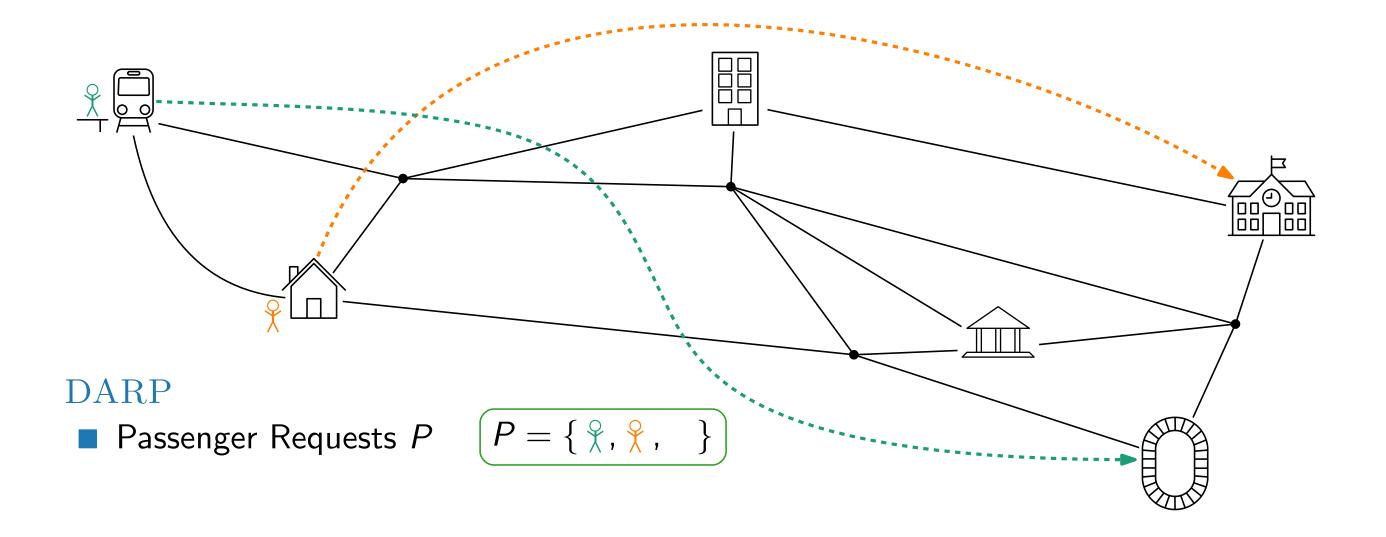


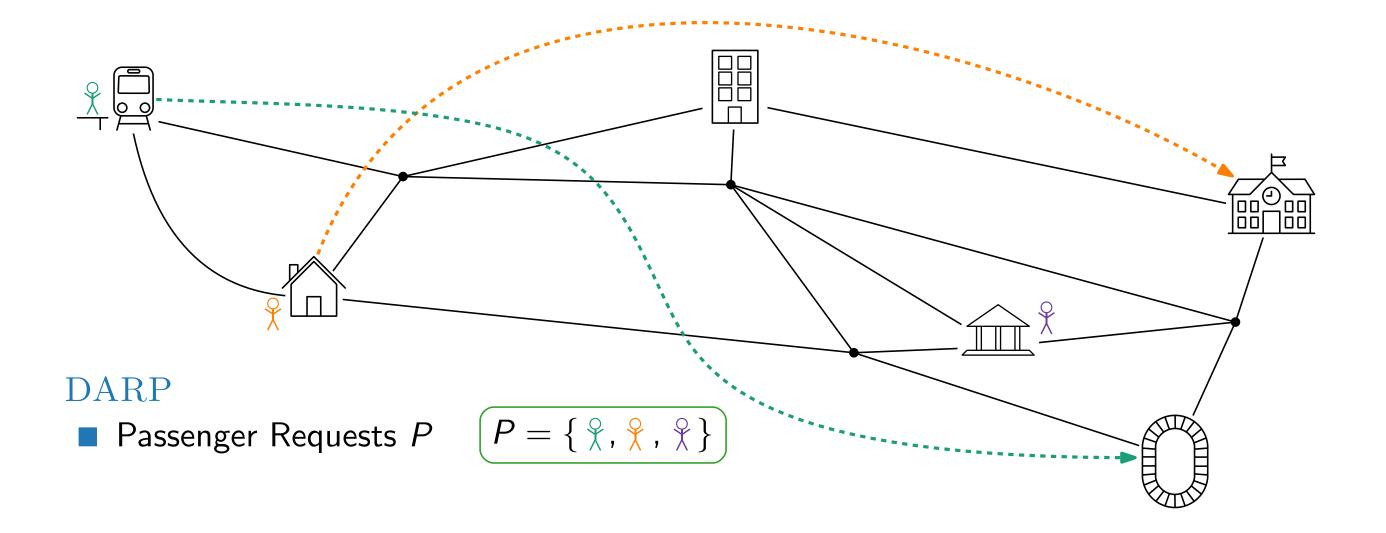


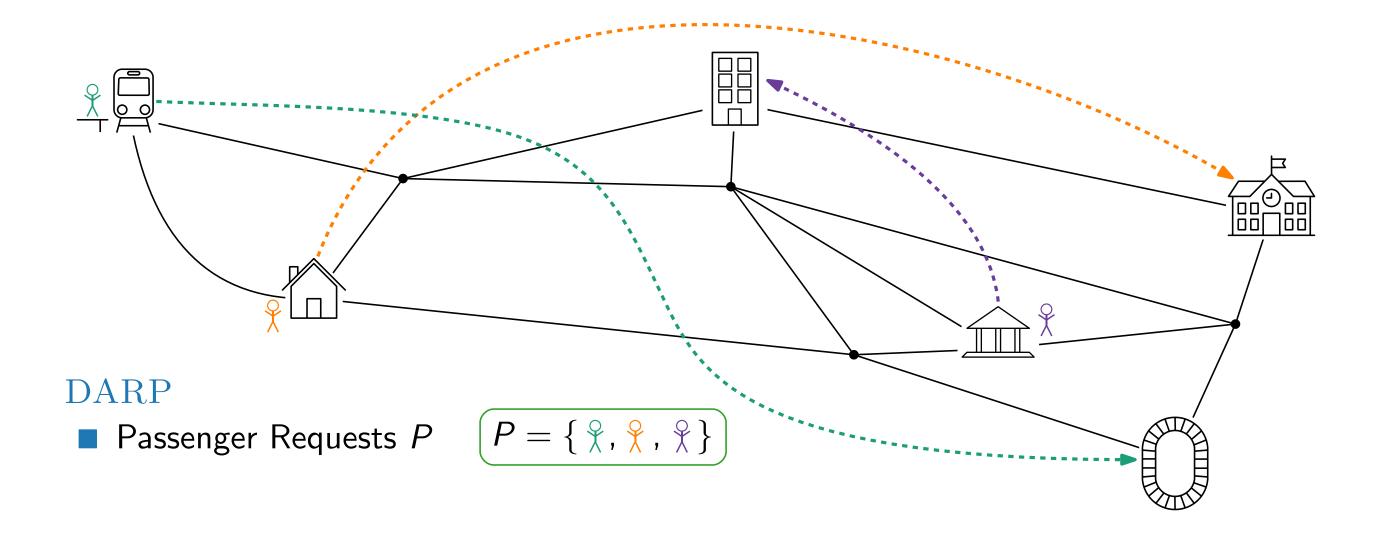


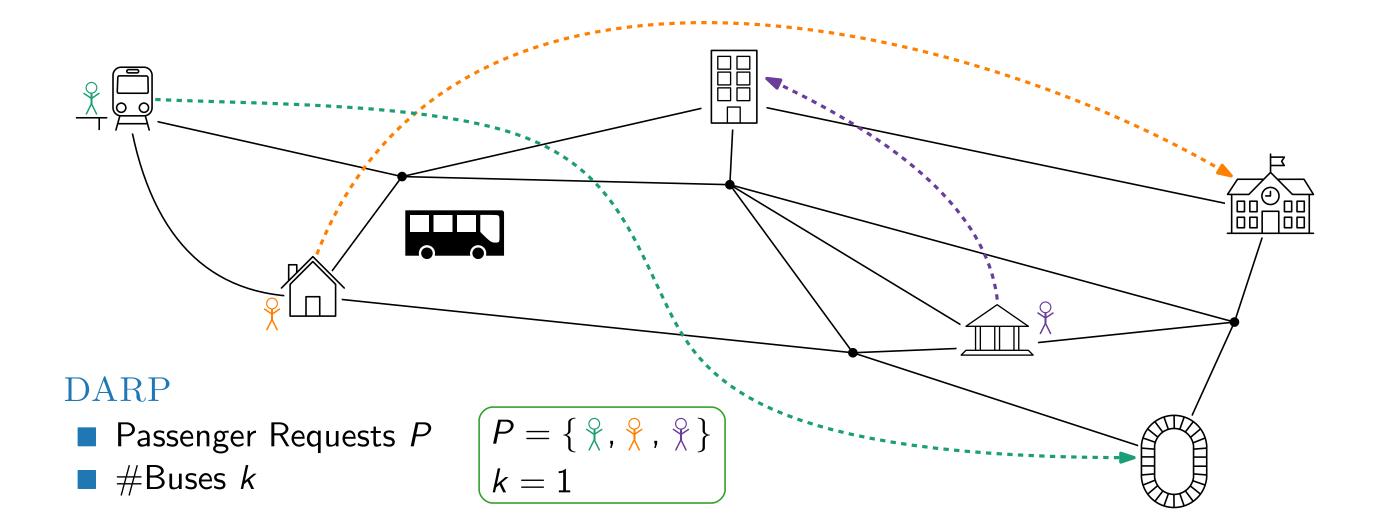


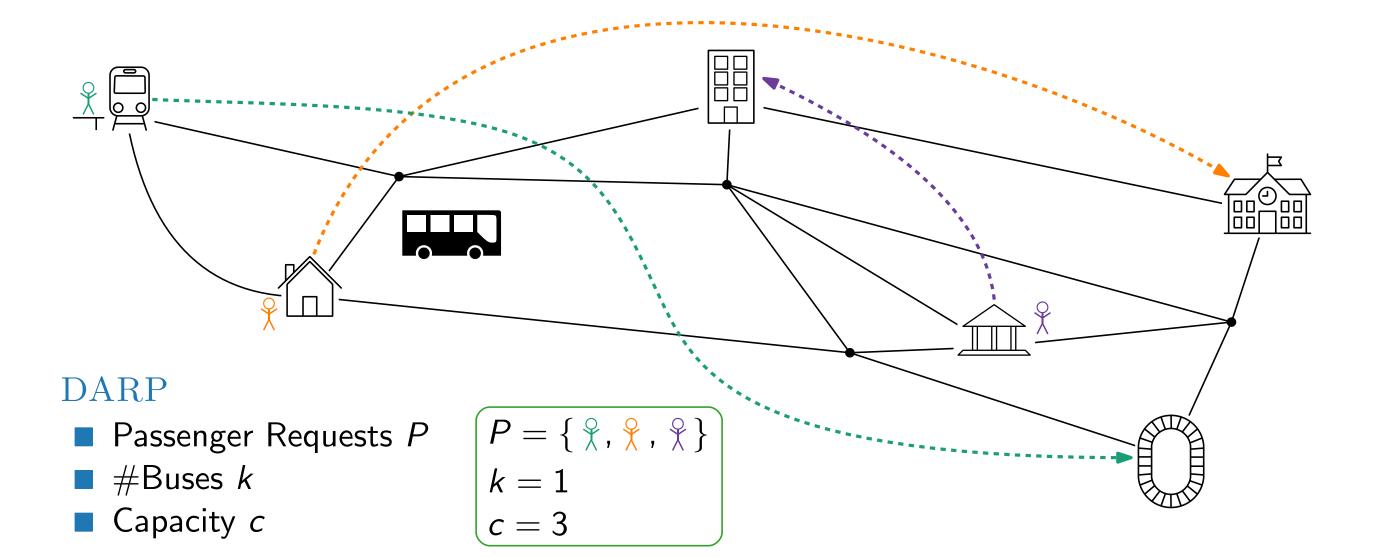


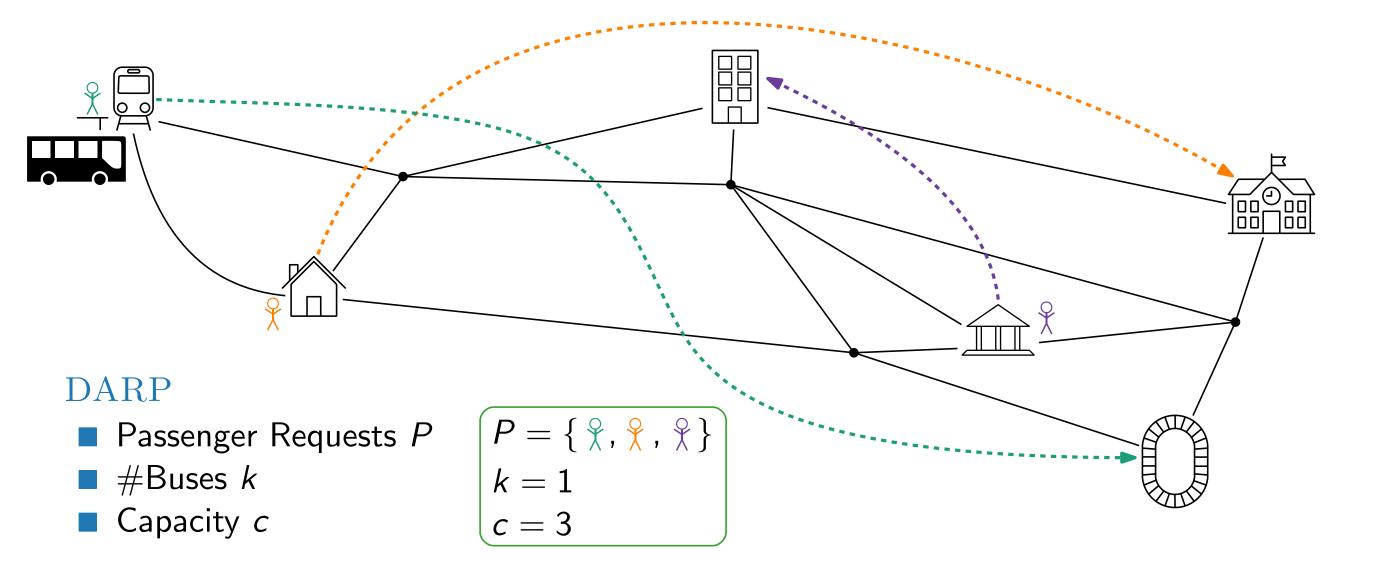


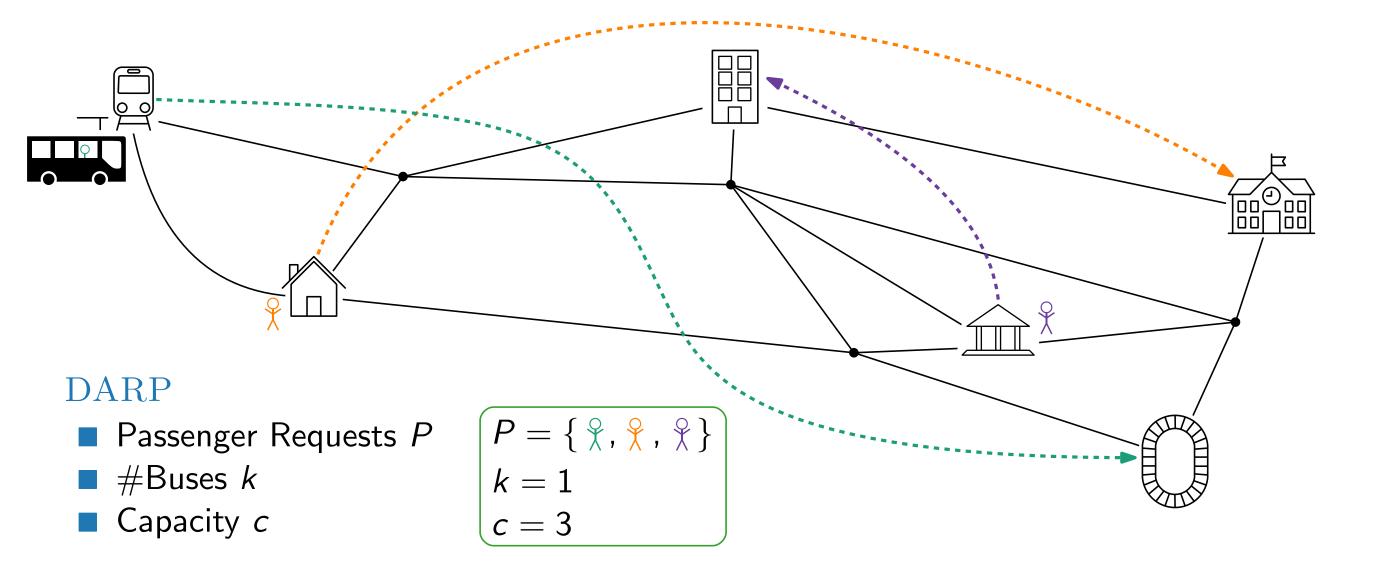


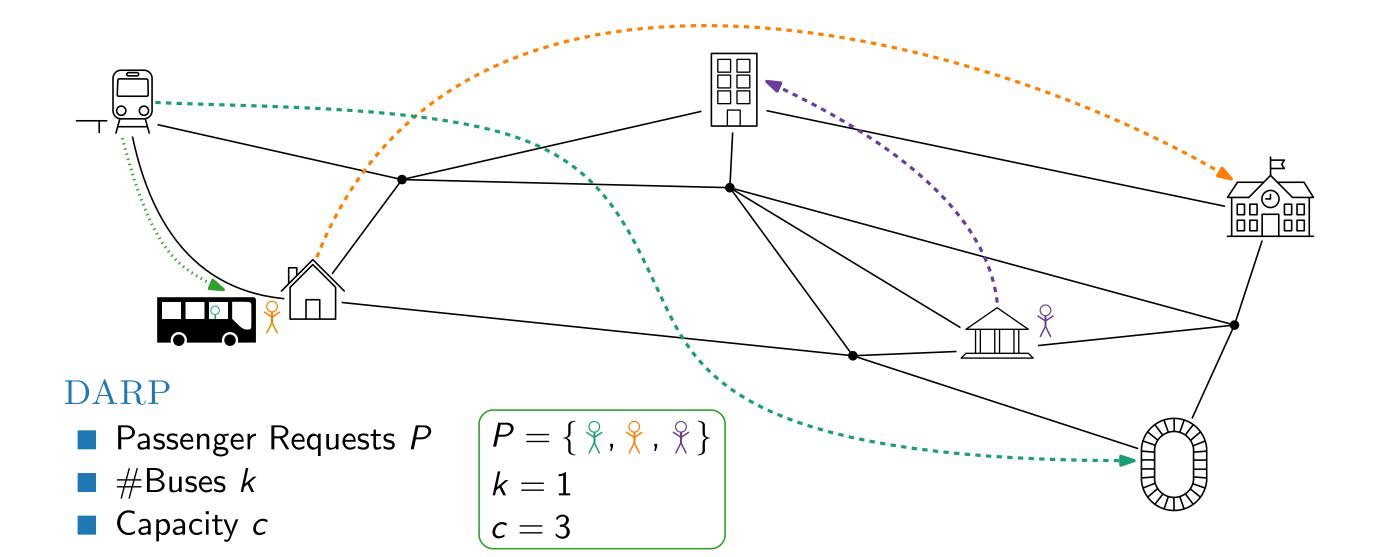


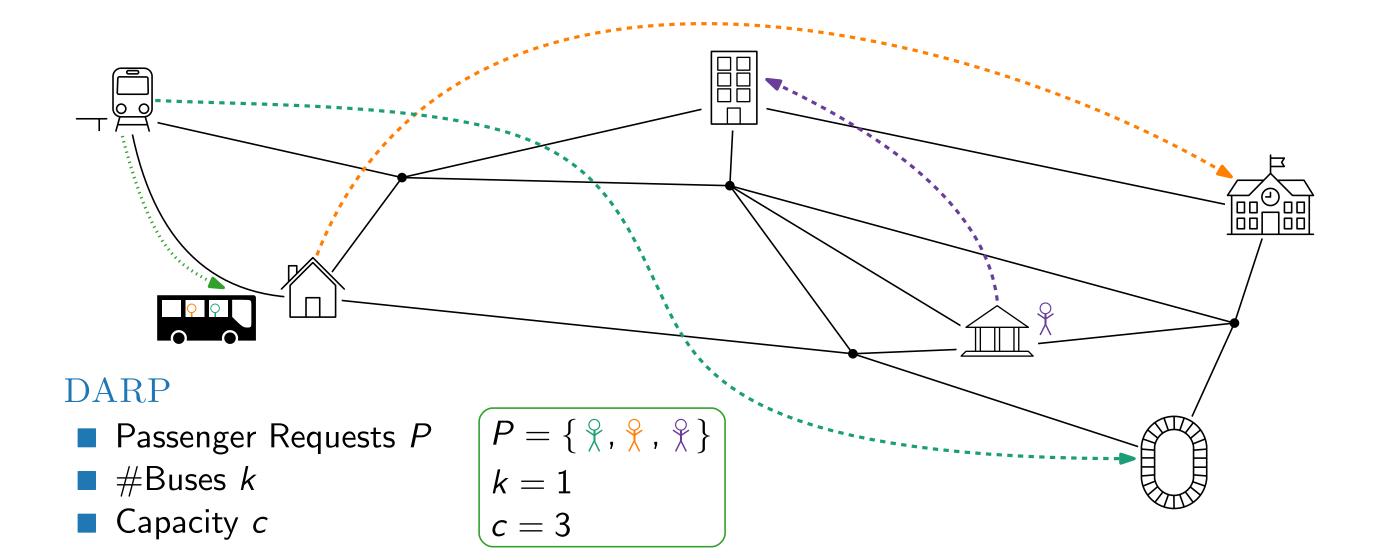


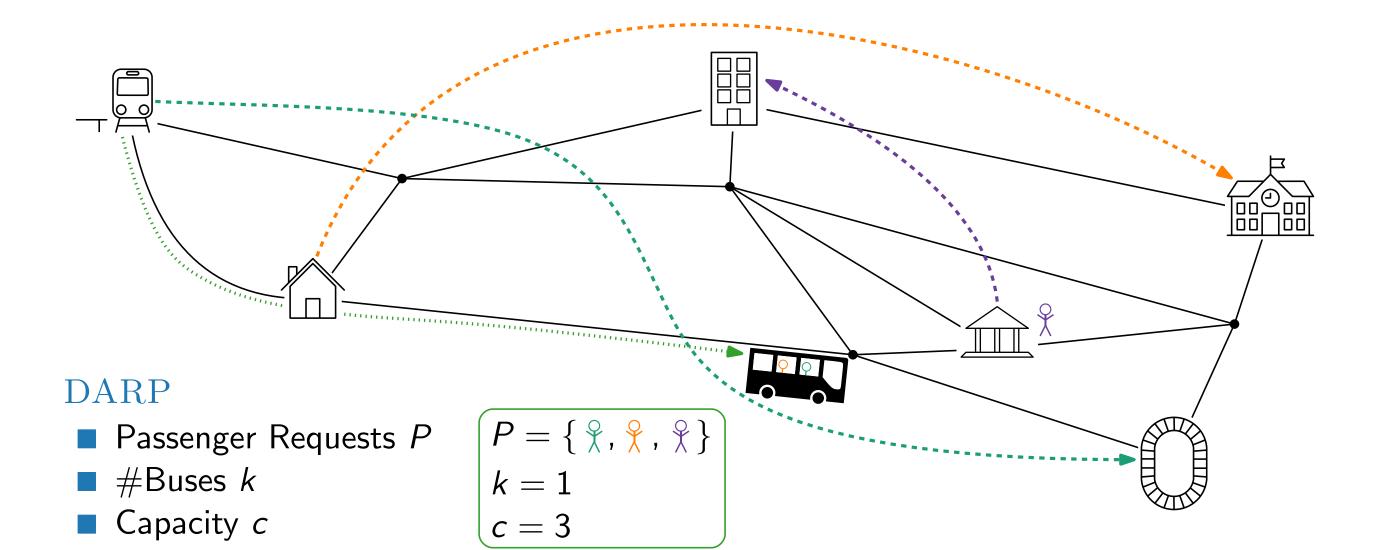


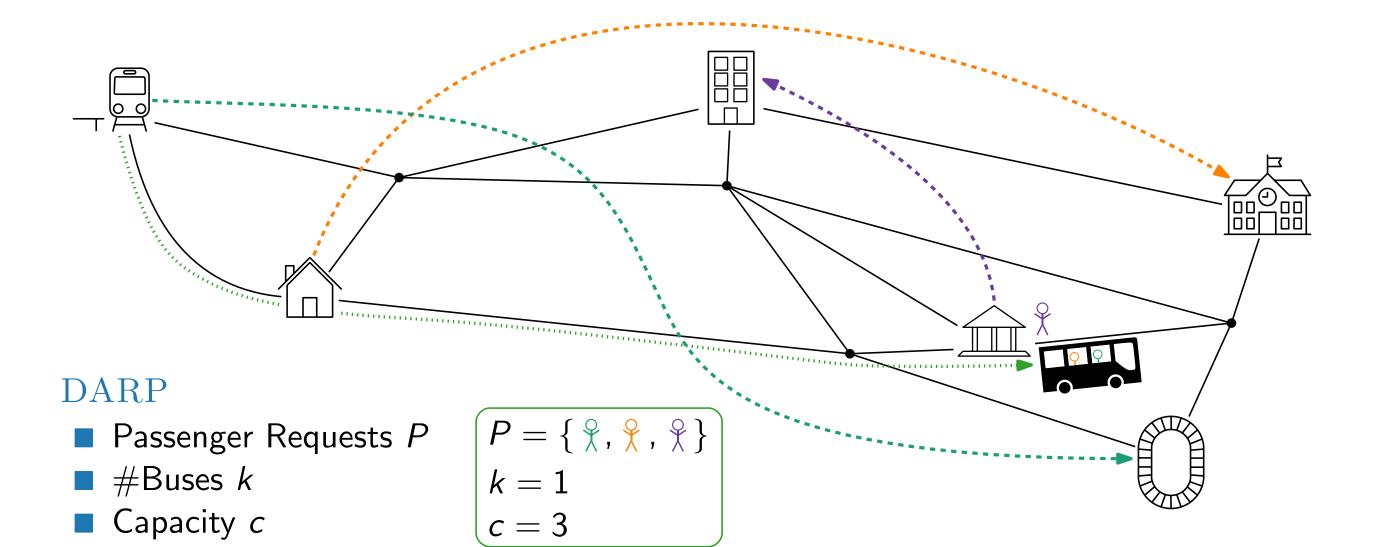


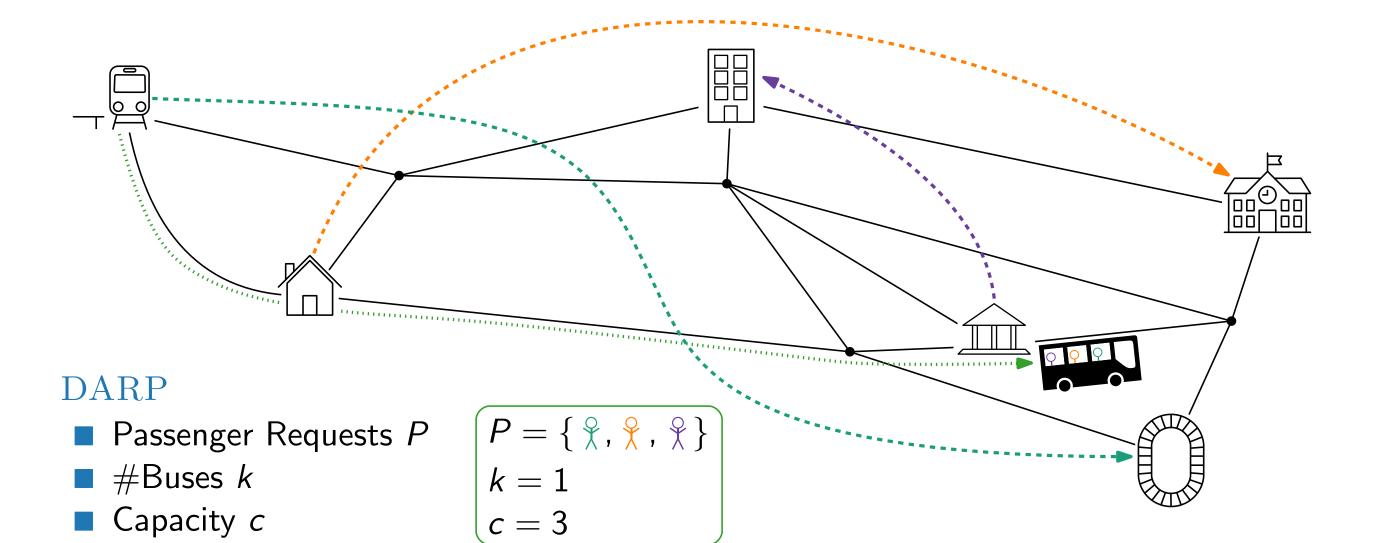


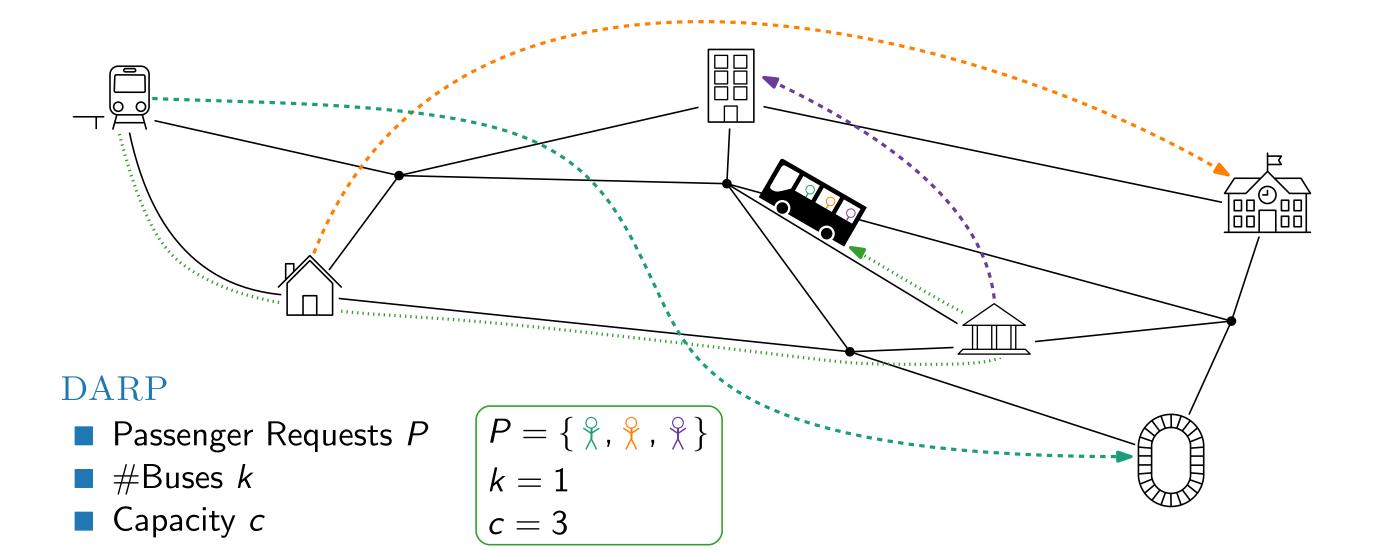


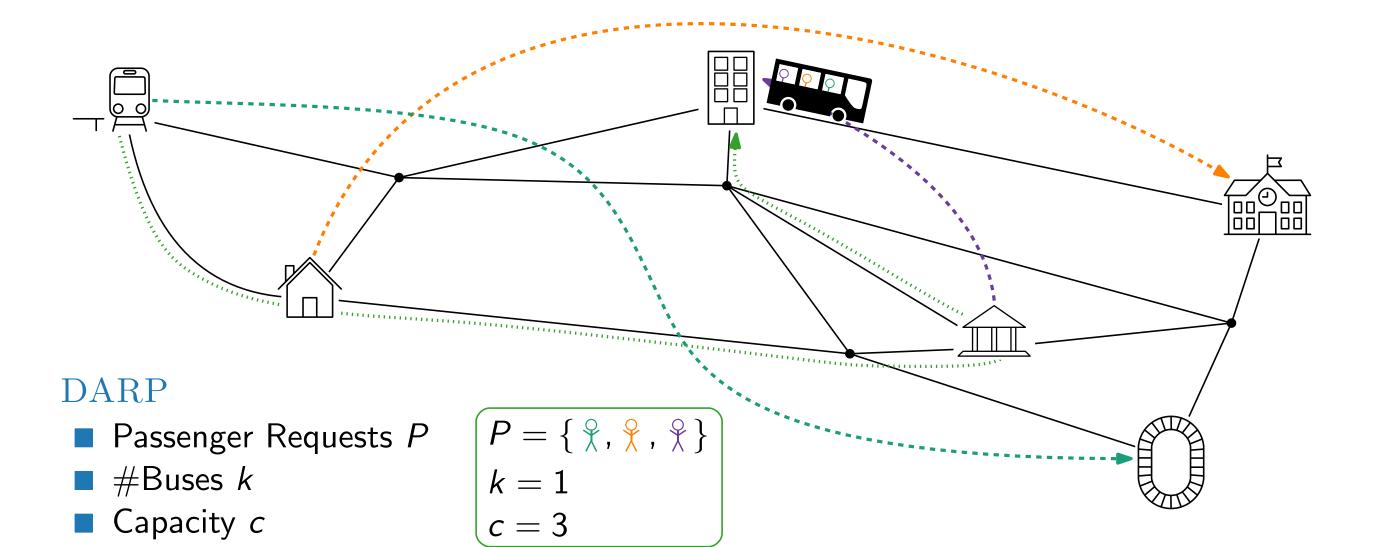


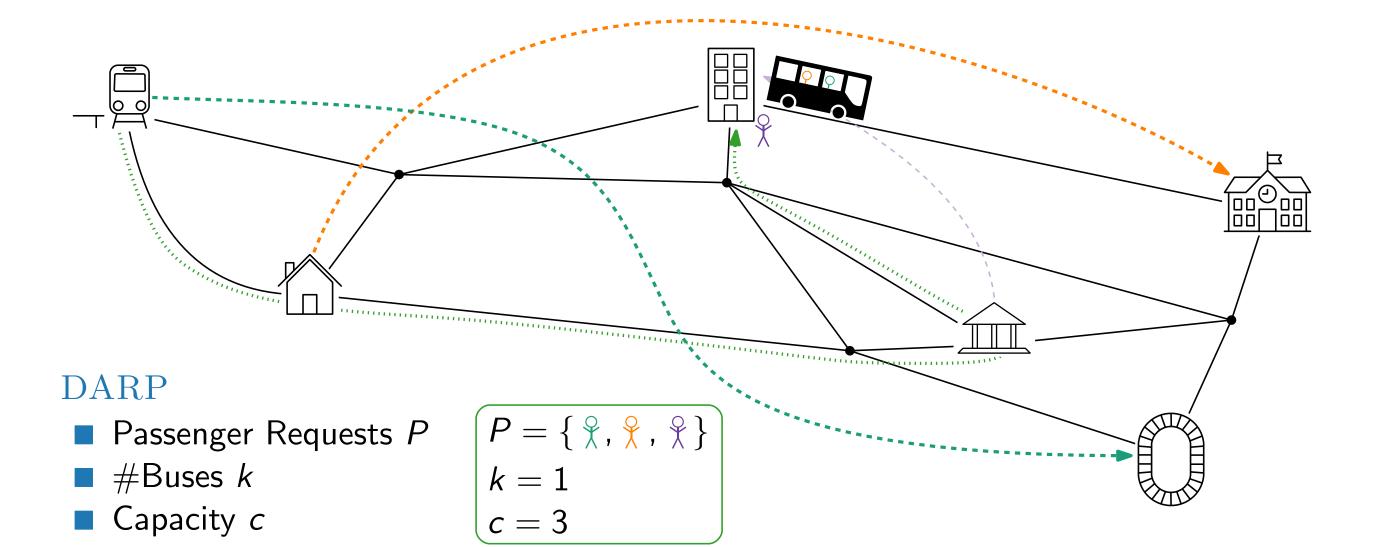


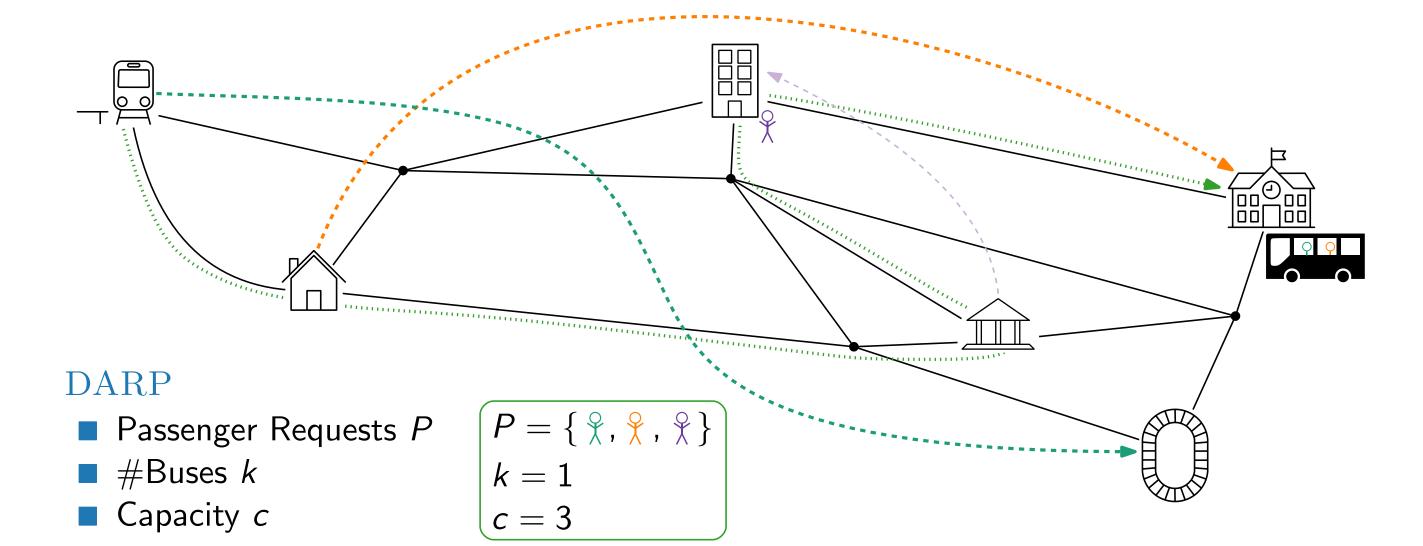




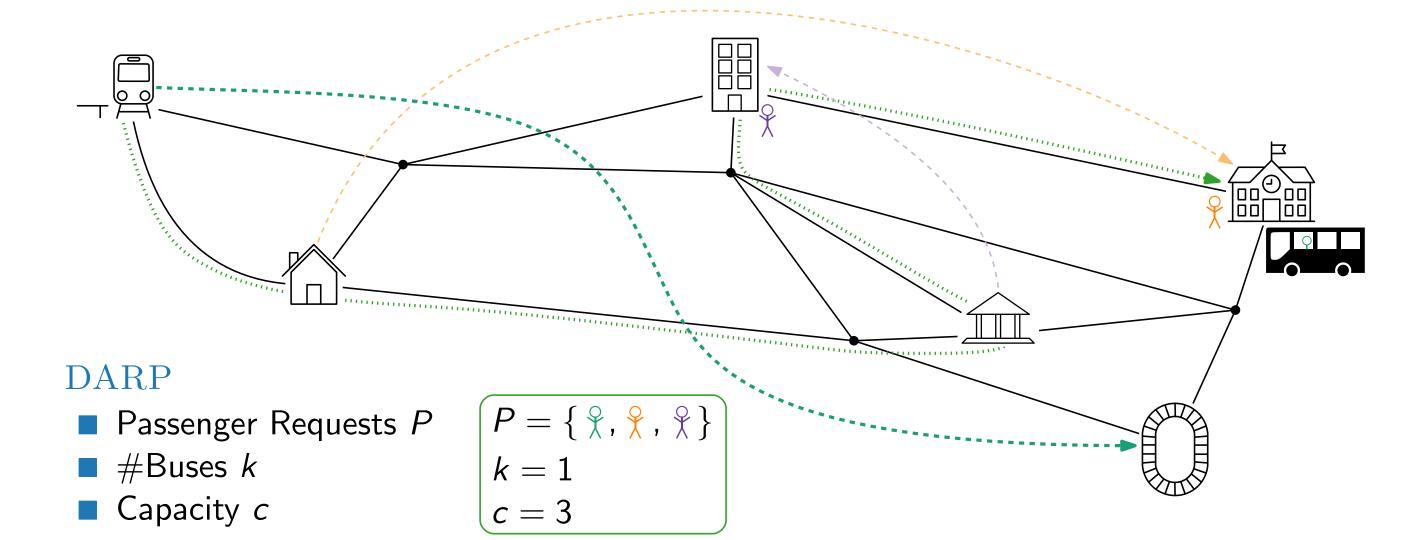


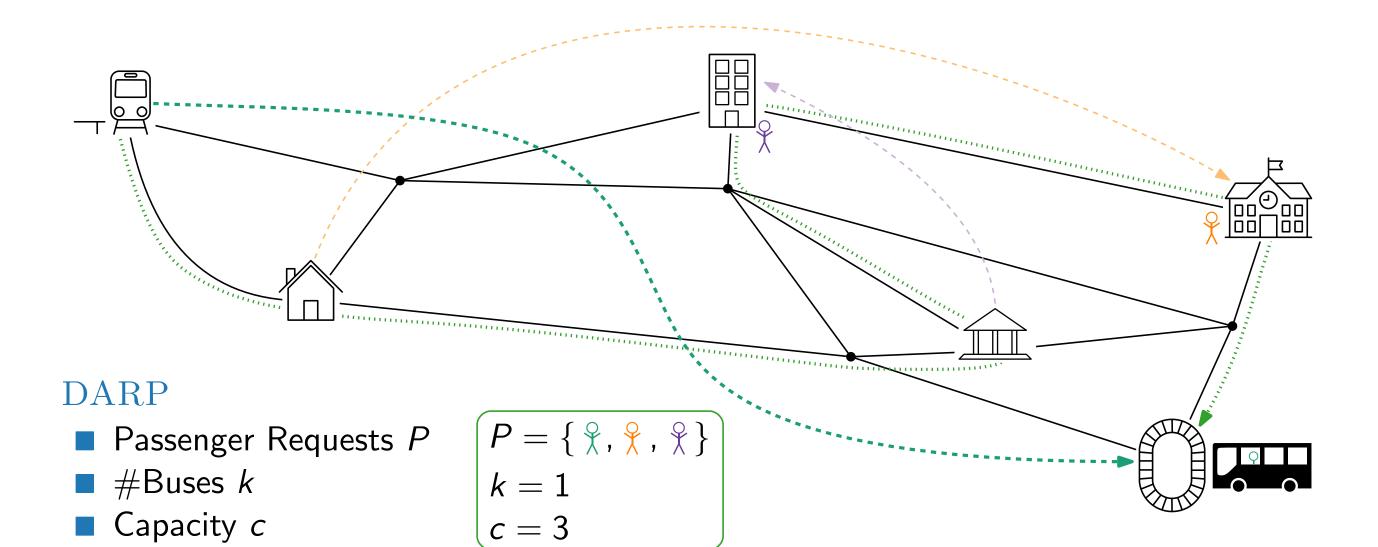


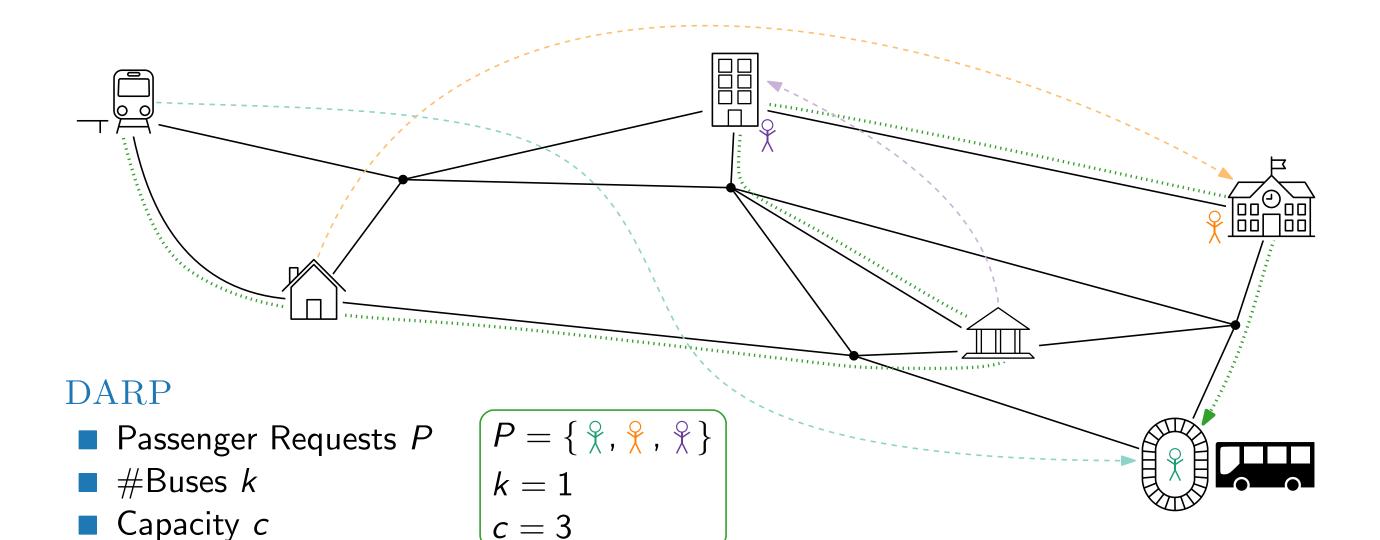




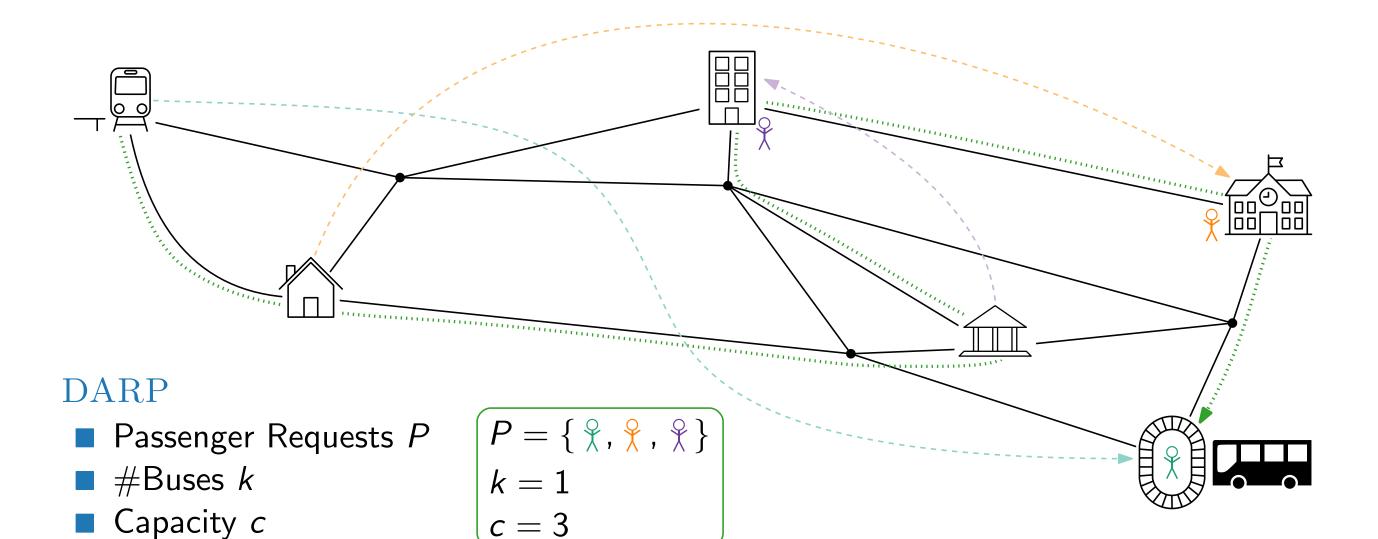
Dial-A-Ride-Problem (DARP)



