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Abstract

Rooted phylogenetic trees and networks are rooted, acyclic, leaf-labelled graphs that are
used to model the inferred evolutionary history of taxa; for example species. While a
phylogenetic tree models only bifurcating events, a phylogenetic network can also model
reticulation events like hybridisation, recombination, and horizontal gene transfer.

A rearrangement operation transforms one phylogenetic tree into another via a local
graph-based change. For example, the subtree prune and regraft (SPR) operation prunes
(cuts) a subtree of a phylogenetic tree and then regrafts (attaches) it to an edge of the
remaining tree, resulting in another phylogenetic tree. Another operation is nearest neigh-
bour interchange (NNI), which is a special case of SPR where the pruned edge has to be
regrafted closely to where it was pruned. The set of all phylogenetic trees for a fixed set of
taxa together with a rearrangement operations forms a graph where the vertices are the
trees and two trees are adjacent when one can be transformed into the other by applying
the rearrangement operation exactly once. In such a space, the distance of two trees is
given by the minimum number of operations needed to transform one into the other. The
SPR-distance of two trees can be characterised with a maximum agreement forest; a forest
with a minimum number of components that covers both trees.

In this thesis we study spaces of phylogenetic networks under generalisations of NNI
and SPR, in particular, the subnet prune and regraft (SNPR) operation and the here
introduced prune and regraft (PR) operation. First, we consider connectedness and diam-
eters of spaces of different classes of phylogenetic networks. We then look at the size of
the neighbourhood of a phylogenetic network. Furthermore, we investigate properties of
shortest paths under SNPR and PR. This includes several bounds on the distances of two
networks. Finally, we introduce maximum agreement graphs as a generalisation of max-
imum agreement forests for phylogenetic networks. We show that maximum agreement
graphs induce a metric – the agreement distance – and study its relation to the SNPR-
and PR-distance.
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1. Introduction

In mathematics, a graph is a structure that consists of a set of vertices and a set of edges
that connect pairs of vertices. The edges of a graph may be directed and may have a
weight or length. Graphs are a versatile tool to describe structures in our world. Loosely
speaking, the vertices of a graph represent some entities and the edges their relationships.

In phylogenetics, a phylogeny describes the evolutionary histories and relationships of a
set of taxa. In general, each taxon of such a set represents some species, population, or
individual organism whose evolutionary history is of interest to us. For example, the phy-
logeny of present-day species may be their evolutionary species tree, and the phylogeny of
individuals within a species, like humans, may represent their genetic lineages. Depending
on the context, the set of taxa may be single genes, nucleotide sequences, chromosomes,
or also words and languages [SS03,Dun14].

A phylogenetic tree is a graph used to model and visualise a phylogeny. In graph theory,
it is a tree where the leaves are labelled with the taxa and that can be either rooted
or unrooted. A rooted phylogenetic tree has a designated root vertex and the edges are
directed from the root towards the leaves. Two rooted phylogenetic trees are shown in
Figure 1.1 (a) and (b). Depending on the context, inner vertices of a rooted phylogenetic
tree may be interpreted differently, for example, as bifurcation (or multifurcation) events,
such as speciation or lineage splits, or as most recent common ancestors [SS03]. The edges
of a phylogenetic tree may be equipped with lengths and the vertices thus with a height,
like in Figure 1.1 (a), in order to represent the passing of time, distances between leaves,
or the number of mutations along an edge. An unrooted phylogenetic tree has neither a
root nor are its edges directed. An example is shown in Figure 1.1 (c). Compared to the
rooted case, an unrooted phylogenetic tree illustrates the evolutionary relatedness instead
of the history of the taxa.

A phylogenetic network is a generalisation of a phylogenetic tree in the sense that as
a graph it is not necessarily a tree. More precisely, a rooted phylogenetic network may
contain two types of inner vertices. On the one hand, it contains inner tree vertices that
have one incoming edge but two or more outgoing edges. On the other hand, it may
contain reticulations with two or more incoming edges. With this, a phylogenetic network
can model the phylogeny of taxa whose past includes reticulation events such as hybridisa-
tion, horizontal gene transfer, recombination, or reassortment [HRS10]. Such reticulation
events arise in all domains of life [TN05, RW07, TKR09, ALC+14, MMM+17, WWK+17].
A phylogenetic network may also combine a set of conflicting phylogenetic trees in a single
graph [HRS10]. See Figure 1.2 (a) for an example of a rooted phylogenetic network. As
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Figure 1.1: (a) A rooted phylogenetic tree with edge lengths and vertex heights (scale not
shown). (b) A rooted phylogenetic tree drawn with a style that highlights the
underlying graph, but where edge lengths bear no further meaning. (c) An
unrooted phylogenetic tree with edge lengths (scale not shown).

with trees, an unrooted phylogenetic network is the counterpart of a rooted phylogenetic
network without a determined root. An example is shown in Figure 1.2 (b). For complete-
ness, we want to mention that the term “unrooted phylogenetic network” sometimes also
encompass so-called split networks, median networks, and haplotype networks [HRS10].
Unless mentioned otherwise, the phylogenetic networks under consideration are assumed
to have no edge lengths.
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Figure 1.2: (a) A rooted phylogenetic network with two reticulation vertices. (b) An un-
rooted phylogenetic network.

A phylogeny is usually constructed with a phylogenetic inference method and a model
of evolution based on available data of the taxa. The data could for example be DNA
sequences or morphological characters of the considered species. Inference methods can be
based on a variety of concepts such as distance-matrices, maximum parsimony, maximum
likelihood, Bayesian inference like Markov chain Monte Carlo (MCMC), and others [Fel04,
Gus14]. Here we are interested in the solution and search spaces of such inference methods.

A space of phylogenetic networks is a set of phylogenetic networks on the same set of
taxa that share a certain property. The size of such a space grows super-exponentially
in the number of taxa [MSW15]. For example, the space of rooted phylogenetic trees on
fifteen taxa contains over 200 trillion different trees. Most inference methods operate by
searching for networks that are “close” to the current network [Pag93, BHK+14, RH03,
GDL+10, YBN13, YDLN14, WMI15]. However, this requires a metric on the space of
phylogenetic networks that measures this notion of closeness or (dis)similarity of networks
numerically and thus also imposes a structure on the space. Furthermore, by using a metric
results obtained for different data or by different inference methods can be compared, for
instance, to evaluate their robustness or to find outliers and clusters.

Tree rearrangement operations can be used to obtain metrics and structures for a space
of phylogenetic trees. Such operations make small, graph-theoretical changes to a phylo-
genetic tree to obtain another phylogenetic tree. An example on rooted phylogenetic trees
is subtree prune and regraft (SPR), which, as the name suggests, prunes (cuts) a subtree
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Figure 1.3: The tree rearrangement nearest neighbour interchange (NNI) swaps two
branches incident to the same edge. The tree rearrangement operation sub-
tree prune and regraft (SPR) first prunes (cuts) an edge and then regrafts
(attaches) it to obtain a new tree.

and then regrafts (attaches) it again. This operation and nearest neighbour interchange
(NNI), which works more locally, are illustrated in Figure 1.3. For unrooted phylogenetic
trees, there are the analogues of NNI and SPR as well as tree bisection and reconnection
(TBR), which deletes an edge and then reconnects the resulting two smaller trees with a
new edge. A rearrangement operation turns a space of phylogenetic trees into a graph,
where the phylogenetic trees are the vertices and where two vertices are adjacent if one
can be transformed into the other by applying the rearrangement operation exactly once.
For example, the space on rooted phylogenetic trees with four taxa under NNI is shown in
Figure 1.4. The distance of two phylogenetic trees in this space is given by the minimum
number of steps required to go from one to the other.
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1 2 34

1 23 4 1 2 3 4

1 2 3 4

1 2 34
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12 34

12 3 41 2 3 41 2 341 2 3 4
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Figure 1.4: The space of rooted phylogenetic trees on four taxa under the NNI operation.

The spaces of phylogenetic trees under NNI, SPR, and TBR have been well studied (see
for example St. Johns review [SJ17]). Most importantly, it has been established that
the operations induce metrics [Rob71,SOW96]. Properties of these spaces that have been
studied range from local properties such as the size and structure of neighbourhoods of a
tree [AS01,Son03,HW13,dJMS16,CCLSJ13] to global properties such as the diameter (the
maximum distance between two trees in a space) [LTZ96,DGH11] and curvature [WMI17].
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The main objective regarding these spaces is the computation of the distance between two
trees. However, it has been shown that it is NP-hard to compute the NNI-, SPR-, and
TBR-distance [LTZ96,BS05,HDRCB08,AS01]. Nevertheless, there exists a variety of exact
and fixed-parameter tractable algorithms [AS01, BS05, Wu09, vIKLS14, CFS15] as well as
approximation algorithms [LTZ96,BSJMA06,BMS08,BSJ09,WBZ13,vIKLS14,CFS15].

Maximum agreement forests are a major tool to deal with the SPR- and TBR-distance.
Roughly speaking, a maximum agreement forest of two rooted or unrooted phylogenetic
trees consists of the subtrees that stay unchanged by a shortest sequence of SPR or TBR
operations, respectively, from one tree to the other. In other words, an agreement forest is
a set of trees on which the two trees “agree” upon and that, if put together, cover each tree.
See Figure 1.5 for an example. The usefulness of maximum agreement forests stems from
the fact that they characterise the SPR-distance of two rooted phylogenetic trees and
the TBR-distance of two unrooted phylogenetic trees; that is, their size of a maximum
agreement forests determines the distance [AS01, BS05]. All algorithms referenced above
on the SPR- and TBR-distance are either based on agreement forests or agreement forests
are used in the analysis of their correctness or approximation ratios.

31 2 4 21 3 4

T

1 2 3 4

F

41 3 2

T ′SPR SPR

31 2 4

ρ ρρ

ρ

ρ
T

Figure 1.5: An SPR-sequence of length two that transforms T into T ′. This transformation
yields the agreement forest F , which in turn can be put together to obtain T
again (right side).

In recent years, more and more focus has been cast on phylogenetic networks [HRS10].
Since the definition of a phylogenetic network is quite broad, a panoply of classes of
phylogenetic networks with certain structural properties have been defined [GEL03,Bar04,
BSS06,CLRV08,CRV09,Wil10,vIK11,CPR15,FS15,ESS19]. Some of these properties are
based on biological considerations, while others serve the purpose of limiting the complexity
of networks. An example for the former kind are tree-child networks where there is path
from every inner vertex to a leaf that does not pass through a reticulation [CRV09].
The study of phylogenetic networks includes their relation to phylogenetic trees [GBP09,
LSJS13, GGL+15, HMSW16, HL18], how to reconstruct them [HS10, EOZN19], distance
functions on them [HRS10,CLRV08,CLRV09a,CLRV09b,CLRV09c], and others.

It is of interest to us that the three tree rearrangement operations NNI, SPR, and TBR
have been generalised to network rearrangement operations [HLMW16, BLS17, GvIJ+17,
FHMW18]. Consequently, the study of spaces of phylogenetic networks under rearrange-
ment operations has begun and this is where this thesis starts.

1.1 Thesis outline

The goal of this thesis is to look at previously done work on spaces of rooted phylogenetic
trees under rearrangement operations and see how it can be lifted to spaces of phylogenetic
networks. We consider the similarities and differences of these spaces and how they relate
to each other. For example, knowing that agreement forests characterise the SPR-distance
of rooted phylogenetic trees, we want to find out whether they can be generalised to
networks and how they relate to network rearrangement operations. We limit ourselves
to rooted, binary phylogenetic networks without edge lengths, where binary means that
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inner vertices have degree three. The following is a brief summary of the results obtained
in the individual chapters.

Chapter 2 – Preliminaries

This chapter introduces the necessary background from graph theory and combinatorial
phylogenetics. We define phylogenetic trees and phylogenetic networks. Moreover, we
look at several classes of phylogenetic networks and their relations. We show how the clas-
sic tree rearrangement operations are generalised to network rearrangement operations.
In particular, we define nearest neighbour interchange (NNI), subnet prune and regraft
(SNPR), and introduce the new prune and regraft (PR) operation on networks. Further-
more, we make it precise how a rearrangement operation induces a distance on a space of
phylogenetic networks.

Chapter 3 – Connectedness

We investigate the connectedness of different classes of phylogenetic networks under re-
arrangement operations. More precisely, we ask whether each network of a space can be
reached from any other network under the considered operation. As a result, we get that
SNPR and PR form metric spaces with most, but not all, classes of phylogenetic networks.
For SNPR, we find that spaces of networks with the maximum number of reticulations in
a class are often not connected. For each space, we either show that the diameter of a
space is unbounded or give an asymptotic bound.

Chapter 4 – Neighbourhoods

Two phylogenetic networks are neighbours with respect to a rearrangement operation if
they can be transformed into each other by applying this operation exactly once. The
neighbourhood of a network is the set of all its neighbours. For example, in Figure 1.4
every tree has exactly four neighbours under NNI. In this chapter we look at the size of the
neighbourhood of a network. We give exact expressions and bounds for the neighbourhood
size for networks of several classes under NNI and SNPR. Furthermore, we give bounds
on minimum and maximum neighbourhood sizes of networks.

Chapter 5 – Shortest paths

Next, we look at what general statements we can make about the SNPR- and PR-distance
of two networks in a spaces of phylogenetic network. For this we consider shortest paths
between these networks. We start with the distance of a tree T and a network N . Finding
that shortest paths from T to N can behave nicely, we show that this distance can be
characterised by the set of trees that are embedded in N . We use this result to obtain a
fixed-parameter tractable algorithm to compute the distance of T and N . Furthermore,
we consider the properties of shortest paths between two networks N and N ′. We find that
these paths can behave, in some sense, unfortunately for search algorithms. Furthermore,
we show that most classes of networks are not isometric subgraphs of the class of all
phylogenetic networks under SNPR and PR; i.e. the distance ofN andN ′ in that particular
class and in the general class differ.

Chapter 6 – Agreement graph and distance

A maximum agreement forests (MAF) of two phylogenetic trees T and T ′ is a forest with
the minimum number of components that covers both T and T ′. Since MAFs characterise
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the SPR-distance, they have been a major tool in the development of approximation and
fixed-parameter tractable algorithms to compute this distance. Here we generalise this
notion to maximum agreement graphs for two phylogenetic networks N and N ′. With
this, we introduce a new metric on the class of all phylogenetic networks – the agreement
distance. We prove that the agreement distance equals the PR- and SNPR-distance of a
tree and a network. However, in general it does not characterise the PR- or SNPR-distance.
Nevertheless, we show that the agreement distance still bounds these two distances with
constant factors.



2. Preliminaries

In this chapter we give a brief overview of the main concepts in graph theory and mathe-
matical phylogenetics that are important in the context of this thesis. We assume, however,
a basic knowledge of algorithmic and complexity-theoretic concepts (for example, Big O
notation, NP-hardness, and fixed-parameter tractability). Introductions to these concepts
are found in standard textbooks on algorithms and complexity theory, see, for exam-
ple, Cormen et al. [CLRS09] and Garey and Johnson [GJ79]. For an introduction into
fixed-parameter tractable algorithms, see Niedermeier [Nie06]. Diestel [Die17] provides an
excellent introduction to graph theory.

2.1 Graphs

As described in Chapter 1, phylogenetic trees and networks are special types of graphs.
In this section we define some basic concepts from graph theory.

2.1.1 Undirected graph

An undirected graph is an ordered pair G = (V,E) comprised of a set of vertices V together
with a (multi)set of edges E, which are two-element subsets of V . Two vertices u, v ∈ V
are called adjacent if there exists an edge e = {u, v} ∈ E. In this case, u and v are incident
to e and vice versa. The degree of a vertex is the number of edges it is incident to. A leaf
of an undirected graph is a vertex with degree one. An isolated vertex or singleton is a
vertex with degree zero.

A subgraph H = (V ′, E′) of G is an undirected graph such that V ′ ⊆ V and E′ ⊆ E. A
path P = (v0, v1, . . . , vk) in G is a subgraph of G such that the vertices vi are distinct and
where {vi, vi+1} ∈ E, for i ∈ {0, . . . , k− 1}. The length of a path P is k, which we require
to be at least one. Note that the length of a path is also the number of edges in this path.
A cycle C = (v0, v1, . . . , vk) in G is a subgraph such that the vi’s are pairwise distinct and
where {vi, vi+1} ∈ E, for i ∈ {0, . . . , k − 1}, and {vk, v0} ∈ E. A cycle on three edges is
called a triangle.

An undirected graph is connected if there exists a path between any two of its vertices.
Otherwise the graph is disconnected. The diameter diam(G) of a connected graph G is the
maximum length of a shortest path between any two vertices in G. A maximal connected
subgraph of G is a component of G. A connected graph is a tree if it does not contain a
cycle. A graph consisting of a set of trees as components is a forest.
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A cut-vertex of a connected graph is a vertex whose removal disconnects the graph.
Analogously, a cut-edge of a connected graph is an edge whose removal disconnects the
graph. A graph is biconnected if two vertices have to be removed to create a disconnected
graph. A biconnected component is a maximal biconnected subgraph. Such a biconnected
component is nontrivial if it contains at least two edges.

2.1.2 Directed graph

A directed graph is an ordered pair G = (V,E) comprised of a set of vertices V together
with a (multi)set of edges E, which are ordered pairs of vertices of V . Two vertices u, v ∈ V
are adjacent if there exists an edge, say, e = (u, v) in E. In this case, e is an outgoing
edge of u and an incoming edge of v. Furthermore, u is the tail of e and v is the head
of e. Like for an undirected graph, u and v are considered incident to e and vice versa.
The indegree and outdegree of a vertex v are the number of incoming and outgoing edges
of v, respectively. The degree of v is the sum of its indegree and outdegree. The graph G
is rooted if it contains exactly one vertex with indegree zero. A leaf of G is a vertex with
indegree one and outdegree zero.

Let G = (V,E) be a directed graph. A subgraph H = (V ′, E′) of G is a directed graph
such that V ′ ⊆ V and E′ ⊆ E. A path P = (v0, v1, . . . , vk) in G is a subgraph of G such
that the vi’s are distinct and where (vi, vi+1) ∈ E, i ∈ {0, . . . , k−1}. We require again that
k is at least one. An edge e = (u, v) of G is a transitive edge if G contains a path from u to
v that does not contain e. A cycle C = (v0, v1, . . . , vk) in G is a subgraph such that the vi’s
are distinct and where (vi, vi+1) ∈ E, i ∈ {0, . . . , k−1}, as well as (vk, v0) ∈ E. An acyclic
directed graph is a directed graph that does not contain a cycle. The underlying graph of
G is the undirected graph G′ = (V,E′) derived from G by dropping the directions of the
edges in E. An underlying path or cycle of G is a path or cycle in its underlying graph G′.
Unless mentioned otherwise, it is assumed that a path or a cycle in a directed graph is a
(directed) path or cycle and not an underlying path or cycle. A triangle of G is a triangle
of its underlying graph G′. Connectedness, components, cut-vertices, cut-edges, trees, and
forests of directed graphs are defined on their underlying graphs. A pendant subgraph of
G is a subgraph that can be separated from the rest of G by removing a cut-edge.

Let G be a directed acyclic graph. A degree-two vertex v of G with incoming edge (u, v)
and outgoing edge (v, w) gets suppressed by deleting v and the edges (u, v) and (v, w) and
adding the edge (u,w). A new vertex v subdivides an edge (u,w) of G by deleting the edge
(u,w) and adding the edges (u, v) and (v, w). In general, subdividing an edge (u, v) means
removing (u, v) and adding a path that starts at u and ends at v. A subdivision G∗ of G
is a graph that can be obtained from G by subdividing edges of G. Note that if G does
not contain indegree one, outdegree one vertices, then there exists a canonical mapping of
vertices of G to vertices of G∗ and of edges of G to paths of G∗.

Let G be a connected, directed graph and let H be a directed graph. Then we say G
has an embedding into H if there exists a subdivision G∗ of G that is a subgraph of H.
Now assume that G has components C1, . . . , Ck. Then we say G has an embedding into
H if the components Ci of G, for i ∈ {1, . . . , k}, have embeddings into H to pairwise
edge-disjoint subgraphs of H. If G contains a vertex v with a label, then we require that
such an embedding maps v to a vertex of H with the same label.

2.2 Phylogenetic networks

Recall that with phylogenetic trees and networks we want to model phylogenies of a set of
taxa. For this, let X = {1, 2, . . . , n} be a finite, nonempty set, which represents our taxa.
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Like with graphs, we distinguish between the directed and undirected case.

2.2.1 Rooted phylogenetic networks

A rooted phylogenetic network N = (V,E) on a set of taxa X is a rooted directed acyclic
graph with the following properties.

• The unique root is labelled ρ and has indegree zero and outdegree one.

• The leaves are bijectively labelled with X .

• All other vertices are either inner tree vertices with indegree one and outdegree at
least two or reticulations with indegree at least two and outdegree one.

A rooted phylogenetic network N is called binary if every inner tree vertex and reticulation
of N has degree three, otherwise it is called non-binary or multifurcating. More precisely,
in a binary phylogenetic network inner tree vertices have indegree one and outdegree two,
and reticulations have indegree two and outdegree one. The tree vertices of N are the
union of the inner tree vertices, the leaves, and the root. The topology of N is the graph
obtained from N by removing the leaf labels.

The unique edge incident to the root is called the root edge eρ. An edge e = (u, v) is
called a reticulation edge if v is a reticulation, and is called a tree edge if v is a tree vertex.
Furthermore, e = (u, v) is pure if u and v are both either tree vertices or both reticulations,
and impure otherwise. An edge is an external edge if it is incident to the root or a leaf,
and an internal edge otherwise. Following Bordewich et al. [BLS17], edges in N can be in
parallel ; that is, two distinct edges join the same pair of vertices.

The focus of this thesis is on rooted binary phylogenetic networks on X . Therefore,
to ease reading, we refer to a rooted binary phylogenetic network on X simply as a phy-
logenetic network or network. Let Nn denote the set of all phylogenetic networks on
X = {1, 2, . . . , n}.

Relationships. Let N ∈ Nn and let u and v be two distinct vertices of N . If there is an
edge (u, v) in N , then u is a parent of v and v is a child of u. Vertices that have a common
parent are siblings. A pair of leaves {u, v} is called a cherry if u and v are siblings. The
vertex u is an ancestor of v and v is a descendant of u if there is a path from u to v in N .
Note that with this definition a vertex is neither its own ancestor nor its own descendant.
The vertex u is an uncle of v if u is sibling of a parent of v. In reverse, v is then the
nephew of u.

Let (u, v), (x, y) be two distinct edges of N . The edge (u, v) is a parent edge of (x, y)
if v = x. In this case, (x, y) is a child edge of (u, v). The two edges are siblings edges
if u = x, and partner edges if v = y. Note that two parallel edges are both sibling and
partner edges. The edge (u, v) is an ancestor of the edge (x, y) and a vertex x if v = x or
if v is an ancestor of x. In this case, (x, y) is a descendant of (u, v) and v.

2.2.2 Unrooted phylogenetic networks

An unrooted phylogenetic network N = (V,E) on a set of taxa X is an undirected graph
such that the leaves are bijectively labelled with X . An unrooted phylogenetic network N
is called binary if every non-leaf vertex of N has degree three. An unrooted phylogenetic
tree is an unrooted phylogenetic network that is a tree.

While we do not work directly with unrooted phylogenetic networks in this thesis, they
are still important for us to understand related work. In fact, most of the concepts and
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problems we look at were first considered for the unrooted case. If not mentioned otherwise,
we assume that unrooted phylogenetic trees and networks are binary.

2.2.3 The landscape of network classes

A class of phylogenetic networks is a subset of networks in Nn that share a certain struc-
tural property. Such a property can be motivated by phylogenetic concepts or simply to
limit the complexity of a network. We now define several important classes of phylogenetic
networks and at the end of this section look at their relationships.

Phylogenetic trees

A rooted phylogenetic tree is a phylogenetic network that is a tree and, hence, has no
reticulation. Again for simplicity, we refer to a rooted binary phylogenetic tree on X
simply as phylogenetic tree or tree. See the tree T in Figure 2.1 for an example.

Let Tn denote the class of all phylogenetic trees with n leaves. The size of Tn is well
known as it is the solution to Schröder’s third problem [Sch70].

Theorem 2.1.
For n ≥ 2, the size of Tn is (2n− 3)!! = 1 · 3 · 5 · . . . · (2n− 5) · (2n− 3).

For example, for n = 10 there are 34 459 425 different trees and for n = 15 over 213 ·
1012 different trees in Tn. This illustrates how vast Tn is and why searching it can be
computationally difficult and a traversal outright unfeasible. Moreover, all other classes
we define have Tn as a subset and are thus even larger.

We now define a special type of phylogenetic trees. A phylogenetic tree T is a caterpillar
if it contains a path P from the root to a leaf such that the parent of every leaf of T is on
P . Note that a caterpillar contains exactly one cherry.

Tree-child and normal networks

A tree-child network is a phylogenetic network where each non-leaf vertex has at least one
tree child; that is, it has a child that is a tree vertex. A normal network is a tree-child
network that does not contain a transitive edge [Wil10]. Note that, while every normal
network is a tree-child network, the reverse does not hold. This is also illustrated by the
normal and the tree-child networks shown in Figure 2.1. Let T Cn and NN n denote the
class of tree-child and normal networks with n leaves, respectively.

31 2 4 5

T

31 2 4 5

N1
ρ ρ

31 2 4 5

N2
ρ

Figure 2.1: A phylogenetic tree T ∈ T5, a normal network N1 ∈ NN 5, and a tree-child
network N2 ∈ T C5. Note that N1 6∈ T5 and N2 6∈ NN 5. As in this figure and
throughout the whole thesis, a vertex depicted with is a root, with is an
inner tree vertex, with is a reticulation, and with is a leaf.

A well known property of a tree-child network N is that each vertex v of N contains
a path to a leaf consisting only of tree edges. Such a path is called a tree path of v. As
a consequence and as stated in Table 2.2, a tree-child network can have at most n − 1
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reticulations [CRV09, Proposition 1]. This can be seen as the root and each reticulation
have a tree path to a different leaf. A normal network can have at most n−2 reticulations,
since the root of a normal network has tree paths to two distinct leaves [Bic12, Proposition
2]. Furthermore, note that a tree-child network cannot contain any parallel edges.

Temporal normal networks

A temporal network is a network N = (V,E) for which a time function f : V → N exists
such that f(u) < f(v) for each tree edge (u, v) and f(u) = f(v) for each reticulation
edge (u, v) [Bar04]. A temporal normal network is a network that is both temporal and
normal. Let T Pn denote the class of temporal normal networks with n leaves. Note that
by definition T Pn ⊆ NN n and, in fact, it holds that T Pn ( NN n. The tight upper bound
for reticulations in a temporal network is n− 2, since temporal networks are also normal
networks. See Figure 3.6 for an example of a temporal network with n− 2 reticulations.

Tree-sibling networks

A tree-sibling network is a phylogenetic network where each reticulation has at least one
tree vertex as sibling. An example is shown in Figure 2.2. Let v be a reticulation of a
tree-sibling network. A tree vertex w is called a tree-sibling witness (or simply witness)
of v if w is a sibling of v. Note that in a tree-sibling network a reticulation can have two
witnesses, but a tree vertex w can only be witness for one reticulation since w has only
one sibling. Let T Sn denote the class of tree-sibling networks with n leaves.

Reticulation-visible networks

A vertex v of a phylogenetic network is called visible if there exists a leaf l such that every
path from the root to l contains v. A reticulation-visible network is a phylogenetic network
without parallel edges where each reticulation is visible. See for example N4 in Figure 2.2.
Let RVn denote the class of reticulation-visible networks with n leaves.

31 2 4 5

N3
ρ

31 2 4 5

ρ

N5

31 2 4 5

ρ
N4

Figure 2.2: A tree-sibling network N3 ∈ T S5, a reticulation-visible network N4 ∈ RV5, and
a tree-based network N5 ∈ T B5. Note that N3, N5 6∈ RV5 and N4, N5 6∈ T S5.
Note that N5 has T from Figure 2.1 as base tree (as indicated).

Tree-based networks

A tree-based network N ∈ Nn is a phylogenetic network for which an embedding of a
phylogenetic tree T ∈ Nn into N exists that covers all vertices of N . In this case, T is
called a base tree for N . For example, the network N5 shown in Figure 2.2 is a tree-based
network. Francis and Steel [FS15] introduced tree-based networks as networks that can
be obtained by adding edges between the edges of a base tree. Further characterisations
of tree-based networks are known [Zha16,PSS19,FSS18].
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Let T Bn denote the class of tree-based networks with n leaves. Let T ∈ Tn. Then let
T Bn(T ) denote the class of tree-based networks that have T as base tree. There exist
so-called universal tree-based networks, which are tree-based networks that have every
tree T ∈ Tn as a base tree [Hay16,Zha16,BS18]. The class of tree-based networks has also
been generalised to rooted non-binary networks [JvI18], unrooted networks [FHM18], and
unrooted, non-binary networks [Hen18,FGH+18].

Tree-set displaying networks

Let T ∈ Tn and N ∈ Nn. Then N displays T if T has an embedding into N . Displaying
T is a weaker condition than having T as a base tree, since the embedding does not have
to cover all vertices. For example, in Figure 2.1 the network N1 displays T , but N2 does
not. A network N displays a set of trees P ⊆ Tn if N displays every tree T ∈ P . Let
Nn(T ) and Nn(P ) denote the class of phylogenetic networks in Nn that display T and P ,
respectively. In reverse, let D(N) ⊆ Tn denote the set of trees displayed by N .

Now let N,N ′ ∈ Nn. Then N displays N ′ if N ′ has an embedding into N . Note that
this implies that N ′ has at most as many reticulations as N .

Level-k networks

A blob B of a network N is a subgraph corresponding to a nontrivial biconnected compo-
nent of the underlying graph of N . The level of a blob B of N is the number of reticulations
in B. The level of N is the maximum level over all blobs of N . A network N is a level-k
network if its level is at most k. A network N is a strict level-k network if its level is
exactly k. Let LVk,n and sLVk,n denote the classes of level-k and strict level-k networks.

For example, in Figure 2.2 the networks N3 and N4 are level-2 networks with one and
two blobs, respectively, and the network N5 is a level-4 network. Note that the level-0
networks LV0,n are phylogenetic trees Tn. The level of a network can be regarded, to some
extent, as a measure of its distance of being a phylogenetic tree.

Level-k networks have also been defined in the unrooted case. There the level of a blob is
the minimum number of edges that have to be removed from the blob to make it acyclic.
The level of an unrooted phylogenetic network is again the maximum level over all its
blobs [HLMW16].

Tiers

Let Cn be a class of phylogenetic networks. The tier r of Cn is the subset of networks of
Cn that have exactly r reticulations. Let Cn,r denote tier r of Cn. For example, note that
tier zero of Nn is precisely Tn.

Relationships and properties

We now look at the relations of different classes of networks in terms of inclusions and some
of their properties. On the one hand, note that Tn is a subclass of all other classes, except
for strict level-k networks with k > 0. On the other hand, note that Nn is a superclass of
all classes. Further inclusions are given in Table 2.1 and in Figure 2.3.

In addition to Table 2.1 and as illustrated in Figure 2.2, note that not every tree-sibling
network is a reticulation-visible network nor vice versa. Furthermore, Semple [Sem16]
showed that the class of tree-child networks is precisely the class of networks with the
property that every embedded phylogenetic tree of a network is also a base tree of that
network.
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Table 2.1: Subclass relations between different classes of phylogenetic networks.

# inclusion reference

1 T Pn ( NN n by definitions

2 NN n ( T Cn by definition

3 T Cn ( T Sn [CLRV08]

4 T Cn ( RVn [HRS10]

5 T Sn ( T Bn [FS15, Corollary 3.3]

6 RVn ( T Bn [GGL+15, Lemma 1]

7 LV i,n ( LV i+1,n by definition

NNn

Nn

Tn = LV0,n

T Cn

RVnT Sn

T Bn

LV1,n

LV2,n

LVi,n

LVi+1,n

2.

3. 4.

5. 6.

7.

7.

7.

T Pn

1.

Figure 2.3: Diagram illustrating the subclass relations of classes of phylogenetic networks
with respect to Table 2.1.

Next, we look at the maximum number of reticulations a phylogenetic network of a
certain class Cn may have. We already pointed out the results for temporal, normal, and
tree-child networks. Further bounds are shown in Table 2.2. Note that an unbounded
number of reticulations implies that there are infinitely many networks in Cn.

Theorem 2.1 gives a precise formula for the number of trees in Tn. In addition, the
size of Tn can also be expressed asymptotically by |Tn| ∈ 2n logn+O(n). Similarly, the size
of |T Cn| is bounded by |T Cn| ∈ 22n logn+O(n) [MSW15]. Cardona et al. [CPS19] gave a
recursive algorithm to uniquely generate each network in T Cn . They used this to show
that for n = 6 there are 101 833 875 networks in T C6, compared to 945 trees in T6. Further
asymptotic results for tiers of NN n and T Cn were given by Fuchs et al. [FGM19].

2.3 Rearrangement operations

A rearrangement operation is the process of making graph-theoretic changes to a phyloge-
netic network such that the resulting graph is again a phylogenetic network. A rearrange-
ment operation is a horizontal move if it does not change the number of reticulations; i.e.
both the starting and the resulting network are in the same tier. On the other hand, a
rearrangement operation that changes the number of reticulations is a vertical move.
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Table 2.2: The maximum number of reticulations a phylogenetic network of a certain class
may have.

class max number of reticulations reference

Tn 0

NN n n− 2 [Bic12, Proposition 2]

T Cn n− 1 [CRV09, Proposition 1]

T Pn n− 2 Table 2.1 and Figure 3.6

T Sn unbounded

RVn 3(n− 1) [GZ15, Theorem 3.3]

T Bn unbounded

LV i,n, i > 0 unbounded

Nn unbounded

2.3.1 Prune and regraft

Let G be a directed graph. Let (u, v) be an edge of G where u is either labelled (like the
root of a network) or has degree three. Then pruning (u, v) at u is the process of deleting
(u, v) and adding a new edge (u′, v), where u′ is a new vertex. If u is now an indegree one
outdegree one vertex, then u gets suppressed. Now let (u′, v) be an edge where u′ is an
unlabelled, outdegree one vertex. Then regrafting (u′, v) to an edge (x, y) is the process of
subdividing (x, y) with a new vertex u and identifying u′ with u. Also, regrafting (u′, v)
to a vertex u is the process of identifying u′ with u. Pruning and regrafting an edge (u, v)
at v is analogously defined.

Let N ∈ Nn and let (u, v) be an edge of N . Then the prune and regraft (PR) operation
is the rearrangement operation that transforms N into a phylogenetic network N ′ ∈ Nn
in one of the following four ways:

(PR0) If u is an inner tree vertex, then prune (u, v) at u and regraft it to an edge that is
not a descendant of v; or
if v is a reticulation, then prune (u, v) at v and regraft it to an edge that is not an
ancestor of u.

(PR+) Subdivide (u, v) with a new vertex v′, subdivide an edge in the resulting graph
that is not a descendant of v′ with a new vertex u′, and add the edge (u′, v′).

(PR−) If (u, v) is an impure reticulation edge, then delete (u, v) and suppress both u and
v.

A PR0 operation that prunes an edge (u, v) at its head vertex v (resp. tail vertex u) is
called a head (tail) PR0. Note that a PR0 does not change the number of reticulations,
while a PR− decrease it by one and a PR+ increase it by one. In other words, PR0

operations are horizontal moves and PR− and PR+ operations are vertical moves. The
operations are illustrated in Figure 2.4.

The subtree prune and regraft (SPR) operation equals the PR0 operation restricted to
Tn. Note that some authors write rSPR (rooted SPR) for SPR. Here, however, we simply
use SPR as the rootedness is implicitly given by the tree under consideration.

The subnet prune and regraft (SNPR) operation equals the PR operation except that
it excludes head PR0. SNPR was first defined by Bordewich et al. [BLS17]. Gambette
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31 2 4

e

N1

f

1 2

e

N2

3 4
f ′

1 2

e

N3

3 4 1 2

N4

3 4

PR0 PR0 PR−

PR+PR0PR0

Figure 2.4: The phylogenetic network N2 (resp. N3) can be obtained from N1 (resp. N2)
by the tail PR0 (resp. head PR0) that prunes e and regrafts it to f (resp.
f ′). The phylogenetic network N4 can be obtained from N3 with the PR− that
removes e. Each operation has its corresponding PR0 or PR+ operation that
reverses the transformation.

et al. [GvIJ+17] defined head and tail moves that conceptually equal head and tail PR0,
but restricted this generalisation of SPR to networks without parallel edges.

Bordewich et al. [BLS17] and Gambette et al. [GvIJ+17] have shown that the different
types of PR operations are all reversible. This means that for every PR0 (or SNPR0) that
transforms N into N ′ there exists a PR0 (resp. SNPR0) that transforms N ′ into N , and
that for every PR+ (resp. SNPR+) there exists an inverse PR− (resp. SNPR−).

2.3.2 Nearest neighbour interchange

Let N ∈ Nn and let (u, v) be an inner edge of N . If u is tree vertex, let w be the second
child of u. Then the nearest neighbour interchange (NNI) operation is the rearrangement
operation that transforms N into a phylogenetic network N ′ ∈ Nn in one of the following
ways:

(NNI0) If (u, v) is a pure tree edge, then prune an outgoing edge of v at v and regraft it
to the edge (u,w); or
if (u, v) is an impure tree edge, then prune an outgoing edge of v at v and regraft
it to an incoming edge of u; or
if (u, v) is an impure reticulation edge, then prune (u,w) at u and regraft it to an
edge incident to v that is not the edge derived from (u, v); or
if (u, v) is a pure reticulation edge, then prune the incoming edge of v that is not
(u, v) at v and regraft it to an incoming edge of u.

(NNI+) Subdivide (u, v) with a new vertex v′, subdivide an edge incident to u that is not
(u, v′) with a new vertex u′, and add the edge (u′, v′).

(NNI−) If u is a tree vertex and v is a reticulation and both are adjacent to a third vertex
w, then delete (u, v) and suppress u and v.

The edge (u, v) of an NNI0 is called the axis of the operation. Note that an NNI0 can
be seen as contracting the edge (u, v) and reversing the contraction such that the resulting
graph is again a phylogenetic network. Similarly, an NNI− can be seen as contracting a
triangle of N into a vertex and an NNI+, as the reverse of an NNI−, can be seen as adding
a triangle. These operations are illustrated in Figure 2.5. Consider an NNI0 with the axis
e. Note that an NNI0 is a tail PR0 if e is a tree edge, a head PR0 if e is a pure reticulation
edge, and either a head or a tail PR0 if e is an impure reticulation edge. Furthermore,
NNI+ and NNI− operations are special cases of PR+ and PR− operations.

NNI on networks was first defined by Huber et al. [HLMW16] on the restricted case of
rooted and unrooted level-1 networks. Later, Gambette et al. [GvIJ+17] defined the NNI0
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Figure 2.5: Illustration of an NNI0 when the axis (u, v) is a (a) pure tree edge, (b) im-
pure tree edge, (c) pure reticulation edge, or (d) impure reticulation edge, and
of an NNI+ and NNI− (e). Note that in (e) the vertices u and v could be
reticulations.

operation on networks without parallel edges. In general, for either of these generalisations,
the NNI0 operations on Tn equals the classical NNI operation.

2.3.3 Unrooted versions

Rearrangement operations have also been defined on unrooted phylogenetic networks. A
major difference between rooted and unrooted networks is of course that in unrooted
networks there are no “reticulations” and “tree vertices”, only inner vertices with degree
three.

An NNI on an unrooted (binary) phylogenetic tree contracts an inner edge and then
splits the resulting degree four vertex such that it results in a binary phylogenetic tree
again [Rob71]. The generalisation of NNI to unrooted phylogenetic networks works the
same for horizontal moves, but adds vertical moves that add or remove a triangle (like
NNI+ and NNI−) [HLMW16, HMW16]. Again, some authors do not allow parallel edges
in their unrooted phylogenetic networks [FHMW18].

The SPR operation on unrooted phylogenetic trees prunes an edge from a degree three
vertex and regrafts it such that the resulting tree is again connected. Generalisations of
SPR to unrooted phylogenetic networks work the same [FHMW18,JK19]. Vertical moves
for SPR on unrooted phylogenetic networks work like PR+ and PR− as they just add or
remove an edge [JK19].

A third rearrangement operation on unrooted phylogenetic trees is tree bisection and
reconnection (TBR), which first removes an edge and then adds a new edge to reconnect
the tree. Francis et al. [FHMW18] considered the straightforward generalisation of this
horizontal move to unrooted phylogenetic networks. Janssen and Klawitter [JK19] further
investigated a version of TBR that includes vertical moves.

2.4 Metric spaces

Let S be a set. A metric (or distance function) on S is a function d : S×S → [0,∞) where
for all x, y, z ∈ S the following conditions hold:

1. d(x, y) = 0⇔ x = y (non-negativity)

2. d(x, y) ≥ 0 (identity of indiscernibles)
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3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

A metric space (S, d) is a set S together with a metric d on S.
Let G = (V,E) be a graph. The distance of two vertices in G is the length of a shortest

path between those vertices. If no such path exists, then their distance is considered to be
infinite. Hence, this distance defines a metric on G if G is undirected and connected.

Phylogenetic network space. Let Cn be a class of phylogenetic networks and consider
a type of operation op ∈ {NNI,SNPR,PR} on Cn. Then op together with Cn define the
rearrangement graph Copn = (Cn, E) where two distinct networks N,N ′ ∈ Cn are adjacent
if N can be transformed into N ′ by a single operation op. This graph is undirected since
NNI, SNPR, and PR are reversible.

Let N,N ′ ∈ Cn. An op-sequence from N to N ′ is a sequence

σ = (N = N0, N1, N2, . . . , Nk = N ′)

of phylogenetic networks such that, for each i ∈ {1, 2, . . . , k}, Ni ∈ Cn and Ni can be
obtained from Ni−1 by a single operation op. The length of σ is k. We define the op-
distance dop(N,N ′) of N,N ′ as the length of a shortest op-sequence from N to N ′ in Copn
or infinite if no such path exists.

A phylogenetic network space is a metric space over a set of phylogenetic networks
together with a metric d. Note that a rearrangement operation op and a class Cn form a
space if the graph Copn is connected. Let Copn and C′ opn be two metric spaces of phylogenetic
networks such that Cn ⊆ C′n. Then we say that Copn is an isometric subgraph of C′ opn if the
op-distance of two networks N and N ′ in Cn equals their op-distance in C′n.





3. Connectedness and diameter

In this chapter we investigate when a class of phylogenetic networks and a rearrangement
operation form a metric space. Consider the rearrangement graph Copn for a class of phy-
logenetic networks Cn and a rearrangement operation op. We know that such a graph is
undirected for the NNI, the SNPR, and the PR operation. Hence, the usual distance of
vertices in a graph yields a metric on Copn precisely when Copn is connected. Recall that a
graph is connected if there exists a path between any two of its vertices. If on the other
hand there exists no path between two vertices, their distance is undefined and while it
may be set to infinity, this would not comply with the definition of a metric. In other
words, if Copn is connected, then the distance between any two networks in Cn is well de-
fined. Here we consider connectedness of different classes of phylogenetic networks under
NNI, SNPR, and PR to establish a basis for the subsequent chapters. Our focus is on
the latter two rearrangement operations. We also look at the tiers of these classes. In
the case where a class and an operation form a metric space, we give a bound on the
diameter. In particular, we look at tree-child networks (Section 3.3), normal networks
(Section 3.4), temporal normal networks (Section 3.5), tree-sibling networks (Section 3.6),
reticulation-visible networks (Section 3.7), tree-based networks (Section 3.8), and level-k
networks (Section 3.9). A summary of the results of this chapter is given at the end in
Section 3.10.

The question of whether a class is connected under an operation is not only important to
obtain a metric space, but also from a practical point of view. Consider a local search on
Copn . Connectedness of the graph then means that the search can theoretically reach every
network. However, if the graph is unconnected, then such a search stays in the component
where it started, while the optimal solution may be found in a different component.