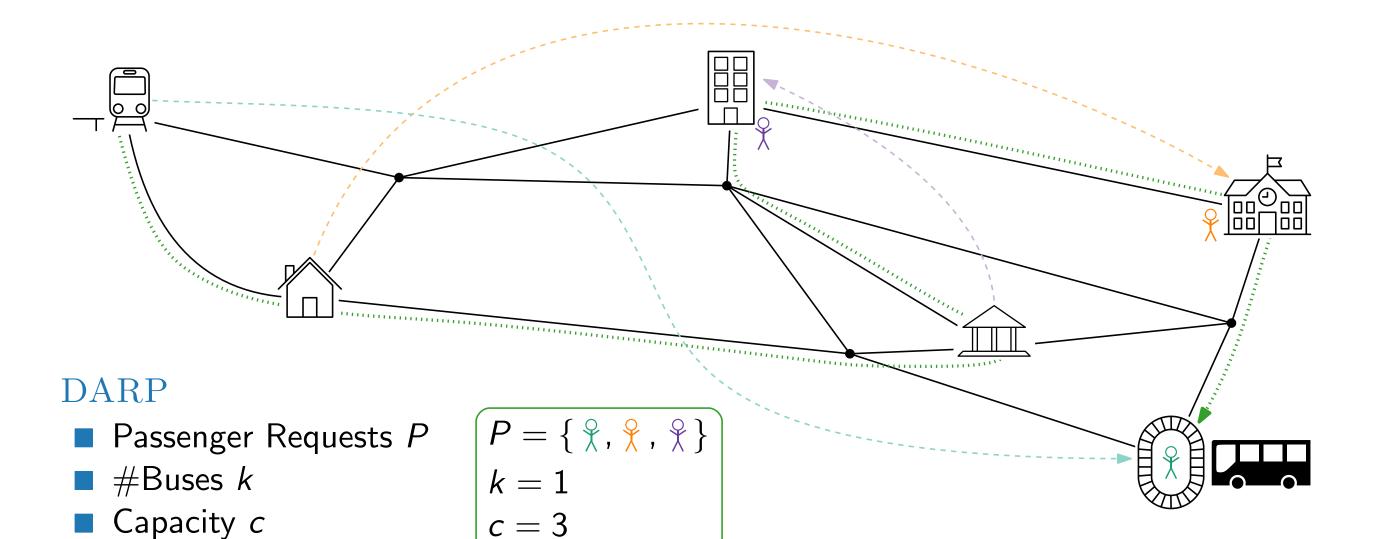


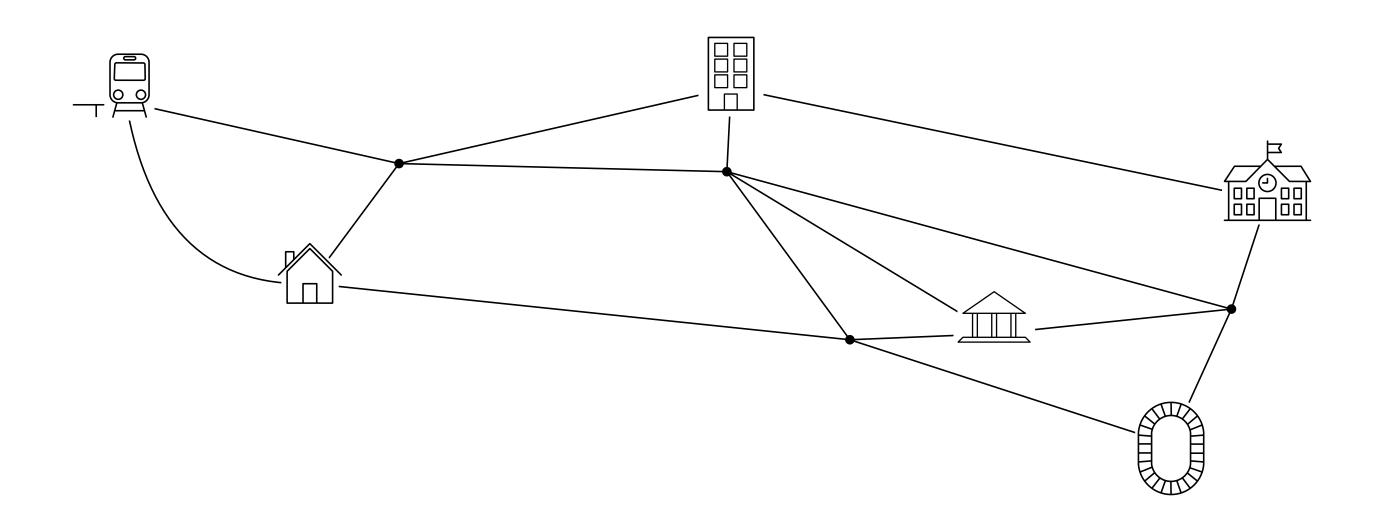


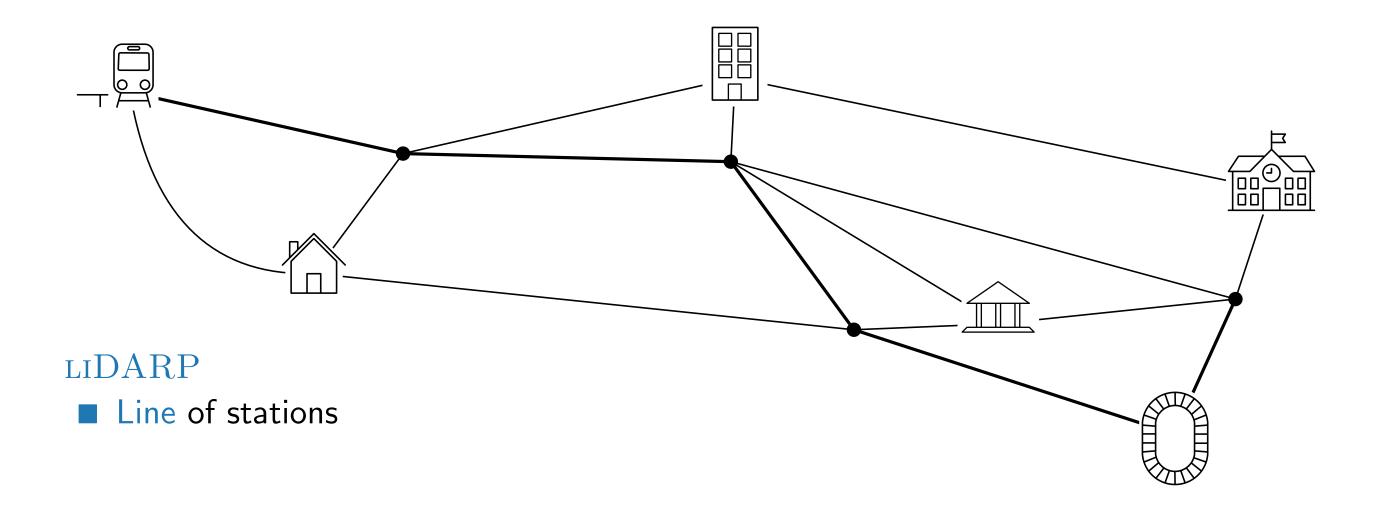
■ Solution *R*

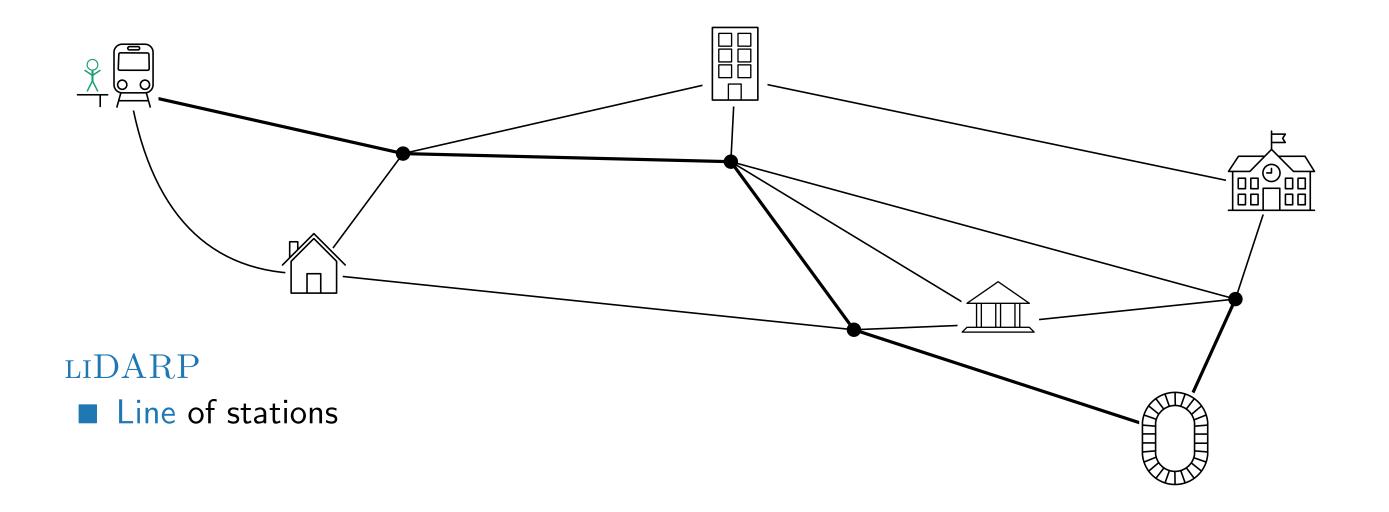


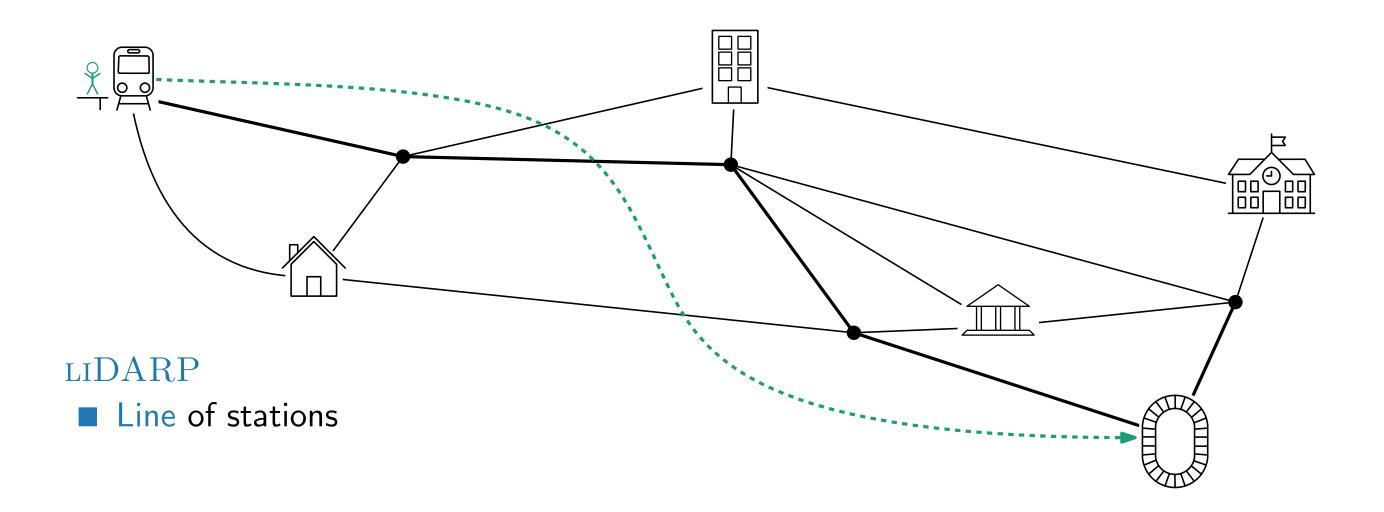
■ Solution *R*

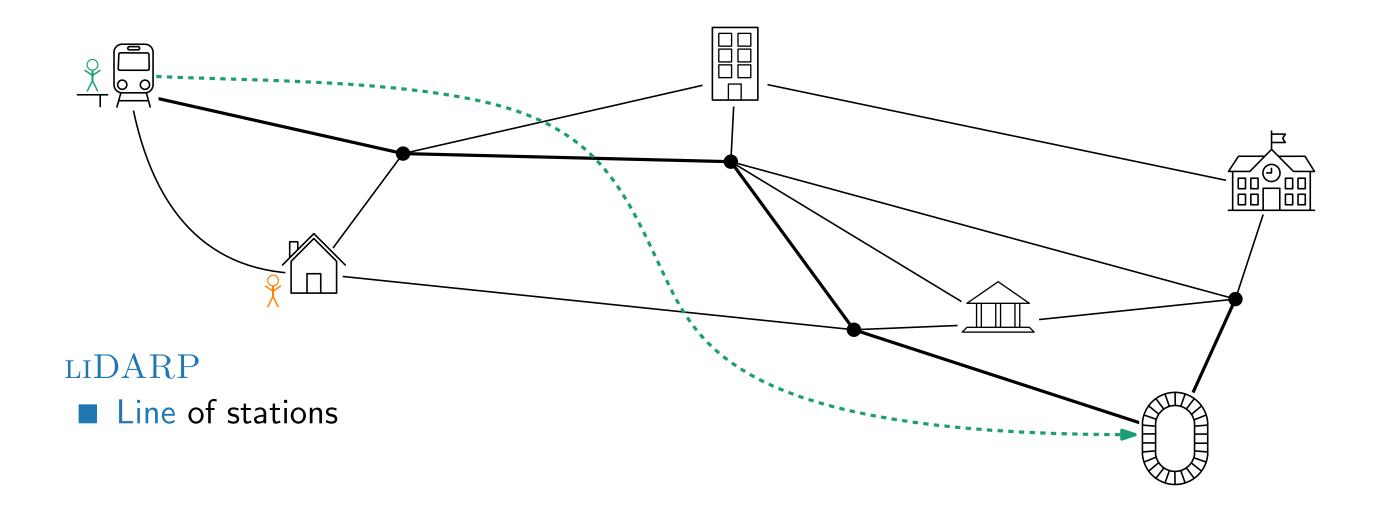


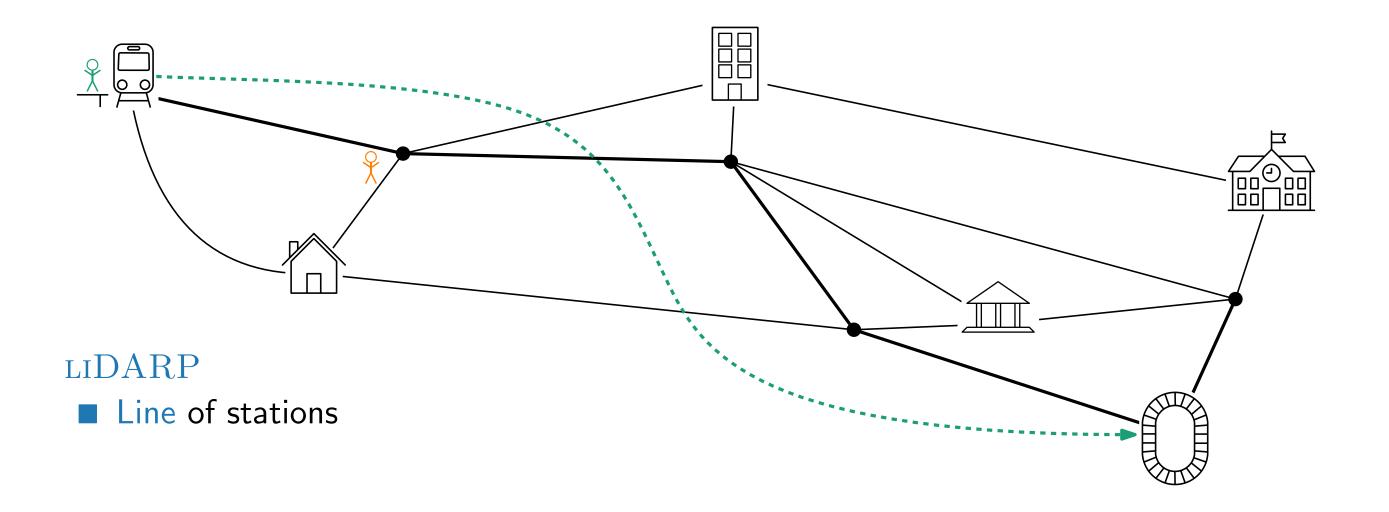


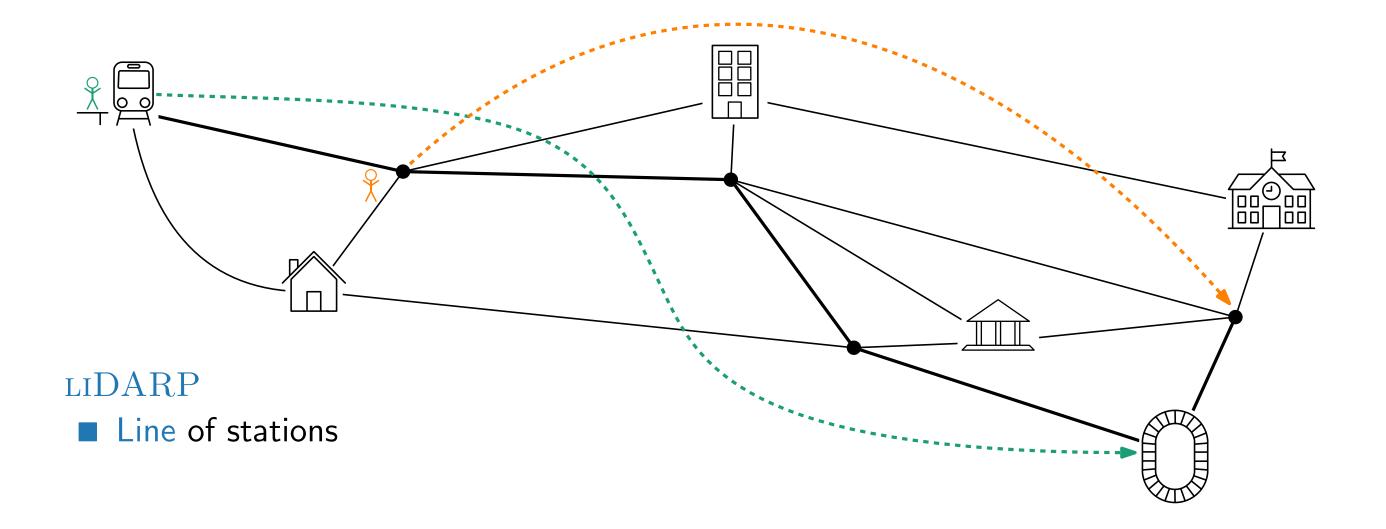


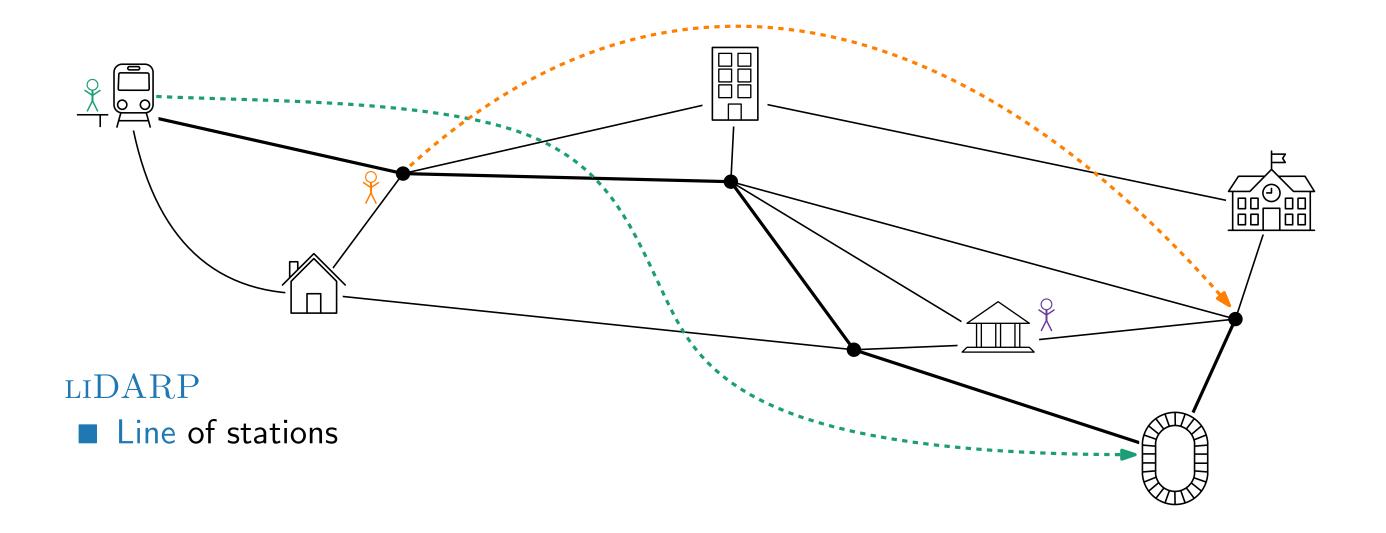


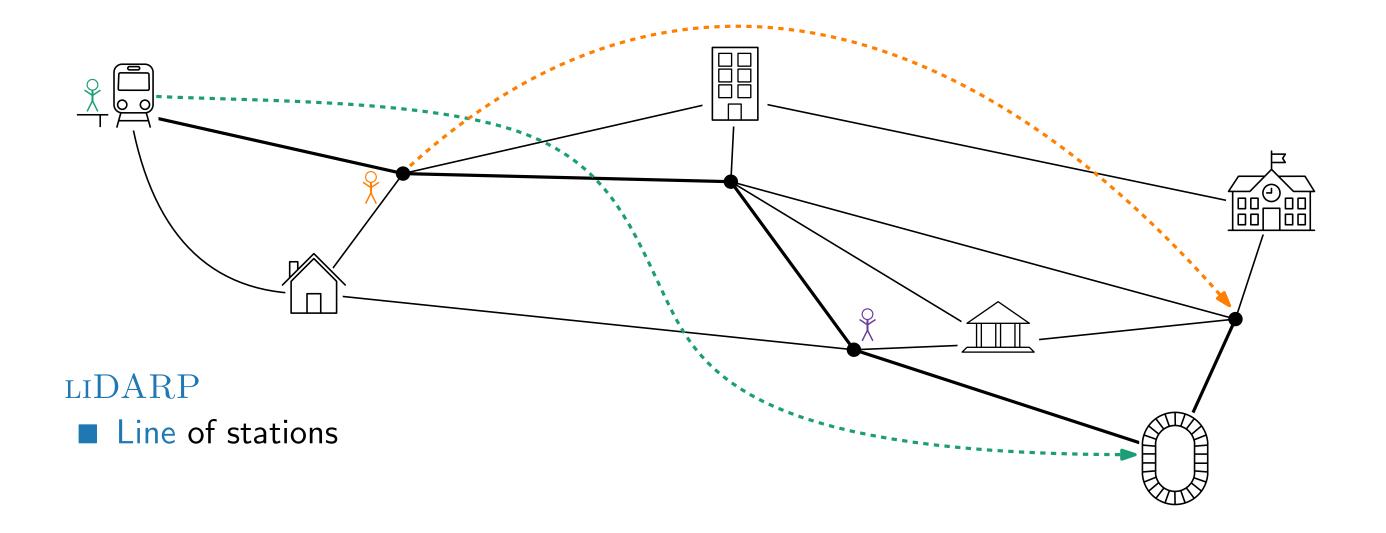


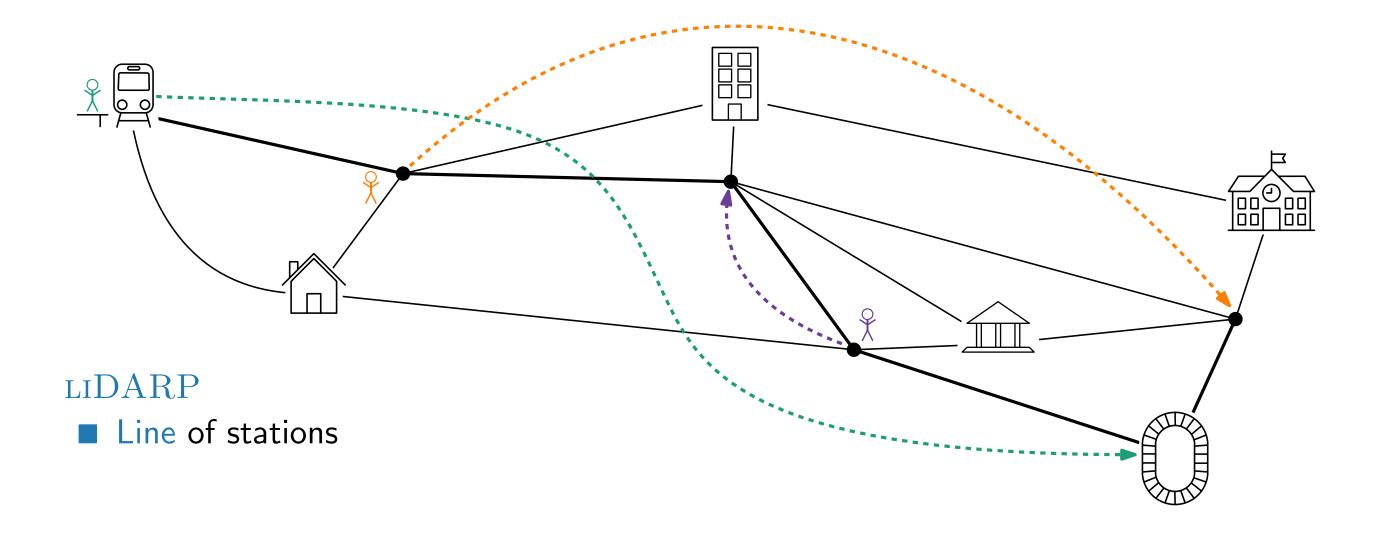


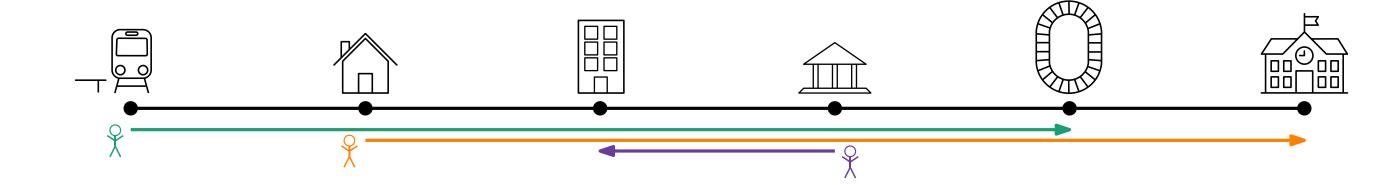






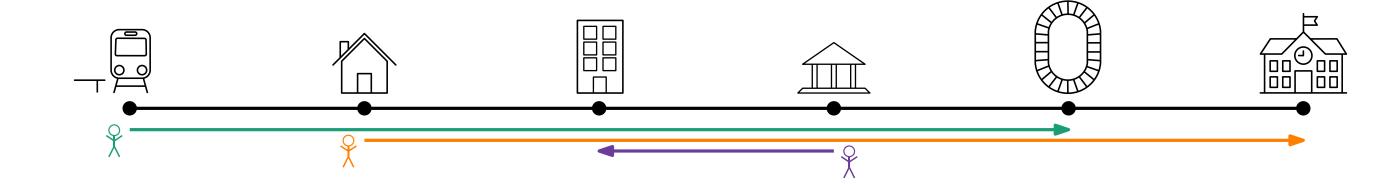






LIDARP

■ Line of stations



- Line of stations
- Directionality: passengers always transported towards destination

- Line of stations
- Directionality: passengers always transported towards destination

- Line of stations
- Directionality: passengers always transported towards destination

- Line of stations
- Directionality: passengers always transported towards destination

- Line of stations
- Directionality: passengers always transported towards destination

- Line of stations
- Directionality: passengers always transported towards destination

- Line of stations
- Directionality: passengers always transported towards destination

- Line of stations
- Directionality: passengers always transported towards destination

- Line of stations
- Directionality: passengers always transported towards destination

- Line of stations
- Directionality: passengers always transported towards destination

- Line of stations
- Directionality: passengers always transported towards destination
 - bus empty when changing direction

- Line of stations
- Directionality: passengers always transported towards destination
 - bus empty when changing direction

- Line of stations
- Directionality: passengers always transported towards destination
 - bus empty when changing direction

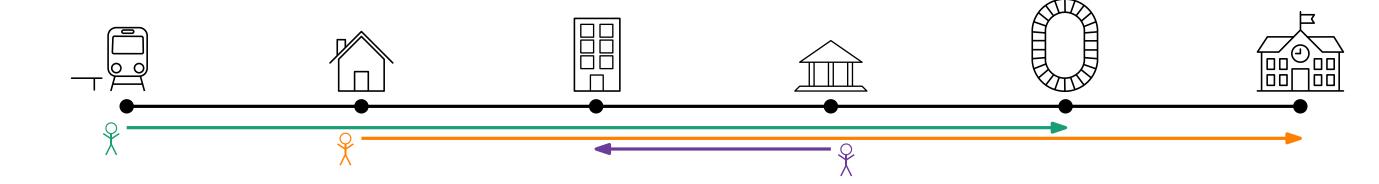
- Line of stations
- Directionality: passengers always transported towards destination
 - bus empty when changing direction

- Line of stations
- Directionality: passengers always transported towards destination
 - bus empty when changing direction
 - passengers only dropped-off at their destination

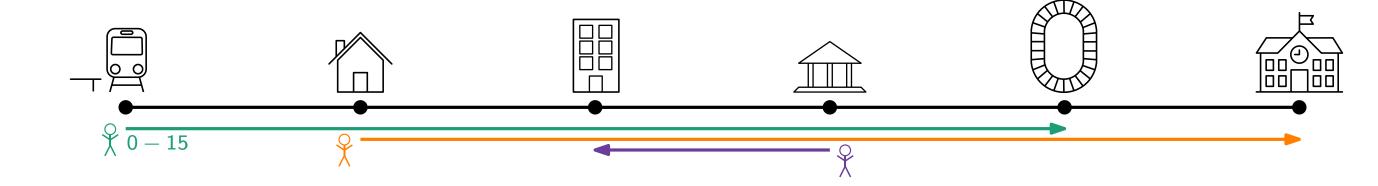
- Line of stations
- Directionality: passengers always transported towards destination
 - bus empty when changing direction
 - passengers only dropped-off at their destination