Given a finite graph G with n vertices and m edges it can be tested in O(n + m) time
whether G is connected [CLRS09]. However, this requires a representation of G that allows
an efficient traversal. In the case of Copn , we only know that the vertices are networks with
certain properties and under which conditions two vertices are adjacent. Furthermore,
from a computational point of view such a graph is usually too vast for a full traversal,
since by Theorem 2.1 the number of rooted phylogenetic trees in Tn is (2n − 3)!!. If the
graph is not finite, then connectedness cannot be tested with a simple traversal at all.
Hence, we need to prove or disprove the connectedness of a space. Here we do this in one
of two ways. First, if we already know that a subgraph H of Copn is connected, then it is
sufficient to show that every vertex of Copn is connected to a vertex in H. Second, we pick a
target network M and show that all vertices of Copn are connected to M . In some cases, we
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prove disconnectedness by showing that no path between two networks exists. Note that,
since PR generalises SNPR, the graph CSNPR

n is a subgraph of the graph CPR
n . Since both

these graphs have the same vertex set Cn, it follows that connectedness of CSNPR
n implies

connectedness of CPR
n .

Recall that the diameter diam(G) of a connected graph G is the maximum distance
between any two of its vertices. If the graph is not finite, then the diameter can be
unbounded. Note that an unbounded diameter does not mean that two networks (i.e. two
vertices of the graph) have an infinite distance, but that, for any integer c, we can find a
pair of networks that has a distance of at least c. Knowing bounds for the diameter is of
interest for sampling algorithms like MCMC. For example, a small diameter may affect the
mixing time of MCMC positively, whereas a large diameter means that any MCMC needs
a long time to potentially reach every region of the graph. If the diameter is unbounded,
then it is not even possible for a walk to reach every element of the graph. For a class
Cn with bounded size, we derive results concerning the diameter of Copn by bounding the
maximum length of paths between networks that we use to show the connectedness of Copn .

Concerning phylogenetic trees, it is well known that T NNI
n and T SPR

n are connected.
Furthermore, Li et al. [LTZ96] gave asymptotic bounds of Θ(n log n) on the maximum
distance between two phylogenetic trees under NNI. Song [Son03, Proposition 5.1] gave
the upper bound max{n− 2, 0} for the diameter under SPR. Rephrasing these results we
get the following theorems.

Theorem 3.1 (Li et al. [LTZ96]).
The graph T NNI

n is connected with diam(T NNI
n ) ∈ Θ(n log n).

Theorem 3.2 (Song [Son03]).
The graph T SPR

n is connected with diam(T SPR
n ) ∈ Θ(n).

Recall that SPR, SNPR, and PR act equivalently on Tn. Hence Theorem 3.2 also holds
for SNPR and PR.

The first result showing the connectedness of a class of phylogenetic networks was given
in the pioneering work by Huber et al. [HLMW16] who showed that the spaces of unrooted
and rooted level-1 networks are connected under NNI. This was extended to general un-
rooted phylogenetic networks and their tiers by Huber et al. [HMW16]. Based on this,
Francis et al. [FHMW18] obtained that these spaces are also connected under generalisa-
tions of SPR and TBR on unrooted networks. Concerning rooted phylogenetic networks,
Bordewich et al. [BLS17] proved connectedness and bounds on diameters of spaces of tree-
child, reticulation-visible, tree-based, and general phylogenetic networks under SNPR.
Gambette et al. [GvIJ+17], Janssen et al. [JJE+18], and Janssen [Jan18] established that
Nn,r is connected and gave bounds on the diameter for NNI, SNPR, and head PR. We
look at these results more closely below, after the following preliminary section.

3.1 Preliminaries

In this section we devise several lemmata that hold for more than one class of phylogenetic
networks and define specific phylogenetic networks that will serve as target networks.
Recall that we consider only rooted, binary phylogenetic trees and networks.

Lemma 3.3.
Let Cn be a class of phylogenetic networks with Tn ⊂ Cn. Let op ∈ {NNI,SNPR,PR}.
If for every N ∈ Cn with r > 0 reticulations there exists a network N ′ ∈ Cn that has r − 1
reticulations and is adjacent to N in Copn , then Copn is connected.
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Proof. Let Nr be any network in Cn and suppose it has r reticulations. By the requested
property of Copn , we can construct a sequence σ = (Nr, . . . , N0) where Ni has i reticulations
for i ∈ {0, . . . , r}. In other words, there is a path from Nr to a tree N0 in Copn . Since T op

n

is connected by Theorems 3.1 and 3.2, it follows that Copn is connected.

Lemma 3.4.
Let Cn be a class of phylogenetic networks where the maximum number of reticulations of
a network in Cn is unbounded. Let op ∈ {NNI, SNPR,PR}.
If Copn is connected, then diam(Copn ) is unbounded.

Proof. Let N be a network in Cn with the minimum number of reticulations of a network in
Cn, say, k reticulations. For any i > k, let Ni be a network in Cn with i reticulations. Since
Copn is connected and since a vertical move of op can increase the number of reticulations
by at most one, the distance d of N and Ni is at least i− k. Then, since i is unbounded,
it follows that d and hence also diam(Copn ) are unbounded.

Let N ∈ Nn. Fix an order τ = (l1, . . . , ln) of the leafs on the topology G of N . We define
the leaf order σ(N) of N as the permutation from the leaf order τ to the leaf labelling of
N . For example, if li of N has label j we write σi(N) = j. Note that it only makes sense
to compare leaf orders of two networks with the same topology.

Let n ≥ 2 and let N ∈ Nn,r. We define three special types of networks and illustrate
them in Figure 3.1. Following Bordewich et al. [BLS17], for r ≤ n− 1, we call N a strict
caterpillar network if

• each reticulation vi of N has a leaf li as child, and

• there exists an ordering (v1, . . . , vr) of the reticulations such that there is a tree path

ρ, p1, q1, p2, q2, . . . , pr, qr, t

where for each i ∈ {1, . . . , r} the parents of vi are pi and qi, and t is a tree vertex
that has only tree vertices as descendants.

Note that t is a leaf, say ln, for r = n − 1. In this case, we describe the leaf order of N
with respect to the ordering (l1, l2, . . . , lr, ln). Next, for r ≤ n− 2, we call N a ladder if

• each reticulation vi of N has a leaf li as child, and

• there exists an ordering (v1, . . . , vr) of the reticulations such that there exist two tree
paths

ρ, w, p1, p2, . . . , pr, t
′ and ρ, w, q1, q2, . . . , qr, t

where w is the child of ρ, for each i ∈ {1, . . . , r} the parents of vi are pi and qi, t
′ is

a leaf, and t′ is a tree vertex that has only tree vertices as descendants.

Similar to strict caterpillar networks, if r = n − 2, we describe the leaf order of N with
respect to the ordering (l1, l2, . . . , lr, t = ln−1, t

′ = ln). Lastly, we call N a stack network
if there exists an ordering (v1, . . . , vr) of the reticulations such that

• there exist a path v1, v2, . . . , vr,

• there exists a tree path ρ, p1, q1, q2, . . . , qr where p1 is a parent of v1 and qi is a parent
of vi for i ∈ {1, . . . , r}, and

• the child of vr is a leaf.
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Figure 3.1: A strict caterpillar network N1, a ladder N2, and a stack network N3 on three
reticulations each. The triangle indicates a pendant subtree, called the tail.

For a strict caterpillar network, a ladder, or a stack network we call the pendant tree below
qr the tail (see again Figure 3.1).

A reticulation v is in parallel if its two incoming edges form a pair of parallel edges.
We say N has its reticulation in series below the root if all reticulations are in parallel
and there exists an ordering (v1, . . . , vr) of the reticulations such that there exist a path
ρ, p1, v1, . . . , pk, vk where pi is the parent of vi for i ∈ {1, . . . , r}.

A free leaf of a network N ∈ Cn with respect to Cn is a leaf of N that if removed from
N yields a network N ′ that is in Cn−1 after a potential relabelling of the leaves of N ′. In
the following lemma let Cn be one of the classes defined in Section 2.2.3.

Lemma 3.5.
Let N be a network in Cn with a free leaf l.
Then N can be transformed into a network N∗ with the same topology but different leaf
order with at most 2n SNPR0.

Proof. Let e = (u, l) be the edge incident to l. Since l is a free leaf, we can prune e at u
and regraft it to the incident edge of another leaf l′ such that the resulting network N ′ is
in Cn. Note that l and l′ are free leaves in N ′. Using this, it is straightforward to permute
the leafs of N to obtain the leaf order π(N∗) with at most 2n SNPR, for example, by
resolving one permutation cycle of σ(N) after the other.

3.2 General networks

We start with Nn, the class of all phylogenetic networks on n leaves. For NNI, Gambette
et al. [GvIJ+17, Theorem 3, Proposition 3] established that Nn is connected. Bordewich
et al. [BLS17, Proposition 3.2] showed that SNPR induces a metric on Nn. The same
is thus true for PR, since PR generalises SNPR. Note that Nn satisfies the conditions of
Lemma 3.4 and that thus the diameter of Nn under NNI or SNPR or PR is unbounded.
Together, we get the following results.

Theorem 3.6 (Gambette et al. [GvIJ+17],Bordewich et al. [BLS17]).
Let op ∈ {NNI, SNPR}. The graph N op

n is connected with unbounded diameter.

Corollary 3.7.
The graph NPR

n is connected with unbounded diameter.

Recall that Tn equalsNn,0; that is, the space of phylogenetic trees is tier 0 of phylogenetic
networks. Janssen et al. [JJE+18] proved that not only Tn, but also the other tiers of Nn
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are connected under NNI, SNPR, and PR. Furthermore, they showed that the maximum
distance for two networks inN SNPR

n,r is bounded linearly by n and r. While Janssen et al. do
not allow parallel edges, one can easily check that their results still hold for our definitions.
In fact, allowing parallel edges we can strengthen Theorem 3.8 by including the cases n = 2
and r = 1 as well as n = 1.

Theorem 3.8 (Janssen et al. [JJE+18]).
Let n ≥ 3, r ≥ 1. Let op ∈ {SNPR,PR}.
The graph N op

n,r is connected with diam(N op
n,r) ∈ Θ(n+ r).

Lemma 3.9.
Let n ≥ 1, r ≥ 0. Let op ∈ {SNPR,PR}.
The graph N op

n,r is connected with diam(N op
n,r) ∈ Θ(n+ r).

Proof. Extending Theorem 3.8, we only have to prove the cases n = 2 and r = 1 as well
as n = 1. We start with the former. For this, Figure 3.2 shows all five networks in N2,1

and that they are connected under SNPR. This also implies the statement for NPR
2,1 .

SNPR0

1
2

2
1

2

1 1 2

1

SNPR0

2

SNPR0 SNPR0
N N ′

Figure 3.2: The five networks in N2,1 and how they are connected under SNPR.

Next, let N ∈ N1,r for r > 0. We show how to transform N into a target network
M ∈ N1,r that has its r reticulations in series below the root. First, suppose that there
is a reticulation v with parents u and w where u is a tree vertex and u 6= w. Then apply
the SNPR0 that prunes (u, v) at u and regrafts it to (w, v). Reapply this case as often
as possible. Since this creates a pair of parallel edges but does not break one, this case
applies at most r times. Second, suppose that both parents u and w of v are reticulations.
Let P be a path from ρ to u. Let u′ be the tree vertex whose two children are tree vertices
and that is closest to u in P . Note that such u′ must exist since the first case does not
apply and since there has to be a path from ρ to u and w each. Then apply the SNPR0

that prunes the edge of P at u′ and regrafts it to (w, v). Next, the first case applies again
to v. Again, since this creates a pair of parallel edges without breaking one, this happens
at most r times. Note that if neither the first nor the second case applies anymore, then
each reticulation is in parallel. Since n = 1, it follows that they are also in series below the
root. Hence, N1,r is connected and, since this required at most 2r SNPR0, the statement
on the diameter follows.

Janssen et al. [JJE+18, Theorem 4.12] also gave bounds on the diameter of NNNI
n,r .

Theorem 3.10 (Janssen et al. [JJE+18]).
The graph NNNI

n,r is connected with diam(NNNI
n,r ) in Ω((n+ r) log(n+ r)) and O((n+ r)2).

The next two results concern subspaces of Nn and Tn that display a set of trees. Bor-
dewich et al. [BLS17, Theorem 6.2] showed that the phylogenetic networks N op

n (P ) that
display a set of phylogenetic trees P ⊆ Tn are connected under SNPR. They also gave the
bound 2(t + 1)n + r + r′ on the distance of two networks N,N ′ ∈ N op

n (P ) with r and r′

reticulations, respectively, and where t = |P |. Note that, however, r and r′ are unbounded
and thus likewise is the diameter.
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Theorem 3.11 (Bordewich et al. [BLS17]).
Let P ⊆ Tn. The graph N SNPR

n (P ) is connected with unbounded diameter.

Let T ∈ Tn, n > 2, be a phylogenetic tree on taxa X . A triplet τ is a binary phylogenetic
tree on three leaves {a, b, c} ⊆ X . We say T displays τ if there exists a subdivision of τ
that is a subgraph of T . Let Tn(P ) denote the set of trees in Tn that display a set P of
triplets. Bordewich [Bor03, Proposition 2.9] showed that Tn(P ) is connected under NNI.
Mark et al. [MMS16, Theorem 2] pointed out that this implies that also the space Tn(P )
with P being the intersection of triplets displayed by two trees T, T ′ ∈ Tn is connected.

Theorem 3.12 (Bordewich [Bor03], Mark et al. [MMS16]).
Let n ≥ 3. Let P be a set of triplets with labels in X . Let op ∈ {NNI,SPR}.
Then the graph T op

n (P ) is connected.

3.3 Tree-child networks

Recall that a network N is tree child if every non-leaf vertex of N has a tree vertex as
child. We first look the class of tree-child networks T Cn under SNPR and then under
NNI. Bordewich et al. [BLS17, Proposition 3.2] proved the connectedness of T CSNPR

n and
bounds on the diameter. We give a sketch of the proof.

Theorem 3.13 (Bordewich et al. [BLS17]).
The graph T CSNPR

n is connected with diam(T CSNPR
n ) ∈ Θ(n).

Proof sketch. Observe that applying an SNPR− operation to a tree-child network preserves
the tree-child property. Since further Tn ⊂ T Cn, the connectedness thus follows from
Lemma 3.3. For N,N ′ ∈ T Cn with r and r′ reticulations, respectively, the SNPR-distance
is thus at most r+ r′ +O(n) by Theorem 3.2. Since r, r′ ∈ O(n) (see Table 2.2) it follows
that diam(T CSNPR

n ) ∈ O(n).

The same arguments apply for PR.

Corollary 3.14.
The graph T CPR

n is connected with diam(T CPR
n ) ∈ Θ(n).

Bordewich et al. [BLS17, Theorem 4.1] further gave the following connectedness result
for the tiers of tree-child networks T CSNPR

n,r . Recall that a tree-child network can have at
most n− 1 reticulations.

Theorem 3.15 (Bordewich et al. [BLS17]).
Let n ≥ 1 and r < n−1. Then the graph T CSNPR

n,r is connected with diam(T CSNPR
n,r ) ∈ Θ(n).

They also gave the more precise upper bound 4n+12r−2 for diam(T CSNPR
n,r ), r < n−1.

The situation looks different for the extremal case r = n− 1. See again Figure 3.2, where
the two tree-child networks N,N ′ ∈ T CSNPR

2,1 (the only two networks in T C2,1) cannot be
transformed into each other by a single SNPR0, but only via networks with parallel edges.
In fact, we can show that tier n− 1 is not connected for any n > 1 under SNPR.

Theorem 3.16.
Let n ≥ 2 and r = n− 1. Then the graph T CSNPR

n,r is not connected.

Proof. Let N ∈ T Cn,n−1 for n ≥ 2. We know that there always exists a leaf in N that is
not a descendant of any reticulation and n−1 leaves that are descendants of reticulations.
This is because there exist distinct tree paths from the root and from each of the n − 1
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reticulations to a leaf. Let l1, l2 be leaves of N such that l1 is at the end of a tree path
from the root and l2 is the descendant of a reticulation v. To change with an SNPR0 on
N that l1 is not on a tree path from the root or that l2 is not descendant of a reticulation
requires that an edge of the tree path from the root to l1 or from v to l2 has to be
pruned, respectively. However, both such prunings are not possible with a single SNPR0.
Consequently, there is no SNPR0 on N that simultaneously makes l1 a descendant of a
reticulation and creates a tree path from the root to l2. Hence, networks in T Cn,n−1 with
different leaves on the tree path of the root are not connected in T CSNPR

n,r .

However, Bordewich et al. [BLS17] showed that there exist SNPR-sequences connecting
any two N,N ′ ∈ T Cn,r of length in O(n) such that each intermediate network is either
tree child or almost tree-child; that is, an intermediate phylogenetic network may have
at most one pair of parallel edges such that if one of these edges gets removed, then the
resulting phylogenetic network is tree child.

We now show that T CPR
n,r is also connected in the extremal case r = n− 1.

Theorem 3.17.
Let n ≥ 1 and r ≤ n− 1. Then the graph T CPR

n,r is connected with diam(T CPR
n,r) ∈ Θ(n).

Proof. By Theorem 3.15 and PR generalising SNPR, we only have to prove the case
r = n − 1. Let N ∈ T Cn,r. By Lemma 4.3 of Bordewich et al. [BLS17], we know that
we can transform N into a strict caterpillar network M ∈ T Cn with a PR0-sequence of
length O(n) such that each intermediate phylogenetic network is tree child. Our target
network is a strict caterpillar network M∗. We now show how to find a PR0-sequence that
transforms M into M∗ by permuting the leaf order π(M).

Suppose that πn(M) 6= πn(M∗). For M , let li, vi, pi, and qi be defined as in the definition
of a strict caterpillar network in Section 3.1. Let vi be the reticulation in M that has leaf
li with label πn(M∗) as child. The following process is illustrated in Figure 3.3. With
a tail PR0 first prune the edge (pi, vi) and regraft it to (qr, ln). With another tail PR0

prune (qi, vi) and regraft it to (pi, ln). Let M2 be the resulting network. With a head PR0

prune (pi, vi) and regraft it to (qi, ln). In the resulting strict caterpillar network M3, the
leaf li = π∗(n) is now the end vertex of the tree path starting at the root of the caterpillar
network. Hence, for the leaf order of M3 we have that πn(M3) = πn(M∗). It is easy to see
that each intermediate network in this process is tree-child and has r reticulations.
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Figure 3.3: Following the proof of Theorem 3.17, illustration of how the leaf ln at the end of
the tree path of a strict caterpillar network M ′ can be exchanged with another
leaf li.

Next, to transform M3 into M∗, a sequence of tail PR0 of length at most 2r prunes the
two incoming edges of reticulations and regrafts them along the tree path of the root ρ to
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achieve the desired leaf order π(M∗). Since this transformation works for any such N , the
connectedness statement follows.

Since we needed at most O(n) PR0 from N to M and at most 3+2r PR0 from M to M∗

and since r ∈ O(n), the diameter of T CPR
n,r is in O(n). An example for the lower bound

on the diameter can easily be found. For example, two strict caterpillar networks with
reversed leaf orders suffice. Hence, the statement on the diameter follows.

Next, we look at tree-child networks under NNI. Recall that every NNI is a PR, but
that there are NNI0 that are not SNPR0.

Theorem 3.18.
Let n ≥ 1 and r ≤ n− 1. Then the graph T CNNI

n,r is connected with diam(T CNNI
n,r ) ∈ O(n2).

Proof. Let N ∈ T Cn,r. First, we show how to transform N into a strict caterpillar network
M with an NNI0-sequence. Let v be a reticulation of N that has no reticulation as ancestor.
Let p and q be the parents of v such that p is not a descendant of q. Note that p and q
are tree vertices, since N is a tree-child network. Let u be the lowest common ancestor of
p and q, or set u = p if p is ancestor of q. Let l be a leaf on the end of a tree path from v.

We now move p and q upwards such that p, q and v form a triangle below the root ρ,
and then make l the child of v. Let e be the incoming edge of p. Then as long as e is not
incident to ρ, apply an NNI0 with e as axis to move p (and (p, v)) closer to ρ. Consider
one of these NNI0, as also depicted in Figure 3.4 (a). Let w 6= v be the child of p, let
x be the parent of p, and let z be the parent of x. Note that these three vertices are
tree vertices. Then each of these NNI0 gives x the child w, p the child x, and z the child
p, while all other vertices keep their children. Therefore each intermediate network is a
tree-child network. Note that at the end of this step, p is ancestor of q. Next, let e be
the incoming edge of q. Then as long as e is not incident to p, apply an NNI0 with e as
axis to move q (and (q, v)) closer to p. With the same arguments as for the first step, it
follows that every intermediate network is tree child. Note that at the end of this step, p,
q, and v form a triangle. Assume that l is not the child of v. Then let x be the child of
v and let y be the child of x that is not on the tree path from v to l. Then move (x, y)
to the outgoing tree edge of q with the NNI0-sequence illustrated in Figure 3.4 (b) or (c),
depending on whether (x, y) is a tree edge or a reticulation edge. We observe that every
intermediate network is again tree child. Repeat this step until l is the child of v. At the
end of this process, we have built the first triangle below the root with a reticulation that
has a leaf as child. Since l has at most O(n) ancestor vertices, this takes at most O(n)
NNI0. Repeat this process on the pendant network below q to obtain a strict caterpillar
network M . Overall, this needs at most O(n2) NNI0.

Assume for now that r = n− 1. Next, we transform M into a strict caterpillar network
M∗ with a specific leaf order. This can be achieved with the procedure used in the proof of
Theorem 3.17 for the same task and as illustrated in Figure 3.3 by replacing the PR0 that
move reticulations edges with NNI0-sequences. Note that one such PR0 can be replaced
with a sequence of at most O(n) NNI0. Since the process in Theorem 3.17 uses at most
O(n) PR0, M can be transformed into M∗ with at most O(n2) NNI0. Note that this
process can easily be extended to the case r < n − 1. Therefore, we have shown that
every network in T Cn,r can be transformed into M∗ using at most O(n2) NNI0 operations.
Hence, T CNNI

n,r is connected with the proclaimed upper bound on the diameter.

We now use Theorem 3.18 to prove the connectedness of T Cn under NNI.

Theorem 3.19.
The graph T CNNI

n is connected with diam(T CNNI
n ) ∈ O(n2).
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Figure 3.4: Illustration of steps used in the proof of Theorem 3.18. (a) An NNI0 that
moves p closer to the root. (b) An NNI0 to move a tree edge (x, y) to (q, w).
(c) An NNI0-sequence to move a reticulation edge (x, y) to (q, w).

Proof. Let N and N ′ be in T Cn with r and r′ reticulations, respectively. By Theorem 3.18,
we know that N (resp. N ′) is connected to a strict caterpillar network M (resp. M ′) with a
specific leaf order and r (resp. r′) reticulations. By Theorem 3.13, we know that removing
a reticulation edge from M yields again a tree-child network. Moreover, there is an NNI−

on M that yields again a strict caterpillar network. Assuming that r > r′, we may therefore
choose M and M ′ such that M ′ can be obtained from M by r − r′ NNI−. There is thus
a path from N to N ′ via M and M ′, which proves the connectedness of T CNNI

n . To see
that the diameter of T CNNI

n is in O(n2), note that the diameter of the tiers is in O(n2)
and that the NNI-distance of M and M ′ is at most n− 1 since r ≤ n− 1.

3.4 Normal networks

Recall that a normal network N is a tree-child network without transitive edges. The
results for normal networks NN n under SNPR and PR are similar to those for tree-child
networks.

Theorem 3.20.
Let n > 0. Let op ∈ {SNPR,PR}.
Then the graph NN op

n is connected with diam(NN op
n ) ∈ Θ(n).

Proof. To apply Lemma 3.3, we only have to show that applying an SNPR− (or equiva-
lently a PR−) to a normal network yields again a normal network. This is straightforward,
as removing a reticulation edge in a normal network cannot create a transitive edge and,
by Theorem 3.13, preserves the tree-child property.

The upper bound on the diameter follows from diam(T PR
n ) ∈ O(n) and the fact that a

normal network can have at most n− 2 reticulations. An example of two normal networks
proving the lower bound on the diameter is a tree and a normal network with n − 2
reticulations.
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Theorem 3.21.
Let n > 0 and r < n− 2.
Then the graph NN SNPR

n,r is connected with diam(NN SNPR
n,r ) ∈ Θ(n).

Proof. We prove this by showing that we can transform any N ∈ NN n,r into a ladder
M ∈ NN n,r with an SNPR0-sequence such that each intermediate network is also normal.
This process is illustrated in Figure 3.5.

Let w be the child of the root and t and t′ its children. Let v be a reticulation that has
no reticulation as ancestor. Let p and q be the parents of v. We now “move v up” below
w such that p and q become the two children of w. Assume therefore for now that p, q,
t, and t′ are distinct. Further assume, without loss of generality, that p is a descendant of
t. Note that by the choice of v and since N is normal, neither p nor q is a descendant of
both t and t′. This implies that p is not a descendant of t′. Therefore, pruning (q, v) at
q and regrafting it to (w, t′) with an SNPR0 does not create a transitive edge. Note that
q is not a descendant of t in the resulting network N1. We can thus prune (p, v) at p and
regraft it to (w, t) to obtain a normal network N2. Note that we need less SNPR0 if p = t
or q = t′ in N . In N ′ let t and t′ be the child of p and q that is not v, respectively (see
again Figure 3.5). Also let v1 denote v.

SNPR0 N2N SNPR0

p q

N1

p

pq q

v

v

v

w w w

t t

t

t′

t′ t′

Figure 3.5: Illustration of a step in the proof of Theorem 3.21, showing how a reticulation
v1 can be moved directly below w, the child of ρ. Wobbly lines represent paths
of tree edges.

With v1 we have the first “rung” of our ladder. For the next one, let v2 be a reticulation
that has either no reticulation as ancestor or at most v1. Note that again neither of the
parents of v2 is descendant of both t and t′. We can thus move v2 up with an analogous
process to v1 with at most two SNPR0. In general, after moving vi−1 up, we use this
inductive argument to pick vi as a reticulation that has most reticulations vj with j ∈
{1, . . . , i − 1} as ancestors and then apply the same procedure. Let N ′ be the resulting
network. Note that in N ′ each reticulation has only a pendant tree as descendants. If
the pendant tree below any reticulations contains more than one leaf, move all but one
leaf of such a pendant tree to the pendant tree below qr. Finally, if the pendant tree pr
contains more than one leaf, we move them again to the pendant tree below qr. Building
the pendant tree below qr takes at most n SNPR0. Let M be the resulting network, which
is a ladder as desired.

Since r < n − 2, the pendant tree below qr in M contains a free leaf. Hence, we can
arrange the pendant tree below qr into a caterpillar and obtain any leaf order in O(n)
SNPR0 by Lemma 3.5. This proves the connectedness of NN SNPR

n,r . Since this process uses
at most O(n) SNPR0, the upper bound on the diameter follows. It is easy to see that the
diameter is also in Ω(n) and thus in Θ(n).

With the same arguments as in the proof of Theorem 3.16, we get the following theorem.



3.4 Normal networks 29

Theorem 3.22.
Let n > 2 and r = n− 2. Then the graph NN SNPR

n,r is not connected.

Again contrary to SNPR, if we use PR operations, the tier with the maximum number
of reticulations is connected.

Theorem 3.23.
Let n > 0 and r ≤ n− 2. Then the graph NNPR

n,r is connected with diam(NNPR
n,r) ∈ Θ(n).

Proof. By Theorem 3.21 and PR generalising SNPR, we only have to prove the case
r = n − 2. Let N ∈ NN n,n−2 . By the proof of Theorem 3.21, we know that we can
transform N into a ladder M ∈ NN n,r with a PR0-sequence of length O(n) such that each
intermediate network is normal. We show how to find a PR0-sequence that transforms M
into a ladder M∗ with a fixed leaf order π(M∗). For M , let li, vi, pi, and qi be defined as
in the definition of a ladder in Section 3.1.

Assume that neither πn(M) nor πn−1(M) equals π∗n(M∗). This implies that the leaf
with taxa π∗n(M∗) is the child of a reticulation in M . Let li be this leaf. The following
process is illustrated in Figure 3.6. With a tail PR0 prune the edge (pi, vi) and regraft
it to (pr, ln−1). With another tail PR0 prune (qi, vi) and regraft it to (qr, ln). Let M2 be
the resulting network. With a head PR0 prune (pi, vi) and regraft it to (qi, ln). In the
resulting ladder M3, we have that πn(M3) = πn(M∗). Analogously, we can move the leaf
that has taxa πn−1(M∗), say lj , to position n− 1 as illustrated again in Figure 3.6. Each
of these two steps takes at most three PR0 and each intermediate network is normal. Let
M4 be the resulting network.
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Figure 3.6: Illustration of a step in the proof of Theorem 3.23 showing how the leaves
ln−1, ln at the end of two tree paths of a ladder M can be exchanged with
other leaves li, lj .

Similar to strict caterpillar networks, we can sort the leaves below reticulations in M4 to
match the desired order of M∗ with at most 2n− 6 PR0. Hence, we need in total at most
2n PR0 and since this transformation works for any such N , the connectedness statement
and the upper bound for the diameter follow. For the lower bound, note that two ladders
with different leaf orders can have a PR0-distance in Ω(n).

Since a normal network N cannot contain a transitive edge, it cannot contain a triangle.
Therefore, neither NNI+ nor NNI− can be applied to N and there are no edges between
the tiers of NNNNI

n .

Theorem 3.24.
Let n > 2. Then the graph NNNNI

n is disconnected.
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3.5 Temporal normal networks

Next, we look at temporal normal networks T Pn. Recall that a network is temporal if
there is a time function f : V (N)→ N that increases along tree edges and stays the same
along reticulation edges. Since a temporal normal network is be definition normal, it has
at most n− 2 reticulations. We start with the proof that T Pn is connected under SNPR
and PR.

Theorem 3.25.
Let n > 0. Let op ∈ {SNPR,PR}.
Then the graph T Pop

n is connected with diam(T Pop
n ) ∈ Θ(n).

Proof. Let N ∈ T Pn with time function f . Let (u, v) be a reticulation edge of N . We show
that the network N ′ obtained from N by removing (u, v) with an SNPR− (or equivalently
a PR−) is a temporal network. Since N is normal, we know by Theorem 3.20 that N ′ is
normal. Furthermore, the two edges incident to u that are not (u, v) are both tree edges,
as is the outgoing edge of v. Thus f restricted to V (N ′) = V (N)\{u, v} is a time function
for N ′. The connectedness of T Pop

n thus follows from Lemma 3.3. For the diameter the
same arguments as in Theorem 3.20 apply.

The results concerning the connectedness of a tier of T Pn are similar to the results of
normal networks. In the extremal case r = n − 2, the graph induced by SNPR is not
connected. This can be proven with analogous arguments to those used for Theorems 3.16
and 3.22.

Theorem 3.26.
Let n > 2 and r = n− 2. Then the graph T PSNPR

n is not connected.

Theorem 3.27.
Let n > 2 and r < n − 2. Then the graph T PSNPR

n,r is connected with diam(T PSNPR
n,r ) ∈

Θ(n).

Proof. Let N ∈ T Pn,r. With the same process to the one for normal networks (Theo-
rem 3.21), we transform N into a ladder. However, we pick the reticulations we “move
up” more carefully. We choose v1 as a reticulation such that neither parent of v1 is a
descendant of a parent of another reticulation. Such v1 exists as N is temporal. Move v1

up and let N ′ be the resulting network. The intermediate network and N ′ are temporal
normal networks by the choice of v1 (and because we know they are normal). Next, note
that in N ′ there exists a reticulation v2 whose parents are only descendants of the parents
of v1 but not of a parent of another reticulation. Again, such v2 exists as N is temporal.
Move v2 up and pick the subsequent reticulations v3, . . . , vr with analogous conditions.
Sorting the leaves of the resulting ladder works like for normal networks. This proves the
connectedness. The arguments regarding the diameter are as for normal networks.

Theorem 3.28.
Let n > 2 and r ≤ n− 2. Then the graph T PPR

n,r is connected with diam(T PPR
n,r) ∈ Θ(n).

Proof. For r < n− 2, this follows from Theorem 3.27 and only the case r = n− 2 remains.
Let N ∈ T Pn,n−2. By the proof of Theorem 3.27, we know that we can transform N into
a ladder M ∈ T Pn,n−2 with a PR0-sequence of length O(n) such that each intermediate
phylogenetic network is in T Pn,n−2. We now show how to find a PR0-sequence that
transforms M into a ladder M∗ with a fixed leaf order π(M∗). For M , let li, vi, pi, and qi
be defined as in the definition of a ladder.
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Figure 3.7: Illustration of a step in the proof of Theorem 3.28 showing how the leaves li
and lr can be swapped with five PR0. The last two PR0 reverse the topological
changes made by the first two.

Suppose we want to move leaf li of M to where lr (or ln or ln−1) is. Figure 3.7 illustrates
how to exchange the leaves li and lr with five PR0. Observe that each network is in T Pn,r.
With an additional PR0 we can swap li with ln or ln−1. Furthermore, the same process
can be used to swap li with lj for j < r. Therefore, we can transform M int M∗ with at
most 5n+ 2 PR0. This proves the connectedness and an upper bound on the diameter of
T PPR

n,r . For a lower bound, note again that two ladders with different leaf orders can have
a PR0-distance in Ω(n).

3.6 Tree-sibling networks

Recall that a network N is a tree-sibling network if each reticulation v of N has a tree
vertex w as sibling. In this case, w is the (tree-sibling) witness of v. Note that w can
be witness of at most one reticulation. A vertex u is called a witness parent of v if it is
a parent of both v and a witness w of v. Note that a tree-sibling network contains no
parallel edges and that none of its reticulations can be the child of two other reticulations.

Theorem 3.29.
Let op ∈ {SNPR,PR}. The graph T Sopn is connected with unbounded diameter.

Proof. Let N ∈ T Sn. Let v be a reticulation of N with no reticulation as a descendant.
Let w be a tree-sibling witness for v and let u be their witness parent. Let N ′ be the
network obtained from N by the SNPR− that removes (u, v). Note that if u was a witness
of a reticulation v′, then w is a witness of v′ in N ′. Since all other reticulations keep their
witnesses if N ′, it follows that N ′ is a tree-sibling network. Therefore, the connectedness
of T Sopn follows from Lemma 3.3. The diameter is unbounded by Lemma 3.4.

The following lemma will help us prove the connectedness of the tiers of T Sn.

Lemma 3.30.
Let N ∈ T Sn with r ≥ 1.
An SNPR0 that prunes a reticulation edge (u, v) at a witness parent u of v and regrafts it
to a tree edge yields a tree-sibling network N ′.

Proof. Let N ′ be the resulting network of such an SNPR0. Suppose the SNPR0 regrafted
to an edge (x, y). Then y is a witness of v in N ′. Let w be the witness of v via witness
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parent u in N . If u is a witness of a reticulation v′ in N , then w is a witness of v′ in N ′.
Since all other reticulations keep their witnesses, it follows that N ′ ∈ T Sn.

Theorem 3.31.
Let n ≥ 3 and r ≥ 0. Let op ∈ {SNPR,PR}.
Then the graph T Sopn,r is connected with diam(T Sopn,r) ∈ Θ(n+ r).

Proof. Let N ∈ T Sn,r. We prove this for SNPR by showing how to transform N into
a stack network M within T Sn,r. The process for this consists of five steps, which are
illustrated in Figure 3.8. In the first two steps, we create a path Pw containing at least
one witness per reticulation and a path Pr containing all reticulations, respectively. In the
third step, the witnesses on Pw are sorted according to the order of their reticulations on
Pr. Next, we move any pendant trees attached to Pr to the tail to obtain a stack network.
In the fifth and last step, we transform the tail of the stack network into a caterpillar and
sort the leaves.

Step 1 Step 4Step 2 Step 3N N1 N2 N3 N4

1 2 3 1 2 3 1 2 3

1

2

3
1

3
2

12 3

v1
v2

v3

p1
q1

q2
q3

v1

p1

q1

w

Figure 3.8: Following the proof of Theorem 3.31, illustration of how a tree-sibling network
N can be transformed into a stack network N4. In N1 all witnesses are on
a path, in N2 all reticulations are on a path, and in N3 the order of the
reticulations and their witnesses is the same.

Step 1: We apply SNPR0 to create a path containing a witness of each reticulation
of N as follows. Let v be a reticulation of N with no ancestral reticulation and let q be
a witness parent of v. Prune (q, v) at q and regraft it to the root edge. The resulting
network N ′ is a tree-sibling network by Lemma 3.30. Let Pw be the path consisting of ρ,
q, and w 6= v (the witness of v). For a reticulation v′ that has no witness on Pw, prune the
reticulation edge (q′, v′) at a witness parent q′ of v′, and regraft it to the last edge on Pw,
which then contains one more witness. Repeat this until Pw contains a witness of each
reticulation. By Lemma 3.30 each such SNPR0 results in a tree-sibling network. Let N1

be the resulting network. Overall, since we only need one witness per reticulation on Pw,
Step 1 needs at most r SNPR0.
Step 2: We apply SNPR0 to N1 to create a path containing all reticulations while

maintaining the tree-sibling property and Pw as follows. For each reticulation vi let qi be
the (witness) parent of vi that lies on Pw and let pi be the second parent. If a reticulation
vi has both parents on Pw, let qi be the parent that is an ancestor of pi.

Consider when we can prune an edge (pi, vi) at pi, for example, to make vi a descendant
of another reticulation. This is not possible, if pi is a reticulation, say vj . However, then
vi and vj already lie on a path. If pi is the parent of two reticulations, say vi and vj , and
part of a triangle that does not contain vi, then pruning (pi, vi) would result in a pair of
parallel edges. However, note that this may occur only once in N1, namely, only if the
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last two vertices on Pw are the two parents of vj (see for example the second network in
Figure 3.10). Furthermore, if pi is the last vertex of Pw and parent of two reticulations,
then pruning (pi, vi) results in the loss of the last witness of Pw. We call this the special
case. In all other cases, we may prune (pi, vi) knowing that that Pw and the tree-sibling
property is maintained.

Let H be the underlying graph of the Hasse diagram of the ancestor relation graph of the
reticulations of N1; that is, the vertices of H represent the reticulations of N1 and there is
an edge (u, v) if u is an ancestor of v and there is no reticulation w that is a descendant of
u and an ancestor of v. Note that the connected components of H are rooted trees, since
in N1 each reticulation vi can only have a reticulation as ancestor via the edge (pi, vi) but
not via the edge (qi, vi). See Figures 3.9 and 3.10 for examples.

Knowing that we can prune any reticulation that is not the child of another reticulation
(except for the special case), we transform each component of H into a path as follows
and as illustrated in Figure 3.9. Suppose two reticulations vi and vj are siblings in H.
This implies that pi is a tree vertex. We can thus prune (pi, vi) at pi and regraft it to the
outgoing edge of vj . In the resulting network, vi is a child of vj in H.

1

2 3

N SNPR0

H

1

2
3

N ′

vivj
vj vi

H ′

vi

vjpi
vjpi

vi

Figure 3.9: Illustration of how a component of the graph H of a tree-sibling network N
can be made a path, for the proof of Theorem 3.31.

Next, we want to join these paths of H of the resulting network into one long path Pr.
First, suppose the special case occurs; that is, the last vertex w of Pw is also pi and pj of
two reticulations vi and vj . Note that in this case vi and vj are the topmost reticulations
of two paths Q and Q′ of H (as indicated in Figure 3.10). We then follow the process
illustrated with a minimal example in Figure 3.10 to concatenate Q and Q′. Note that this
situation can occur at most once, since there is now a pendant tree below w (which is leaf
2 in the figure). After we have handled the special case, we merge the remaining paths of
H (of the resulting network) as follows. Suppose we want to merge path Q′ to Q. Let vi
be the top reticulation of Q′ and vj the lowest reticulation of Q. Then prune (pi, vi) at pi
and regrafting it to the outgoing edge of vj . Since the special case occurs only once and
at most r − 1 reticulations have to be merged to another path, this steps needs at most
r + 1 SNPR0. Let N2 be the resulting network.
Step 3: The order of the reticulations vi on Pr might differ from the order of their

witnesses qi on Pw. Let (v1, . . . , vr) be the order of the reticulations in Pr in N2. Prune
(p1, v1) at p1 and regraft it to the root edge. Note that this maintains Pw, since either
p1 is not on Pw in the first place or p1 has a tree vertex as child that becomes the new
last vertex of PW (see again Figure 3.8). Next, prune (q1, v1) at q1 and regraft it at the
outgoing edge of p1 that is in Pw. Then, for i ∈ {2, . . . , r}, prune (qi, vi) at qi and regraft
it at the outgoing edge of qi−1 that is in Pw. Lemma 3.30 ensures that each intermediate
network is a tree-sibling network. This step takes at most r + 1 SNPR0.



34 3. Connectedness and diameter

vj

vi
w w

2vj

vi
vi vj

vi

vj

SNPR0 SNPR0 SNPR0

1 2 1 2 1
2

1

w

N

H

N ′

H ′

vi

vj
Q′ Q

vj

vi

Figure 3.10: Illustration of how two reticulation paths Q and Q′ of H can be joined where
their topmost reticulations have the same parent w that is also the last vertex
of the witness path, for the proof of Theorem 3.31.

Step 4: The path Pr might contain tree vertices between the reticulations. It is easy
to see that each such tree vertex u is the root of a pendant subtree. We can prune each
such subtree and regraft it to the outgoing tree edge of the last vertex of Pw. Moreover,
with further SNPR0 we can reduce the pendant subtree below the last reticulation vr of
Pr to a single leaf. In total this needs at most n − 1 SNPR0. The resulting network is a
stack and Pw ensures that each intermediate network is a tree-sibling network.
Step 5: Since n ≥ 3, we can now straightforwardly transform the tail of the stack into

a caterpillar. Furthermore, Lemma 3.5 applies and we can sort the leaves to a leaf order
of our choice. The resulting network is our target network M . This step can be done in n
SNPR0.

In total, 2n+2r SNPR0 suffice to transform each tree-sibling network N ∈ T Sn,r into M ,
a stack with a caterpillar as tail and a particular leaf order. Thus the connectedness and
the upper bound on the diameter follow. For the lower bound, note that for example the
two networks N1 and N2 with r = 4 reticulations in Figure 3.11 have an SNPR-distance
in Ω(n + r), since from N1 to N2 the stack has to be formed with Ω(r) SNPR0 and the
leaves have to be sorted with Ω(n) SNPR0. This also holds for PR.

1 2
3
4
5 6

6 5
4
3
2

1

N1 N2

Figure 3.11: Two tree-sibling networks of T S6,4 that can be generalised to two tree-sibling
networks in T Sn,r that have SNPR- and PR-distance in Ω(n+ r).

3.7 Reticulation-visible networks

A phylogenetic network without parallel edges is a reticulation-visible network if for every
reticulation v there is a leaf l such that every path from the root to l goes through v. In
this case we say that l is a witness for v. Note that in a reticulation-visible network no
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reticulation u has another reticulation v as child, since then u would not be visible. We
observe that removing a reticulation edge from a reticulation-visible network maintains
the reticulation-visible property, which gives us the following results.

Theorem 3.32 (Bordewich et al. [BLS17]).
The graph RVSNPR

n is connected with diam(RVSNPR
n ) ∈ Θ(n).

Corollary 3.33.
The graph RVPR

n is connected with diam(RVPR
n ) ∈ Θ(n).

For the tiers of RVn, Bordewich et al. [BLS17] included reticulation-visible networks
that allow parallel edges. Let ∗RVn,r denote these supersets of RVn,r.

Theorem 3.34 (Bordewich et al. [BLS17]).
The graph ∗RVSNPR

n,r is connected with diam(∗RVSNPR
n,r ) ∈ O(nr).

The situation looks different for RVn,r when r is 3n− 3 and thus maximal. In this case,
RVPR

n,r is not only disconnected but also contains networks that are not adjacent to any
other network.

Lemma 3.35.
Let n ≥ 2 and r = 3n− 3. Let op ∈ {NNI,SNPR,PR}.
Then the graph RVopn,r is disconnected.

Proof. Let Nn be the network obtained as follows. For n = 2 and 3, let Nn be as in
Figure 3.12. For n ≥ 4, obtain Nn from Nn−1 in the same way as N3 extends N2. We now
show that no edge can be pruned and regrafted in Nn with a PR0 to obtain a reticulation-
visible network different from Nn. We start with tail PR0. Here we can rule out all edges
that cannot be pruned because their tail is the root or a reticulation or because pruning
them creates a pair of parallel edges or a reticulation with a reticulation as child. This
leaves only edges of triangles. Let u, v, w be vertices that form a triangle with the edges
(u, v), (u,w), and (v, w). Let p be the parent of u, which is either a reticulation or ρ. We
observe that a tail PR0 on (u, v), (u,w), or (v, w) either yields again Nn or p becomes
non-visible if p 6= ρ. This is the case since an edge can only be regrafted to an edge that
is not a descendant of it. Next, consider a head PR0 and note that in order to not create
a reticulation with a reticulation as child, a head PR0 can regraft only to a pure tree
edge. The only pure tree edges in Nn are tree edges of triangles, like (u, v). Observe that
regrafting a reticulation edge to (u, v) with a head PR0, either yields a reticulation that
is non-visible or makes p non-visible. Hence, the network Nn is isolated in RVPR

n,n−3 and
the space disconnected.