Variants

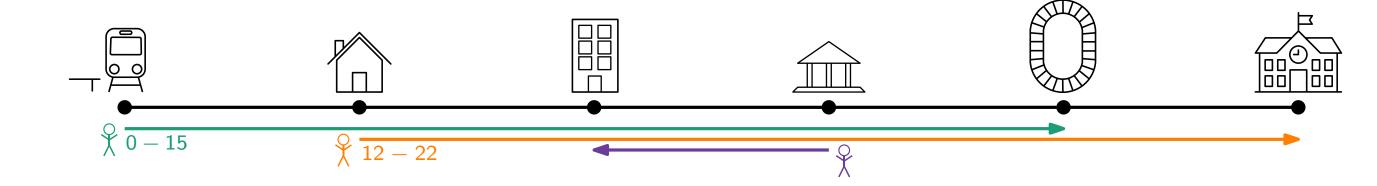
Variants



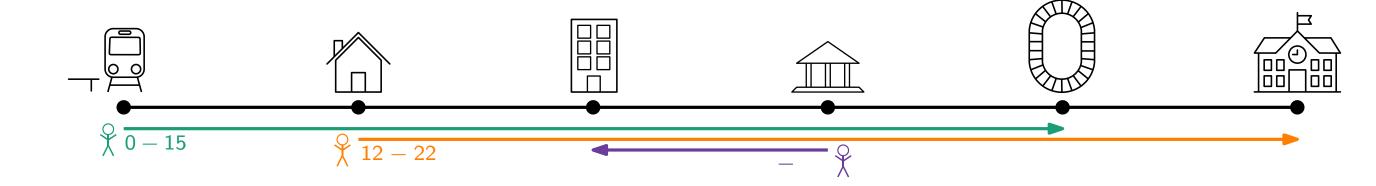
Variants



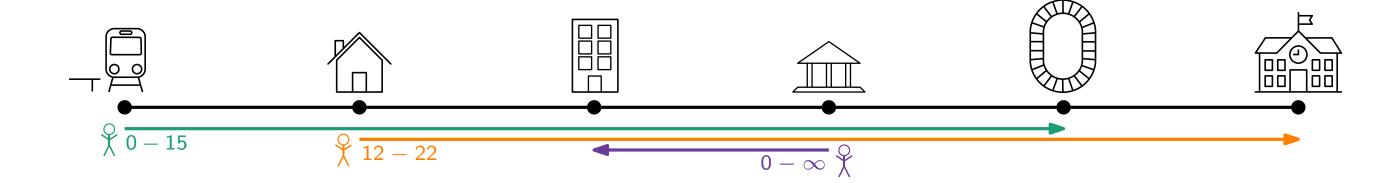
Variants



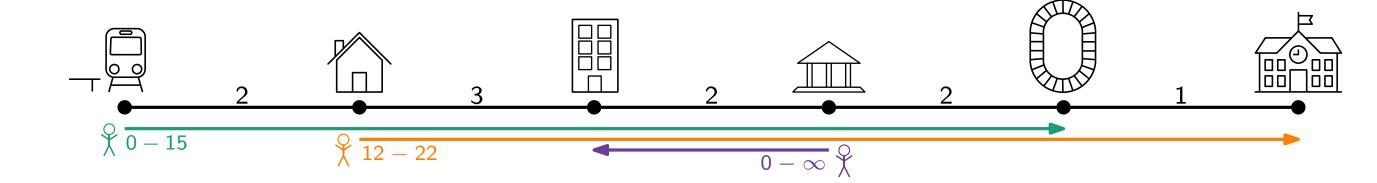
Variants



Variants

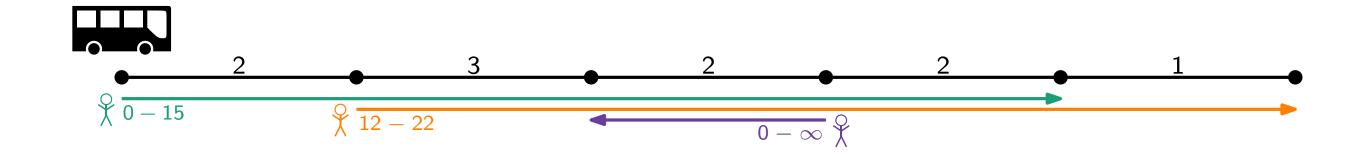


Variants

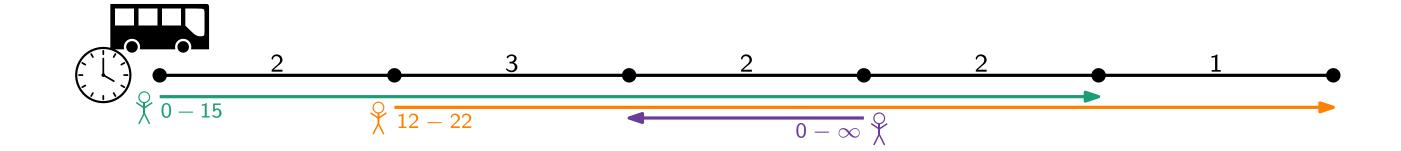


Variants

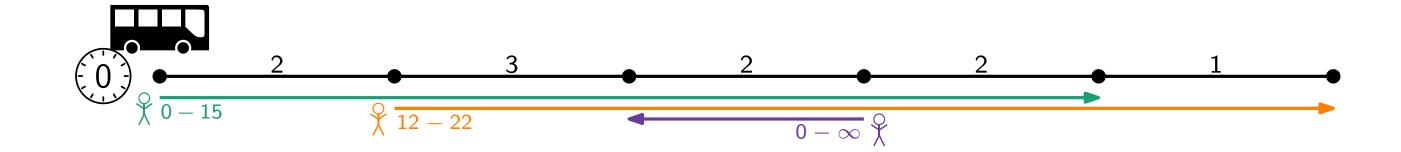
Variants



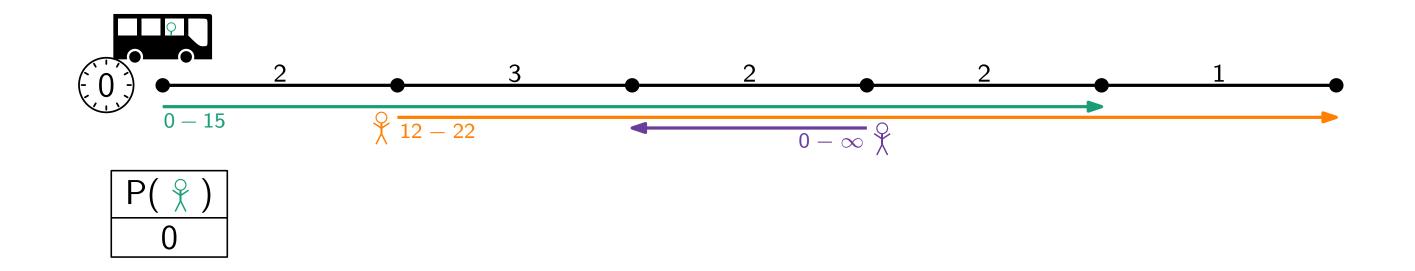
Variants



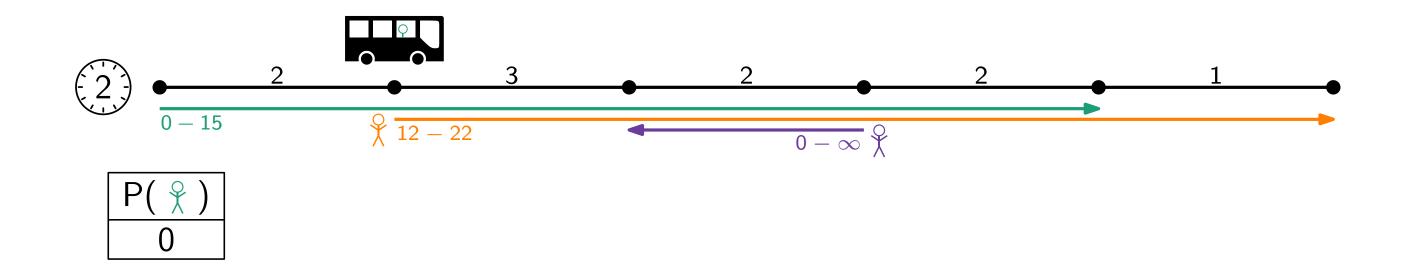
Variants



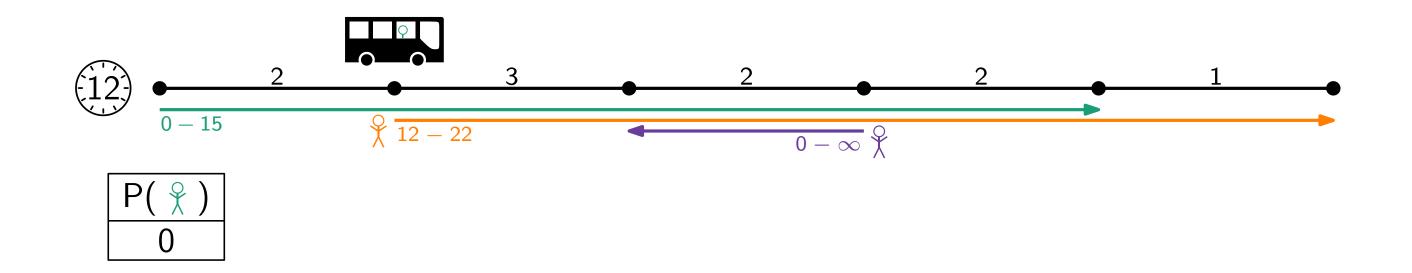
Variants



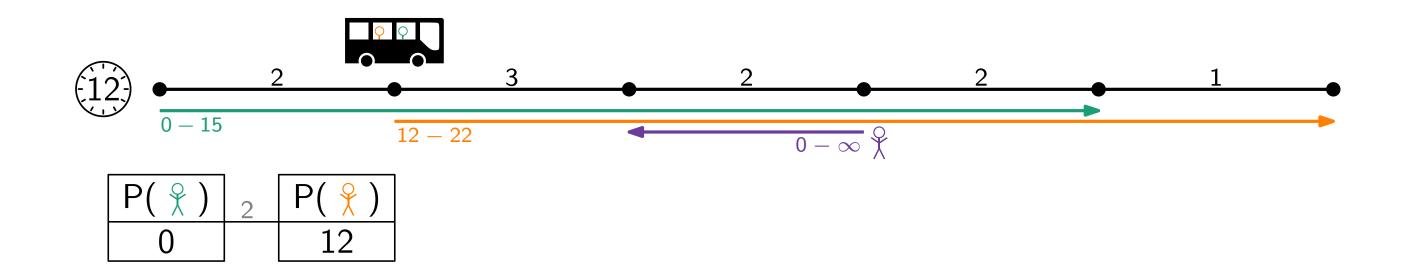
Variants



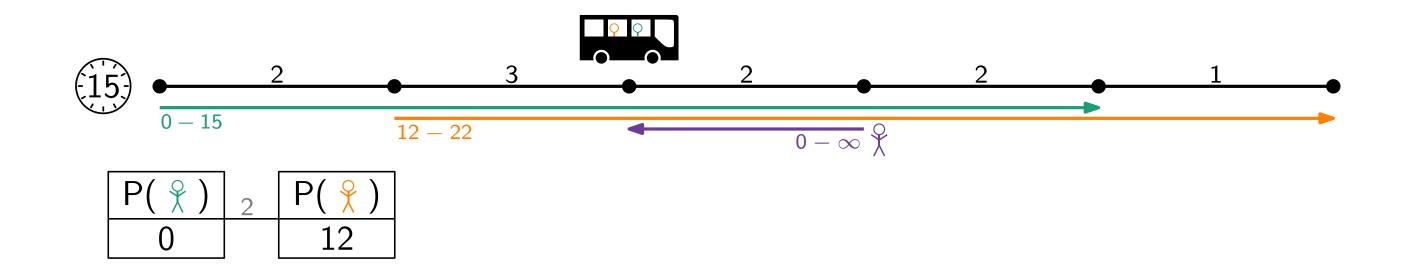
Variants



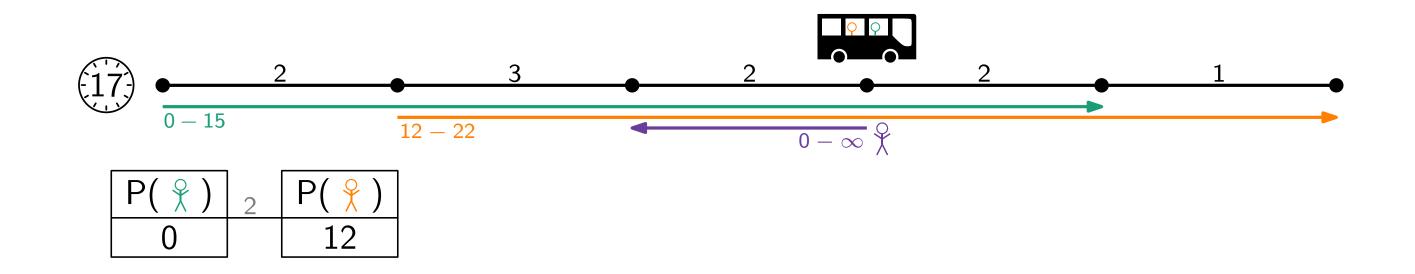
Variants



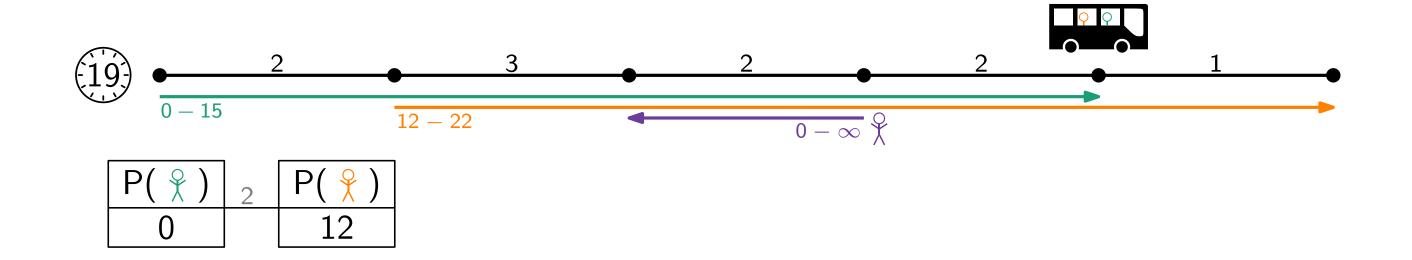
Variants



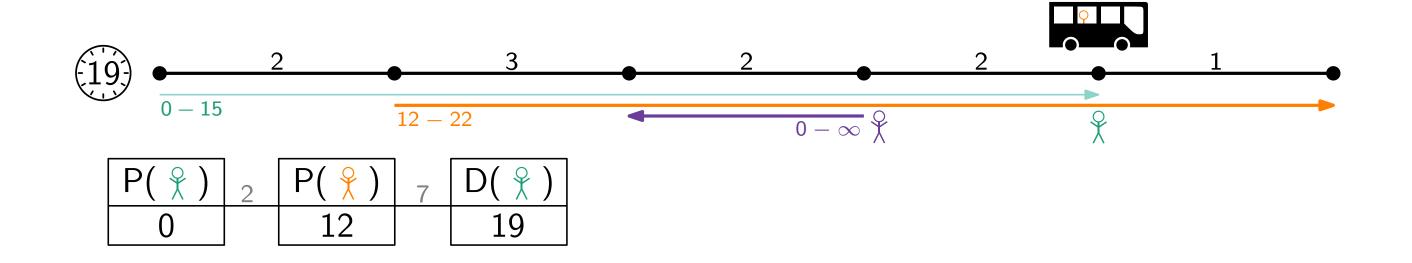
Variants



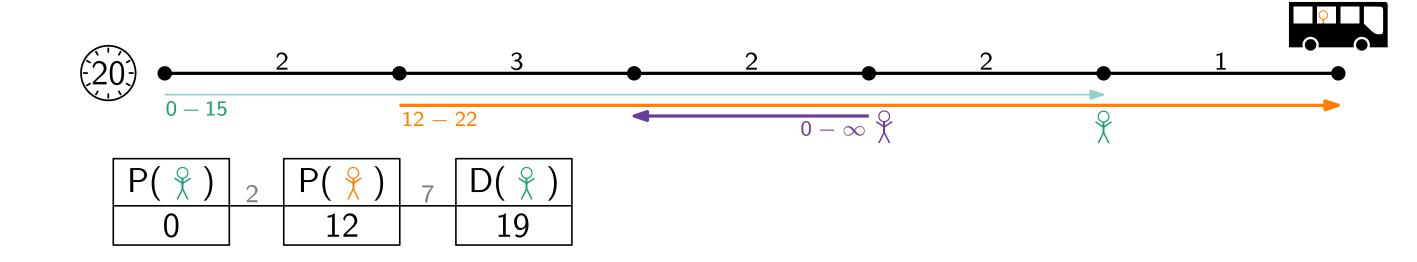
Variants



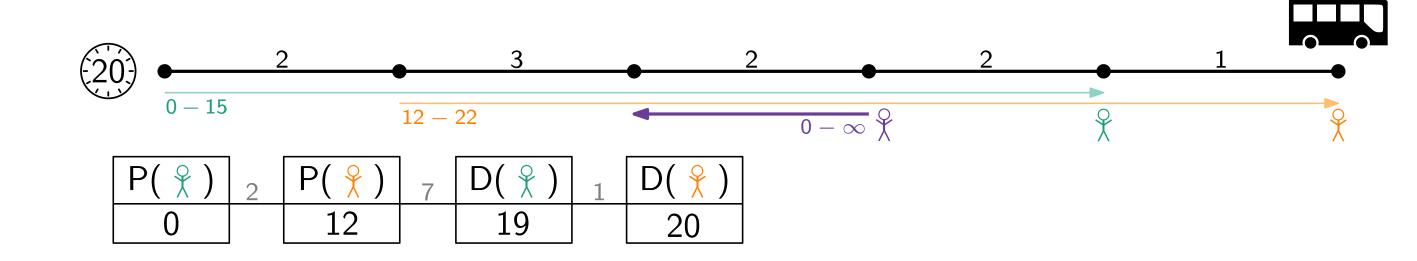
Variants



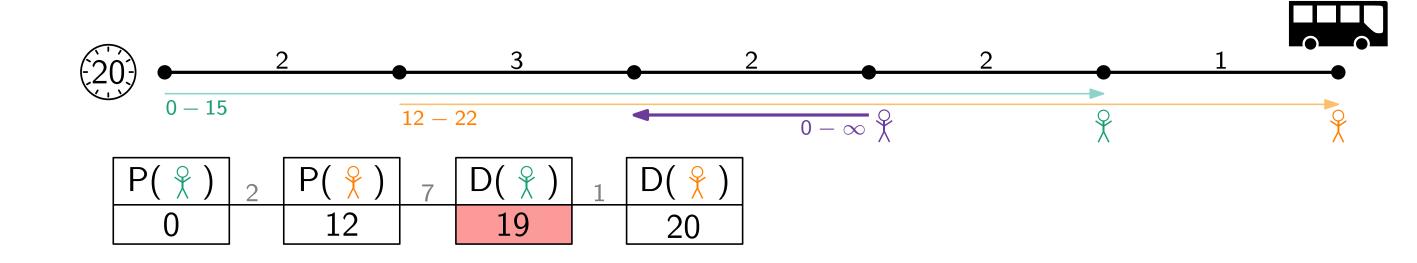
Variants



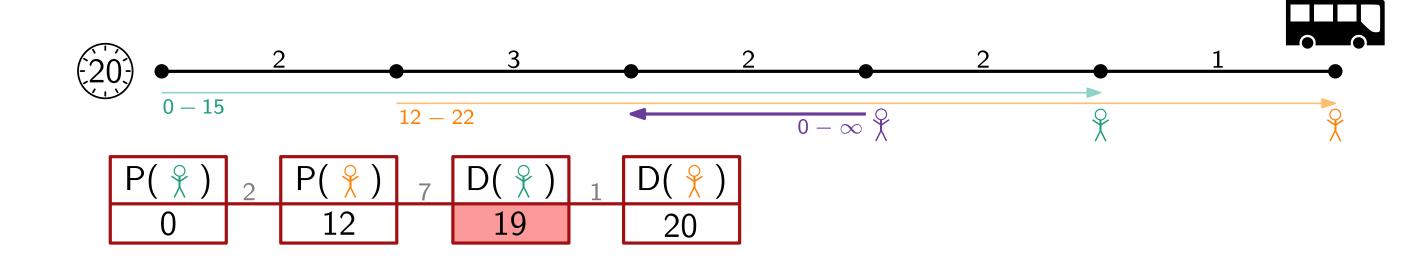
Variants



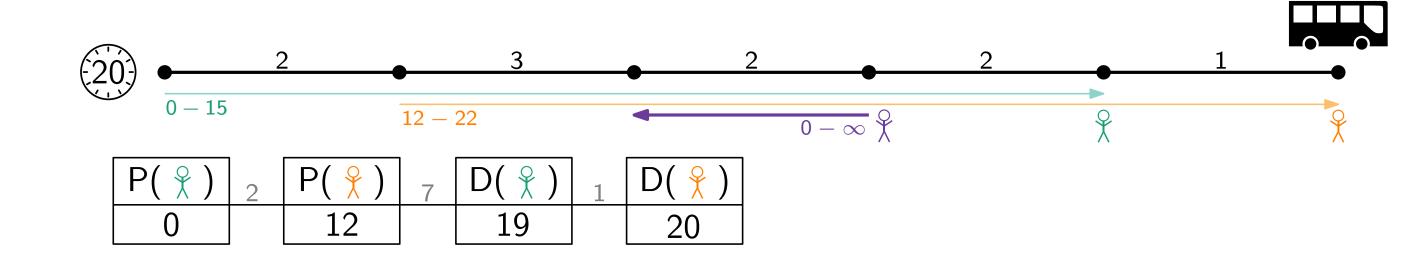
Variants



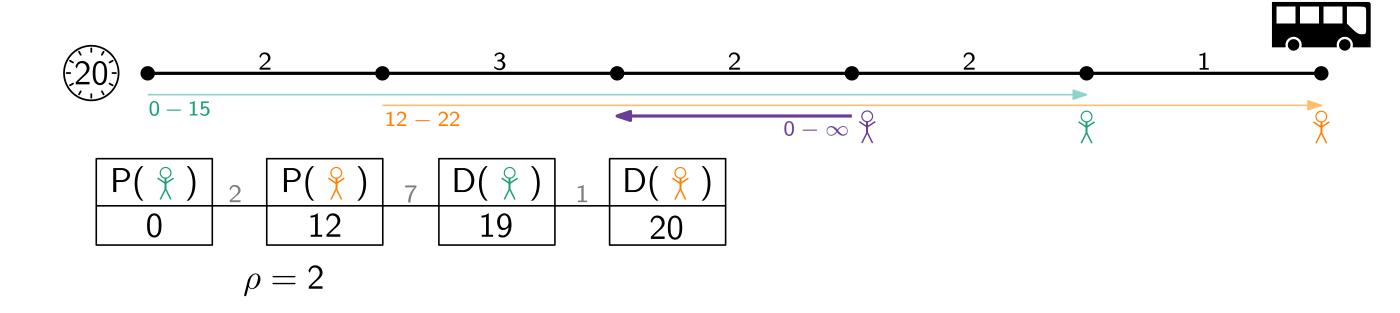
Variants



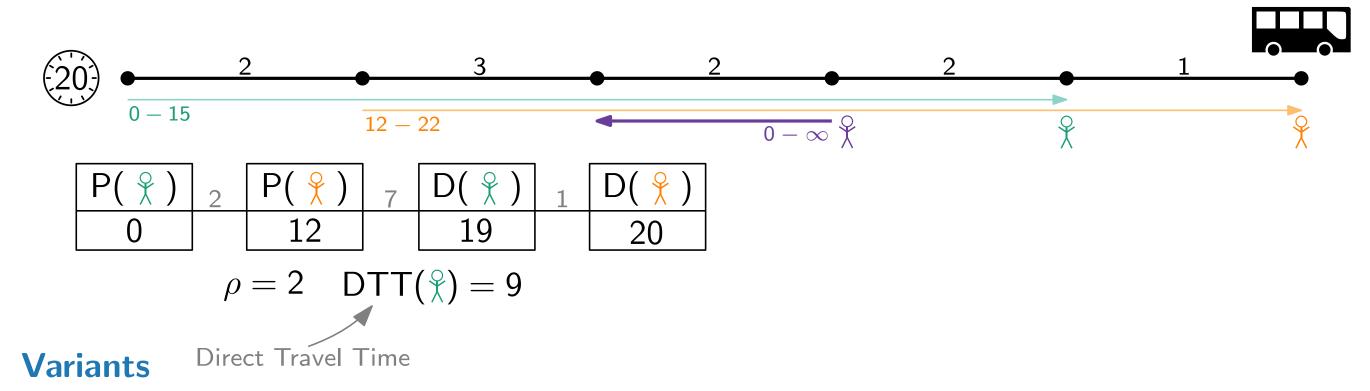
Variants



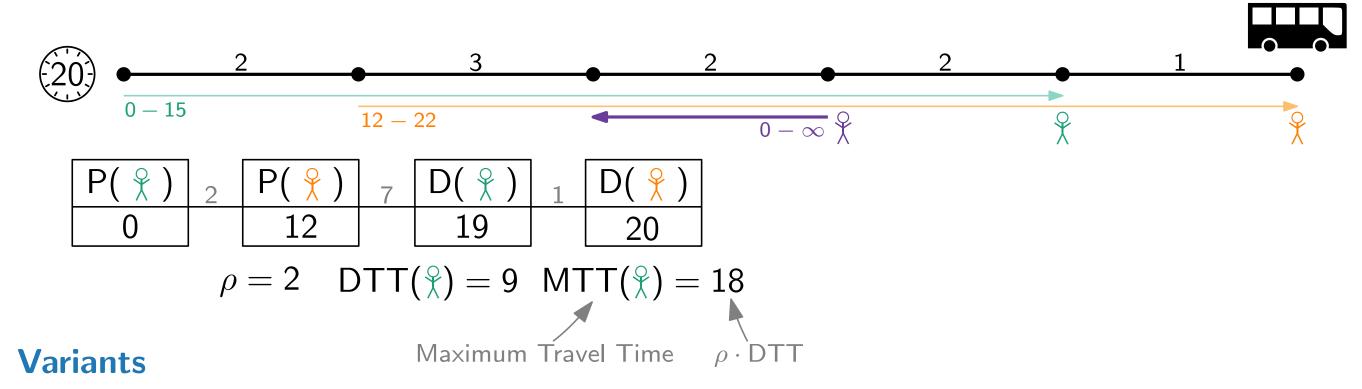
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



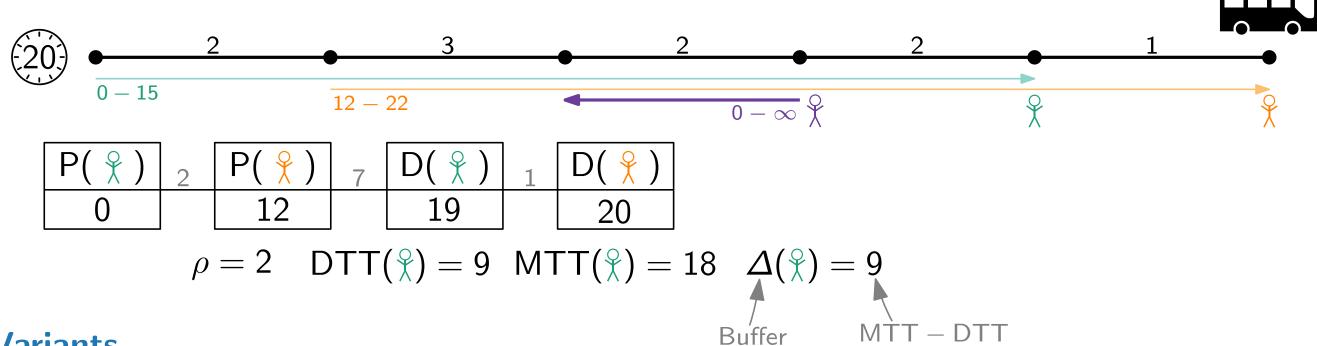
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



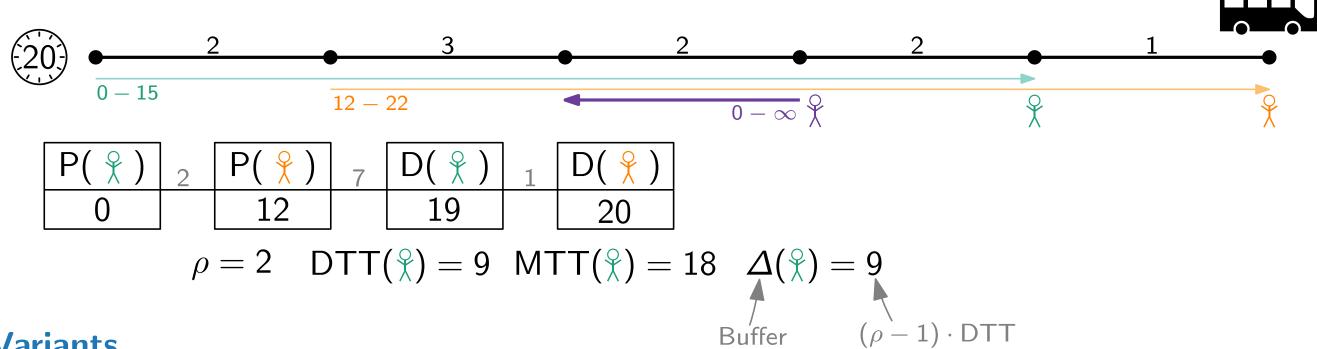
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



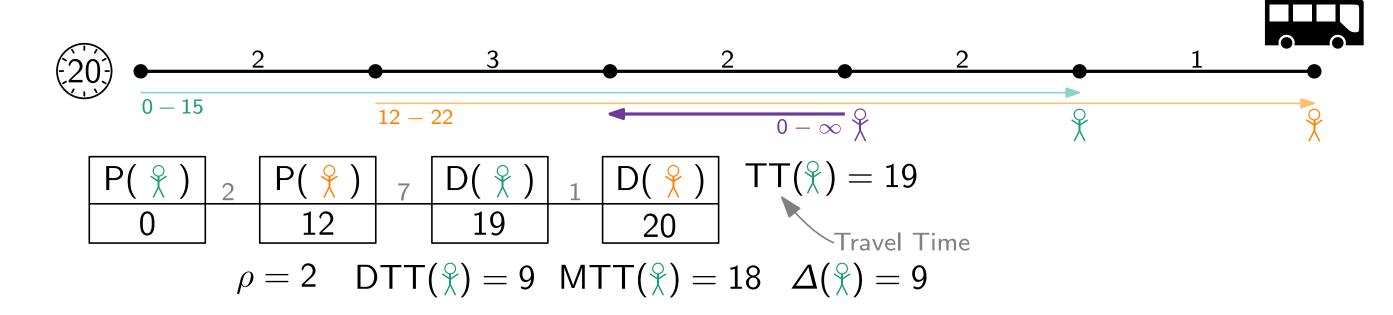