Since every NNI0 and SNPR0 is a PR0, the statement also holds for NNI and SNPR.

Note that the arguments of the proof of Lemma 3.35 also apply for SNPR and the
networks Mn ∈ RVn,3n−5 as shown in Figure 3.12.

Theorem 3.36.
Let n ≥ 2 and r ≤ n− 2. Let op ∈ {SNPR,PR}.
Then the graph RVopn,r is connected with diam(RVopn,r) ∈ O(n2).

Proof. We prove this by showing that we can transform any N ∈ RVn,r into a caterpillar
network M ∈ RVn,r with an SNPR0-sequence such that each intermediate network is also
a reticulation-visible network. This also implies the result for PR. Note that in M every
reticulation has exactly one witness, namely its child, and that no two reticulations share
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Figure 3.12: The two networks N2 and N3 are isolated vertices in RVPR
n,3n−3 for n = 2 and

n = 3. Similarly, M2 and M3 are isolated vertices in RVSNPR
n,3n−5.

a witness. Our strategy is to repeatedly obtain a free leaf that we can then use to create
a triangle.

For N , fix an assignment of leaves to reticulations for which they are witnesses such that
each reticulation is assigned only one leaf. In particular, if a reticulation v has witnesses
l and l′ where l′ lies on a path from v through another reticulation but where l does not,
then pick l as witness for v. Let W be the set of leaves of N that are witnesses under this
assignment. Note that |W | ≤ r ≤ n − 2 and hence there are at least two leaves l and l′

that are not assigned as witnesses. Note that l (and l′) is a free leaf unless pruning its
incident edge would would create a pair of parallel edges. Suppose neither l nor l′ is a
free leaf. We now show how to change this. For this, let v be a reticulation that is part
of a triangle and has leaf l as sibling. Let p and q be the parents of v. Note that since
l is not an assigned witness and by the choice of our witness assignment, the witness of
v is not the witness of an ancestral reticulation of v. Therefore, if we prune (p, v) at p
with an SNPR0 and regraft it at the outgoing edge of the root, every reticulation keeps its
assigned witness. Furthermore, it ensures that l does not become a witness. We can do
the same for (q, v) and thus form form a triangle below the root with v, p and q. Apply
this procedure alternatingly to l and l′ until either l or l′ can be pruned without creating
parallel edges. Let N ′ be the resulting network. Note that this procedure terminates at
least when all reticulations form triangles chained up below the root, since then only of
l and l′ can be sibling of a reticulation in a triangle. This takes at most O(r) = O(n)
SNPR0. Without loss of generality, assume that l is now a free leaf.

v v

w w
l

u
v w

l

uSNPR0 SNPR0

Figure 3.13: SNPR0-sequence to give a reticulation v a leaf l as witness and child.

Next, continuing from N ′, we use SNPR0 to make the witness of each reticulation also
its child. Let v be a reticulation whose child is not a leaf. Prune the incident edge of the
free leaf l and regrafted it below v with an SNPR0. Update W such that l is now the
witness of v and of any ancestral reticulation of v that had the same witness as v. In the
resulting network, let u be the child of v. Apply another SNPR0 to the outgoing edge of u
that is not incident to l and regraft it above v. This is also shown in Figure 3.13. Repeat
the procedure from above to obtain another free leaf l′′ that is not in W . We can then use
l′′ for the next reticulation. Repeat this procedure for each reticulation whose child is not
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a leaf. This can be done with O(n2) SNPR0. Let N ′′ be the resulting network.
In the last step, we arrange the reticulations of N ′′ as triangles chained up below the

root to form the caterpillar network. More precisely, we want to create a path ρ, p1, q1,
. . . , pr, qr where pi and qi are the parents of vi, for i ∈ {1, . . . , r}, for some ordering of
the reticulations. Suppose we already have the path P consisting ρ, p1, q1, . . . , pk, qk and
k < r. Let e be the outgoing tree edge of pk. When extending the path for the remaining
reticulations we only have to make sure to not create parallel edges, since every reticulation
has its witness as child. Let l be a leaf not in W . If l is a not a free leaf, then we use the
procedure above to make l a free leaf, which also extends P . Therefore, suppose that l is
a free leaf and P does not contain the parents of a reticulation vi. If pruning (pi, vi) and
(qi, vi) does not create a pair of parallel edges, then we can extend P with vi. So assume
otherwise. Then prune the outgoing edge of l and regraft it to the (pi, w) where w 6= vi.
Then we can prune (pi, vi) and regraft it to e. We do the same for qi. This adds pi and
qi (and the parents of other reticulations if we have to free l) to P . Repeat this until we
reach a caterpillar network M . This step takes at most O(r) = O(n) SNPR0.

Since r ≤ n − 2, the pendant tree below qr in M contains a free leaf. Hence, we can
arrange the pendant tree below qr into a caterpillar and obtain any leaf order in O(n)
SNPR0 by Lemma 3.5. This proves the connectedness of RVSNPR

n,r . The diameter is in
O(n2) since each of the steps above needs at most O(n2) SNPR0.

3.8 Tree-based networks

A tree-based network N has a base tree T such that T has an embedding into N that
covers all vertices of N . Assuming that N has r reticulations, this implies that N can be
partitioned into the edges covered by an embedding of T and r edges e1, . . . , er that are
vertex-disjoint. Furthermore, note that no such ei is incident to a leaf or the root.

Bordewich et al. [BLS17] considered the connectedness of tree-based networks under
SNPR.

Theorem 3.37 (Bordewich et al. [BLS17]).
The graph T BSNPR

n is connected with unbounded diameter.

Theorem 3.38 (Bordewich et al. [BLS17]).
Let T ∈ Tn.
The graphs T BSNPR

n,r and T BSNPR
n,r (T ) are connected with diameters diam(T BSNPR

n,r ) ∈
O(nr) and diam(T BSNPR

n,r (T )) ∈ O(nr).

The connectedness results of Theorems 3.37 and 3.38 also hold for PR. However, we can
improve the bounds on the diameter for the tiers of T Bn under PR, with and without a
fixed base tree.

Corollary 3.39.
The graph T BPR

n is connected with unbounded diameter.

Lemma 3.40.
Let T ∈ Tn. The graph T BPR

n,r(T ) is connected with diameter diam(T BPR
n,r(T )) ≤ 2r.

Proof. Let N,N ′ ∈ T Bn,r(T ). We show how to transform N into N ′. Consider an em-
bedding of T into N and an embedding of T into N ′. Let S (resp. S′) be the set of all
edges not covered by this embedding in N (resp. N ′). Since N is tree-based, note that
S = {e1, . . . , er} consists of vertex-disjoint impure reticulation edges ei = (ui, vi). There-
fore, each ei can be pruned at both end vertices. For i ∈ {1, . . . , r}, we move ei with a
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tail PR0 and a head PR0 from N to where e′i is in N ′ with respect to the embeddings of
T . This requires at most 2r PR0. Since N and N ′ were picked arbitrary, this implies the
connectedness of T BPR

n,r(T ) and concludes the proof.

Lemma 3.41.
The graph T BPR

n,r is connected with diameter diam(T BPR
n,r) ∈ Θ(n+ r).

Proof. Let N ∈ T Bn,r with base tree T . We show how to transform N into a target
network M that has a caterpillar T ′ as base tree and all reticulations in series below the
root. Like in the proof of Lemma 3.40, obtain a set S = {e1, . . . , er} via an embedding of
T into N . For i ∈ {1, . . . , r}, first prune ei with a tail PR0 and regraft it to the outgoing
edge of the root and then prune ei with a head PR0 and regraft it such that it forms a
pair of parallel edges. This requires at most 2r PR0. The resulting network N ′ is now
not only tree-based on T but contains T as pendant subtree. The same holds for M and
T ′ and therefore, by Theorem 3.2, N ′ can be transformed into M in O(n). Hence, the
connectedness and that diam(T BPR

n,r) ∈ O(n+ r) follows.
For the lower bound on the diameter, take two trees T, T ′ ∈ Tn such that their PR-

distance is in Ω(n). This is possible by Theorem 3.2. Obtain a network N from T by
adding r reticulations in series below the root. Obtain a network N ′ from T ′ by subdividing
the root edge 2r times with vertices u1, . . . , ur, v1, . . . , vr and adding the edges (ui, vi) for
i ∈ {1, . . . , r}. Note that N and N ′ are in T Bn,r and have PR-distance in Ω(n+ r).

Next, we consider spaces of tree-based networks under NNI.

Theorem 3.42.
Let T ∈ Tn.
The graph T BNNI

n,r (T ) is connected with diameter diam(T BNNI
n,r (T )) ∈ O(nr + r2).

Proof. Let N ∈ T Bn,r(T ). Fix an embedding of T into N and let S = {e1, . . . , er} be the
set of edges not covered by this embedding. Let ei = (ui, vi). We show how to transform
N into the network M ∈ T Bn,r(T ) that has its reticulations in series below the root.
For this, note that ui and vi can be moved upwards along the edges of the embedding of
T into N with NNI0 (as long as vi does not become an ancestor of ui). Also note that
each network obtained from such an NNI0 is again in T Bn,r(T ) since this embedding of
T is maintained. Now, towards M , first move u1 upwards with NNI0 below the root and
then move v1 upwards with NNI0 below u1. The reticulation v1 is then in parallel below
the root. This takes at most O(n + r) NNI0, since N contains O(n + r) vertices. For
i ∈ {2, . . . , r}, move ui upwards below vi−1 and then vi below ui. Repeat this process for
i = {2, . . . , r} to obtain M . Overall, this takes at most O(nr+ r2) NNI0. This proves the
connectedness of T BNNI

n,r (T ) and the claim on the diameter.

Corollary 3.43.
The graph T BNNI

n,r is connected with diameter diam(T BNNI
n,r ) ∈ O(nr + r2 + n log n).

Proof. Consider two networks N,N ′ ∈ T Bn,r with base tree T and T ′, respectively. By
Theorem 3.42 we can transform N and N ′ into networks M and M ′ that have base tree
T and T ′, respectively, and r pairs of parallel edges chained up below the root. This
takes at most O(nr + r2) NNI0. Then by Theorem 3.1 M can be transformed into M ′ in
O(n log n). Therefore, N and N ′ are connected with NNI0-distance in O(nr+r2 +n log n)
in T Bn,r.
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Note that for n ≥ 2, T Bn,r(T )NNI also contains networks with triangles where two edges
belong to the embedding of T . Hence, the tiers of T Bn(T ) are connected by vertical NNI.
This gives us the following corollary.

Corollary 3.44.
Let n ≥ 2. The graphs T BNNI

n and T BNNI
n (T ) are connected with unbounded diameter.

3.9 Level-k networks

The last classes we consider are level-k networks LVk,n and strict level-k networks sLVk,n.
Recall that a blob B of a network is a nontrivial biconnected component and that the level
of B is the number of reticulations of B. In a (strict) level-k network every blob is at most
(resp. exactly) level k. Before we start with strict level-k networks, we define a special
type of blob. A k-burl is recursively defined: a 1-burl is the blob consisting of a pair of
parallel edges; a k-burl is the blob obtained by placing a pair of parallel edges on one of
the parallel edges of a k − 1-burl for all k > 1 [JK19].

Theorem 3.45.
Let k ≥ 1. Let op ∈ {SNPR,PR}.
The graph sLVopk,n is connected with unbounded diameter.

Proof. Note that sLVk,n does not contains Tn since every network in sLVk,n must contain
at least one blob with level k. Let N ∈ sLVk,n. Let T be a fixed tree in Tn. To show
connectedness, our target network M ∈ sLVk,n is obtained from T by adding a k-burl to
the root edge of T . We construct an SNPR-sequence (or PR-sequence) from N to M as
follows. First, with k SNPR+ we add add a k-burl to the root edge of N . Let N ′ be the
resulting network. Second, using only SNPR− we remove every other blob of N ′, which is
possible by Lemma 7.4 by Bordewich et al. [BLS17] (see also Corollary 5.2). Let M ′ be the
resulting network. Third and last, we transform M ′ into M with SNPR0 by transforming
the pendant tree below the k-burl into T , which is possible by Theorem 3.2. Clearly, every
intermediate network from N to M is a level-k network. This proves the connectedness of
sLVopk,n. That the diameter is unbounded follows from Lemma 3.4.

For the tiers of strict level-k networks, we restrict our attention to strict level-1 networks.

Theorem 3.46.
Let op ∈ {SNPR,PR}. The graph SLVop1,n is connected with diam(SLVop1,n) ∈ O(n+ r).

Proof. Let N ∈ SLV1,n. Let our target network M be obtained from a caterpillar with a
fixed leaf order by adding r reticulations in series below the root. Let v be a reticulation in
N . Note that since N is a level-1 network, v has no reticulation as parent. Therefore, we
can bring v in parallel with a SNPR0. Since, this does not affect any blob except for the
one containing v, this clearly results in a strict level-1 network. To bring all reticulations
of N in parallel requires at most r SNPR0. Let N ′ be the resulting network. Next, suppose
there are r′ < r reticulations in series below the root in N ′. Of those reticulations, let v′

be the lowest of them or the root if r′ = 0. Let u be the parent of a reticulation v′ of
N ′ that is neither the child of another reticulation nor of ρ. Thus v is not one of the r′

reticulations in series below the root. Then prune the incoming edge of u with an SNPR0

and regraft it to the outgoing edge of v′. Let x be the new parent of u and let y be the
sibling of u. Prune (x, y) at x and regraft it to the outgoing edge of v. This increases
r′ by one. Repeat this process until all reticulations are in series below the root. This
takes at most 2r SNPR0. Lastly, to obtain M we transforms the pendant tree below the
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reticulations into a caterpillar with the specific leaf order in O(n) SNPR0. This proves the
connectedness of SLVop1,n and the upper bound on the diameter.

It remains open whether the tiers of strict level-k networks for k > 1 are connected.
However, for (non-strict) level-k we can prove the following.

Theorem 3.47.
Let op ∈ {SNPR,PR}. The graph LVopk,n,r is connected with diam(LVopk,n,r) ∈ O(n+ r).

Proof. Let N ∈ LVk,n,r and let M be the same target network as in Theorem 3.47, namely,
a caterpillar with additionally r reticulations in series below the root. First, to make all
reticulations of N in parallel, apply the two steps from the proof of Lemma 3.9. Recall
that this works the same for reticulations with a tree vertex as parent as in Theorem 3.47,
but also describes how to handle reticulations with two reticulations as parent. Note that
none of the O(r) SNPR0 used for this can increase the level. For the resulting network N ′,
which contains r reticulations in parallel, we do the same as in Theorem 3.47 to transform
it into M . This proves the connectedness and the bound on the diameter of LVopk,n,r.

Lastly, note that LVk,n contains Tn and that applying an SNPR− does not increase the
level. Hence, from Lemma 3.3 and Lemma 3.4 we get the following corollary.

Corollary 3.48.
Let op ∈ {SNPR,PR}. The graph LVopk,n is connected with unbounded diameter.

3.10 Concluding remarks

In this chapter we have studied the connectedness of classes of phylogenetic networks under
rearrangement operations. This is the defining property of a metric space of phylogenetic
networks and thus builds the foundation for the problems we consider in the next two
chapters. Alongside connectedness, we also looked at asymptotic bounds for the diameters
of these spaces.

Building on the work of Bordewich et al. [BLS17], who showed that the classes of all
networks, tree-child networks, reticulation-visible networks, and tree-based networks are
connected under SNPR, we established connectedness for the classes of normal networks,
temporal normal networks, tree-sibling networks, and level-k networks. These results also
imply that PR induces metrics on these spaces. For the classes with bounded maximum
number of reticulations, we found that the diameters behave asymptotically the same
under SNPR and PR. Gambette et al. [GvIJ+17] showed that Nn is connected under NNI.
We established connectedness under NNI for T Cn and T Bn. Furthermore, we observed
that NN n is not connected under NNI, since there are no vertical NNI possible on a normal
network.

We also considered the spaces of tiers of networks of certain classes and rearrangement
operations. For tree-child, normal, and temporal normal networks we saw that the tiers
are connected under SNPR except for the tier with the maximum number of reticulations.
In contrast to that, PR also induces metric spaces with these extremal tiers. However,
for reticulation-visible networks the highest tier is not connected under PR and thus also
not under NNI and SNPR. In addition, we showed that tiers of tree-sibling and tree-based
networks are connected. We found lower asymptotic upper bounds of the diameter of tree-
based networks for PR than for SNPR. Lastly, we have proven that T Cn,r and T Bn,r are
connected under NNI. The precise results concerning the tiers are summarised in Table 3.1.
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Open problems remain for connectedness of classes under NNI. Furthermore, some of
the asymptotic bounds on diameters are not tight or only upper bounds are known. Be-
sides that, there are of course also more classes of phylogenetic networks, like orchard
networks [JM18,ESS19], that could be considered.

Table 3.1: Overview of results on connectedness and diameter of tier r of classes of phy-
logenetic networks under NNI, SNPR, and PR. The symbol × means that the
respective space is disconnected. Here n ≥ 3 and m = n+ r.

class NNI SNPR PR

Tn Θ(n log n) [LTZ96] Θ(n) [Son03] (as SPR)

Nn,r Ω(m logm),O(m2) [JJE+18] Θ(n+ r) [JJE+18], L. 3.9

T Cn,r O(n2) T. 3.18
r < n− 1 : Θ(n) [BLS17]

Θ(n) T. 3.17
r = n− 1 : × T. 3.16

NN n,r
r < n− 2 : Θ(n) T. 3.21

Θ(n) T. 3.23
r = n− 2 : × T. 3.22

T Pn,r
r < n− 2 : Θ(n) T. 3.27

Θ(n) T. 3.28
r = n− 2 : × T. 3.26

T Sn,r Θ(n+ r) T. 3.31
∗RVn,r O(nr) [BLS17]

RVn,r
r ≤ n− 2: O(n2) T. 3.36

r = 3n− 3: × L. 3.35

T Bn,r(T ) O(nr + r2) T. 3.42 O(nr) [BLS17] ≤ 2r L. 3.40

T Bn,r O(nr + r2 + n log n) C. 3.43 O(nr) [BLS17] Θ(n+ r) L. 3.41

LVk,n,r O(n+ r) T. 3.47

To close this section, let us consider again the proof that tier r = 3n − 3 of RVn,r is
not connected under PR. There we looked at what operations are possible on a particular
network. In particular, we examined which edges can be pruned and where they may
be regrafted to obtain a reticulation-visible network. In other words, we looked at what
networks are adjacent to the network at hand. This is the subject of the next chapter.





4. Neighbourhood size

A central problem of phylogenetics is finding an optimal phylogenetic tree or network to
fit a given data set. Since the space of possible solutions is huge (recall Theorem 2.1),
most algorithms use a local search strategy where the next network in the search is chosen
from the neighbours of the current network (as noted by St. John [SJ17]). In view of
these algorithmic applications it is of interest to study the neighbourhood of phylogenetic
networks. In particular, the neighbourhood problem is the problem of determining the
neighbourhood size of a network within a particular space. For example, the tree-child
network in Figure 4.1 has a neighbourhood of size fifteen in the space of tree-child networks
under SNPR. In general, we want a solution to the neighbourhood problem given in the
form of a closed formula that is based on the network and the space considered. Such a
formula often depends not only on the size of the network (given by the number of leaves
n and the number of reticulations r), but also on the topology of the network. In such a
case, we also care about extreme values.
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Figure 4.1: A tree-child network N in the middle, with its SNPR tree-child neighbourhood
around it. The top row shows the SNPR+ neighbours, the middle row the
SNPR0 neighbours, and the bottom row the SNPR− neighbours.
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When Robinson [Rob71] introduced the NNI operation on unrooted phylogenetic trees,
he also showed that the size of the neighbourhood is 2n−6. Furthermore, he also considered
the NNI k-neighbourhood of a tree T ; that is, all trees that have NNI-distance k to T .
In particular for k = 2 and k = 3, Robinson showed that the k-neighbourhood size of
T depends on the topology of T and gave lower and upper bounds. Thirty years later,
Allen and Steel [AS01] showed that the SPR neighbourhood of an unrooted tree has the
simple formula 2(n − 3)(n − 7) but that the size of the TBR neighbourhood depends
on the topology of the tree. Later Humphries and Wu [HW13] gave the exact formula
4
∑

A|B∈S |A||B| − (4n− 2)(n− 3) for the size of the TBR neighbourhood, where S is the

set of all nontrivial splits1 of the tree. In addition, they proved that this is maximised
by caterpillars and minimised by balanced trees. Also on unrooted phylogenetic trees,
de Jong et al. [dJMS16] considered the problem of finding neighbours that are two or more
operations away under NNI, SPR, and the so-called Robinson-Foulds metric. Baskowski
et al. [BMSW15] solved the neighbourhood problem for NNI, SPR, and TBR on unrooted
phylogenetic trees that are restricted to a circular ordering of its leaves. A question related
to the neighbourhood problem was considered by Caceres et al. [CCLSJ13], who showed
that a shortest NNI-walk through the SPR neighbourhood of a tree takes Θ(n2) more steps
than the number of trees in that neighbourhood.

Concerning rooted phylogenetic trees, Song [Son03] solved the SPR neighbourhood prob-
lem by first constructing a recursive formula from which he then derived a closed formula.
Moreover, he gave sharp upper and lower bounds for the neighbourhood size. We look at
these results more closely below. Song [Son06] used the same approach for ranked phylo-
genetic trees2 to find a formula for the neighbourhood size under SPR, gave a sharp upper
bound and conjectured a sharp lower bound. Related to this, Gavryushkin et al. [GWMI18]
looked at NNI neighbourhoods of discrete time-trees3.

In this chapter we study the neighbourhood problem for spaces under NNI and SNPR.
We give exact formulas for classes of relatively low complexity. In particular, we look at
the classes of trees, tree-child networks, and normal networks. An important property of
a network in either of these classes is that each vertex and each edge is uniquely identifi-
able. Because of this property the complexity of handling isomorphism between neighbours
arising from different operations is manageable. However, as we will see, the formulas for
neighbourhood sizes are still rather long and thus hard to comprehend. Therefore we also
give bounds for the extreme values of these formulas. Tree-based networks or general phy-
logenetic networks do not have this property. We therefore refrain from finding formulas
for these network classes. Nevertheless, we still look at bounds of the neighbourhood size
for a phylogenetic network under NNI, SNPR, and PR.

We first look at the class of phylogenetic trees (Section 4.2). We use the simple case of
trees to illustrate our counting scheme to find formulas. Roughly speaking, in this scheme
we first count the number of possible operations and then factor in double counting of
neighbours and the operations that yield the starting network again. We then study the
class of tree-child networks in Section 4.3. This section is the main work of this chapter
and we use several results thereof for the neighbourhood problem on the other classes.
In particular, we use the classification of redundant operations for the class of normal
networks (Section 4.4). We then discuss why it is harder to find exact formulas for the

1A split A|B of an unrooted phylogenetic tree with leave set X is a biparition (A,B) of X such that there
is a cut-edge of T separating A and B.

2Ranked or totally-ordered phylogenetic trees are phylogenetic trees together with a total order of the
inner tree vertices.

3Discrete time trees are phylogenetic trees where all vertices are vertices are assigned positive real numbers
and where the different time periods between two vertices may take only a finite number of values.
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neighbourhood problem for other classes of phylogenetic networks. Lastly, we give bounds
on the neighbourhood size of a phylogenetic network in Nn (Section 4.5). Before we start
with the neighbourhood of a tree, we make several definitions.

Remark. Section 4.3 on the neighbourhood of tree-child networks and other parts of this
chapter appeared in the paper “The SNPR neighbourhood of tree-child networks” [Kla18].

4.1 Preliminaries

This section contains definitions, notation, and observations used throughout this chapter.
First, we introduce a notation for SNPR and NNI operations, so that we can distinguish
two operations on the same network. We also look at different properties of operations. We
then define the neighbourhood problem formally. Next, we look at an important property
of tree-child networks that keeps the complexity of the neighbourhood problem for this
class within reasonable bounds. We further count how many edges of a certain type a
tree-child network contains, define functions to count descendant edges, and define special
structures of networks.

Operation types. Let N ∈ Nn. For an SNPR0 that prunes the edge e and regrafts it to
the edge f , we write (e, f). For an SNPR+ that adds a new edge from the edge f to the
edge e, we write (e, f). For an SNPR− that removes the edge e, we simply write e. Let
ΘSNPR(N) denote the multiset of all SNPR operations on N . If N is in the class Cn, let
ΘSNPR
C (N) denote the subset of ΘSNPR(N) of operations that result in a network in Cn. If,

say, Cn = T Cn, then we call an operation θ ∈ ΘSNPR
C (N) a tree-child respecting operation.

The definitions for other types of operations and classes are analogous.
For an NNI0 operation on the edges e, f , and g with axis e = (u, v) and where f is

incident to u and g is incident to v, we write (f, e, g). We do not need a notation for NNI+

and NNI− operations.
Let θ ∈ ΘSNPR(N). Let θ(N) denote the network obtained by applying θ to N . The

operation θ is trivial if θ(N) = N . Two distinct operations θ, θ′ ∈ ΘSNPR(N) on N are
redundant if θ(N) = θ′(N). We call a set of pairwise redundant operations a redundancy
set. For example, all trivial operations on N form a redundancy set. We call a redundancy
set nontrivial if it is not the set of trivial operations. As the following observations show,
trivial operations are not uncommon, but are also not possible for every type of operation.

Observation 4.1.
Let N ∈ Nn for n ≥ 2. Let u be an inner tree vertex of N with incident edge e = (u, v).
Then e is part of at least two trivial SNPR0 operations (e, f) and (e, f ′).

Proof. Let p be the parent of u and w 6= v the second child of u. To find two trivial
SNPR0 that prune e, we choose f = (p, u) and f ′ = (u,w). When e gets pruned and thus
u suppressed, then f and f ′ are merged into an edge f̃ . Regrafting e to f̃ yields again N .
Hence, (e, f)(N) = (e, f ′)(N) = N .

Observation 4.2.
Vertical rearrangement operations are nontrivial.

The neighbourhood problem. Let N ∈ T Cn. We define the SNPR tree-child neighbour-
hood of N , denoted by USNPR

T C (N), as

USNPR
T C (N) := {N ′ | N ′ ∈ T Cn, ∃θ ∈ ΘSNPR(N) : θ(N) = N ′ and N ′ 6= N}.4
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An SNPR tree-child neighbour of N is a network N ′ ∈ USNPR
T C (N). Definitions for other

types of operations and classes are analogous. The neighbourhood problem for N ∈ Copn for
a rearrangement operation op is the problem of determining |Uop

C (N)|.

Number of automorphisms. Let N ∈ Nn. Assume there exists an automorphism on
N that fixes the leaf set of N and that maps an edge e to an edge e′ 6= e. This implies
that, in some sense, e and e′ are indistinguishable. Now consider two SNPR0 operations
θ and θ′ on N that prune e and e′ respectively and regraft them to an edge f . Then, in
some cases, θ(N) = θ′(N) and thus θ and θ′ are redundant. Such indistinguishable sets of
edges make counting neighbours of a network harder, because for each operation θ = (e, f)
one has to consider whether e and f are indistinguishable from other edges and if thus θ
would be redundant to other operations. The next lemma shows that tree-child networks
have no such sets of indistinguishable edges. The lemma is a reformulation of a result by
McDiarmid et al. [MSW15, Lemma 5.1].

Lemma 4.3.
Let N ∈ T Cn. There is exactly one automorphism on N that fixes the leaf set of N .

Lemma 4.3 implies that every vertex and every edge of a tree-child network is uniquely
identifiable, for example by its set of descendant edges. Since by Table 2.1 phylogenetic
trees and normal networks are also tree-child networks, we get the following corollary.

Corollary 4.4.
Let N be a tree or a normal network.
There is exactly one automorphism on N that fixes the leaf set of N .

Structures. Let N ∈ T Cn. In the following we define certain subgraphs of N , which we
call structures, that are determining factors of whether and which operations on N are
trivial, redundant, and respect a class. Figure 4.2 accompanies the description of these
structures.
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Figure 4.2: An r1, r2, and r3 structure, a tree-branching triangle t∗3, a diamond d4, a
trapezoid with outgoing tree edges t4. The critical edges are highlighted (bold
red).

We define r1 as the number of reticulations in N that have a leaf as child. An r2 structure
of N is a path of length two from a reticulation x via a vertex u to a reticulation w. An r3

structure consists of four vertices x, y, u, w with edges (x, y), (x, u) and (u,w) where y and
w are reticulations. We refer to these three edges as the underlying path of the structure.
Note that in both an r2 and an r3 structure, since N is tree child, both u and its second
child v are tree vertices. We relax the notation to let r2 and r3 also denote the number of
these structures in N .

4The neighbourhood is denoted by U , since it is sometimes referred to as the unit neighbourhood compared
to the k-neighbourhood that contains all networks that have distance at most k to N .
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Note that an r3 structure with y = w is a triangle. More formally, a triangle of N
consist of three vertices x, u, w with the edges (x, u), (x,w) and (u,w). We call the edge
(x, u) the top side, the edge (x,w) the long side, and the edge (u,w) the bottom side of
the triangle. Let t3 denote the number of triangles in N . Let v 6= w be the second child
of u. If v is incident to three pure tree edges, we call it a tree-branching triangle. Let t∗3
denote the number of tree-branching triangles. Note that every tree-branching triangle of
N is included in the counts r3, t3, and t∗3.

For an r2 structure, an r3 structure, or a triangle, with the notation from above, we call
the tree edge (u, v) the critical edge of this structure. See again Figure 4.2, where critical
edges are highlighted, and note how pruning them yields a vertex without a tree child.
These edge will be important when we consider tree-child respecting SNPR operations.

A diamond of N is an underlying four-cycle consisting of the edges (u, v), (u,w), (v, z)
and (w, z). A trapezoid is an underlying four-cycle consisting of the edges (u, v), (v, w),
(w, z) and (u, z). In both underlying four-cycles z is a reticulation. Important for us are
trapezoids where the outgoing edges of the four-cycle at v and w are pure tree edges. Let
d4 denote the number of diamonds and let t4 denote the number of trapezoids with two
outgoing pure tree edges.

Number of edges. Let N = (V,E) ∈ T Cn,r. Let m denote the size of E. Let ER ⊂ E
denote the set of reticulation edges, let ET ⊆ E denote the set of tree edges, let ET ∗ ⊆ ET
denote the set of non-critical tree edges, and let EPS ⊂ E denote the set of pure tree edges
with a sibling pure tree edge. Also recall that we defined phylogenetic networks to have a
root with outdegree one.

Observation 4.5.
Let N = (V,E) ∈ T Cn with r reticulations. Then

(i) |E| = m = 2n+ 3r − 1;

(ii) m2 = 4n2 − 4n+ 9r2 − 6r + 12nr + 1;

(iii) |ER| = 2r;

(iv) |ET | = 2n+ r − 1;

(v) |ET ∗ | = m− 3r − r2 − r3 = 2n− r2 − r3 − 1;

(vi) |EPS | = m− 5r − 1 = 2n− 2r − 2.

Recall that an edge (x, y) is a descendant edge of an edge (u, v) if x = v or if x is a
descendant of v. Let N = (V,E) ∈ Nn and e ∈ E. Let α, δ : E → N be functions that map
an edge to its number of ancestor or descendant edges, respectively, i.e.

α(e) := |{f : f ∈ E is ancestor of e}|

and

δ(e) := |{f : f ∈ E is descendant of e}|.

Let αT and δT be the restrictions of α and δ that only count ancestor and descendant
edges that are tree edges, respectively.
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4.2 Trees

In this section we give formulas for the size of the NNI and the SNPR neighbourhood
of a (rooted) phylogenetic tree. While these neighbourhood problems have been solved
before within Tn, we extend these solutions to Nn. We start with the NNI neighbourhood
problem.

4.2.1 NNI neighbourhood

For unrooted phylogenetic trees, Robinson [Rob71] showed that the NNI0 neighbourhood
size of a tree T is equal to twice the number of inner edges of T and thus 2n− 6. Rooted
phylogenetic trees have n−2 inner edges and it is well known that like in the unrooted case
each of these edges induces two different NNI0 operations. Since a tree has no reticulations,
it has no NNI− neighbours. Recall that an NNI+ adds an edge (u′, v′) between two incident
edges and thus creates a triangle. If the reticulation v′ subdivides a tree edge (u, v) then
it makes no difference whether u′ subdivides the incoming edge or the second outgoing
edge of u. Either choice will result in the same network. Note that the root edge cannot
be subdivided by a reticulation introduced by an NNI+. Thus a tree has as many NNI+

neighbours as it has edges minus one, which is 2n − 2 by Observation 4.5. All together,
these observations give the following results on NNI neighbourhoods of a tree.

Theorem 4.6.
Let T ∈ Tn with n ≥ 2.
The neighbourhoods of T under NNI operations have the sizes

(i) |UNNI0

N (T )| = |UNNI
T (T )| = 2n− 4,

(ii) |UNNI−
N (T )| = 0,

(iii) |UNNI+

N (T )| = 2n− 2, and

(iv) |UNNI
N (T )| = 4n− 6.

Note that each neighbourhood in Theorem 4.6 only depends on the size of the tree. Also
note that an NNI+ neighbour of a tree is a level-1 and a tree-child network, but not a
normal network. Hence, the NNI neighbourhood of a tree in Nn is the same as in T Cn
(and other superclasses) but not as in NN n and T Pn.

4.2.2 SNPR neighbourhood

We use this section to illustrate how the SNPR neighbourhood size depends on the topol-
ogy of a tree and that this can (partly) be represented by the number of ancestors or
descendants of edges. While Song [Son03] used a recursive method to obtain a formula
for the SNPR0 neighbourhood size, we use a direct counting scheme, following Humphries
and Wu [HW13]. This scheme consists of three steps. First, we determine the number of
possible operations, which in our case is the size of ΘSNPR

T (T ). Second, we subtract from
this the number of trivial operations, and third, correct for double counting of neighbours
due to redundancies. For the rest of this section let T ∈ Tn.

Counting SNPR operations. Our first step is to count the number of SNPR on T . We
distinguish between SNPR0 and SNPR+, and disregard SNPR− since there are none for T .
Recall that an SNPR0 (e, f) ∈ ΘSNPR0

(T ) prunes the edge e at its tail vertex and regrafts
it to the edge f . By the definition of SNPR0, the edge f cannot be e or a descendant of
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e. The operation (e, f) would otherwise induce a cycle, as illustrated by the trees T and
Tδ in Figure 4.3. Recall that an SNPR+ (e, f) ∈ ΘSNPR+

(T ) adds an edge from f to e.
Furthermore, recall that δ(e) is the number of descendant edges of e.

Lemma 4.7.
Let n ≥ 2. Let T = (V,E) ∈ Tn. The number of SNPR0 on T is

|ΘSNPR0
(T )| = 4n2 − 6n+ 2−

∑
e∈E

δ(e), (4.1)

and the number of SNPR+ on T is

|ΘSNPR+
(T )| = 4n2 − 4n+ 1−

∑
e∈E

δ(e). (4.2)

Proof. Let m = |E|. First we count SNPR0. Let ΘSNPR0
(T, e) denote all SNPR0 on T

that prune e. By our observation that the edge f of an SNPR0 operation (e, f) can be
any edge that is not a descendant of e or e itself we get the equation

|ΘSNPR0
(T, e)| = m− 1− δ(e).

The total number of SNPR0 operations on T is then

|ΘSNPR0
(T )| = |

⋃
e∈E

ΘSNPR0
(T, e)| = m2 −m−

∑
e∈E

δ(e) = 4n2 − 6n+ 2−
∑
e∈E

δe.

The last step follows from Observation 4.5. This proves Equation (4.1).
Next we count SNPR+. This case is similar to the previous one with the only difference

that for an SNPR+ (e, f) it is possible that f = e. By Observation 4.5 there are thus
m = 2n− 1 more SNPR+ than SNPR0. This proves Equation (4.2).
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Figure 4.3: Illustration of different possibilities for regrafting when pruning the edge (v, w)
in the phylogenetic tree T . The tree Tδ shows that we cannot regraft (., w)
to a descendant edge; the tree Tt shows that regrafting to the edge (u, v) (or
(v, 4)) yields a trivial SNPR; the tree T ′ is a neighbour of T .

Counting trivial operations. Our second step is to count all trivial SNPR on T . Recall
that an operation θ is trivial if θ(T ) = T . By Observation 4.2 there are no trivial SNPR+.
Let (e, f) ∈ ΘSNPR0

(T ). By Observation 4.1 we know that for each e there are at least
two choices of f such that (e, f) is trivial. For e = (u, v) this is the case when f 6= e is
incident to u. See again Figure 4.3. We prove in Lemma 4.14 that there are no further
trivial operations on T . Hence, for each e ∈ E(T ) that is not the root edge of T there are
two trivial SNPR0 and thus the total number of trivial operations in ΘSNPR0

(T ) is

2(m− 1) = 4n− 4. (4.3)
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Counting redundancies. Our third step is to count nontrivial redundancies of SNPR
operations on T . Recall that two operations are redundant if they yield the same tree.
Humphries and Wu [HW13] showed that for unrooted trees every nontrivial redundancy
set has size four and corresponds to an NNI0. In Lemma 4.8 we state that a nontriv-
ial redundancy set has only size three in the corresponding statement for rooted trees.
Figure 4.4 illustrates where this change from size four to three comes from.

Lemma 4.8.
Let T ∈ Tn and let θ, θ′ ∈ ΘSNPR0

(T ) be distinct, nontrivial, and redundant with θ(T ) = T ′.
Then there exists an NNI0 operation σ ∈ ΘNNI0(T ) such that σ(T ) = T ′. Furthermore,
every nontrivial redundancy set of ΘSNPR0

(T ) has size three.

We prove Lemma 4.8 in Section 4.3.1.

1 2 1 21 21 2 1 2

34 343434 34

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

T T1 T2 T3 T4

Figure 4.4: The top row illustrates how four different, but redundant SPR operations cor-
respond to an NNI operation on an unrooted tree. The bottom row illustrates
how one of these SPR operations has no rooted SNPR0 as counterpart.

Lemma 4.9.
Let n ≥ 2. Let T ∈ Tn.
There are 2n−4 nontrivial redundancy sets of SNPR0 operations in ΘSNPR0

(T ), each with
size three, and 2n−2 nontrivial redundancy sets of SNPR+ operations in ΘSNPR+

(T ), each
with size two.

Proof. The first part follows from Lemma 4.8 and Theorem 4.6. The second part follows
from the proof of Proposition 4.19, which shows that redundancies of SNPR+ (for a tree)
only arise from NNI+, and Theorem 4.6.

SNPR neighbourhood size. The neighbourhood size of T can now be determined from
the number of SNPR on T as counted in Lemma 4.7 by subtracting the trivial SNPR as
counted in Equation (4.3), and by picking only one operation of every redundancy set of
nontrivial SNPR as counted in Lemma 4.9.

Theorem 4.10.
Let T ∈ Tn with n ≥ 2.
The SNPR neighbourhoods of T have the sizes

(i) |USNPR0

N (T )| = |USNPR
T (T )| = 4n2 − 14n+ 14−

∑
e∈E

δ(e),
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(ii) |USNPR−
N (T )| = 0,

(iii) |USNPR+

N (T )| = 4n2 − 6n+ 3−
∑
e∈E

δ(e), and

(iv) |USNPR
N (T )| = 8n2 − 20n+ 17− 2

∑
e∈E

δ(e).

Note that not every SNPR+ neighbour of T is a tree-child network. Therefore, the formu-
las of Theorem 4.10 do not describe the same neighbourhoods as those in Proposition 4.19
and Theorem 4.20 when applied to a tree.

Also note that for a tree T , we have the equation∑
e∈E

δ(e) =
∑
e∈E

α(e). (4.4)

Equation (4.4) follows from the observation that if an edge gets counted k times as a
descendant, then it has k ancestors. Having Equation (4.4) means that we can either
count the descendants or the ancestors of the edges of T for the formulas in Theorem 4.10.

Equivalence to Song’s formula. Song [Son03] already gave a closed formula for
|USNPR
T (T )| = |USNPR0

N (T )| derived from a recursive formula based on a so-called cherry
sequence. To state his formula we need the following definitions. For a vertex v let α(v)
be the number of ancestor vertices of v. Let VI be the inner vertices of T and let v ∈ VI .
Then Song defined the function γ(v) = max{α(v) − 2, 0}. Song’s formula for the SNPR
neighbourhood of a rooted phylogenetic tree is

|USNPR
T (T )| = 4n2 − 18n+ 20− 2

∑
v∈VI

γ(v).

We show how to transform this formula with γ on VI to the formula in Theorem 4.10
with δ on E. First, note that every inner vertex v has two outgoing edges e and the only
edge that is not covered in this way is the root edge eρ. Let v ∈ VI with outgoing edges e
and e′. Then 2γ(v) = α(e) + α(e′)− c. If v is the child of the root then c = 2, otherwise
c = 4. Furthermore, note that α(eρ) = 0. In total we get that

2
∑
v∈VI

γ(v) =
∑
e∈E

α(e)− 2m+ 4 =
∑
e∈E

α(e)− 4n+ 6.

Lastly, we use Equation (4.4) to get the equivalence

4n2 − 18n+ 20− 2
∑
v∈VI

γ(v) = 4n2 − 14n+ 14−
∑
e∈E

α(e) = 4n2 − 14n+ 14−
∑
e∈E

δ(e).

Bounds. Since the size of the SNPR neighbourhood of a phylogenetic tree depends
not only on its size but also on its topology, we now look at lower and upper bounds.
Song [Son03, Proposition 4.1] showed that the minimum and maximum SNPR0 neigh-
bourhood size are achieved by caterpillars and balanced trees, respectively. Song’s result
also implies that the caterpillar minimises and that a balanced tree maximises

∑
e∈E δ(e).

The minimum and maximum SNPR+ (and SNPR) neighbourhood size of T are thus also
achieved by caterpillars and balanced trees, respectively. Moreover, Song [Son03, Corol-
lary 4.2] gave the exact lower bound with 3n2 − 13n + 14 and the exact upper bound
with 4n2 − 16n + 16 − 2

∑n−2
i=1 blog2(i + 1)c for the SNPR0 neighbourhood size of T .

Thus, for a caterpillar we have
∑

e∈E δ(e) = n2 − n and for a balanced tree we have∑
e∈E δ(e) = 2

∑n−2
i=1 blog2(i + 1)c + 2n − 2. Applying these observations to the formulas

of Theorem 4.10 gives the following corollary.
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Corollary 4.11.
Let T ∈ Tn with n ≥ 4. Then

n2 − 13n+ 14 ≤ |USNPR0

N (T )| ≤ 4n2 − 16n+ 16− 2
n−2∑
i=1

blog2(i+ 1)c

3n2 − 5n+ 3 ≤ |USNPR+

N (T )| ≤ 4n2 − 8n+ 5− 2
n−2∑
i=1

blog2(i+ 1)c

6n2 − 18n+ 17 ≤ |USNPR
N (T )| ≤ 8n2 − 24n+ 21− 4

n−2∑
i=1

blog2(i+ 1)c

with the lower bound achieved by caterpillars and the upper bound achieved by balanced
trees.

4.3 Tree-child networks

In the last section we saw that applying any NNI or SNPR to a tree yields a tree in Tn
or a network in Nn. This is different for the space of tree-child networks, where we have
to check whether an operation is tree-child respecting. Furthermore, recognising trivial
and redundant operations becomes more complex as there are more structures to consider.
Fortunately, the fact that vertices and edges are uniquely identifiable in tree-child networks
keeps the complexity of this task within manageable bounds. As we will see, the formulas
for neighbourhood sizes are nevertheless lengthy. We therefore also give bounds for these
formulas that depend only on the size of the network.

The study of SNPR on tree-child networks is the main part of this chapter. We already
used results thereof for trees and will use them again for normal network. Most proofs in
the section are rather technical. The proof about the redundancies of tree-child respecting
SNPR, however, uses a nice way to reduce the problem of identifying redundancies from
a global problem (on the network) down to a local problem.

We start with the neighbourhood problem under SNPR. Throughout this section let
N ∈ T Cn.