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



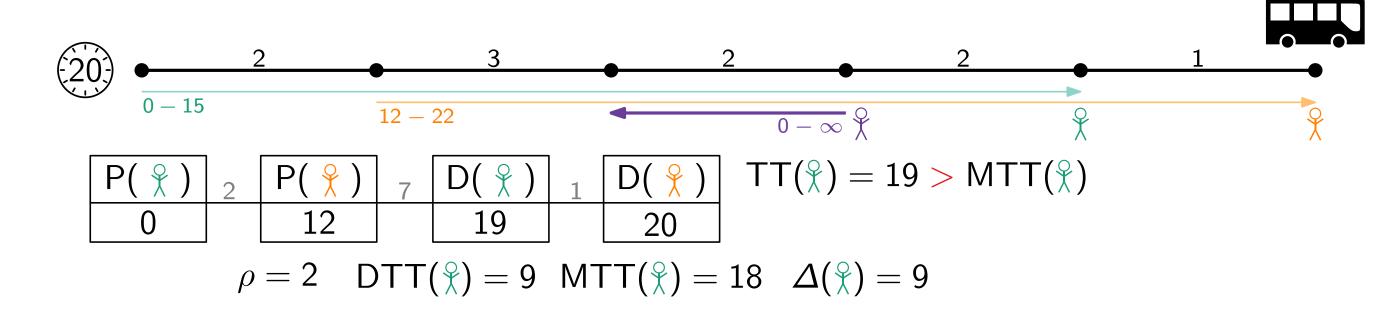
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- \blacksquare Service Promise (SP): passenger at most ρ times longer in bus than in direct route



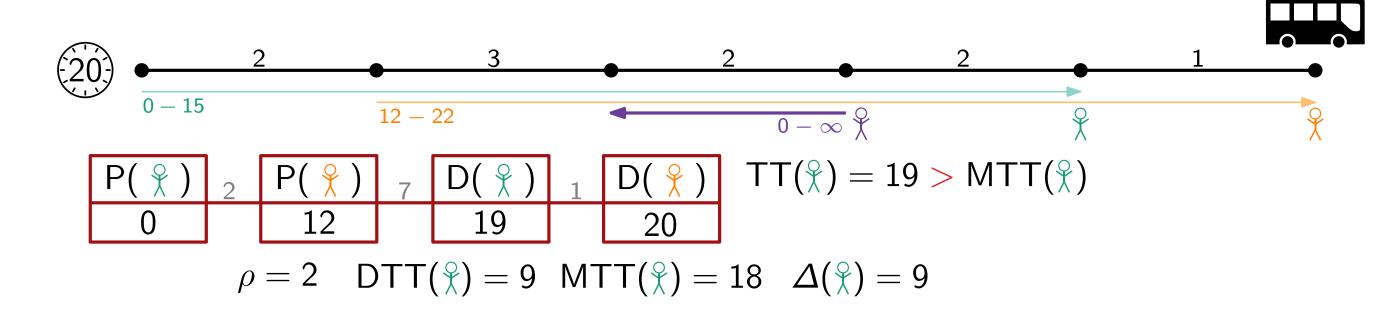
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- \blacksquare Service Promise (SP): passenger at most ρ times longer in bus than in direct route



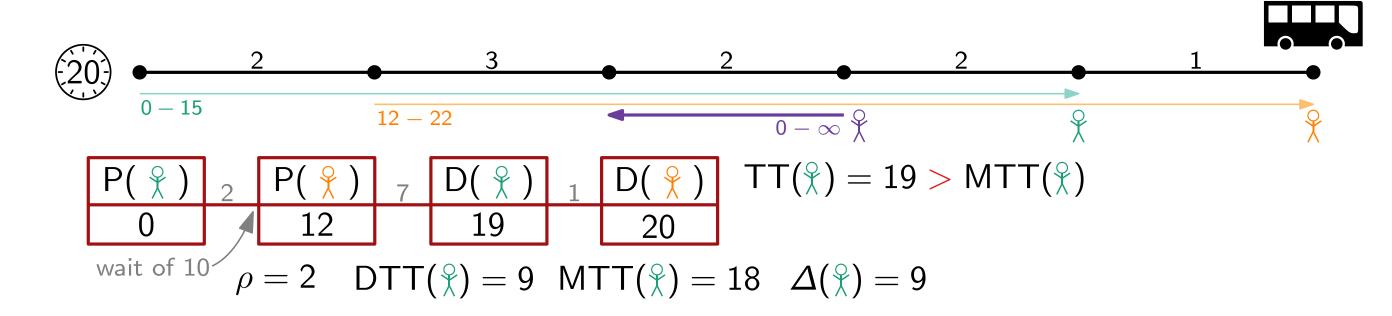
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



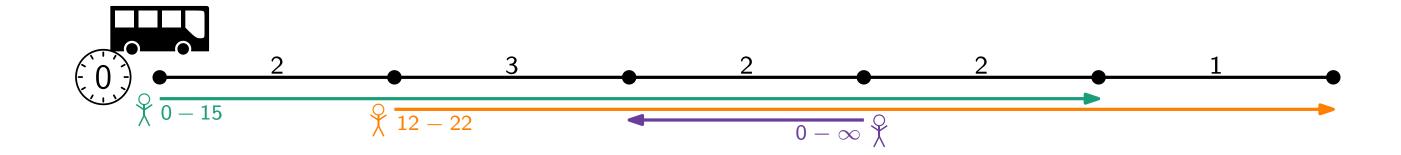
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route

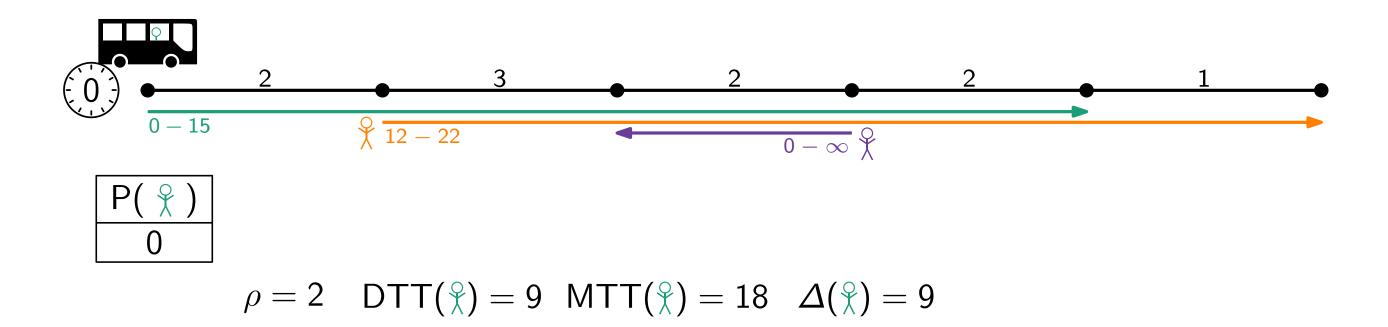


- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route

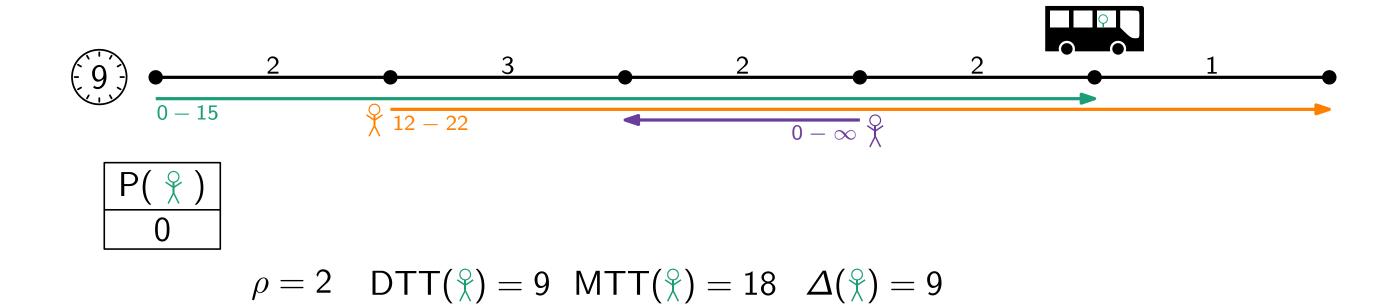


$$\rho = 2$$
 DTT($\frac{9}{7}$) = 9 MTT($\frac{9}{7}$) = 18 $\Delta(\frac{9}{7})$ = 9

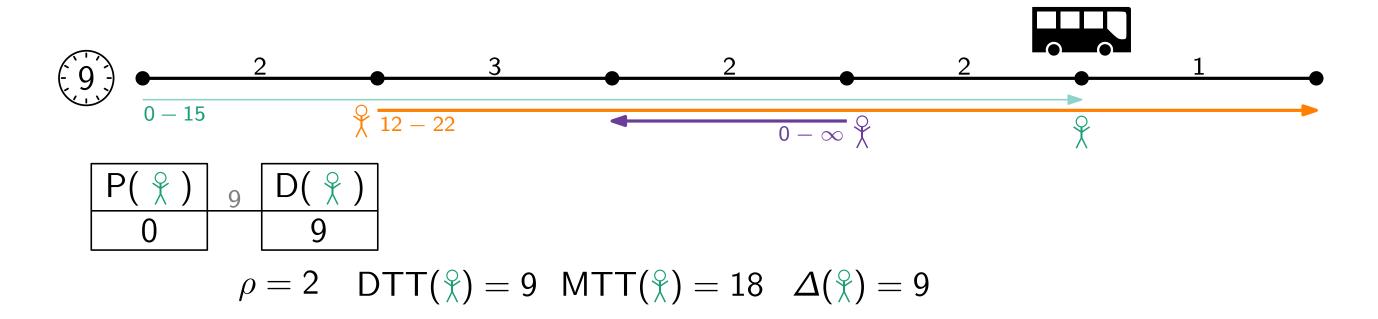
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



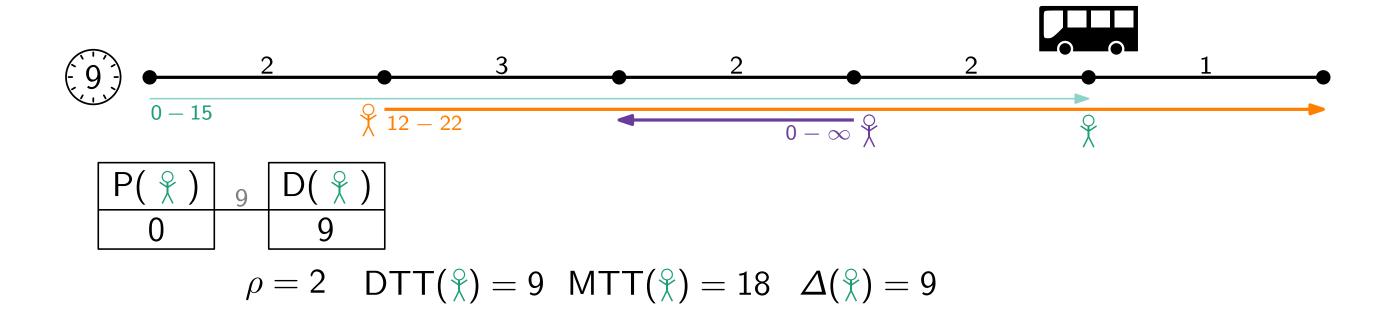
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



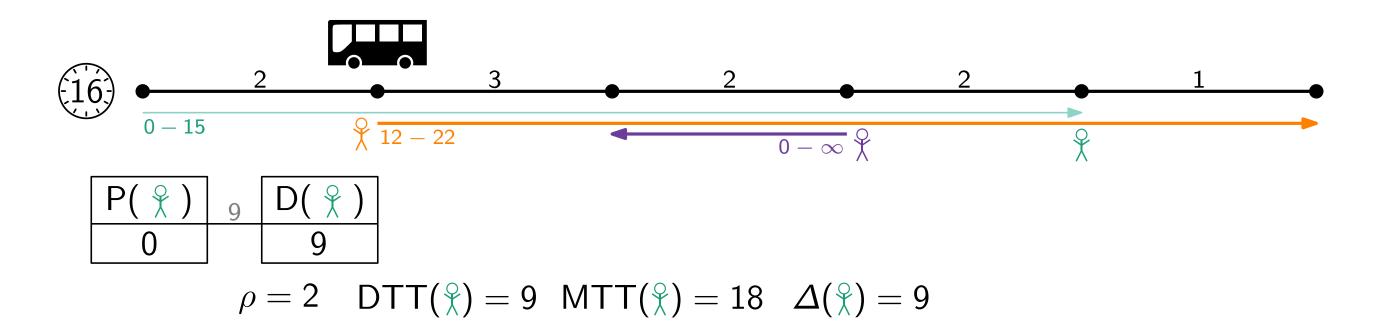
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



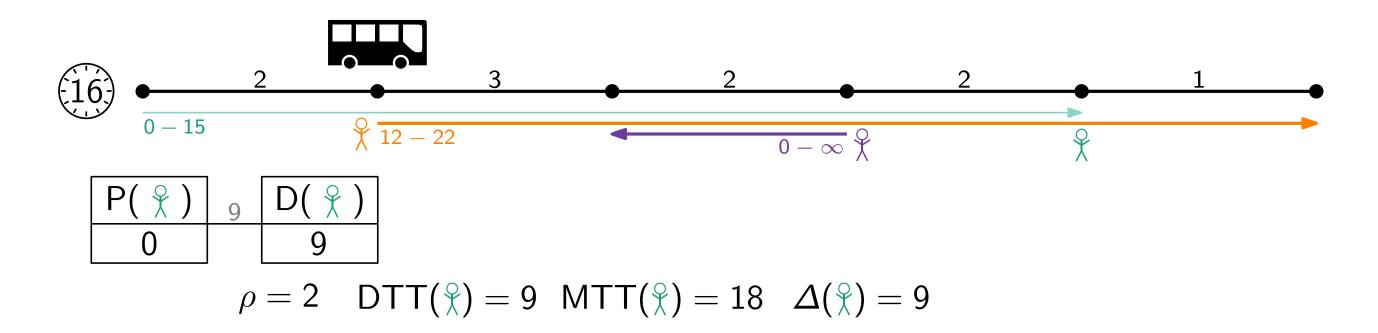
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



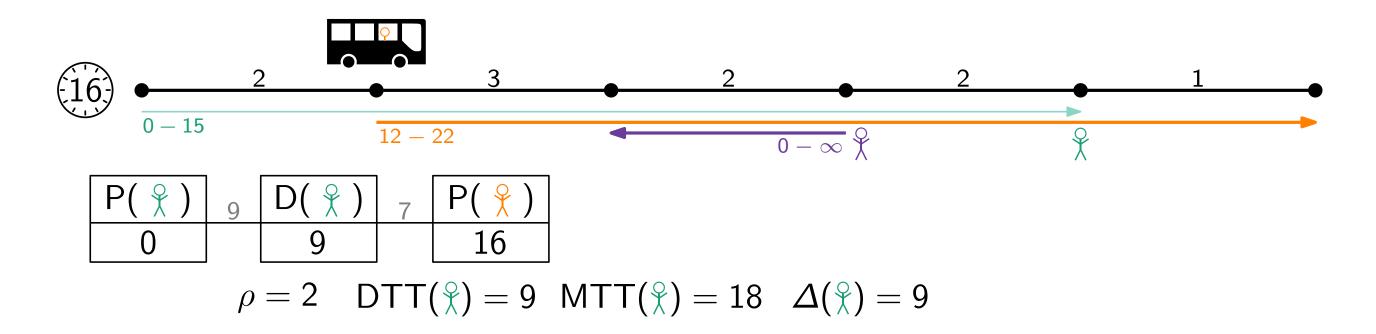
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



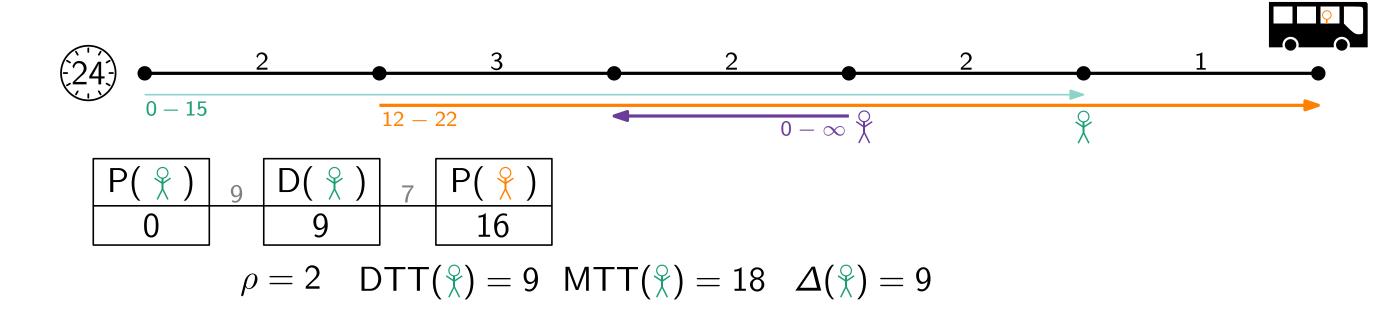
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



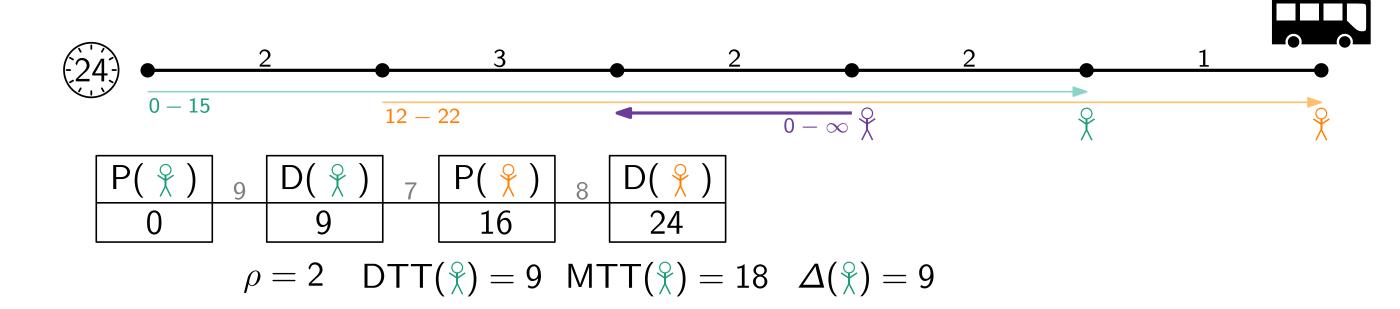
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