4.3.1 SNPR neighbourhood

We first consider SNPR0, then SNPR+ and SNPR−. Towards formulas for neighbourhood
sizes, we use the counting scheme we illustrated on trees. Thus we first count tree-child
respecting operations, then trivial operations, and then redundancies.

Counting tree-child respecting SNPR0 operations. Let θ = (e, f) ∈ ΘSNPR0

T C (N) and
e = (u, v). For θ to be tree-child respecting, neither pruning (u, v) nor regrafting it to f
can yield a non-leaf vertex without a tree child. Roughly speaking and as we show in the
following lemma, this implies that if e is a critical edge, then there are only limited options
for f , and also that e and f cannot both be reticulation edges. Figure 4.5 illustrates the
cases where e = (u, v) is a critical edge.

Lemma 4.12.
Let N ∈ T Cn and (e, f) ∈ ΘSNPR0

(N). Let e = (u, v) and f not be a descendant of e.
Then N ′ = (e, f)(N) is a tree-child network if and only if one of the following cases holds:

(i) e is a reticulation edge and f is not a reticulation edge;
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Figure 4.5: Illustration of the cases r2, r3, and triangle, where there are only trivial SNPR0

operations that prune (u, v) or, in the case of r3, exactly one nontrivial SNPR0

as shown. This is formalised in Lemma 4.12

(ii) e is a pure tree edge that is not critical;

(iii) e is a critical edge and f is incident to u;

(iv) e is a critical edge of an r3 structure with underlying path w, u, x, y such that u and
y are the children of x and f = (x, y);

(v) e is a critical edge of a triangle and f is the long side of the triangle.

Proof. We prove this by considering the different types of e = (u, v). By the definition of
an SNPR0 operation, u cannot be a reticulation. Thus, e cannot be a pure reticulation edge
or an impure tree edge. Let e be an impure reticulation edge, i.e. let v be a reticulation.
Then, since N ∈ T Cn, the sibling w of v with shared parent u is a tree vertex. Thus
after pruning e and suppressing u, the parent of u has, in N ′, the vertex w as tree child.
Hence, a reticulation edge can always be pruned. Now, if f = (x, y) is a reticulation edge,
then the new vertex u′ in N ′, resulting from the subdivision of f , has the two children
v and y, which are both reticulations. Thus, if e is a reticulation edge, then f cannot
be a reticulation edge. If f is not a reticulation edge (Item (i)), then, in N ′, the new
vertex u′ has the tree child y, the vertex x has the tree child u′, and all other vertices stay
unaffected.

Next, let e be a pure tree edge. If e is not critical (Item (ii)), then either the sibling of
v or the sibling of u is a tree vertex. Without loss of generality let w, the sibling of v, be
a tree vertex. Then, after pruning e and suppressing u, the parent x of u has w as a tree
child in N ′. Since v is a tree vertex, regrafting to any edge f does not create a non-leaf
vertex without tree child. Hence, N ′ is tree child.

If e is critical and f incident to e (Item (iii)), as f is not a descendant edge of e, then
N ′ = N and N ′ is thus tree child. If e is the critical edge of an r2 structure, then clearly
f being incident to e is the only option for N ′ to be tree child. If e is the critical edge
of an r3 structure, then after pruning e and suppressing u, the parent x of u has the two
reticulations y and w as children if and only if e is not regrafted to an incident edge and
if f 6= (x, y) (Item (iv)). In the case that the r3 structure is a triangle, f = (x, y) implies
that f is the long side of the triangle (Item (v)). Since we covered all types of e, the
described choices of e and f cover all tree-child respecting SNPR0 operations on N .

We now know when SNPR0 operations respect the tree-child property. We can thus
continue counting them. Recall that ER denotes all reticulation edges and that ET ∗ denotes
all pure non-critical tree edges. Furthermore, recall that δT (e) counts only descendant
edges of e that are tree edges.

Lemma 4.13.
Let N ∈ T Cn. Then the number of tree-child respecting SNPR0 operations on N is

|ΘSNPR0

T C (N)| = 4n2 + 10nr − 2n(r2 + r3)− 6n+ 2r2 − 3r(r2 + r3)− 5r

+ 4r2 + 5r3 + 2−
∑
e∈ET∗

δ(e)−
∑
e∈ER

δT (e).
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Proof. Following Lemma 4.12, we prove this by distinguishing the different types of the
pruned edge e. We use the fact that N has m = 2n+ 3r− 1 edges. First, any reticulation
edge e = (u, v) can be regrafted to any non-reticulation edge that is not descendant of e.
Hence, there are the following many such operations:

2r(m− 2r)−
∑
e∈ER

δT (e) = 4nr + 2r2 − 2r −
∑
e∈ER

δT (e) (4.5)

Equation (4.5) uses δT (e) instead of δ(e), since we would otherwise double count the
forbidden operations of regrafting to an edge that is reticulation edge and descendant of
the pruned edge.

If e ∈ ET ∗ , i.e. a pure non-critical tree edge, then e can be pruned and regrafted to
every edge not e itself or a descendant of e. Hence, with Observation 4.5, there are the
following many such operations:

(m− 3r − r2 − r3)(m− 1)−
∑
e∈ET∗

δ(e)

= 4n2 + 6nr − 2n(r2 + r3)− 6n− 3r(r2 + r3 + 1) + 2r2 + 2r3 + 2−
∑
e∈ET∗

δ(e) (4.6)

If e is the critical edge of an r2 or r3 structure (including triangles), then there are only
2 or 3 operations, respectively. Hence, there are the following many such operations:

2r2 + 3r3 (4.7)

Adding Equations (4.5) to (4.7) together, the lemma follows.

Counting trivial SNPR0 operations. Pruning an edge and regrafting it at the same edge
is a trivial SNPR0 operation. Another trivial SNPR0 operation (e, f) arises for every
triangle where e is the triangle’s critical edge and f is its long side. Furthermore, the
reticulation edges of a triangle induce a trivial operation each, as the proof of the following
lemma shows.

Lemma 4.14.
Let N ∈ T Cn. Then there are 4n+ 4r + 3t3 − 4 trivial operations in ΘSNPR0

T C (N).

Proof. Let (e, f) ∈ ΘSNPR0

T C (N) with e = (u, v) and f = (x, y). The operation (e, f) can
be trivial in three ways. First, if f is incident to e at u. The root edge and edges (u, v)
with a reticulation u are not prunable. Therefore, there are m− r− 1 prunable edges and
2(m− r − 1) trivial tree-child respecting SNPR0 operations.

Second, f is isomorphic to the edge g created by pruning e and suppressing u. However,
this can only happen if f and g are parallel edges, since by Lemma 4.3 there are no pairs
of isomorphic edges in a tree-child network. This means that the critical edge of a triangle
gets pruned. Thus, there are t3 many trivial tree-child respecting SNPR0 operations of
that type.

Third, let f be neither of the above. Let the edges of N be labelled and then in
N ′ = (e, f)(N) let all labels be as in N except those affected (e, f). Let the regrafted edge
have the label e. Then, since N ′ = N , there has to be an edge e′ = (u′, v′) in N ′ that is,
without label, the same edge as e in N . By the choice of f , this cannot be e. The edges e
and e′ got, so to say, swapped. Then, since by Lemma 4.3 every vertex is unique, v = v′

follows. The edges e and e′ are thus reticulation edges. For N ′ = N , clearly, e and e′ have
to be the reticulation edges of a triangle: If we prune the long side of a triangle and regraft
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it to the critical edge of the triangle, it results again in N . An equivalent operation exists
for the bottom edge of the triangle. Hence, there are 2t3 such trivial tree-child respecting
SNPR0 operations.

Furthermore, these three cases do not overlap and we thus counted all trivial tree-child
respecting SNPR0 operations on N . Since 2(m − r − 1) + 3t3 = 4n + 4r + 3t3 − 4, the
lemma follows.

Counting redundant SNPR0 operations. In Lemma 4.8 in Section 4.2.2 we stated that
SNPR0 operations on trees are redundant only if they correspond to an NNI0 operation.
This result is also important for tree-child networks. Before we fully restate and proof
Lemma 4.8, we make some general observations on how an SNPR0 redundancy can occur.

Figure 4.6 illustrates how three SNPR0 operations correspond to an NNI0 operation
with axis (x, u). There, the siblings v and w are children of u and their uncle y is a child
of x. Now, the three redundant SNPR0 operations could be described as follows. First,
((u, v), (x, y)) prunes v and regrafts it as sibling of y. Second, ((x, y), (u, v)) prunes y and
regrafts it as sibling of v. Third, ((u,w), (p, x)) prunes w and regrafts it above x, thus
making v and y siblings. In general, to find redundancies of SNPR0 operations, we can
fix two vertices that stand in a certain relation in N ′, but not yet in N . Then, to create
this relation, say making v and y siblings, we can either regraft one as sibling of the other
or alter the path between them. We formalise this in Lemma 4.15, after we describe the
initial situation more precisely.

u

v v

x

yyw w

SNPR0

((u, v), (x, y))
((x, y), (u, v))
((u,w), (p, x))

NNI0

((x, y), (x, u), (u, v))

p
T T ′

Figure 4.6: Correlation of an NNI operation with a pure inner tree edge as axis and three
SNPR operation, all being pairwise redundant.

Let N,N ′ ∈ T Cn be neighbours with N ′ = θ(N), θ ∈ ΘSNPR0

T C (N). Let the vertices in
both N and N ′ be labelled and let θ preserve these labels, except of course for removed or
new vertices. Also let v and y be distinct vertices in N and N ′ with the same labels and
such that neither is ancestor of the other in both N and N ′. We now say that v and y are
in a desired relation if one of the following holds:

• The vertex v is a sibling, an uncle, or a nephew of y in N ′ via a path P ′, but v is in
a different relation to y in N .

• The vertex v is an uncle or a nephew of y in N ′ via a path P ′ and in N via a path
P 6= P ′.

In the second condition, P 6= P ′ means that the labels of the vertices on P differ for a
least one vertex from the labels of the vertices on P ′.

Lemma 4.15.
Let N,N ′ ∈ T Cn and θ ∈ ΘSNPR0

T C (N) with θ(N) = N ′ 6= N . Let v and y be in a desired
relation via a path P ′ in N ′.
Then there are only the following possibilities of how θ operates on N to yield N ′:
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(i) an incoming edge of v or y gets pruned and regrafted such that v becomes sibling,
uncle or nephew, respectively, of y;

(ii) an incoming edge of the parent of v or y gets pruned and regrafted such that v becomes
uncle or nephew, respectively, of y;

(iii) an edge e = (u,w) with u, but not w, being on a path connecting v and y, gets pruned
yielding P ′;

(iv) an edge gets regrafted to a path connecting v and y yielding P ′.

Proof. The existence of v and y in N ′ after applying θ to N means that θ does not prune
an outgoing edge of v or y. For θ to yield the desired relation and path P ′ in N ′, θ can
either alter an existing path between v and y by one vertex, i.e. (iii) or (iv), or prune an
edge of an existing path between v and y and regraft it such that a desired path P ′ gets
created, i.e. (i) or (ii).

Applying Lemma 4.15 means that we can consider an SNPR0 operation θ, find two
vertices v and y in the resulting network N ′ that are in desired relation, and then check
whether other SNPR0 operations corresponding to one of the possibilities listed in the
lemma exist that are redundant to θ. We can now prove Lemma 4.8, restated here for
convenience.

Lemma 4.8 (restated).
Let T ∈ Tn and let θ, θ′ ∈ ΘSNPR0

(T ) be distinct, nontrivial, and redundant with θ(T ) = T ′.
Then there exists an NNI0 operation σ ∈ ΘNNI0(T ) such that σ(T ) = T ′. Furthermore,
every nontrivial redundancy set of ΘSNPR0

(T ) has size three.

Proof of Lemma 4.8. The lemma states that if two nontrivial SNPR0 θ and θ′ are redun-
dant on a phylogenetic tree, then there is an NNI0 that is redundant to them. Let v and y
be two distinct vertices that are not siblings in T , but that, under preserving of labels by
θ, are siblings in T ′. Then v and y are in a desired relation. With the cases (i) and (iii)
of Lemma 4.15 we see that θ and θ′ correspond to an NNI0 and, moreover, that a third
SNPR0 is redundant to them. Hence, the redundancy set containing θ has size three.

We now count the number of tree-child respecting SNPR0 that we can discard due to
redundancy. In the proof of the following proposition, we will see that redundancies only
arise from few different sources; for example from NNI0 operations with the axis being
a pure inner tree edge. The other sources of redundancies are operations that create a
triangle, the reticulation edges of a triangle (see Figure 4.7), and the existence of tree-
branching triangles, diamonds, and t4 trapezoids (see Figures 4.8 to 4.10). We note that
an NNI0 on a phylogenetic network with the axis being a reticulation edge or an impure
tree edge does not correspond to a redundancy set of SNPR0.

e
e′

g

e′e

f

f ′

SNPR0 (e, f)
SNPR0 (e, f ′)

SNPR0 (e, g)
SNPR0 (e′, g)

Figure 4.7: Redundant SNPR0 operations due to the creation of a triangle and due to the
reticulation edges of a triangle.
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Proposition 4.16.
Let N ∈ T Cn.
Then the number of nontrivial redundant SNPR0 of ΘSNPR0

T C (N) minus the number of

redundancy sets of nontrivial SNPR0 of ΘSNPR0

T C (N) is

2n(2 + t3) + r(2 + t3) + 4r1 − 2r3 − 8t3 + t∗3 + 3d4 + t4 − 8−
∑
e∈Et̄3

δT (e).

Proof. Let θ = (e, f) ∈ ΘSNPR0

T C (N) such that θ(N) = N ′ 6= N . Let e = (u, v), f = (x, y).
The operations we want to count are those that we want to discard when counting

neighbours. To count all the operations we can discard, we go through the sources of
redundancy one by one and determine the sizes of the corresponding redundancy sets.
In order to find all sources, the idea of this proof is to consider when and where θ can
be redundant with other operations. To cope with all possibilities, we fix a reticulation
including a cycle for which this reticulation is the lowest vertex (i.e. descendant of all
other vertices on the cycle). Then, when applying θ, it can be distinguished whether the
size of this cycle gets decreased, increased, or whether only the order of edges with start
vertex on the cycle gets altered. Therefore in the following case distinction, let [c → c′]
denote the change from a cycle of size c to size c′. Note that there can be no cycle of
size 1 or 2. A cycle size of 0 means either no cycle, i.e. a tree, or that no cycle is under
consideration or of any influence to redundancies of θ.

One source of redundancy that we already identified are NNI0 operations with a pure
inner tree edge as axis. A phylogenetic network has n + r1 − 2 pure inner tree edges (all
edges minus any incident to reticulations, leaves, or the root) each inducing two NNI0

operations. However, if the axis is part of an r3 structure, then one of the possible NNI0

for this axis is not tree-child respecting. Also, if it is part of a triangle, the operation is
either trivial or not tree-child respecting. There are thus 2(n + r1 − 2) − r3 − t3 NNI0

operations of interest, each with an SNPR0 redundancy set of size three. Therefore, we
discard the following many nontrivial tree-child respecting SNPR0 operations:

4n+ 4r1 − 2r3 − 2t3 − 8 (4.8)

We freely use Lemma 4.3 throughout the remainder of this proof.

[0→ 0] If no cycle is involved, the part where the SNPR0 operations make changes is
tree-like and there are thus only tree edges. It follows thus from Lemma 4.8 that
the redundancy comes from an NNI0. Hence, these redundancies are covered by
Equation (4.8).

[3→ 3] A triangle with fixed reticulation has only one shape and thus cannot be trans-
formed into another one with a single SNPR operation.

In the following two cases, we will see redundancies due to the reticulation edges of trian-
gles. We count the SNPR0 operations we discard afterwards.

[3→ 4] A triangle can be transformed into a cycle of size four either by pruning one of its
edges and regrafting it to an edge outside of the triangle, thus including this edge as
third outgoing edge, or by regrafting an edge from outside to the triangle. We will
see that considering only the latter case also covers the former case.

Let the edge e = (u, v) have distance at least two to the triangle and let f = (x, y)
be an edge of the triangle. Assuming e has distance greater than two, it is clear
(for example with the analysis of Lemma 4.15) that there can only be a redundancy,
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if e is the reticulation edge of another triangle and f the top side of the triangle.
However, no SNPR0 pruning an edge of the fixed triangle or incident to it can be
redundant to this operation and thus any redundancy would be accredited to the
other triangle. Therefore, assuming now that e has distance two to the triangle, the
following cases can be distinguished.

(i) u is parent of triangle, f is long side of triangle. Requiring that e is a tree edge,
the triangle gets transformed into a diamond. Using the analysis of Lemma 4.15
with y and v as siblings in N ′ yields that there are four redundant SNPR0 oper-
ations, as illustrated by Figure 4.8. Three SNPR0 operations can be associated
to the NNI0 operation (e, c, f) where c is the incoming edge of the triangle.
Also, pruning one of the two reticulation edges of the triangle and regrafting it
to e is redundant to doing the same with the other. We note that the SNPR0

operation (f, e) corresponds to both redundancies.

(ii) u is sibling of reticulation of triangle, f is long side of triangle. Requiring
that both e and its sibling edge are tree edges (and thus that the triangle
is a tree-branching triangle), this transforms the triangle again into a diamond
(see again Figure 4.8). This time the analysis, again with y and v as siblings,
yields a redundancy set of size two, namely regrafting e and its sibling edge e′

to f . This means that each tree-branching triangle of N induces a redundancy
set of size two. We thus discard one SNPR0 operation per such triangle:

t∗3 (4.9)

(iii) u is parent of triangle, f is top side of triangle. Without a requirement on e,
this transforms the triangle into a trapezoid (see Figure 4.9). Like in (i), the
analysis with v being uncle of y, yields again an NNI0 operation redundancy
with an overlap of a triangle reticulation edges redundancy. Furthermore, this
can coincide with a transformation of another triangle into a trapezoid of the
next case.

(iv) u is sibling of reticulation of triangle, f is top side of triangle. This
requires that the sibling edge of e is a tree edge and transforms the triangle
into a trapezoid (see again Figure 4.9). The analysis yields the same as in the
previous case. If the sibling edge of e is not a tree edge, we would have an r3

structure and N ′ would not be tree child.

Furthermore, if e is a tree edge, the case is equivalent to f being the bottom
side of the triangle.

(v) u is parent of triangle, f is bottom side of triangle. The analysis yields that
there is no redundancy of SNPR0 operations here.

[3→ c, c ≥ 5] Since it is not possible to add two outgoing edges to a triangle by regrafting
them to the triangle with a single SNPR0 operation, the size can only be increased by
pruning an edge of the triangle and regrafting it to an edge f at the desired distance.
This yields the same neighbour for the two reticulation edges, but different cycles
for the top side of the triangle and one of its reticulation edges.

From the last two cases, we know that two SNPR0 operations θ and θ′ that prune the
two different reticulation edges of a triangle and regraft it to the same edge are always
redundant. In cases, where θ and θ′ are also redundant to SNPR0 operations corresponding
to an NNI0 operation, either θ or θ′ also corresponds to that NNI0 operation. In any case,
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SNPR0 (e, f)
SNPR0 (e′, f)

e e′

f

f ′

c e

f ′f

NNI0 (e, c, f)
SNPR0 (f ′, e)

NNI0 (d, c, f)
SNPR0 (f, e′)

SNPR0 (e, f)
SNPR0 (e′, f)

e e′

f
c d

[3 → 4] (i)

[4 → 3]

[4 → 3]

[3 → 4] (ii)

Figure 4.8: Redundant operations that transform triangles into diamonds and vice versa,
covering parts of the cases [3→ 4] and [4→ 3].

d

d′

c e

NNI0 (e, c, f)
SNPR0 (d′, g)

NNI0 (d, c, f)
SNPR0 (d, b)

e′ e

f

[3 → 4] (iii)

[4 → 3]

[4 → 3]

[3 → 4] (iv)

NNI0 (e, c, f)
SNPR0 (f ′, e)

NNI0 (d′, c′, e′)
SNPR0 (d, e′)

f

g

d

d′

c
g

b

f
d

d′
c′

Figure 4.9: Redundant operations that transform triangles into trapezoids and vice versa,
covering parts of the cases [3→ 4] and [4→ 3].

without loss of generality, we can discard all (nontrivial) SNPR0 operations that prune an
edge e ∈ Et̄3 , i.e the bottom side of a triangle:

2nt3 + rt3 − 4t3 −
∑
e∈Et̄3

δT (e) (4.10)

[4→ 3] This is basically the analysis of [3→ 4] backwards. See again Figures 4.8 and 4.9
for illustrations.

[c→ 3, c ≥ 5] To create a triangle with a specific reticulation, one way is to prune one of
its reticulation edges and to regraft it to an edge incident to the other reticulation
edge. This is the reverse of [3→ c] and yields two redundancy sets of size two.

The second possibility is to to prune the parent edge of one of the reticulation edges
and regraft it to the other reticulation edge. Again, as seen in [3 → c], this is not
redundant to the other way or other operations.

The last two cases covered the creation of triangles. With Equation (4.9) we accounted
for redundancies from a tree-branching triangle to a diamond. With Equation (4.11) we
do the reverse:

d4 (4.11)

Furthermore, as the reverse of Equation (4.10), each reticulation edge that is not part of
a triangle corresponds to two redundant SNPR0 operations. In the case that a four cycle
is created, this can coincide with a redundancy due to an NNI0 operation. Like before, we
can discard one of the two operations:

2r − 2t3 (4.12)
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[4→ 4] To change a cycle of size four into another cycle of size four, one can either
change the order of the outgoing edges of a t4 trapezoid, which is then equivalent
to Case [0 → 0], or transform a t4 trapezoid into a diamond or vice versa (see
Figure 4.10). Applying Lemma 4.15 for any of the directions with two appropriate
vertices yields redundancy sets of size four. We see that three edges correspond to
an NNI0 operation. We have thus already counted a neighbour and can discard the
fourth SNPR0 operation. We note that there are two different transformations from
a diamond to a t4 trapezoid distinguished by the order of the resulting trapezoid’s
outgoing edges. Hence, we discard the following many SNPR0 operations:

2d4 + t4 (4.13)

e′ e
f ′

NNI0 (f, c, e)
SNPR0 (e′, f ′)

NNI0 (f, c, e)
SNPR0 (e′, f)

f c

[4 → 4]

f

c
gg

e

e′

Figure 4.10: Redundant operations that transform diamonds into t4 trapezoids and vice
versa, illustrating the case [4→ 4].