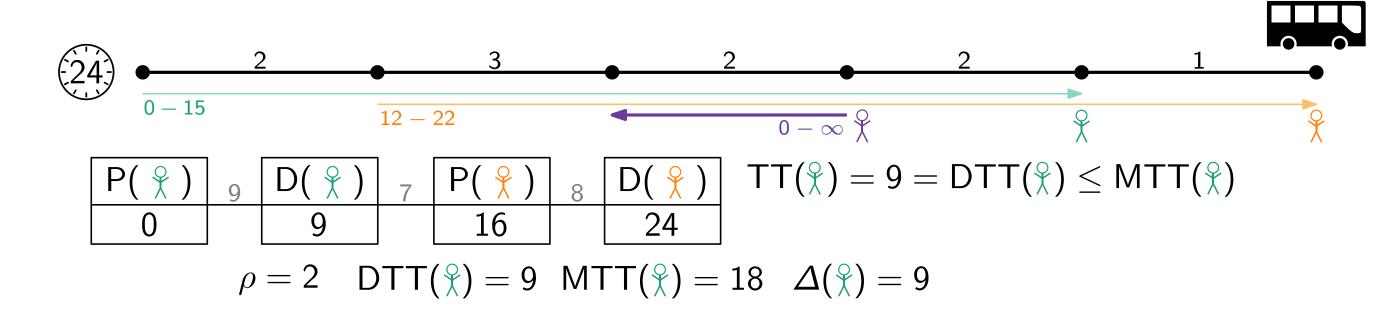
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



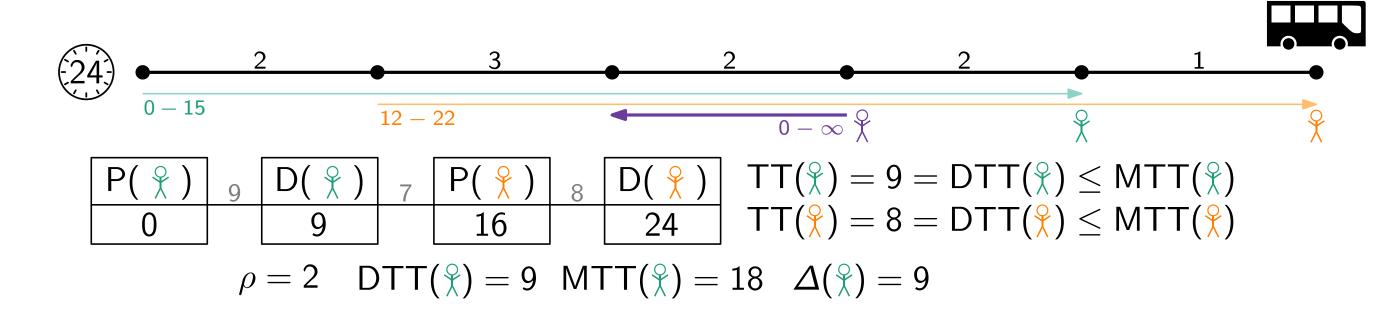
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



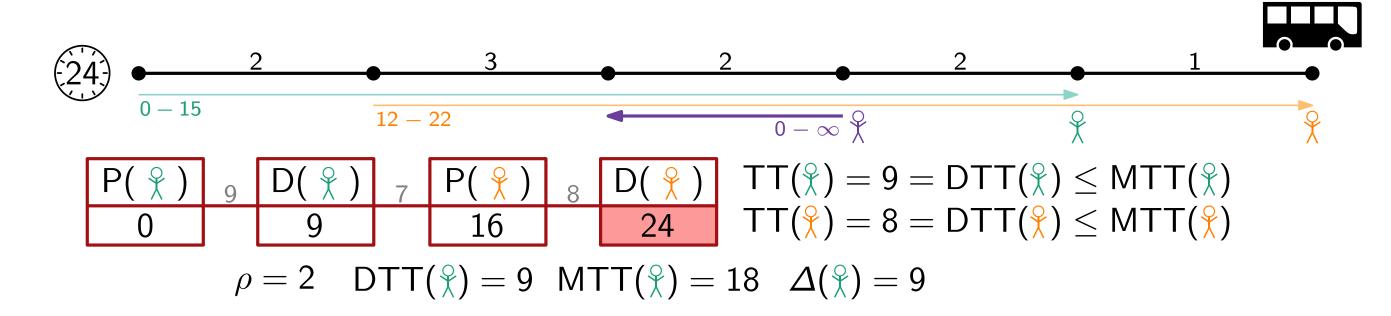
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



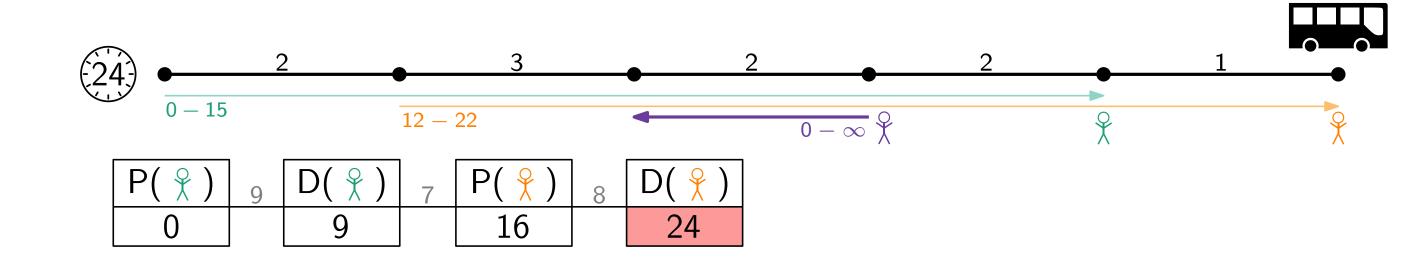
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



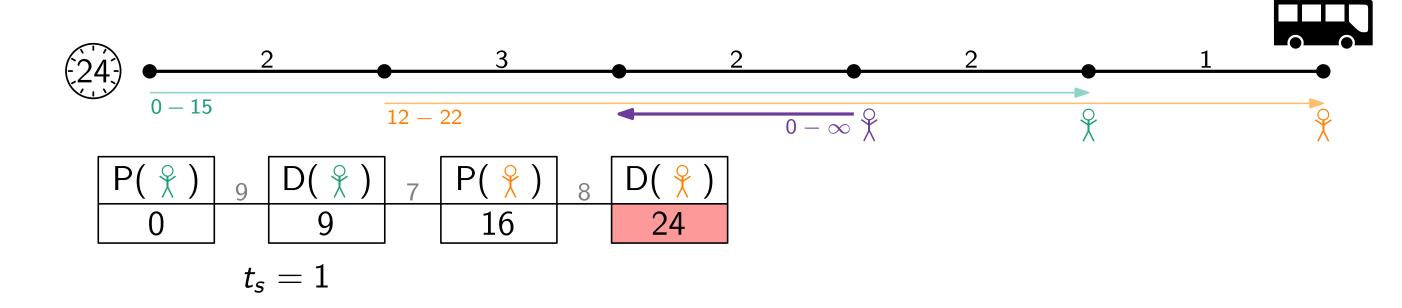
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



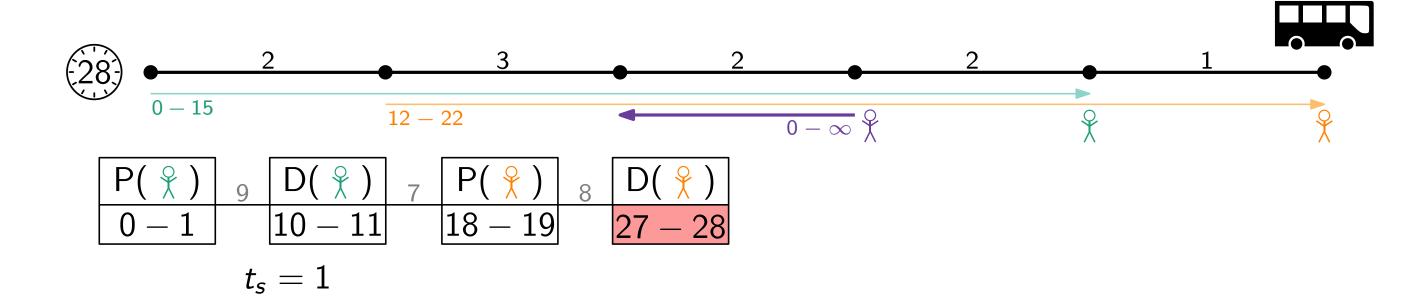
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route



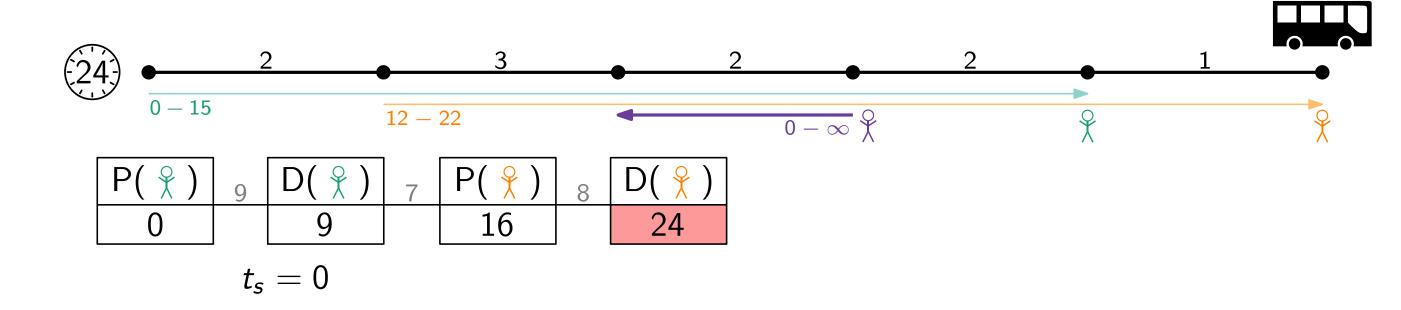
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route
- Service Time (ST): pick-up / drop-off takes time t_s



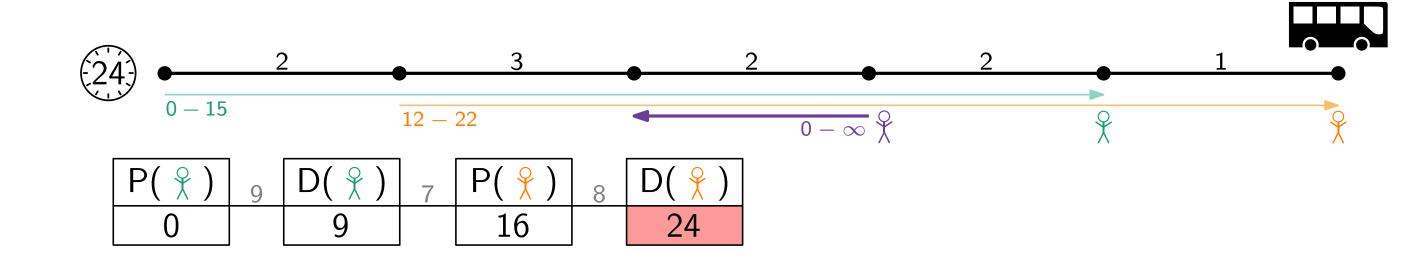
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route
- Service Time (ST): pick-up / drop-off takes time t_s



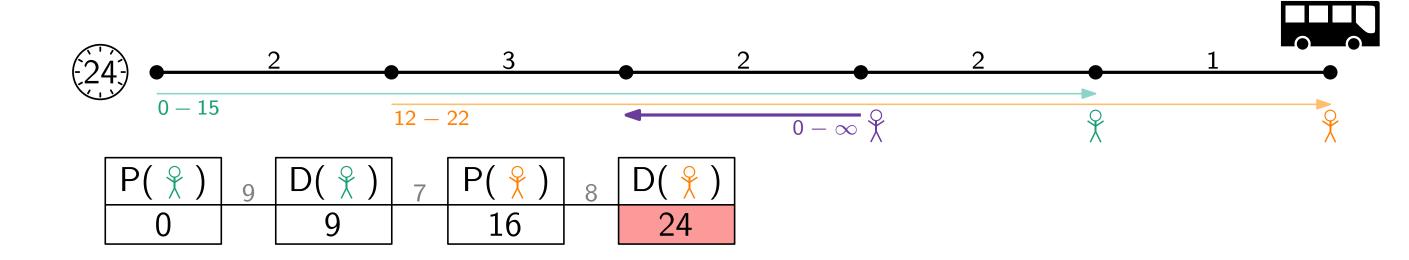
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route
- Service Time (ST): pick-up / drop-off takes time t_s



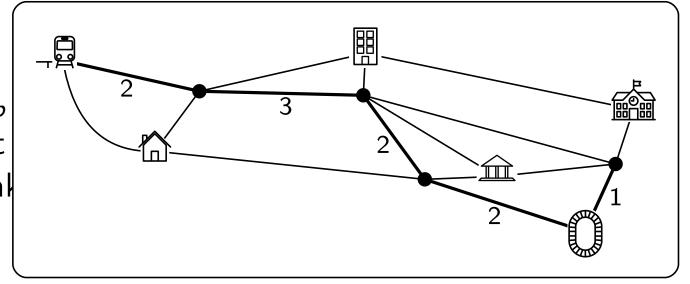
- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route
- Service Time (ST): pick-up / drop-off takes time t_s

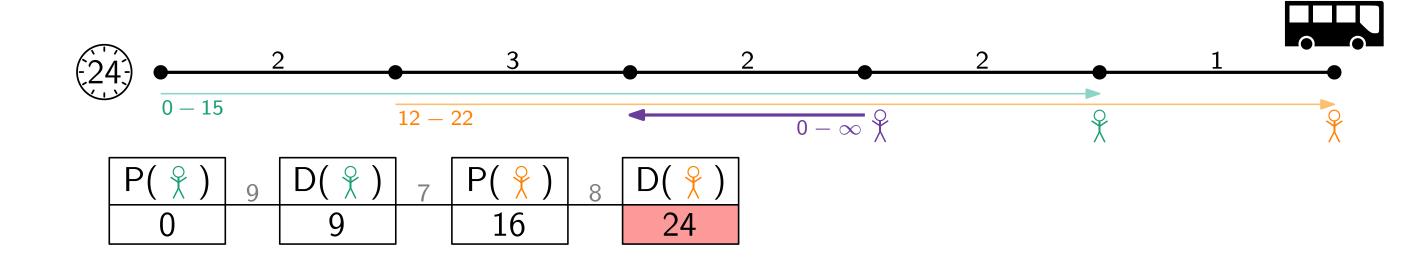


- Time Windows (TW): earliest pick-up e_p and latest drop-off ℓ_p for request p
- Service Promise (SP): passenger at most ρ times longer in bus than in direct route
- Service Time (ST): pick-up / drop-off takes time t_s
- Shortcuts (SC)

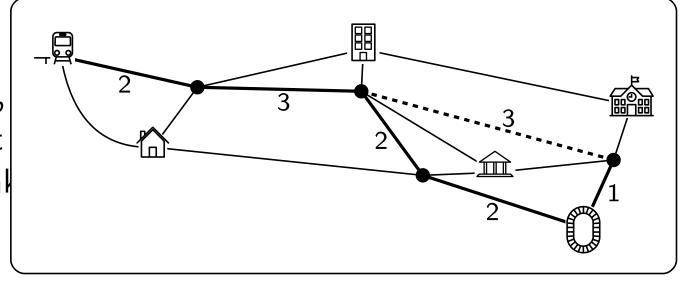


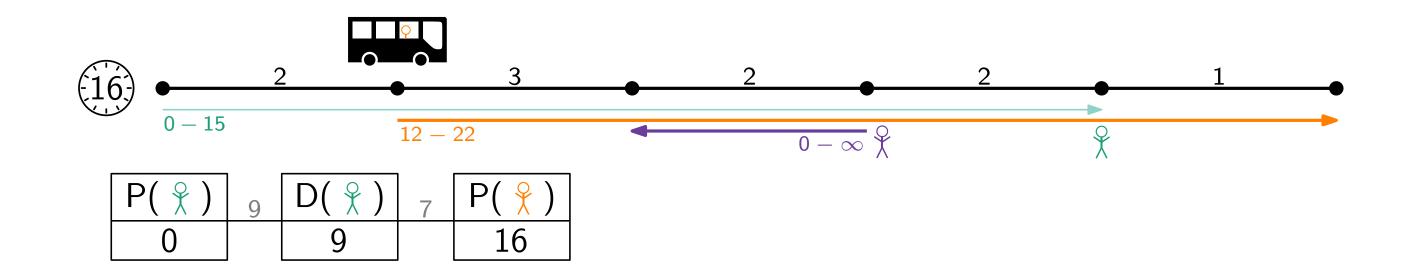
- Time Windows (TW): earliest pick-up e_p
- Service Promise (SP): passenger at most
- Service Time (ST): pick-up / drop-off tak
- Shortcuts (SC)



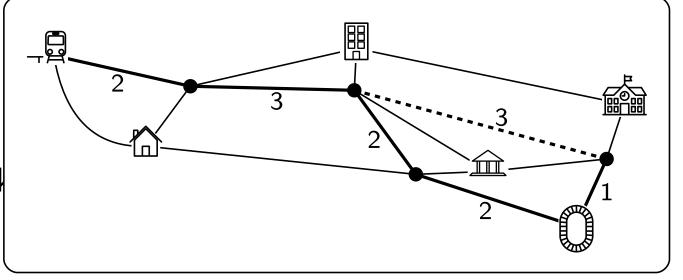


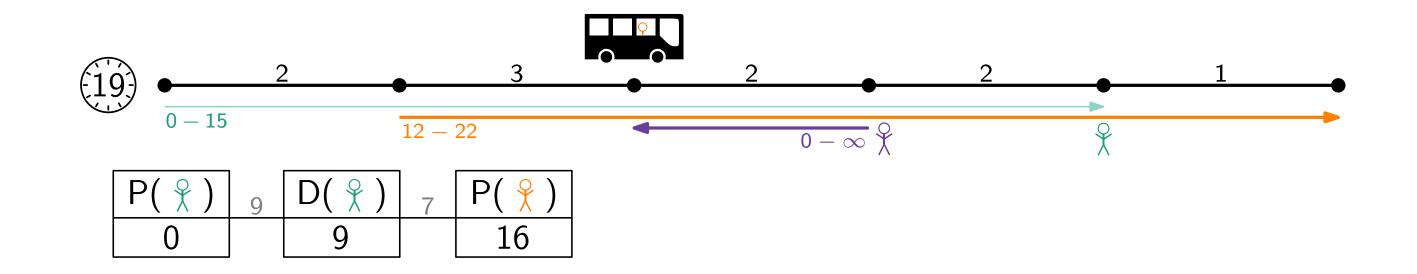
- Time Windows (TW): earliest pick-up e_p
- Service Promise (SP): passenger at most
- Service Time (ST): pick-up / drop-off tak
- Shortcuts (SC)



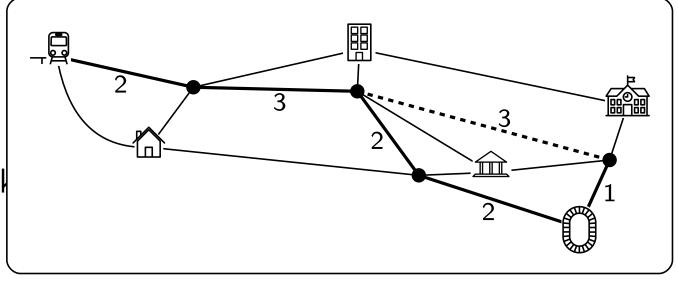


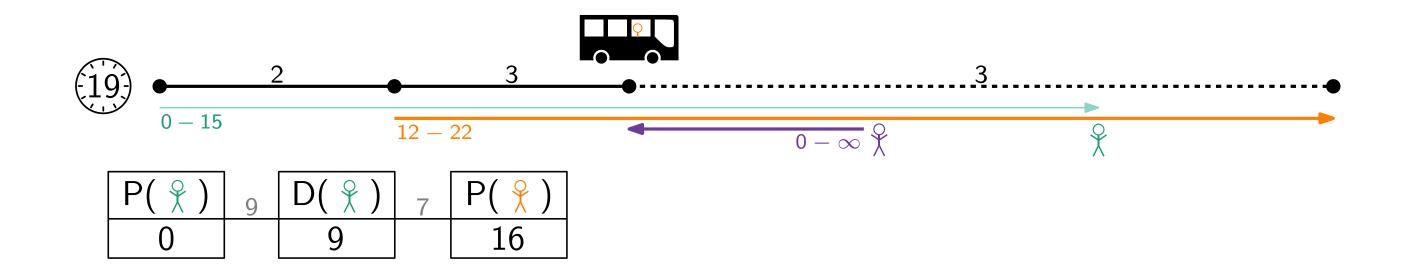
- Time Windows (TW): earliest pick-up e_p
- Service Promise (SP): passenger at most
- Service Time (ST): pick-up / drop-off tak
- Shortcuts (SC)



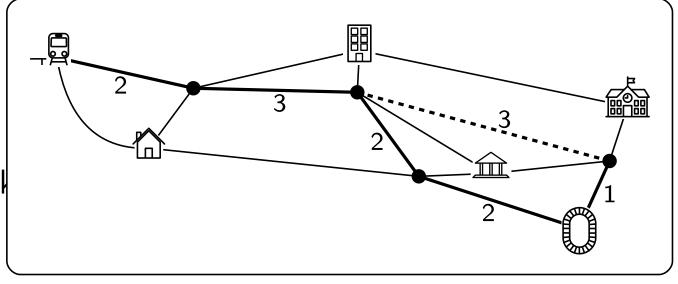


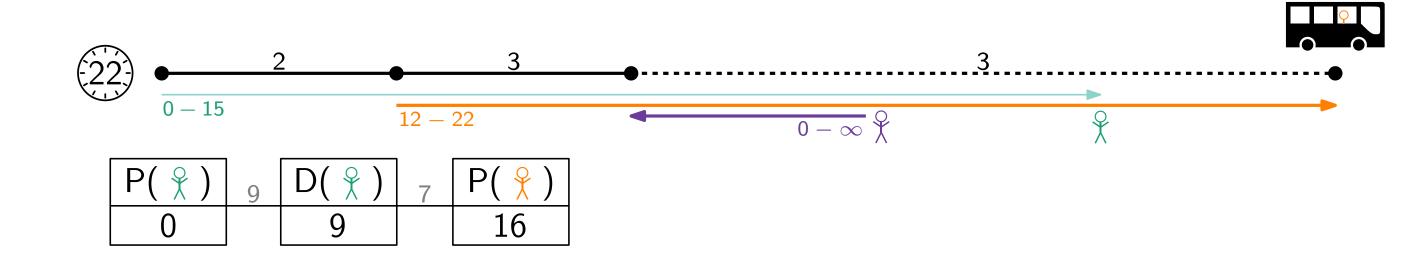
- Time Windows (TW): earliest pick-up e_p
- Service Promise (SP): passenger at most
- Service Time (ST): pick-up / drop-off tak
- Shortcuts (SC)



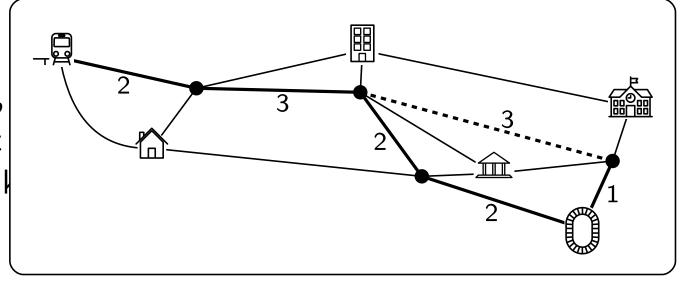


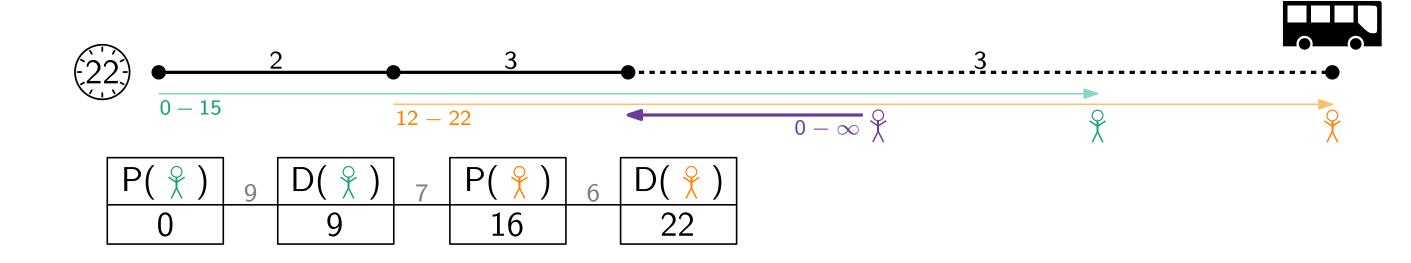
- Time Windows (TW): earliest pick-up e_p
- Service Promise (SP): passenger at most
- Service Time (ST): pick-up / drop-off tak
- Shortcuts (SC)



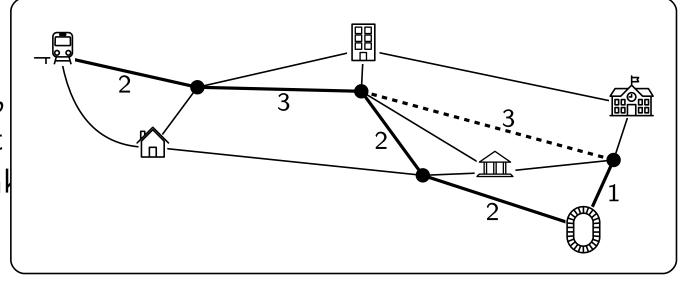


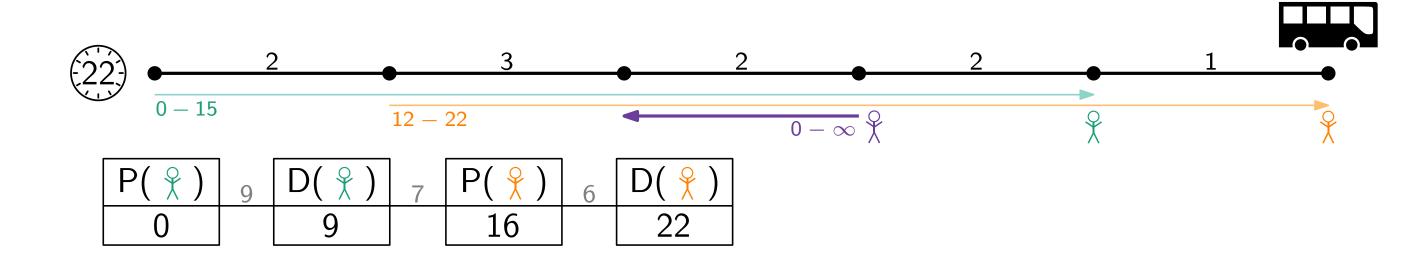
- Time Windows (TW): earliest pick-up e_p
- Service Promise (SP): passenger at most
- Service Time (ST): pick-up / drop-off tak
- Shortcuts (SC)





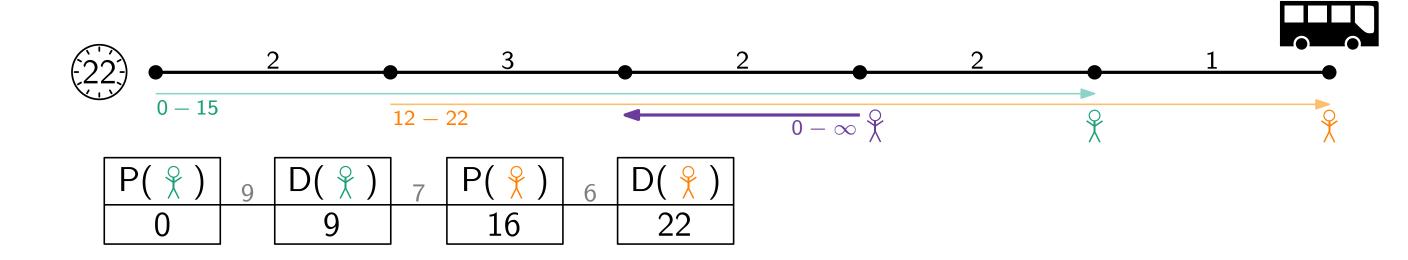
- Time Windows (TW): earliest pick-up e_p
- Service Promise (SP): passenger at most
- Service Time (ST): pick-up / drop-off tak
- Shortcuts (SC)





Tour

- respects directionality and capacity
- timestamps adhere to distances and service time

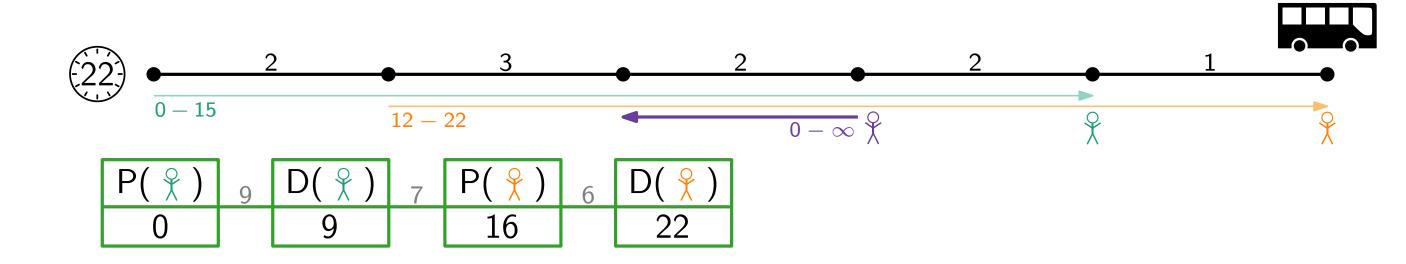


Tour

- respects directionality and capacity
- timestamps adhere to distances and service time

Feasible

respects time windows and service promise

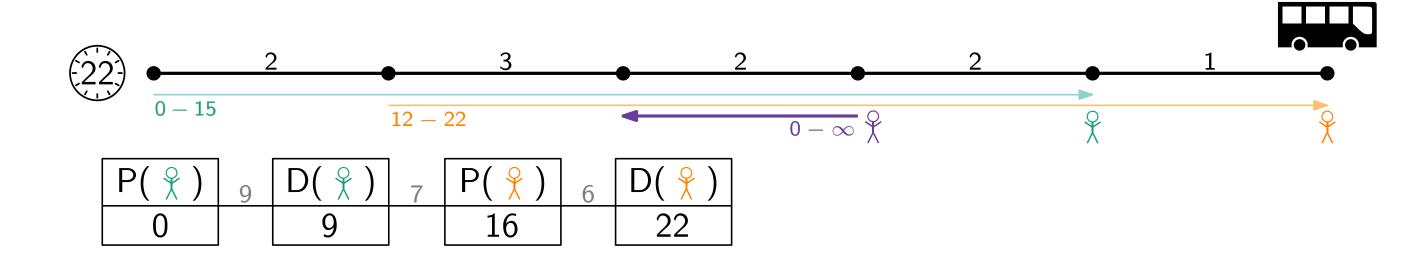


Tour

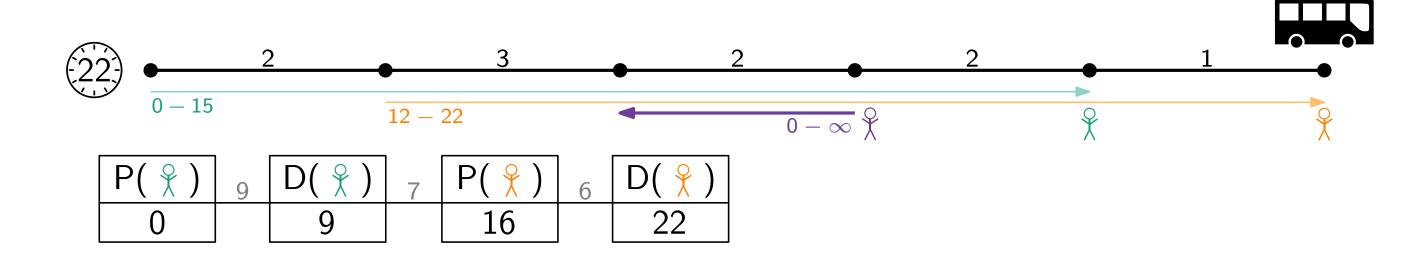
- respects directionality and capacity
- timestamps adhere to distances and service time

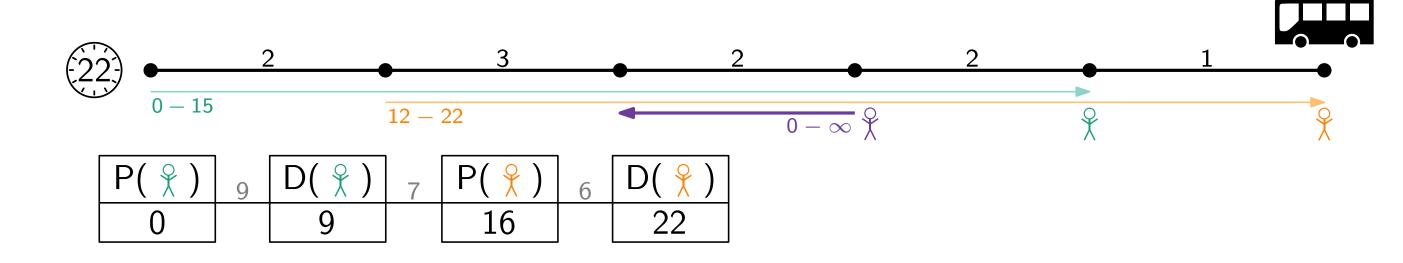
Feasible

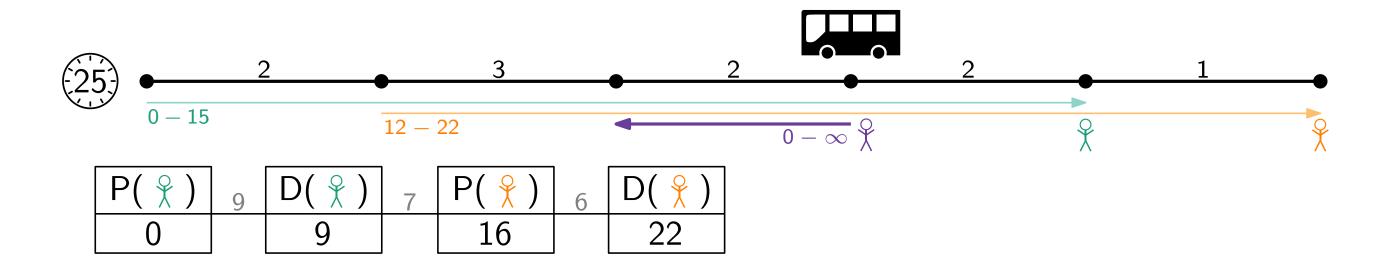
respects time windows and service promise

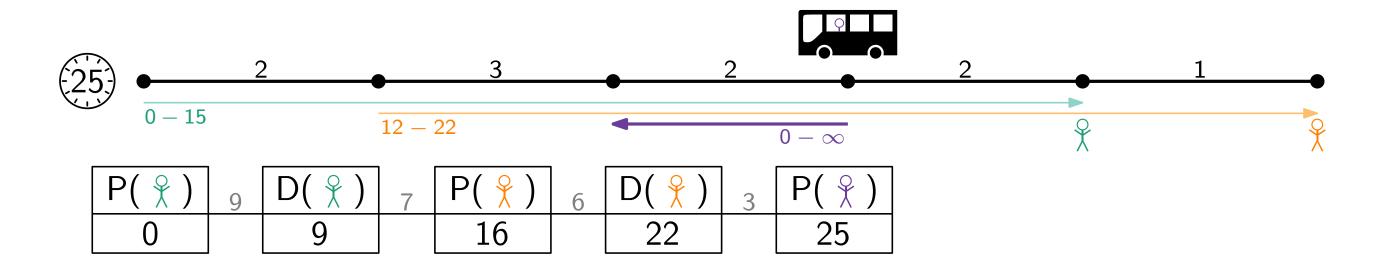


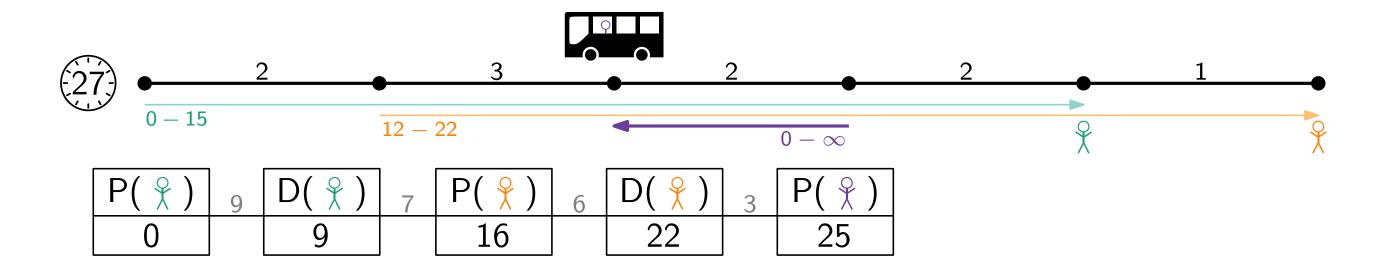
Objective:

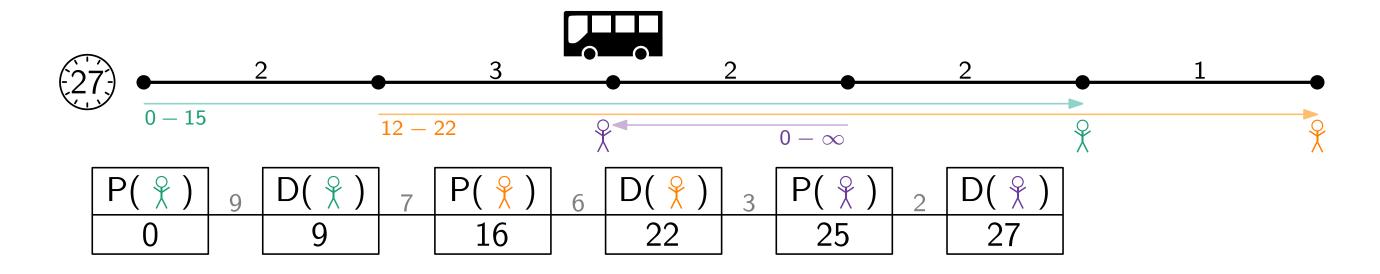


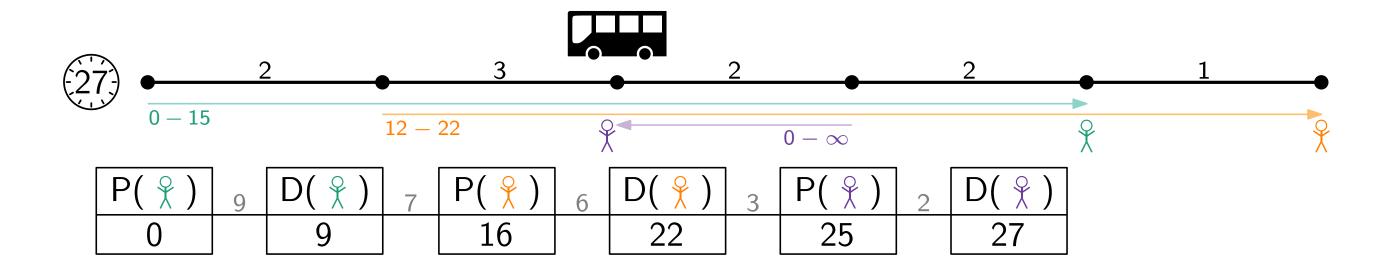




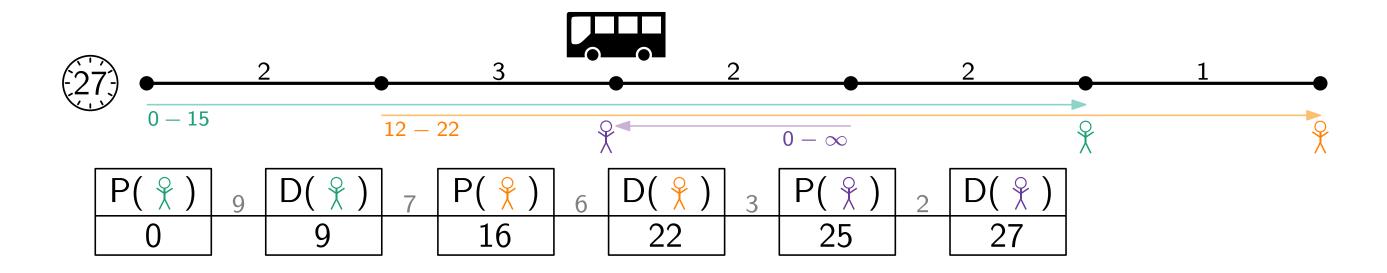




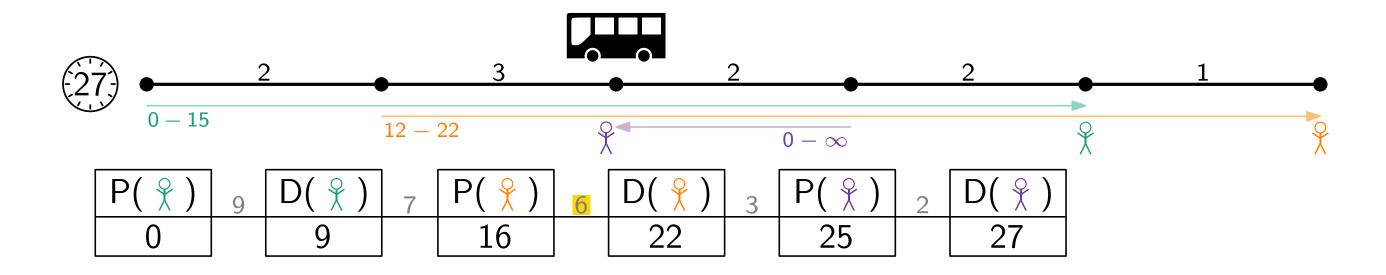




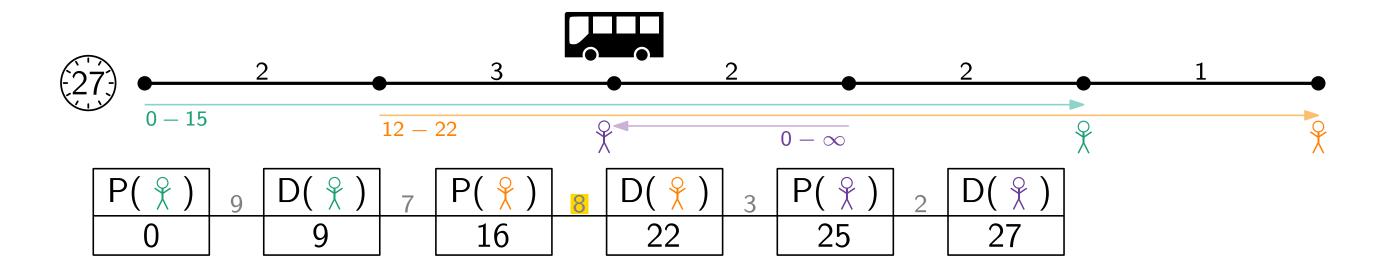
TW	$\sqrt{}$
SP	√
ST	×
SC	\checkmark



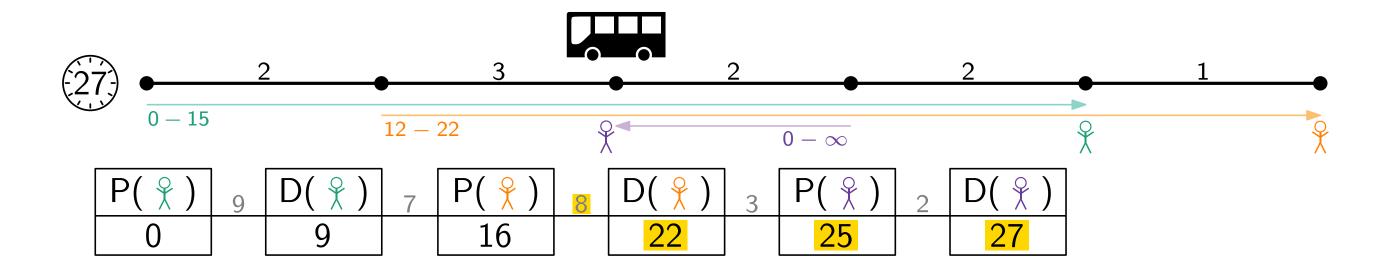
TW	$\sqrt{}$
SP	
ST	×
SC	×



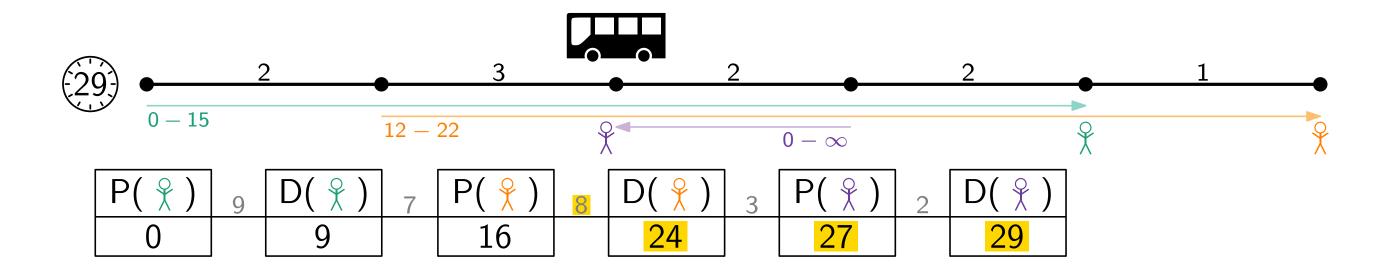
TW	$\sqrt{}$
SP	
ST	×
SC	×



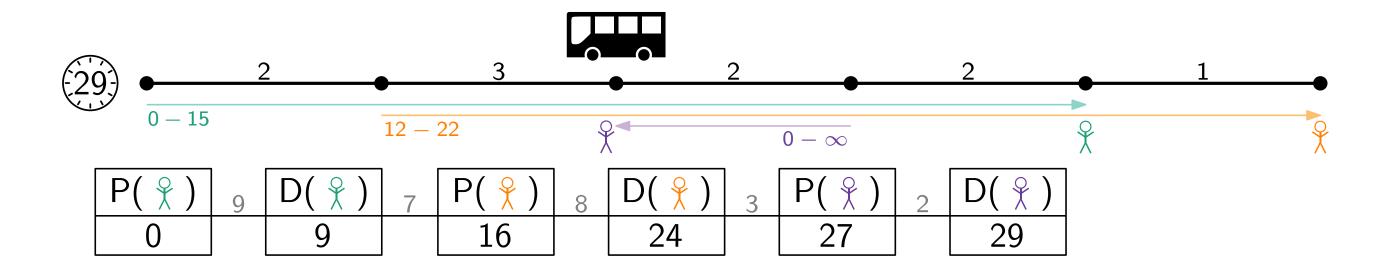
TW	$\sqrt{}$
SP	\
ST	×
SC	×



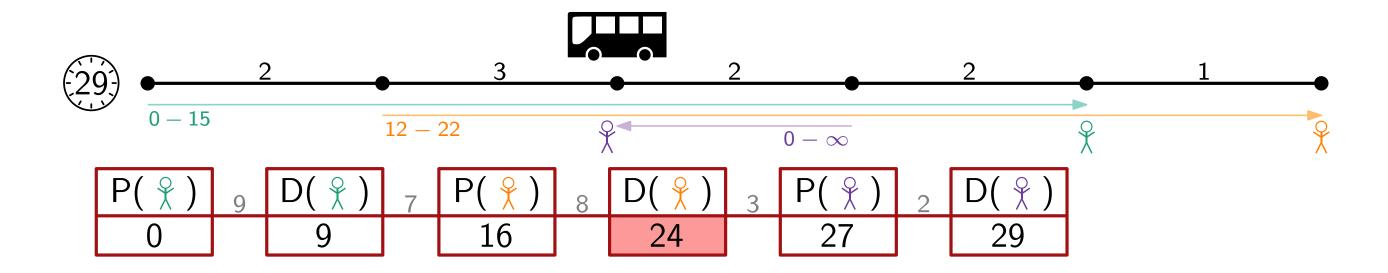
TW	$\sqrt{}$
SP	\
ST	×
SC	×



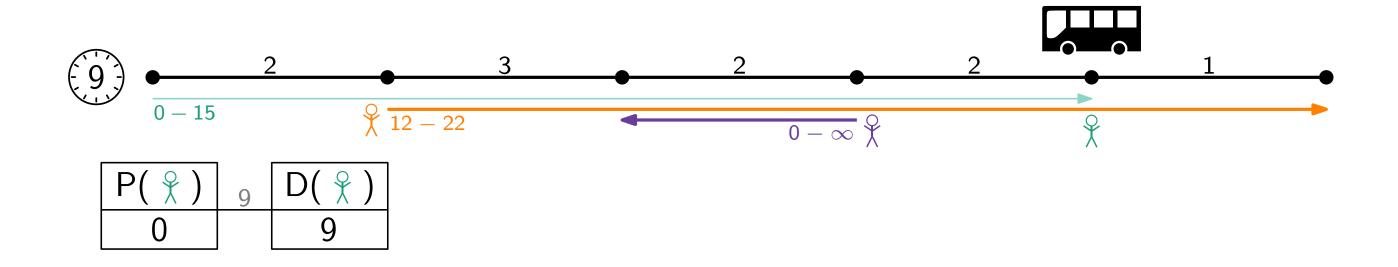
TW	
SP	
ST	×
SC	×



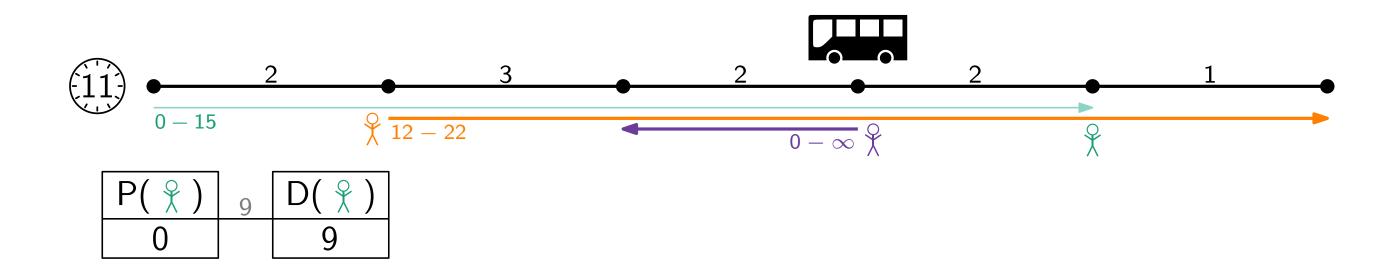
TW	$\sqrt{}$
SP	\
ST	×
SC	×



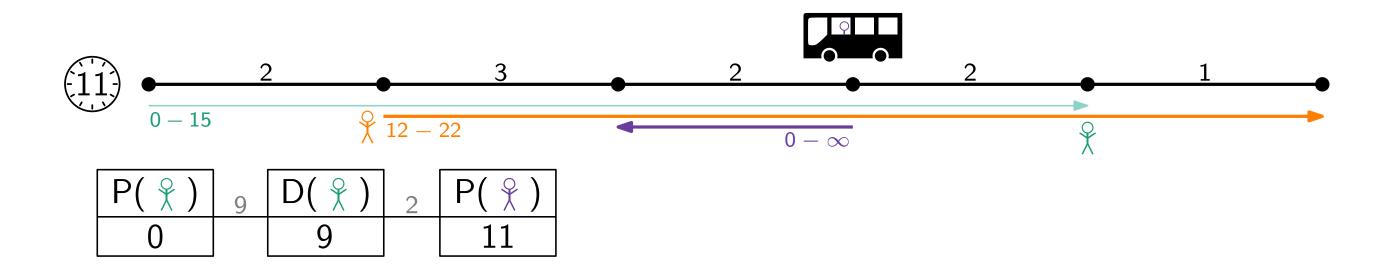
TW	$\sqrt{}$
SP	\
ST	×
SC	×



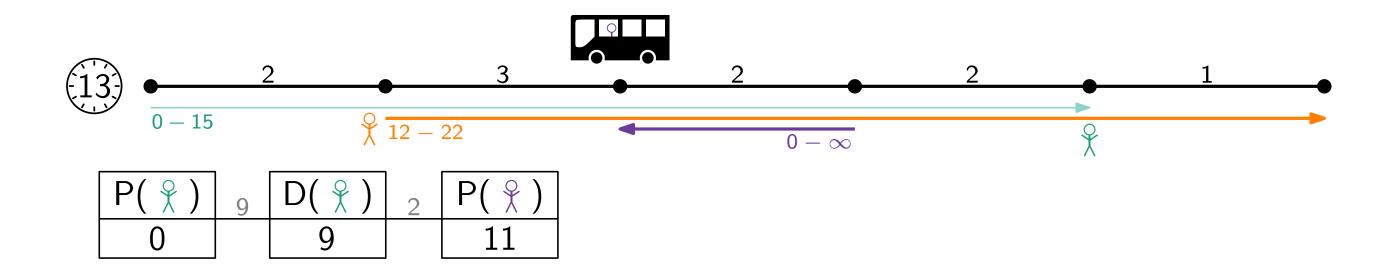
TW	$\sqrt{}$
SP	
ST	×
SC	×



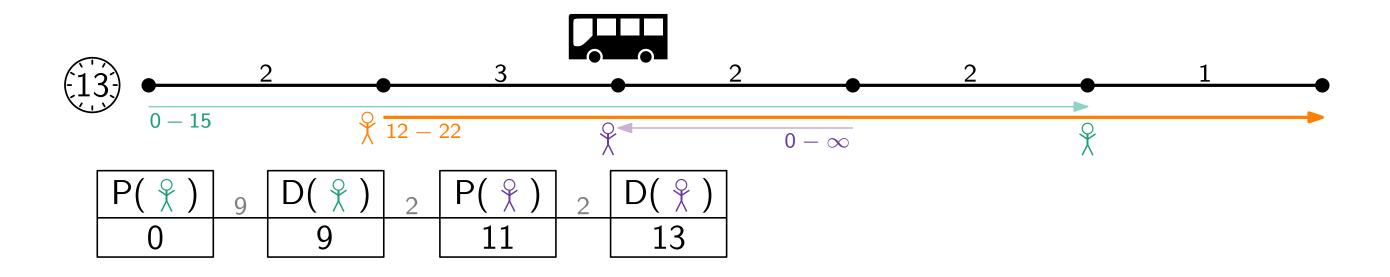
TW	$\sqrt{}$
SP	
ST	×
SC	×



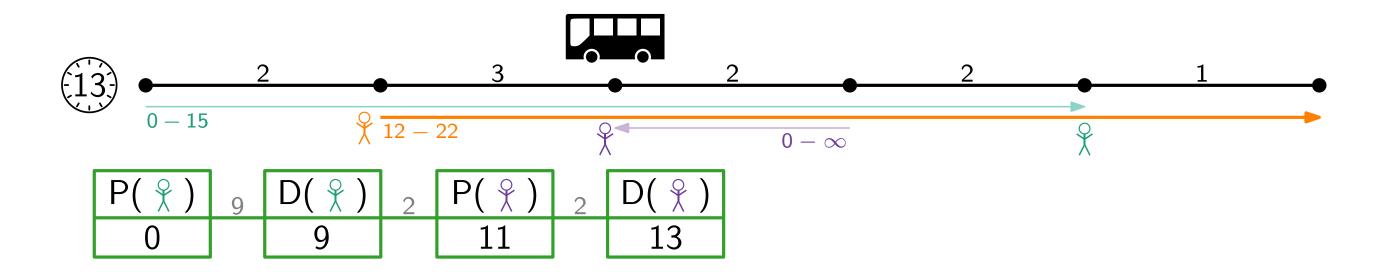
TW	$\sqrt{}$
SP	
ST	×
SC	×



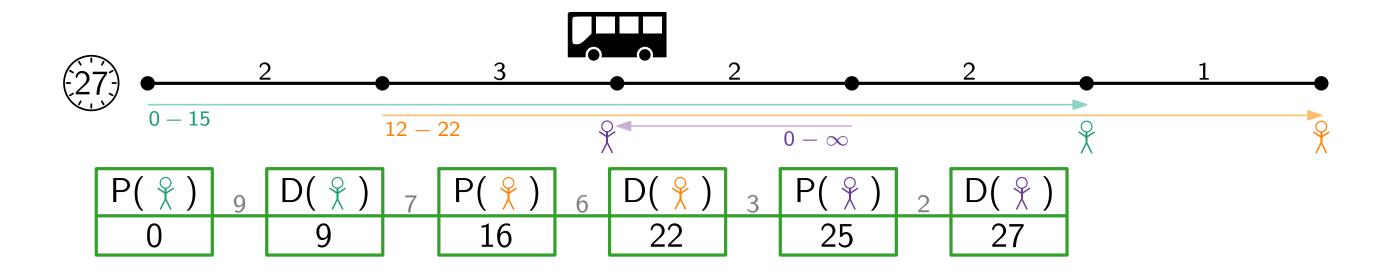
TW	$\sqrt{}$
SP	
ST	×
SC	×



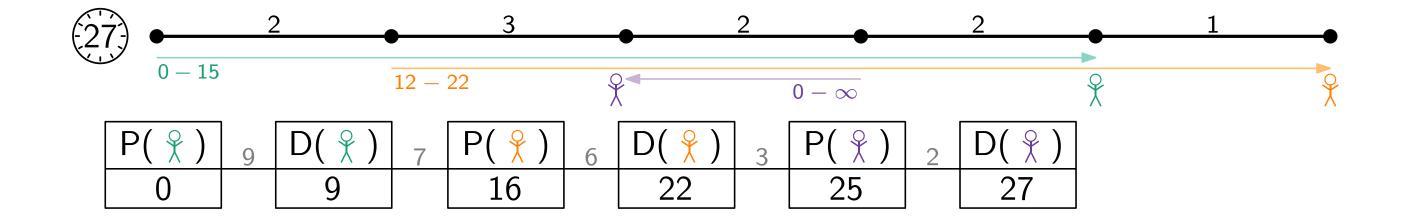
TW	$\sqrt{}$
SP	$\sqrt{}$
ST	X
SC	X



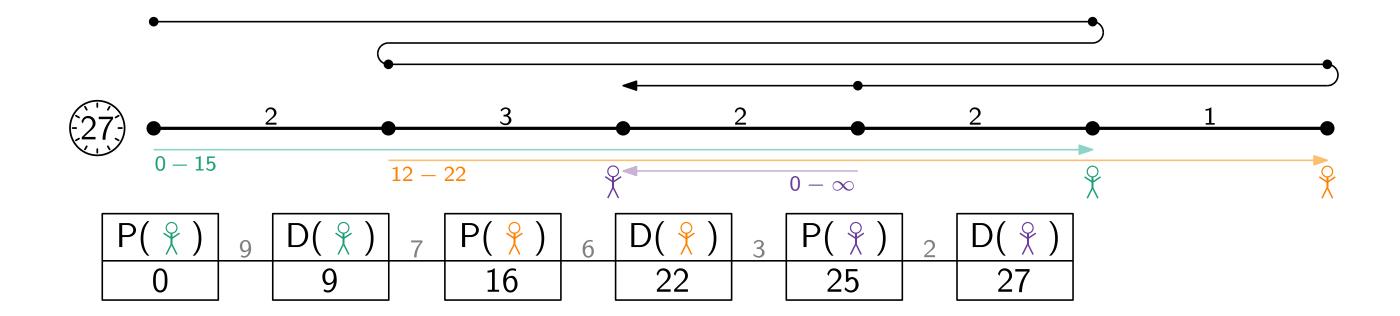
TW	
SP	\
ST	×
SC	×



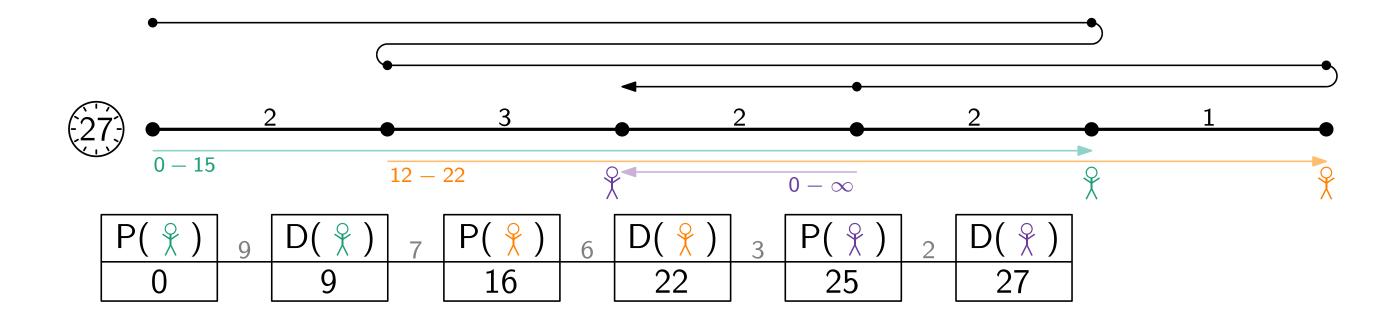
TW	
SP	
ST	×
SC	$\sqrt{}$



TW	
SP	\checkmark
ST	×
SC	

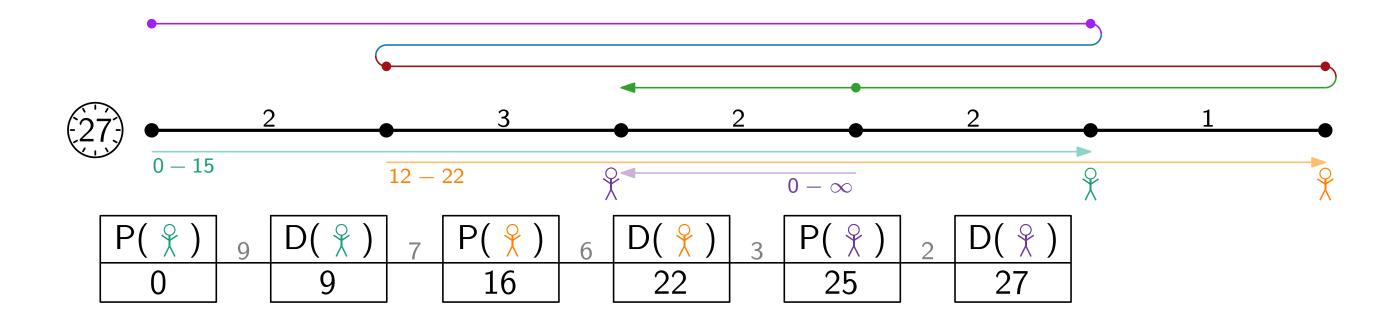


TW	
SP	√
ST	×
SC	



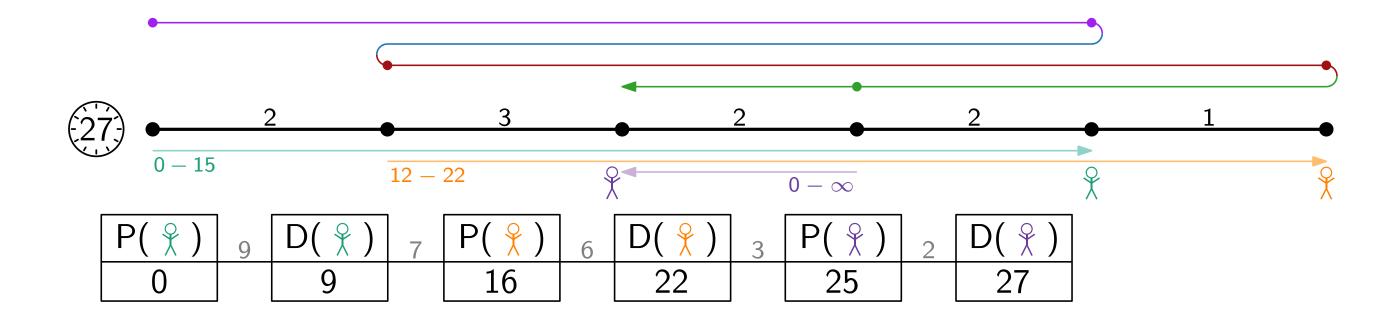
Subtour: tour segment where bus does not change direction

TW	
SP	\checkmark
ST	×
SC	$\sqrt{}$



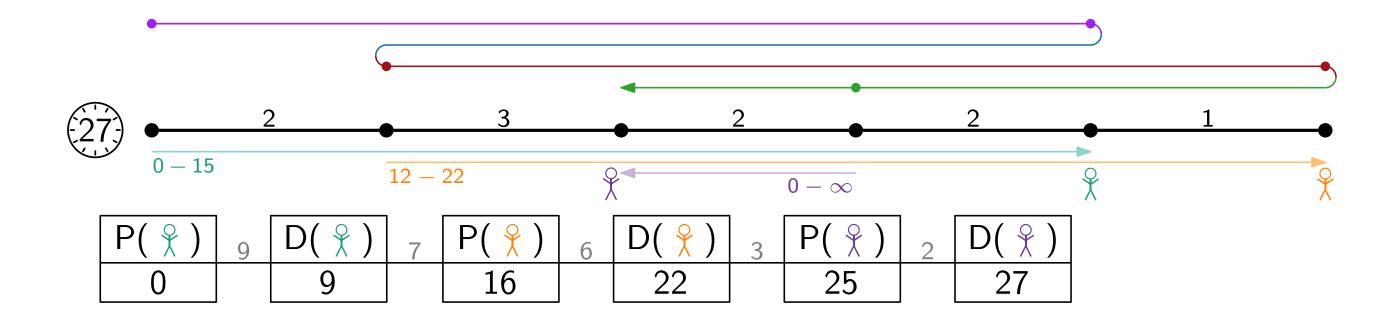
Subtour: tour segment where bus does not change direction

TW	$\sqrt{}$
SP	
ST	×
SC	



Subtour: tour segment where bus does not change direction $\overline{MinTurn}$

TW	$\sqrt{}$
SP	\checkmark
ST	×
SC	$\sqrt{}$

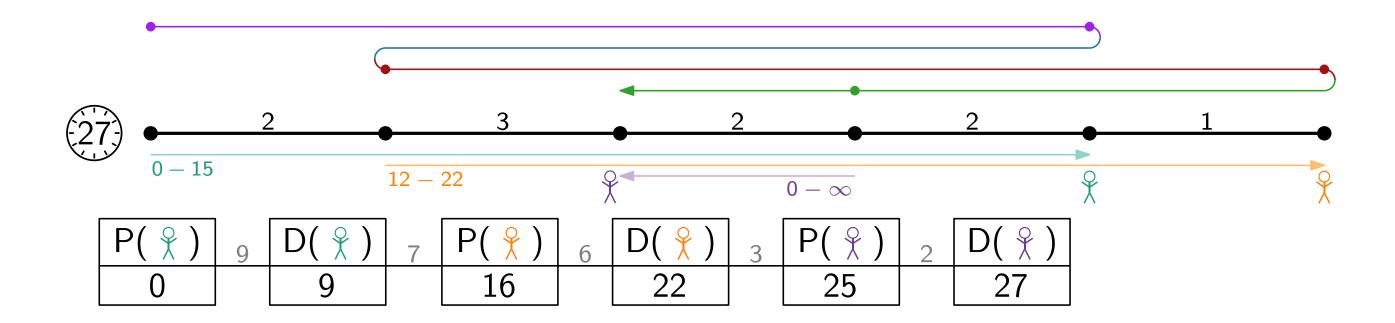


Subtour: tour segment where bus does not change direction

MINTURN

Input: LIDARP-Instance

TW	$\sqrt{}$
SP	
ST	×
SC	



Subtour: tour segment where bus does not change direction

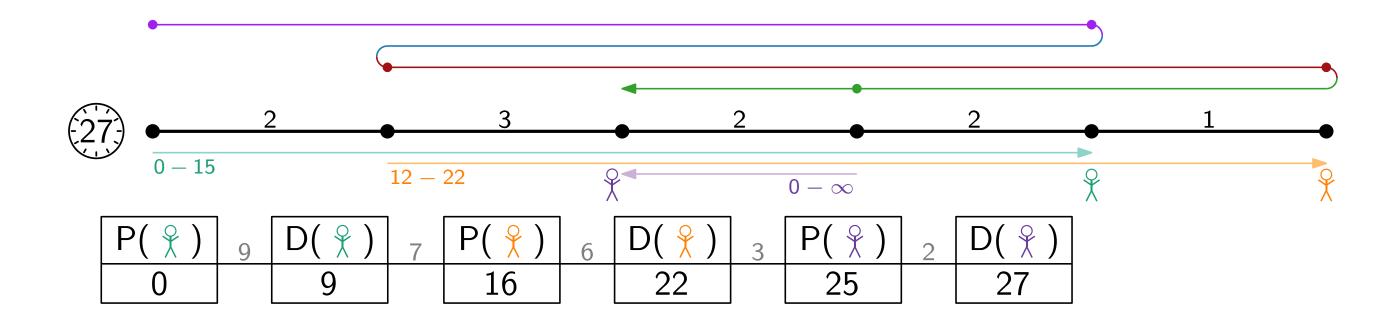
MINTURN

Input: LIDARP-Instance

Output: minimal number of subtours of a tour in an optimal

LIDARP solution

TW	
SP	\checkmark
ST	×
SC	



Subtour: tour segment where bus does not change direction

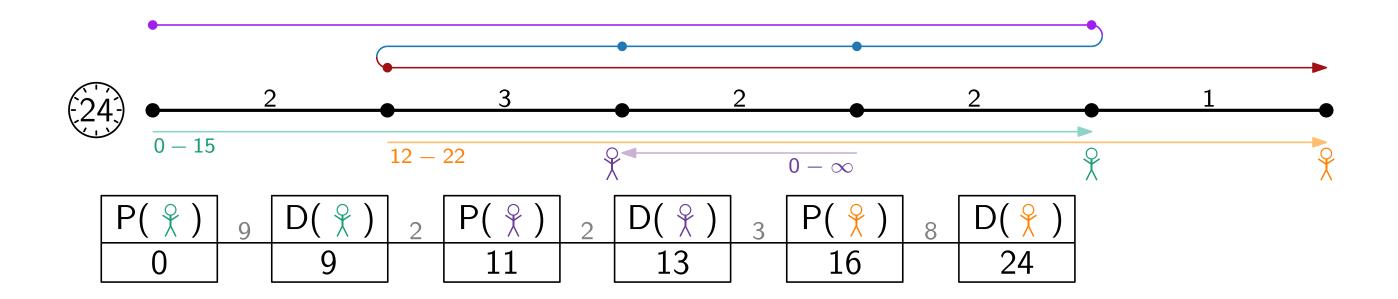
MINTURN

Input: LIDARP-Instance

Output: minimal number of subtours of a tour in an optimal

LIDARP solution $=: \tau$

TW	
SP	\checkmark
ST	×
SC	



Subtour: tour segment where bus does not change direction

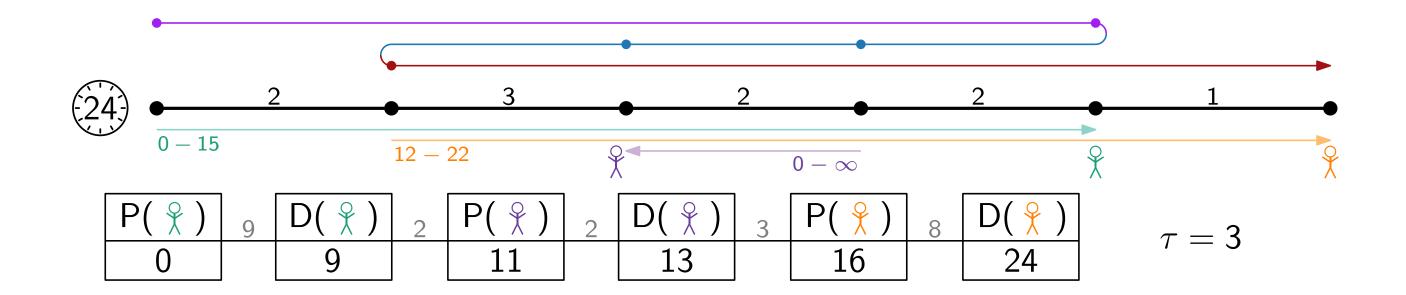
MINTURN

Input: LIDARP-Instance

Output: minimal number of subtours of a tour in an optimal

LIDARP solution $=: \tau$

TW	$\sqrt{}$
SP	\
ST	×
SC	$\sqrt{}$



Subtour: tour segment where bus does not change direction

MINTURN

Input: LIDARP-Instance

Output: minimal number of subtours of a tour in an optimal

LIDARP solution $=: \tau$

TW	
SP	
ST	×
SC	\checkmark

Related Work

- study LIDARP with other objectives
- assume all requests can be served

Related Work

- study LIDARP with other objectives
- assume all requests can be served

Complexity

Related Work

- study LIDARP with other objectives
- assume all requests can be served

#Vehicles	k
Capacity	С
Time Windows	TW
Service Promise	SP
Service Time	ST
Shortcuts	SC

Complexity

LIDARP

	k	С	TW	SP	ST	SC
•						

Related Work

- study LIDARP with other objectives
- assume all requests can be served

\mathcal{P}	
#Vehicles	k
Capacity	С
Time Windows	TW
Service Promise	SP
Service Time	ST
Shortcuts	SC

Complexity

LIDARP

k	C	TW	SP	ST	SC
<u>≥ 1</u>	≥ 1	×	1	1	1

Related Work

- study LIDARP with other objectives
- assume all requests can be served

\mathcal{P}	$\mathcal{NP} ext{-hard}$		
#Veh	icles	k	
Capac	city	С	
Time Wind	TW		
Service Prom	SP		
Service Time	ST		
Short	SC		

Complexity

LIDARP

k	C	TW	SP	ST	SC
≥ 1	≥ 1	×	1	1	1
≥ 1	≥ 1	1	×	×	×

Related Work

- study LIDARP with other objectives
- assume all requests can be served

\mathcal{P}	$\mathcal{NP} ext{-hard}$		
#Veh	icles	k	
Capac	city	С	
Time Windo	TW		
Servic	SP		
Service Time	ST		
Short	SC		

Complexity

LIDARP

k	С	TW	SP	ST	SC
≥ 1	≥ 1	×	1		$\sqrt{}$
<u>≥ 1</u>	<u>≥ 1</u>		×	×	×

k	С	TW	SP	ST	SC
≥ 1	≥ 1	X	\	×	×
≥ 1	≥ 1	X	×	1	1
<u>≥ 1</u>	1	×	1	1	1
≥ 1	≥ 2	×	√	×	√
≥ 1	≥ 2	X	\checkmark		×
≥ 1	≥ 1	\checkmark	×	×	×

Related Work

- study LIDARP with other objectives
- assume all requests can be served

Parameterized Algorithms

Complexity

LIDARP

k	C	TW	SP	ST	SC
≥ 1	≥ 1	×	1		$\sqrt{}$
<u>≥ 1</u>	<u>≥ 1</u>	\	×	×	×

k	С	TW	SP	ST	SC
≥ 1	≥ 1	X	\	X	×
≥ 1	≥ 1	X	×		1
≥ 1	1	×	1	1	
≥ 1	≥ 2	X	✓	X	1
≥ 1	≥ 2	X	\checkmark		×
<u>≥ 1</u>	≥ 1	\checkmark	×	×	×

Related Work

- study LIDARP with other objectives
- assume all requests can be served

Parameterized Algorithms

Parameters

- k := #vehicles
- c := capacity

Complexity

LIDARP

k	C	TW	SP	ST	SC
≥ 1	≥ 1	×	1	1	$\sqrt{}$
<u>≥ 1</u>	<u>≥ 1</u>		×	×	×

k	С	TW	SP	ST	SC
≥ 1	≥ 1	X		×	×
≥ 1	≥ 1	X	×	1	1
<u>≥ 1</u>	1	×	1		1
≥ 1	≥ 2	X	1	×	1
≥ 1	≥ 2	X	1	1	×
<u>≥ 1</u>	≥ 1	\checkmark	×	×	×

Related Work

■ study LIDARP with other objectives

_determined by time windows

assume all requests can be served

Parameterized Algorithms

Parameters

- k := #vehicles
- c := capacity
- h := #stationst := max. time

Complexity

LIDARP

k	C	TW	SP	ST	SC
<u>≥ 1</u>	≥ 1	×	1		$\sqrt{}$
<u>≥ 1</u>	<u>≥ 1</u>		×	×	×

k	С	TW	SP	ST	SC
≥ 1	≥ 1	×	\	×	×
≥ 1	≥ 1	×	×	1	1
<u>≥ 1</u>	1	×	1		1
≥ 1	≥ 2	×	1	×	√
≥ 1	≥ 2	×		1	×
<u>≥ 1</u>	≥ 1	√	×	×	×

Related Work

- study LIDARP with other objectives
- assume all requests can be served

Parameterized Algorithms

■ FPT-algorithm for LIDARP and MINTURN $O^*((h^2 \cdot t^3 \cdot c \cdot k)^{2 \cdot t \cdot c \cdot k})$

Parameters

- k := #vehicles
- c := capacity
- h := #stations
- t := max. time

Complexity

LIDARP

k	С	TW	SP	ST	SC
≥ 1	≥ 1	×	1		$\sqrt{}$
<u>≥ 1</u>	<u>≥ 1</u>	1	×	×	×

k	С	TW	SP	ST	SC
≥ 1	≥ 1	X	\	×	×
≥ 1	≥ 1	×	X		
<u>≥ 1</u>	1	×	1	1	
<u>≥ 1</u>	≥ 2	×	1	×	√
≥ 1	≥ 2	X	\checkmark		×
<u>≥ 1</u>	≥ 1	√	×	×	×

Related Work

- study LIDARP with other objectives
- assume all requests can be served

Parameterized Algorithms

■ FPT-algorithm for LIDARP and MINTURN $O^*((h^2 \cdot t^3 \cdot c \cdot k)^{2 \cdot t \cdot c \cdot k})$

Problem: without time windows $t = \infty$

Parameters

- k := #vehicles
- c := capacity
- h := #stations
- $t := \max$. time

Complexity

LIDARP

k	С	TW	SP	ST	SC
<u>≥ 1</u>	≥ 1	×	1	1	$\sqrt{}$
≥ 1	≥ 1	\sim	×	×	×

k	С	TW	SP	ST	SC
≥ 1	≥ 1	X	\	×	×
≥ 1	≥ 1	×	X		
<u>≥ 1</u>	1	×	1	1	
<u>≥ 1</u>	≥ 2	×	1	×	√
≥ 1	≥ 2	X	\checkmark		×
<u>≥ 1</u>	≥ 1	V	×	×	×

Related Work

- study LIDARP with other objectives
- assume all requests can be served

Parameterized Algorithms

- FPT-algorithm for LIDARP and MINTURN $O^*((h^2 \cdot t^3 \cdot c \cdot k)^{2 \cdot t \cdot c \cdot k})$
- XP-algorithm for MINTURN without time windows $O^*(n^{h^2} \cdot h^{4 \cdot c \cdot h})$

Parameters

- k := #vehicles
- c := capacity
- h := #stations
- t := max. time

Complexity

LIDARP

k	С	TW	SP	ST	SC
≥ 1	≥ 1	×	1	1	1
≥ 1	≥ 1	1	×	×	×

k	С	TW	SP	ST	SC
≥ 1	≥ 1	X		×	×
≥ 1	≥ 1	X	×	1	\checkmark
<u>≥ 1</u>	1	×	1		1
<u>≥ 1</u>	≥ 2	×	1	×	√
<u>≥ 1</u>	≥ 2	×	1	1	×
≥ 1	≥ 1	\checkmark	×	×	×

Related Work

- study LIDARP with other objectives
- assume all requests can be served

Parameterized Algorithms

- FPT-algorithm for LIDARP and MINTURN $O^*((h^2 \cdot t^3 \cdot c \cdot k)^{2 \cdot t \cdot c \cdot k})$
- XP-algorithm for MINTURN without time windows

$$O^*(n^{h^2} \cdot h^{4 \cdot c \cdot h})$$

n := #requests

Parameters

- k := #vehicles
- c := capacity
- h := #stations
- t := max. time

Complexity

LIDARP

k	С	TW	SP	ST	SC
<u>≥ 1</u>	≥ 1	×	1	1	1
≥ 1	≥ 1	\sim	×	×	×

k	С	TW	SP	ST	SC
≥ 1	≥ 1	X		×	×
≥ 1	≥ 1	X	×	1	1
<u>≥ 1</u>	1	×	1		1
≥ 1	≥ 2	X	1	×	1
≥ 1	≥ 2	X	1	1	×
<u>≥ 1</u>	≥ 1	\checkmark	×	×	×

Related Work

- study LIDARP with other objectives
- assume all requests can be served

Parameterized Algorithms

- FPT-algorithm for LIDARP and MINTURN $O^*((h^2 \cdot t^3 \cdot c \cdot k)^{2 \cdot t \cdot c \cdot k})$
- XP-algorithm for MINTURN without time windows $O^*(n^{h^2} \cdot h^{4 \cdot c \cdot h})$

Parameters

- k := #vehicles
- c := capacity
- h := #stations
- t := max. time

Complexity

LIDARP

k	C	TW	SP	ST	SC
<u>≥ 1</u>	≥ 1	×	1		$\sqrt{}$
≥ 1	≥ 1		X	X	X

_ k	С	TW	SP	ST	SC
≥ 1	≥ 1	X		X	X
≥ 1	≥ 1	X	×		
≥ 1	1	X	1		
≥ 1	≥ 2	X	1	X	
≥ 1	≥ 2	×	1		×
≥ 1	≥ 1		×	X	×

Related Work

- study LIDARP with other objectives
- assume all requests can be served

Parameterized Algorithms

- FPT-algorithm for LIDARP and MINTURN $O^*((h^2 \cdot t^3 \cdot c \cdot k)^{2 \cdot t \cdot c \cdot k})$
- XP-algorithm for MINTURN without time windows $O^*(n^{h^2} \cdot h^{4 \cdot c \cdot h})$

Parameters

- k := #vehicles
- c := capacity
- h := #stations
- t := max. time

Complexity

LIDARP

k	С	TW	SP	ST	SC
≥ 1	≥ 1	×	$\sqrt{}$	1	$\sqrt{}$
≥ 1	≥ 1		X	X	×

k	С	TW	SP	ST	SC
≥ 1	≥ 1	X	1	X	X
≥ 1	≥ 1	×	X		
≥ 1	1	×			
≥ 1	≥ 2	×		X	
≥ 1	≥ 2	×	\checkmark		×
≥ 1	≥ 1	1	×	×	×

k	С	TW	SP	ST	SC
<u>≥ 1</u>	≥ 1	X	√	√	\checkmark

P(⅔)	D(⅔)	P(⅔)	D(♀)
0	9	11	13

k	С	TW	SP	ST	SC
<u>≥ 1</u>	≥ 1	X	√	√	\checkmark

P(⅔)	D(⅔)	P(♀)	D(⅔)
0	9	11	13

Route: tour without timestamps

k	C	TW	SP	ST	SC
<u>≥ 1</u>	≥ 1	X	√	√	\checkmark

Route: tour without timestamps

k	С	TW	SP	ST	SC
<u>≥ 1</u>	≥ 1	×	√	√	√



Route: tour without timestamps

route feasible if there is feasible corresponding tour

Lemma [Haugland & Ho 2010]

Testing feasibility of routes (and constructing feasible tours) is possible in polynomial time

Route: tour without timestamps

route feasible if there is feasible corresponding tour

k	С	TW	SP	ST	SC
≥ 1	≥ 1	×	√	√	√

Lemma [Haugland & Ho 2010]

Testing feasibility of routes (and constructing feasible tours) is possible in polynomial time

Lemma

Joining two feasible routes yields feasible route if there are no time windows

k	С	TW	SP	ST	SC
<u>≥ 1</u>	≥ 1	×	√	√	√

Lemma [Haugland & Ho 2010]

Testing feasibility of routes (and constructing feasible tours) is possible in polynomial time

Lemma

Joining two feasible routes yields feasible route if there are no time windows

k	С	TW	SP	ST	SC
≥ 1	≥ 1	×	√	√	√

Lemma [Haugland & Ho 2010]

Testing feasibility of routes (and constructing feasible tours) is possible in polynomial time

Lemma

Joining two feasible routes yields feasible route if there are no time windows

k	C	TW	SP	ST	SC
<u>≥ 1</u>	≥ 1	×	√	√	\checkmark

Lemma [Haugland & Ho 2010]

Testing feasibility of routes (and constructing feasible tours) is possible in polynomial time

Lemma

Joining two feasible routes yields feasible route if there are no time windows

Theorem

Without time windows a tour serving all request can be computed in polynomial time

k	C	TW	SP	ST	SC
≥ 1	≥ 1	×	√	√	√

Lemma [Haugland & Ho 2010]

Testing feasibility of routes (and constructing feasible tours) is possible in polynomial time

Lemma

Joining two feasible routes yields feasible route if there are no time windows

Theorem

Without time windows a tour serving all request can be computed in polynomial time

Proof:

k	C	TW	SP	ST	SC
≥ 1	≥ 1	×	√	√	√

Lemma [Haugland & Ho 2010]

Testing feasibility of routes (and constructing feasible tours) is possible in polynomial time

Lemma

Joining two feasible routes yields feasible route if there are no time windows

Theorem

Without time windows a tour serving all request can be computed in polynomial time

Proof:

serve each request in separate route (all feasible)

$$\boxed{P(\frac{\gamma}{\gamma})} \boxed{D(\frac{\gamma}{\gamma})} \boxed{P(\frac{\gamma}{\gamma})} \boxed{D(\frac{\gamma}{\gamma})} \boxed{P(\frac{\gamma}{\gamma})} \boxed{D(\frac{\gamma}{\gamma})}$$

k	C	TW	SP	ST	SC
≥ 1	≥ 1	X	√	√	√

Lemma [Haugland & Ho 2010]

Testing feasibility of routes (and constructing feasible tours) is possible in polynomial time

Lemma

Joining two feasible routes yields feasible route if there are no time windows

Theorem

Without time windows a tour serving all request can be computed in polynomial time

Proof:

serve each request in separate route (all feasible)

Lemma [Haugland & Ho 2010]

Testing feasibility of routes (and constructing feasible tours) is possible in polynomial time

Lemma

Joining two feasible routes yields feasible route if there are no time windows

Theorem

Without time windows a tour serving all request can be computed in polynomial time

Proof:

- serve each request in separate route (all feasible)
- join all routes into feasible route serving all requests

Lemma [Haugland & Ho 2010]

Testing feasibility of routes (and constructing feasible tours) is possible in polynomial time

Lemma

Joining two feasible routes yields feasible route if there are no time windows

Theorem

Without time windows a tour serving all request can be computed in polynomial time

Proof:

- serve each request in separate route (all feasible)
- join all routes into feasible route serving all requests

$$P(?) - D(?) - P(?) - D(?) - P(?)$$

Easy LIDARP

k	C	TW	SP	ST	SC
<u>≥ 1</u>	<u>≥ 1</u>	X	√	√	√

Lemma [Haugland & Ho 2010]

Testing feasibility of routes (and constructing feasible tours) is possible in polynomial time

Lemma

Joining two feasible routes yields feasible route if there are no time windows

Theorem

Without time windows a tour serving all request can be computed in polynomial time

Proof:

- serve each request in separate route (all feasible)
- join all routes into feasible route serving all requests
- compute corresponding feasible tour

$$P(?) - D(?) - P(?) - D(?) - P(?) - D(?)$$

Easy LIDARP

k	C	TW	SP	ST	SC
<u>≥ 1</u>	≥ 1	×	√	√	√

Lemma [Haugland & Ho 2010]

Testing feasibility of routes (and constructing feasible tours) is possible in polynomial time

Lemma

Joining two feasible routes yields feasible route if there are no time windows

Theorem

Without time windows a tour serving all request can be computed in polynomial time

Proof:

- serve each request in separate route (all feasible)
- join all routes into feasible route serving all requests
- compute corresponding feasible tour

P(⅔)	D(♀)	P(⅔)	D(♀)	P(💡)	D([♀] / _↑)
0	9	11	13	16	24

	LIDARP							
k	С	TW	SP	ST	SC			
≥ 1	≥ 1	×	$\sqrt{}$	\checkmark	$\sqrt{}$			
≥ 1	≥ 1	1	X	X	X			
		MINT	ΓURN					
k	С	TW	SP	ST	SC			
≥ 1	≥ 1	×	1	X	×			
≥ 1	≥ 1	X	X					
≥ 1	1	×						
≥ 1	≥ 2	X	1	X				
≥ 1	≥ 2	×	1	1	×			
≥ 1	≥ 1	1	X	X	X			

	LIDARP							
k	С	TW	SP	ST	SC			
≥ 1	≥ 1	×	1	\(\)	1			
≥ 1	≥ 1		X	×	×			
		MINT	ΓURN					
k	C	TW	SP	ST	SC			
≥ 1	≥ 1	×		×	×			
≥ 1	≥ 1	X	×		1			
≥ 1	1	X		1				
≥ 1	≥ 2	X	1	X				
≥ 1	≥ 2	×	1	\checkmark	×			
≥ 1	≥ 1	1	×	X	X			

	LIDARP							
k	С	TW	SP	ST	SC			
≥ 1	≥ 1	×	1	√	√			
≥ 1	≥ 1	1	X	×	×			
		MINT	ΓURN					
k	С	TW	SP	ST	SC			
≥ 1	≥ 1	X	1	X	X			
≥ 1	≥ 1	X	X	1				
≥ 1	1	X		1				
≥ 1	≥ 2	X		X				
= 1	= 2	×	1	\checkmark	×			
≥ 1	≥ 1	V	×	X	X			

k	C	TW	SP	ST	SC
= 1	= 2	×	\		×

General Idea

Reduction from 3-PARTITION

k	C	TW	SP	ST	SC
= 1	= 2	×			×

k	C	TW	SP	ST	SC
= 1	= 2	×	V	V	×

General Idea

Reduction from 3-Partition

Definition (3-Partition):

Given: Multiset S of 3m positive integers with $\sum_{s \in S} = mT$

Question: Is there a partition of S into m disjoint subsets S_1, \ldots, S_m s.t. each sums up to T?

General Idea

Reduction from 3-Partition

Definition (3-Partition):

Given: Multiset S of 3m positive integers with $\sum_{s \in S} = mT$

Question: Is there a partition of S into m disjoint subsets S_1, \ldots, S_m s.t. each sums up to T?

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

General Idea

Reduction from 3-Partition

Definition (3-Partition):

Given: Multiset S of 3m positive integers with $\sum_{s \in S} = mT$

Question: Is there a partition of S into m disjoint subsets S_1, \ldots, S_m s.t. each sums up to T?

$$S = \{1, 6, 8, 3, 7, 5\}$$

$$m = 2, T = 15$$

$$\{1, 6, 8\}, \{3, 7, 5\}$$

k	С	TW	SP	ST	SC
= 1	= 2	×	1	1	×

General Idea

Reduction from 3-Partition

Definition (3-Partition):

Given: Multiset S of 3m positive integers with $\sum_{s \in S} = mT$

Question: Is there a partition of S into m disjoint subsets S_1, \ldots, S_m s.t. each sums up to T?

Theorem [Garey & Johnson 1979]

3-Partition is strongly \mathcal{NP} -hard

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$
 $\{1, 6, 8\}, \{3, 7, 5\}$

k	C	TW	SP	ST	SC
= 1	= 2	×	\		×

General Idea

Given 3-Partition-Instance 5:

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

k	C	TW	SP	ST	SC
= 1	= 2	×	V	V	×

General Idea

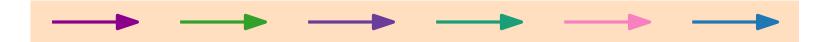
Given 3-Partition-Instance 5:

 \blacksquare for each value s_i there is a value request v_i

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark \checkmark



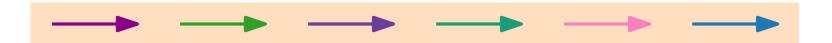
General Idea

Given 3-Partition-Instance 5:

 \blacksquare for each value s_i there is a value request v_i

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$



General Idea

Given 3-Partition-Instance 5:

 \blacksquare for each value s_i there is a value request v_i

$$S = \{1, 6, 8, 3, 7, 5\}$$
 $m = 2, T = 15$

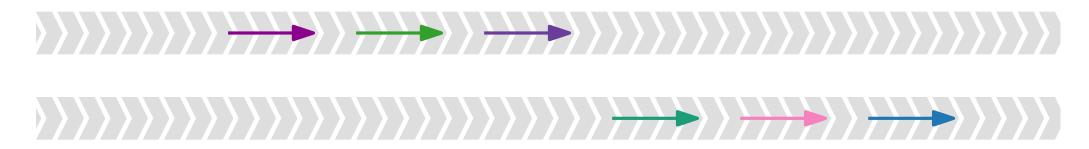
General Idea

Given 3-Partition-Instance 5:

 \blacksquare for each value s_i there is a value request v_i

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$



General Idea

Given 3-Partition-Instance 5:

 \blacksquare for each value s_i there is a value request v_i

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

$$\{1, 6, 8\}$$

$${3,7,5}$$

General Idea

Given 3-Partition-Instance 5:

 \blacksquare for each value s_i there is a value request v_i

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$



 $\{1, 6, 8\}$

 ${3,7,5}$

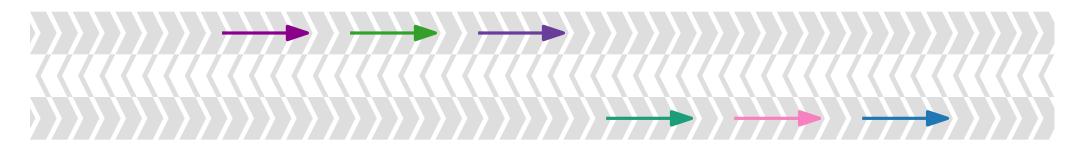
General Idea

Given 3-Partition-Instance 5:

 \blacksquare for each value s_i there is a value request v_i

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$



$\{1, 6, 8\}$

$${3,7,5}$$

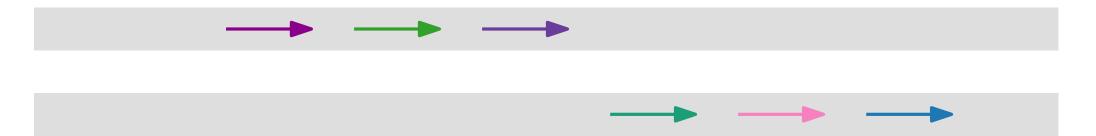
General Idea

Given 3-Partition-Instance 5:

 \blacksquare for each value s_i there is a value request v_i

$$S = \{1, 6, 8, 3, 7, 5\}$$
 $m = 2, T = 15$

$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark \checkmark



General Idea

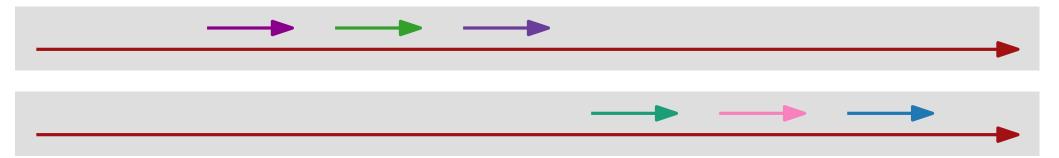
Given 3-Partition-Instance 5:

 \blacksquare for each value s_i there is a value request v_i

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark \checkmark



General Idea

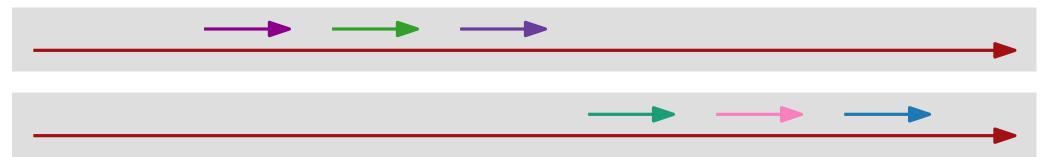
Given 3-Partition-Instance 5:

- \blacksquare for each value s_i there is a value request v_i
- sum of values to *T* in each set is enforced by a *promise request* per set

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark \checkmark



General Idea

Given 3-Partition-Instance 5:

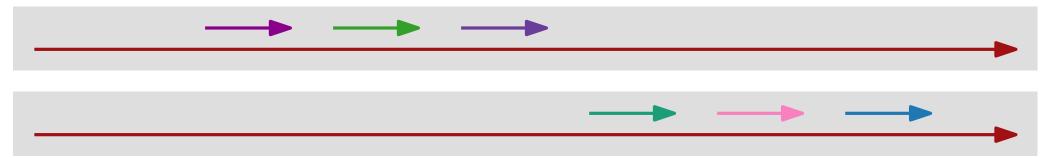
- \blacksquare for each value s_i there is a value request v_i
- sum of values to *T* in each set is enforced by a *promise request* per set

Goal: partition of values corresponds to grouping of value requests into
$$m$$
 ascending subroutes $\Leftrightarrow \tau = 2m-1$

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark \checkmark



General Idea

Given 3-Partition-Instance S:

 $S = \{1, 6, 8, 3, 7, 5\}$ m = 2, T = 15

- \blacksquare for each value s_i there is a value request v_i
- sum of values to T in each set is enforced by a promise request per set $\Delta = 2T$

$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark \checkmark

General Idea

Given 3-Partition-Instance 5:

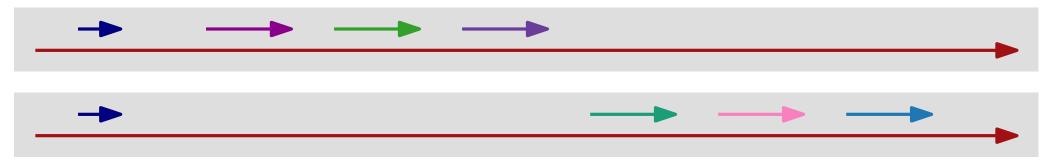
- \blacksquare for each value s_i there is a value request v_i
- \blacksquare sum of values to T in each set is enforced by a *promise request* per set

Problem: not always one promise request in each subroute

$$\Leftrightarrow \tau = 2m - 1$$

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$



General Idea

Given 3-Partition-Instance 5:

- \blacksquare for each value s_i there is a value request v_i
- sum of values to T in each set is enforced by a promise request per set
- one promise requests per subroute is enforced by m filter requests

$$\Leftrightarrow \tau = 2m - 1$$

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

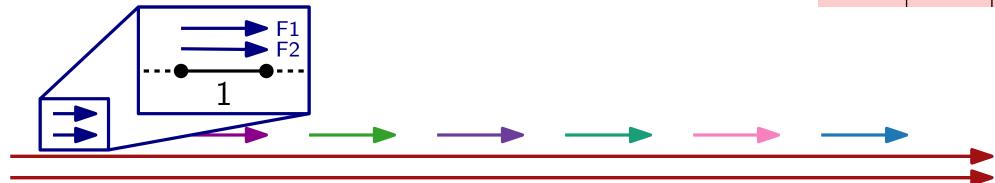
k	C	TW	SP	ST	SC
= 1	= 2	×		\checkmark	×

Set service time $t_s = 1$ and service promise $\rho < 2$

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

k	C	TW	SP	ST	SC
=1	= 2	×			X

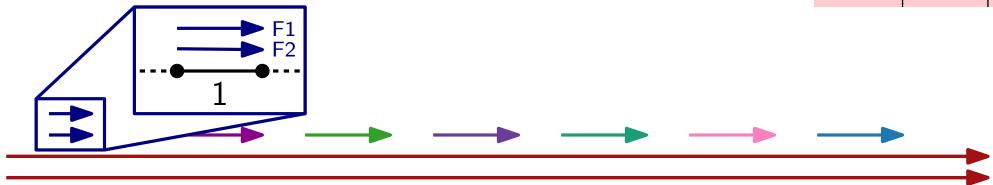


Set service time $t_s = 1$ and service promise $\rho < 2$

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

k	C	TW	SP	ST	SC
= 1	= 2	×			X



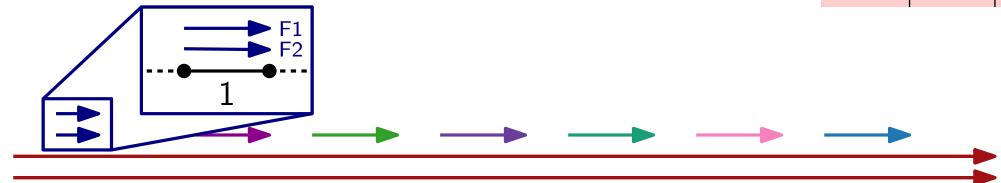
Set service time $t_s = 1$ and service promise $\rho < 2$

■ DTT =
$$1 \Rightarrow MTT < 2$$

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

k	C	TW	SP	ST	SC
=1	= 2	×			X



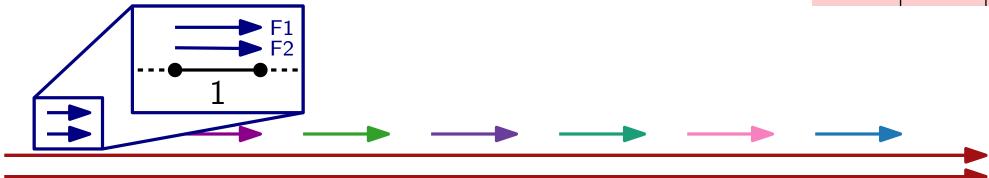
Set service time $t_s = 1$ and service promise $\rho < 2$

$$\blacksquare$$
 DTT = 1 \Rightarrow MTT < 2

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

k	C	TW	SP	ST	SC
= 1	= 2	×			×



Set service time $t_s = 1$ and service promise $\rho < 2$

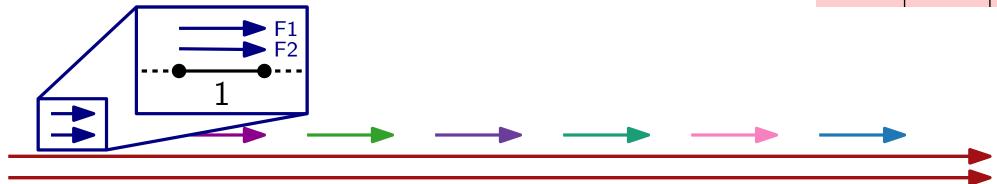
$$\blacksquare$$
 DTT = 1 \Rightarrow MTT < 2

P(F1)	P(F2)	1	D(F1)	D(F2)
2 - 3	3 - 4		5 – 6	6 - 7

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

k	C	TW	SP	ST	SC
= 1	= 2	X			X



Set service time $t_s = 1$ and service promise $\rho < 2$

$$\blacksquare$$
 DTT = 1 \Rightarrow MTT < 2

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

k	C	TW	SP	ST	SC
= 1	= 2	×			×



Set service time $t_s = 1$ and service promise $\rho < 2$

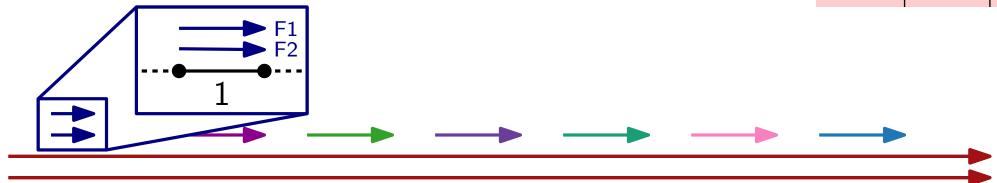
$$\blacksquare$$
 DTT = 1 \Rightarrow MTT < 2

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

$$P(F1)$$
 $P(F2)$ $_1$ $D(F1)$ $D(F2)$ $TT(F1) = 5 - 3 = 2 > MTT(F1)$ $2 - 3$ $3 - 4$ $5 - 6$ $6 - 7$

k	C	TW	SP	ST	SC
=1	= 2	×			X



Set service time $t_s = 1$ and service promise $\rho < 2$

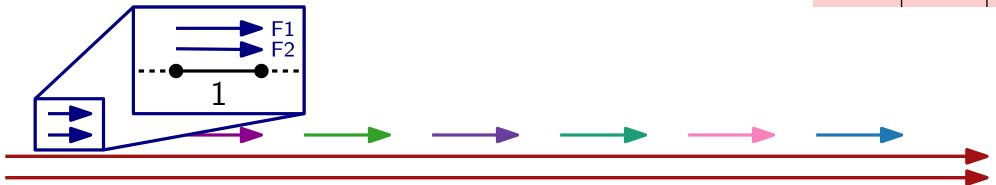
$$\blacksquare$$
 DTT = 1 \Rightarrow MTT < 2

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

$$P(F1)$$
 $P(F2)$ $_1$ $D(F2)$ $D(F1)$ $TT(F1) = 6 - 3 = 3 > MTT(F1)$ $2 - 3$ $3 - 4$ $5 - 6$ $6 - 7$

k	C	TW	SP	ST	SC
=1	= 2	×			X



Set service time $t_s=1$ and service promise $\rho<2$

- \blacksquare DTT = 1 \Rightarrow MTT < 2
- ⇒ no two filter requests can be served in same subroute

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

k	C	TW	SP	ST	SC
=1	= 2	×			X

Set service time $t_s = 1$ and service promise $\rho < 2$

- DTT = $1 \Rightarrow MTT < 2$
- ⇒ no two filter requests can be served in same subroute
- \Rightarrow each of the *m* subroutes contains one filter and one promise request

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

k	C	TW	SP	ST	SC
= 1	= 2	×	V		×

Set service time $t_s = 1$ and service promise $\rho < 2$

Value Requests

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark \checkmark

Set service time $t_s = 1$ and service promise $\rho < 2$

Value Requests

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

k	C	TW	SP	ST	SC
= 1	= 2	×	V		×



Set service time $t_s=1$ and service promise $\rho<2$

Value Requests

$$S = \{1, 6, 8, 3, 7, 5\}$$
 $m = 2, T = 15$

k	С	TW	SP	ST	SC
= 1	= 2	×	\checkmark	1	×

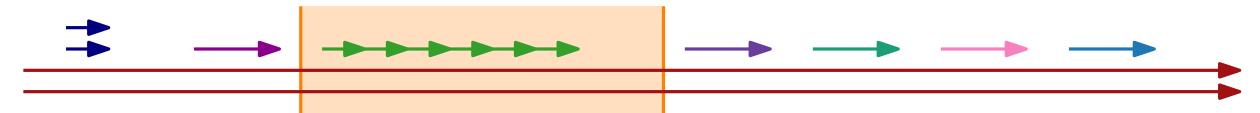
Set service time $t_s = 1$ and service promise $\rho < 2$

Value Requests

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

k	C	TW	SP	ST	SC
= 1	= 2	×			×



-delay of 2s;

Set service time $t_s=1$ and service promise $\rho<2$

Value Requests

$$S = \{1, 6, 8, 3, 7, 5\}$$
 $m = 2, T = 15$

Set service time $t_s = 1$ and service promise $\rho < 2$

Value Requests

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark \checkmark

Set service time $t_s = 1$ and service promise $\rho < 2$

Value Requests

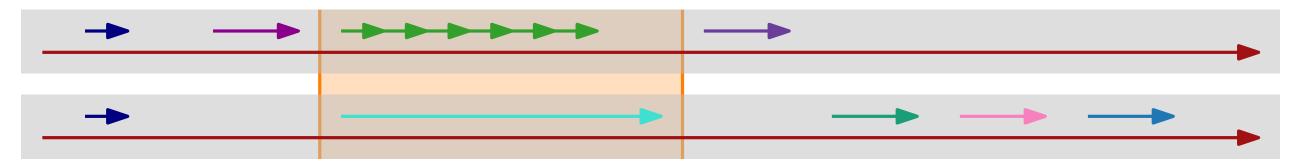
 \blacksquare value request v_i consists of s_i smaller requests

Problem: value request may be split between subroutes

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

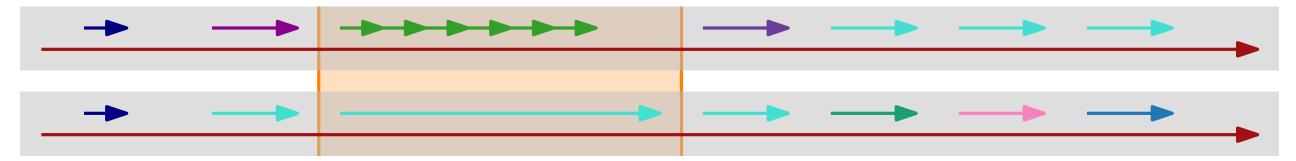
$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark



Set service time $t_s = 1$ and service promise $\rho < 2$

$S = \{1, 6, 8, 3, 7, 5\}$ m = 2, T = 15**Value Requests**

- \blacksquare value request v_i consists of s_i smaller requests
- splitting of value requests is prevented by a plug request per subroute

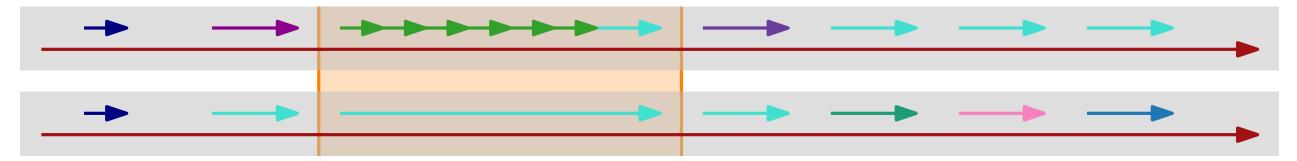


Set service time $t_s = 1$ and service promise $\rho < 2$

$S = \{1, 6, 8, 3, 7, 5\}$ m = 2, T = 15

Value Requests

- \blacksquare value request v_i consists of s_i smaller requests
- splitting of value requests is prevented by a plug request per subroute



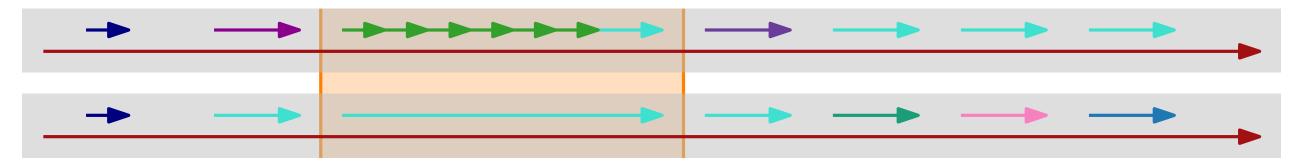
Set service time $t_s = 1$ and service promise $\rho < 2$

$S = \{1, 6, 8, 3, 7, 5\}$ m = 2, T = 15

Value Requests

- \blacksquare value request v_i consists of s_i smaller requests
- splitting of value requests is prevented by a plug request per subroute

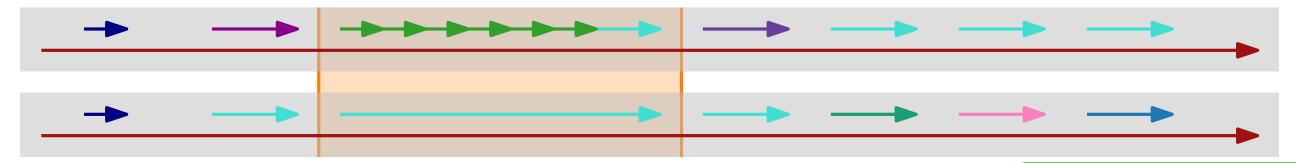
k	C	TW	SP	ST	SC
= 1	= 2	×			×



Set service time $t_s=1$ and service promise ho < 2

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$



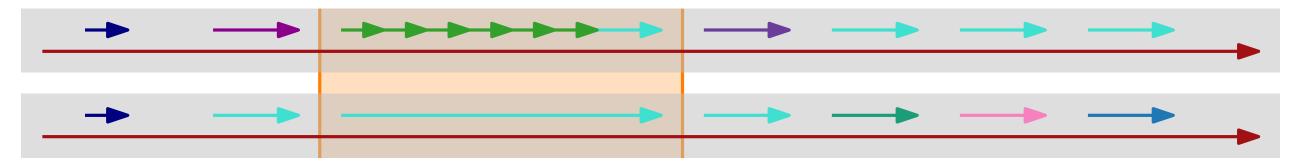
Set service time $t_s = 1$ and service promise $\rho < 2$

Each subroute should contain:

■ 1 promise request

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$



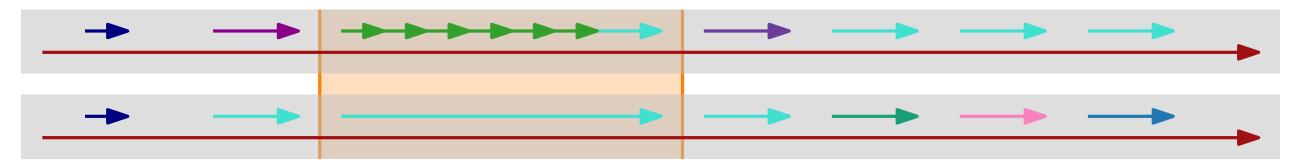
Set service time $t_s = 1$ and service promise $\rho < 2$

- 1 promise request
- 1 filter request

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark \checkmark



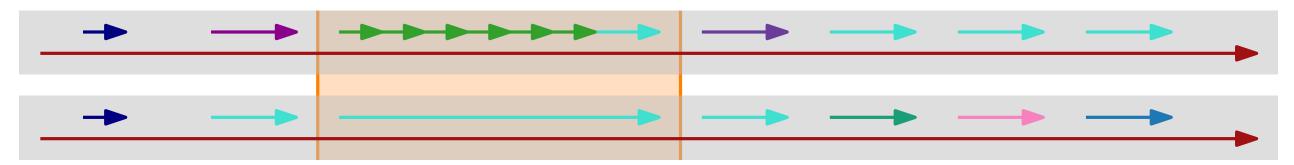
Set service time $t_s=1$ and service promise $\rho<2$

- 1 promise request
- 1 filter request
- *T* short value requests

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark \checkmark



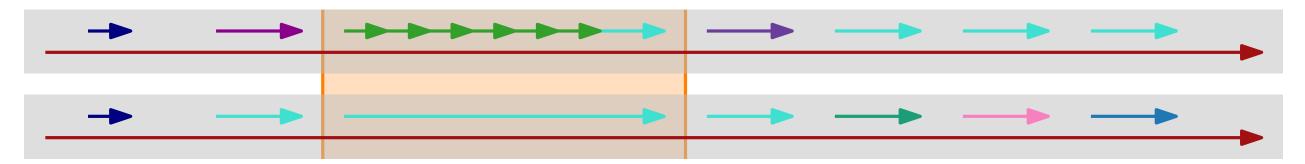
Set service time $t_s = 1$ and service promise $\rho < 2$

- 1 promise request
- 1 filter request
- T short value requests
- 3*m* plug requests

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark \checkmark



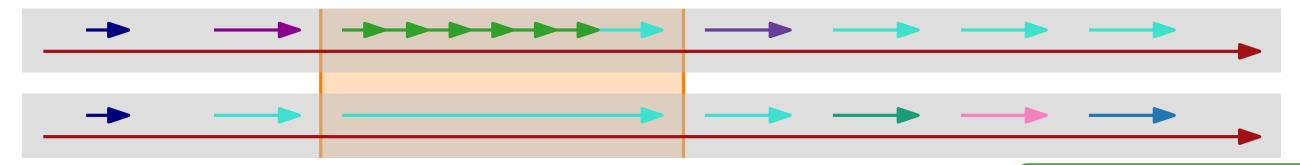
Set service time $t_s = 1$ and service promise $\rho < 2$

- 1 promise request ✓
- 1 filter request
- T short value requests
- 3*m* plug requests

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark \checkmark

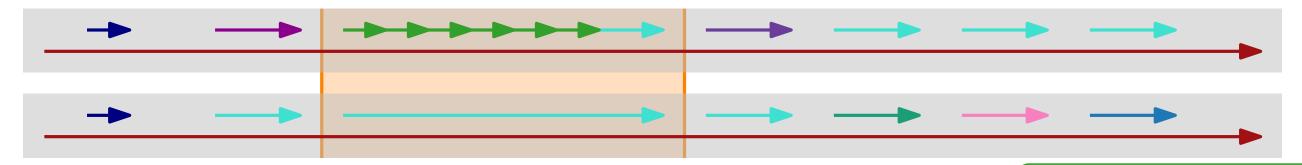


Set service time $t_s = 1$ and service promise $\rho < 2$

- 1 promise request
- 1 filter request ✓
- T short value requests
- 3*m* plug requests ✓

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

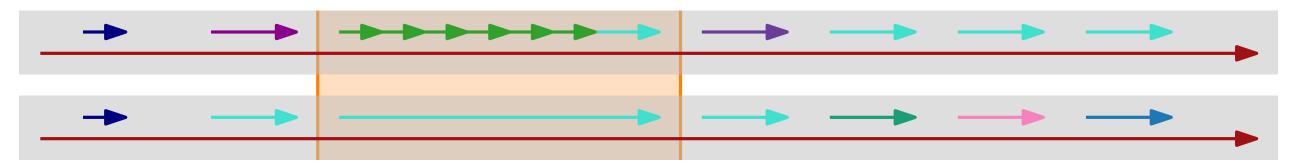


Set service time $t_s = 1$ and service promise $\rho < 2$

$$S = \{1, 6, 8, 3, 7, 5\}$$
 $m = 2, T = 15$

- 1 promise request ✓
- 1 filter request ✓
- \blacksquare T short value requests \blacksquare enforced by service promise on promise requests
- 3*m* plug requests ✓

$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark \checkmark



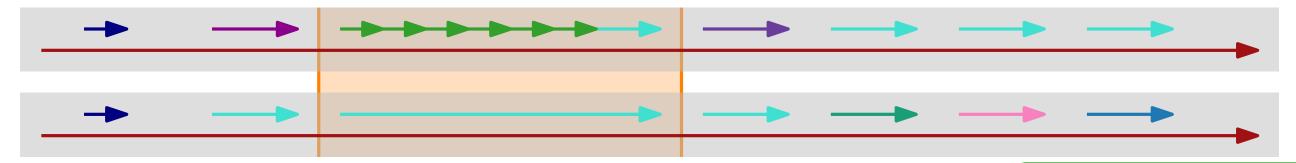
Set service time $t_s = 1$ and service promise $\rho < 2$

- 1 promise request
- 1 filter request
- T short value requests
- 3*m* plug requests

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

$$k$$
 c TW SP ST SC $= 1$ $= 2$ \times \checkmark \checkmark



Set service time $t_s = 1$ and service promise $\rho < 2$

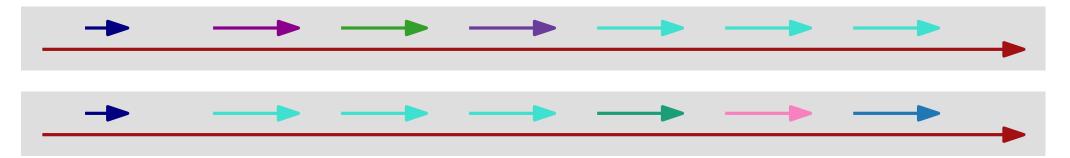
Each subroute should contain:

- 1 promise request
- 1 filter request
- T short value requests
- 3*m* plug requests

delay: 2(1 + T + 3m)

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$



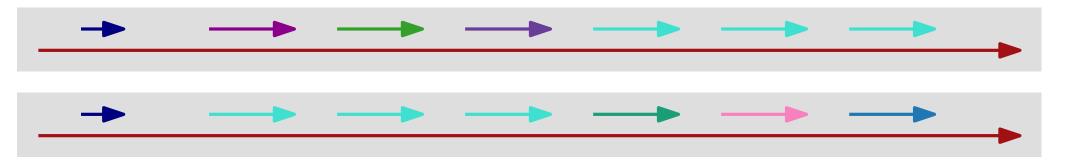
Set service time $t_s = 1$ and service promise $\rho < 2$

Promise Requests

$$\blacksquare \text{ need } \Delta = 2(1 + 7 + 3m)$$

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$



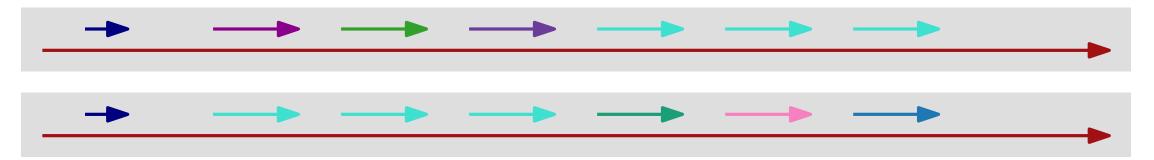
 $--(
ho-1)\cdot\mathsf{DTT}$

Set service time $t_s = 1$ and service promise $\rho < 2$

Promise Requests

 $\blacksquare \text{ need } \Delta = 2(1 + T + 3m)$

$$S = \{1, 6, 8, 3, 7, 5\}$$
 $m = 2, T = 15$



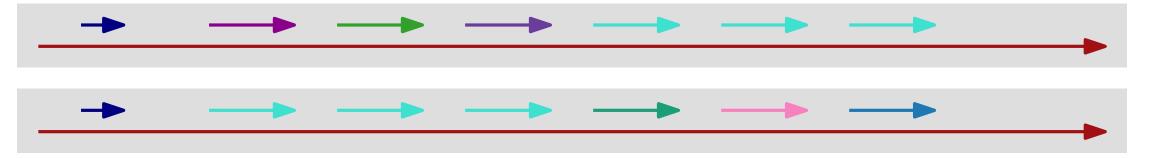
Set service time $t_s = 1$ and service promise $\rho < 2$

Promise Requests

- $\blacksquare \text{ need } \Delta = 2(1 + T + 3m)$
- \blacksquare make DTT large enough such that $\rho < 2$

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$



Set service time $t_s = 1$ and service promise $\rho < 2$

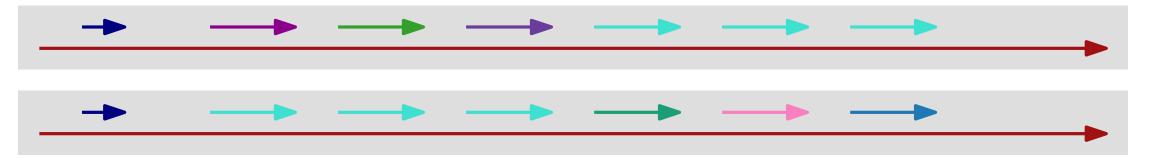
Promise Requests
$$(\rho - 1) \cdot \mathsf{DTT}$$

- $\blacksquare \text{ need } \Delta = 2(1 + T + 3m)$
- \blacksquare make DTT large enough such that $\rho < 2$

Goal: grouping of value requests into m subroutes corresponds to 3-partition of S_{\checkmark}

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$



Set service time $t_s = 1$ and service promise $\rho < 2$

Promise Requests
$$(\rho - 1) \cdot \mathsf{DTT}$$

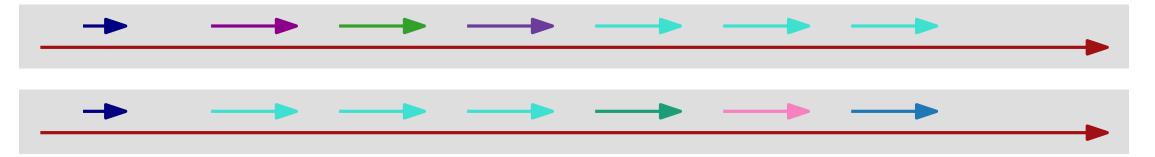
- $\blacksquare \text{ need } \Delta = 2(1 + T + 3m)$
- lacksquare make DTT large enough such that ho < 2

Goal: grouping of value requests into m subroutes corresponds to 3-partition of S_{\checkmark} $\tau = 2m - 1 \Leftrightarrow S$ has 3-partition

$$S = \{1, 6, 8, 3, 7, 5\}$$

 $m = 2, T = 15$

 $S = \{1, 6, 8, 3, 7, 5\}$ m = 2, T = 15



Set service time $t_s = 1$ and service promise $\rho < 2$

Promise Requests
$$(\rho - 1) \cdot \mathsf{DTT}$$

- $\blacksquare \text{ need } \Delta = 2(1 + T + 3m)$
- \blacksquare make DTT large enough such that $\rho < 2$

Goal: grouping of value requests into m subroutes corresponds to 3-partition of S_{\checkmark} $\tau = 2m - 1 \Leftrightarrow S$ has 3-partition

Theorem

 $ext{Min} ext{Turn}$ with service promise & service time is \mathcal{NP} -hard

Conclusion

Parameterized Algorithms

- FPT-algorithm for LIDARP and MINTURN $O^*((h^2 \cdot t^3 \cdot c \cdot k)^{2 \cdot t \cdot c \cdot k})$
- XP-algorithm for MINTURN without time windows $O^*(n^{h^2} \cdot h^{4 \cdot c \cdot h})$

Complexity

LIDARP

k	С	TW	SP	ST	SC
<u>≥ 1</u>	≥ 1	×	1	1	$\sqrt{}$
≥ 1	≥ 1	\checkmark	×	×	×

MINTURN

k	С	TW	SP	ST	SC
≥ 1	≥ 1	×	\	×	×
<u>≥ 1</u>	≥ 1	×	×	1	\checkmark
<u>≥ 1</u>	1	×	1		\checkmark
≥ 1	≥ 2	×	√	×	\checkmark
≥ 1	≥ 2	×	\checkmark	1	×
<u>≥ 1</u>	≥ 1	\checkmark	×	×	×

Conclusion

Parameterized Algorithms

- FPT-algorithm for LIDARP and MINTURN $O^*((h^2 \cdot t^3 \cdot c \cdot k)^{2 \cdot t \cdot c \cdot k})$
- XP-algorithm for MINTURN without time windows $O^*(n^{h^2} \cdot h^{4 \cdot c \cdot h})$

Open Problems

- Can the parameterized algorithms be improved? Is there an FPT algorithm for MINTURN without time windows?
- What about heuristics / approximation algorithms for MINTURN?

Complexity

LIDARP

k	С	TW	SP	ST	SC
<u>≥ 1</u>	≥ 1	×	1	1	1
≥ 1	≥ 1	\checkmark	×	×	×

MINTURN

k	С	TW	SP	ST	SC
≥ 1	≥ 1	×		×	X
≥ 1	≥ 1	×	X	1	
≥ 1	1	X		1	\
≥ 1	≥ 2	×	\	×	\
≥ 1	≥ 2	×	\	1	×
<u>≥ 1</u>	≥ 1	V	×	×	×