[c→ c+ 1, c ≥ 4] Adding a branch to a cycle of size at least four, and thus increasing its
size by one, is, by using Lemma 4.15, only possible if the operations correspond to
an NNI0.

[c→ c+ x, c ≥ 4, x ≥ 2] Unlike in the case [3 → 5] there is obviously no redundancy of
any edges of the cycle anymore.

[c+ 1→ c, c ≥ 4] This is the reverse of [c → c + 1] and there are thus only redundancies
due to an NNI0.

[c+ x→ c, c ≥ 4, x ≥ 2] As the reverse of the case [c+ x→ c], there are no redundancies
in this case.

We have now covered all cases of transformations of a cycle into another one. We
have further identified the different sources of redundancies and discarded nontrivial tree-
child respecting SNPR0 operations accordingly. The statement follows by adding Equa-
tions (4.8) to (4.13) together.

SNPR0 tree-child neighbourhood size. The SNPR0 tree-child neighbourhood of N is
determined by the number of tree-child respecting SNPR0 operations on N (Lemma 4.13),
from which trivial operations are subtracted (Lemma 4.14), and operations that yield
redundant neighbours are discarded (Proposition 4.16).

Theorem 4.17.
Let N ∈ T Cn, n ≥ 2. The SNPR0 tree-child neighbourhood USNPR0

T C (N) of N has size

|USNPR0

T C (N)| = 4n2 + 10nr − 2n(r2 + r3 + t3)− 14n+ 2r2 − r(3r2 + 3r3 + t3)− 11r

− 4r1 + 4r2 + 7r3 + 5t3 − t∗3 − 3d4 − t4 + 14

−
∑
e∈ET∗

δ(e)−
∑
e∈ER

δT (e) +
∑
e∈Et̄3

δT (e).
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Table 4.1 lists the values for the parameters of the tree-child network N from Figure 4.1.
Applying these values to Theorem 4.17 we get that N has, just as depicted, seven different
SNPR0 tree-child neighbours.

Table 4.1: Parameters for the network N from Figure 4.1, which has an SNPR0 tree-child
neighbourhood of size seven.

parameter description value for N

n # leaves 3

r # reticulations 1

r1 # reticulations with leaf as child 1

r2 # r2 structures 0

r3 # r3 structures 0

t3 # triangles 0

t∗3 # tree-branching triangles 0

d4 # diamonds 0

t4 # t4 trapezoids 1∑
e∈ET∗

δ(e) # descendant edges of pure non-critical tree edges 13∑
e∈ER

δT (e) # descendant tree edges of reticulation edges 2∑
e∈Et̄3

δT (e) # descendant tree edges of triangle bottom sides 0

Note that if N is a phylogenetic tree, the formula from Theorem 4.17 becomes the
formula from Theorem 4.10.

SNPR+ and SNPR− tree-child neighbourhood size. We now consider SNPR+ and
SNPR− operations and count again the number of such operations first. For this, re-
call that EPS denotes the set of edges that are pure tree edges with a sibling pure tree
edge.

Lemma 4.18.
Let N ∈ T Cn with n ≥ 2. Then

|ΘSNPR+

T C (N)| = 4n2 − 2nr − 8n− 2r2 + 2r + 4−
∑
e∈EPS

δT (e), and

|ΘSNPR−
T C (N)| = 2r.

Proof. For an SNPR+ operation (e, f), which adds an edge from f to e, for (e, f)(N) to
be tree child, e has to be a pure tree edge with a sibling pure tree edge. This implies that
e 6= eρ and that e cannot be incident to a reticulation or sibling edge of a reticulation edge.
Otherwise, if e would be incident to a reticulation, this would yield a pure reticulation
edge, and if e would be the sibling edge of a reticulation edge, this would yield a vertex with
two reticulations as children. In either case (e, f)(N) would not be tree child. Thus every
reticulation induces a set of five unsuitable edges, consisting of the three edges incident to
it and their two sibling edges. Since N ∈ T Cn, clearly these sets are disjoint for every pair
of reticulations of N . There are thus m− 5r − 1 choices for e.

Next, by the definition of an SNPR+ operation, the edge f cannot be a descendant
of e. Furthermore, f cannot be a reticulation edge or e. Otherwise, if f would be a
reticulation edge, this would yield a vertex with two reticulations as children, and if f = e,
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the operation would create a parallel edge. In either case (e, f)(N) would not be tree
child. Clearly any other choice of f is fine. For any feasible choice of e, there are thus
m − 2r − 1 − δT (e) choices of f . With the δT (e) summing up to

∑
e∈EPS

δT (e) over all

choices of e and (m−5r−1)(m−2r−1) = 4n2−2nr−8n−2r2 +2r+4 the first statement
follows.

Concerning ΘSNPR−
T C (N), we know by Theorem 3.13 that removing a reticulation edge

of a tree-child network yields again a tree-child network. There are thus 2r tree-child
respecting SNPR− operations on N .

We already noted that SNPR+ and SNPR− operations are never trivial. However,
for both of these types of operations redundancies might exist. Like for most SNPR
redundancies, these redundancies are equivalent to NNI+ and NNI− operations, as the
proof of the following proposition shows.

Proposition 4.19.
Let N ∈ T Cn with n ≥ 2.
The SNPR+ tree-child neighbourhood USNPR+

T C of N has size

|USNPR+

T C (N)| = 4n2 − 2nr − 10n− 2r2 + 4r + 6−
∑
e∈EPS

δT (e),

and the SNPR− tree-child neighbourhood USNPR−
T C of N has size

|USNPR−
T C (N)| = 2r − t3.

Proof. This proof uses the concept of the proof of Proposition 4.16. For the first part, we
assume that the considered SNPR+ operations are tree-child respecting.

[0→ 3] Let f = (u, v) be a tree edge with v having two outgoing pure tree edges e = (v, w)
and e′ = (v, y). Then a reticulation and a triangle can be added by the SNPR+

operation (e, f), which adds an edge from f to e. This is however redundant to
the SNPR+ operation (e, e′). It follows by the uniqueness of e that there are no
further redundant SNPR+ operations. Furthermore, note that these operations are
redundant to an NNI+.

[0→ c, c ≥ 4] Similar to [0→ 3], the edge e that gets subdivided for the new reticulation
is unique. However, for a new cycle of size at least 4, there are no two edges that can
be chosen interchangeably to be subdivided for the source of the new reticulation
edge to yield the same network N ′.

There are n− r − 1 pairs of siblings of pure tree edges in N . To account for redundancy,
we can thus discard 2(n − r − 1) SNPR+ operations. The first part follows then from
Lemma 4.18.

[3→ 0] If a triangle gets removed, removing one of the reticulation edge of the triangle
is redundant to removing the other. Since no reticulations are isomorphic in N ,
there can be no further reticulation edges in N that if removed would yield the same
network. These SNPR− operations are thus equivalent to an NNI− operation of the
respective triangle.

[c→ 0, c ≥ 4] The reticulation edges of a cycle of size at least four are neither isomorphic
nor can they change roles like in triangles. Thus removing one of the reticulation
edges cannot be redundant to removing the other.
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There are t3 many NNI− operations in N . Discarding one SNPR− operation per triangle,
the second part follows again from Lemma 4.18.

We can again consider the tree-child network N from Figure 4.1. Since N has one
reticulation, but no triangles, N has two SNPR− neighbours. Using Table 4.1 and the fact
that

∑
e∈EPS

δT (e) = 2, we get that N has six SNPR+ tree-child neighbours.

SNPR tree-child neighbourhood size. To obtain the total size of the SNPR tree-child
neighbourhood of a tree-child network N we can now add together the sizes of the SNPR0,
SNPR+ and SNPR− neighbourhoods (Theorem 4.17 and Proposition 4.19).

Theorem 4.20.
Let N ∈ T Cn with n ≥ 2.
The SNPR tree-child neighbourhood USNPR

T C of N has size

|USNPR
T C (N)| = 8n2 + 8nr − 2n(r2 + r3 + t3)− 24n− r(3r2 + 3r3 + t3)− 5r

− 4r1 + 4r2 + 7r3 + 4t3 − t∗3 − 3d4 − t4 + 20

−
∑
e∈ET∗

δ(e)−
∑
e∈ER

δT (e)−
∑
e∈EPS

δT (e) +
∑
e∈Et̄3

δT (e).

Bounds. The formula for the SNPR tree-child neighbourhood of a tree-child network
depends on a lot of parameters. It is therefore of interest to see how small and big a
neighbourhood can get in terms of n.

Proposition 4.21.
Let n ≥ 2. Then

n− 1 ≤ min
N∈T Cn

{|USNPR
T C (N)|} ≤ 3

2
n2 − 7

2
n+ 2, and

8n2 −O(n log2 n) ≤ max
N∈T Cn

{|USNPR
T C (N)|} < 16n2 − 38n+ 26.

Proof. We first establish a lower bound for the minimum neighbourhood size of a tree-child
network. Let N ∈ T Cn with n ≥ 2. By Proposition 4.19, we know that |USNPR−

T C (N)| =
2r − t3. Each reticulation gives rise to two different SNPR− operations with redundancy
sets of size at most two. Furthermore, a reticulation edge can be added from the root edge
eρ to every other pure tree edge that is not sibling edge of a reticulation edge. There are
2n−2r−2 such edges. Note that t3 ≤ n−1. There are thus at least 2n−2r−2+2r− t3 =
2n−t3−2 ≥ n−1 SNPR tree-child neighbours of N . This is sharp for a tree-child network
with n = 2 and r = 1.

Next, we look at an upper bound for the minimum neighbourhood size of a tree-child
network. For this we consider a family of tree-child networks, where each has a relative
small neighbourhood. Let Nr ∈ T Cn, n ≥ 2 be a chain of r triangles, where each triangle
(except for the top one) is a child of the triangle above, like N4 in Figure 4.11. Since
Nr has n − 1 reticulations, Nr has no SNPR+ neighbours. Removing a reticulation edge
from one of the triangles corresponds to one of r = n− 1 different SNPR− neighbours of
Nr. Concerning SNPR0 operations, the only prunable non-critical edges are the long sides
of the triangles (and the bottom sides, which however behave redundantly and are thus
ignored). Since these are reticulation edges, they can, when pruned, only be regrafted to
tree edges that are not their descendants. For the long side of the triangle closest to the
root three such edges exist, which however correspond to trivial operations. For the long
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side of the triangle below six such edges exist, of which again three yield trivial operation.
Thus, in total there are

3 + 6 + 9 + 12 + . . .+ (n− 2)3 =
n−2∑
i=1

3i =
3

2
(n− 2)(n− 1) =

3

2
n2 − 9

2
n+ 3

SNPR0 neighbours. All together, Nr has 3
2n

2 − 7
2n+ 2 SNPR neighbours.

N4 T16

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4.11: Tree-child networks with small and big neighbourhoods: The tree-child net-
work N4 has 3

252− 7
25 + 2 = 22 SNPR neighbours. The balanced tree T16 has

at least 8 · 162 − 4 · 16 log2 16− 18 · 16 + 14 = 1518 SNPR neighbours.

For a lower bound of the maximum SNPR tree-child neighbourhood size of a tree-child
network, we consider the balanced tree Tn on n leaves, as illustrated by T16 in Figure 4.11.
The formula for the SNPR neighbourhood (Theorem 4.20) is then

8n2 − 24n+ 20−
∑
e∈E

δ(e)−
∑
e∈EPS

δT (e).

For simplicity, we now assume that n = 2k with k ≥ 1. Then, for the first sum we have

∑
e∈E

δ(e) =

log2 n∑
i=1

i2i = 2n log2 n− 2n+ 2.

The second sum only differs from the first by the fact the root edge eρ is not in EPS and
thus ∑

e∈EPS

δT (e) = 2n log2 n− 2n+ 2− δ(eρ) = 2n log2 n− 4n+ 4.

In total this yields that, for n = 2k, Tn has 8n2 − 4n log2 n− 18n+ 14 SNPR neighbours.
With no restriction on n, the tree Tn has at least 8n2 −O(n log2 n) SNPR neighbours.

For an upper bound of the maximum SNPR neighbourhood size, we estimate bounds
for the various parameters. We thus assume that the parameters r1, r2, r3, t3, d4, and t4
are zero. Concerning the sums −

∑
e∈ET∗

δ(e)−
∑

e∈ER
δT (e)−

∑
e∈EPS

δT (e)+
∑

e∈Eb̄3
δT (e)

of the SNPR neighbourhood formula, we observe that the first and third sum are at best
zero, that the second sum is at best 2r and that the last sum is at best half of the second.
Therefore, the sums account for only −r in our estimate. Assuming that r = n−1 and thus
maximal, we get that for any tree-child network N the SNPR tree-child neighbourhood
has size at most 16n2 − 38n+ 26.
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4.3.2 NNI neighbourhood

We now look at the NNI neighbourhood of a tree-child network. We recall the definition of
an NNI0 operation θ = (f, e, g) ∈ ΘNNI0(N). Let the axis e = (u, v). Then by definition,
g is incident to v and f is incident to u. The operation now acts differently depending on
the type of e. If e is a tree edge (pure or impure), then g gets pruned and regrafted to
f . If e is a reticulation edge, there are two different ways. First, f can get pruned and
regrafted to g. It is then necessary that f is not an ancestor of g, since θ would otherwise
create a cycle. Second, if f = (u,w) and g = (v, x), then both f and g can be removed
and the edges (u, x) and (v, w) added. We then say that w and x get swapped. Note that
this cannot be achieved with an SNPR0.

We need two further variables describing N . Let t1 denote the number of transitive
edges in N . Also let r∗2 denote the number of r2 structure where the reticulation edge is
not a transitive edge.

NNI tree-child neighbourhood. Let θ = (f, e, g) ∈ ΘNNI0(N). The following lemma
states when θ is not tree-child respecting.

Lemma 4.22.
Let N ∈ T Cn and (f, e, g) ∈ ΘNNI0(N).
Then N ′ = (f, e, g)(N) is not a tree-child network if and only if one of the following cases
holds:

(i) e is the pure tree edge where {f, e, g} forms the path of an r3 structure;

(ii) e is the impure tree edge of an r2 structure;

(iii) e is the reticulation edge af an r2 structure;

(iv) e is the reticulation edge of an r3 structure that is incident to the lower reticulation
of this structure and (f, e, g) is an SNPR0.

Proof. Let e = (u, v). Note that e has to be inner edge. First, assume that e is a pure tree
edge. Let f = (u,w) and g = (v, x). It follows straightforward that, if {f, e, g} forms an r3

structure, then N ′ is not tree child (Case (i)). See for example Figure 4.12 (a). Otherwise
either f or g is a tree edge. Without loss of generality, assume f is a tree edge and ṽ is
the vertex subdividing f to regraft g. Then, in N ′, the vertex u has ṽ as tree child, ṽ has
w as tree child and every other vertex keeps its former tree child. Hence, N ′ is tree child.
The case where g but not f is a tree edge works analogously.

Next, assume that e is an impure tree edge. Let f = (w, u) and g = (v, x). If e is the
impure tree edge of an r2 structure, then N ′ is not tree child (Case (ii)). See Figure 4.12
(b). Thus both child edges of e are pure tree edges. Let h = (v, y) 6= g be the second child
edge of e. Then, in N ′, the vertex u has y as tree child and the new vertex ṽ has x as tree
child. Every other vertex keeps its tree child and thus N ′ is tree child.

Last, assume that e is an impure reticulation edge. Let f = (u,w). By the definition of
an NNI0 operation f cannot be an ancestor of g, so e is not a transitive edge. Assume e
is in an r2 structure (Case (iii)) or in an r3 structure and incident to its lower reticulation
(Case (iv)). This implies that f is a critical edge. This, if θ prunes f and regrafts to g,
then, in N ′, the parent of u has no tree child. See Figure 4.12 (c) and (d). Note that this
is an SNPR0 operation, but the following is not. If however, g = (v, x) and w and x get
swapped by θ, then N ′ is tree child. If neither is the case, θ is a legal operation and, in
N ′, the parent of u has a tree child, the new vertex ũ′ has w as tree child and is tree child
of another vertex, while every other vertex keeps its tree child. Thus, N ′ is tree child.
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Figure 4.12: Illustration of Lemma 4.22, showing cases where the NNI0 operation (f, e, g)
on a tree-child network may not be tree-child respecting.

Next, we count tree-child respecting NNI0 operations on N .

Lemma 4.23.
Let N ∈ T Cn with n ≥ 2. Then

|ΘNNI0

T C (N)| = 2n+ 10r − 2r1 − 4r2 − 2r∗2 − 3r3 − 3t1 + t3 − 4.

Proof. Let θ = (f, e, g) ∈ ΘNNI0

T C (N). Let e = (u, v). We count the operations based on
the type of the axis e. First, assume e is a pure inner tree edge, then it has two outgoing
edges g = (v, x) and h = (v, y) that can be regrafted to the edge f = (u,w) 6= e. There
are n+ r1 − 2 pure inner tree edges. By Lemma 4.22, the edges {f, e, g} may not form an
r3 structure. Hence there are 2(n+ r1 − 2)− r3 such NNI0 operation.

Second, assume e is an impure inner tree edge. There are r − r1 many such edges in
N . Unless e is part of an r2 structure, both its incident tree edges are pure and can
thus be pruned and regrafted to both of e’s incident reticulation edges. Hence, there are
4(r − r1 − r2) such NNI0 operations.

Third, assume e is one of the 2r reticulation edges of N . Then there can be three different
NNI0 with e as axis. For such an operation to be tree-child respecting, by Lemma 4.22, we
have to account for transitive edges, r2 structures, and r3 structures. If e is a transitive
edge, then there is no NNI0 with e as axis. If e is the reticulation edge of an r2 structure,
then two of the possible operations do not result in a tree-child network. However, we
only count r∗2 structures to not double count bad cases. Also, if e is the lower reticulation
edge of an r3 structure, then again two of the possible operations do not result in a
tree-child network. However, there is the exception of the r3 structure being a triangle.
Then one operation is actually trivial and thus tree-child respecting. Hence, there are
6r − 2r∗2 − 2r3 − 3t1 + t3 such NNI0 operations. The lemma follows from adding the
formulas for all three types.

Next, we count trivial NNI0 operations and redundancy sets. By Observation 4.2 there
are no trivial NNI+ and NNI− operations.

Lemma 4.24.
Let N ∈ T Cn.
Then there are 2t3 trivial operations and 2d4 + t4 nontrivial redundancy sets of size two in
ΘNNI0

T C (N).

Proof. The proof of Lemma 4.14 describes the cases in which an SNPR0 on N is trivial.
Checking for each of these cases whether the SNPR0 is also an NNI0, we get that (f, e, g) ∈
ΘNNI0

T C (N) is trivial if and only if either g is the critical edge of a triangle and e and f are
edges of this triangle or f is the critical edge of a triangle and e and g are edges of this
triangle. There are thus two trivial NNI0 operations per triangle. It is easy to see that a
tree-child respecting NNI0 operations that is not an SNPR0 operations is nontrivial.
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The proof of Proposition 4.16 identifies all sources of nontrivial redundancy sets of tree-
child respecting SNPR0 operations on N . We can thus check for each of these cases
whether there are two or more different tree-child respecting NNI0 in such a redundancy
set. This gives us that every diamond yields two redundancy sets of size two (for a
transformation into a t4 trapezoid) and every t4 trapezoid yields one redundancy set of
size two (for a transformation into a diamond). It is easy to see that a tree-child respecting
NNI0 operation that is not an SNPR0 operations is not redundant with another tree-child
respecting NNI0 operation.

Theorem 4.25.
Let N ∈ T Cn with n ≥ 2.
Then the tree-child neighbourhoods of N under NNI operations have the following sizes:

(i) |UNNI0

T C (T )| = 2n+ 10r − 2r1 − 4r2 − 2r∗2 − 3r3 − 2d4 − 3t1 − t3 − t4 − 4,

(ii) |UNNI−
T C (T )| = t3,

(iii) |UNNI+

T C (T )| = 2n− 2r − 2, and

(iv) |UNNI
T C (T )| = 4n+ 8r − 2r1 − 4r2 − 2r∗2 − 3r3 − 2d4 − 3t1 − t4 − 6.

Proof. Concerning NNI0, (i) follows from Lemma 4.23 and Lemma 4.24. Concerning NNI−,
(ii) follows directly from Lemma 4.3. Concerning NNI+, Lemma 4.18 tells us that a
reticulation can only be added to a pure tree edge with a pure tree sibling edge. Like for
trees, each such edge gives then rise to one different NNI+ neighbour. Thus, (iii) follows
from Observation 4.5, which provides us with the number of these edges in N . Lastly, (iv)
follows from (i) to (iii).

An easy way to obtain upper bounds for the NNI0 and the NNI neighbourhood size is
setting all variables except for n and r in the respective formulas in Theorem 4.25 to zero.

We close this section with the example shown Figure 4.13. There, a tree-child network
N with its parameters is given. Applying the formulas from Theorem 4.25, we get that N
has seventeen NNI0 neighbours, one NNI− neighbour, and four NNI+ neighbours in T C7.
In total, N has thus twenty-two NNI tree-child neighbours.

4.4 Normal networks

For normal networks, we only consider the SNPR neighbourhood. In the previous section
on tree-child networks we have shown when SNPR operations are tree-child respecting,
when they are trivial, and when they are redundant. Since normal networks are also
tree-child networks, we will make use of these results to count SNPR neighbours in the
space of normal networks NN n. We have to integrate, of course, that normal networks
do not contain transitive edges. Recall that a transitive edge is an edge (u, v) for which a
path from u to v exists that is disjoint from (u, v). For example, triangles and trapezoid
contain a transitive edge. Therefore, a normal network contains neither. Also note that
only reticulation edges can be transitive edges. We make the following observations.

Lemma 4.26.
Let N ∈ NN n. Let v be a reticulation of N with incoming edges e and f . Let e′ and f ′ be
the sibling edges of e and f respectively.
The parents of v are tree vertices and neither parent is ancestor of the other. Moreover,
e′ is not an ancestor of f and e is not a descendant of f ′.
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Figure 4.13: A tree-child network and its parameters. On the left, the different structures
are highlighted - the triangle with green, the trapezoid with blue, the r2

structures with orange lines, the r3 structures with purple dotted lines, the
transitive edges with pink dashed lines, and the sibling pairs of pure tree
edges with dark-red dash-dotted lines. In the middle, the black numbers next
to inner edges indicate how many NNI0 operations each edge contributes as
axis (trivial ones in round brackets, redundant ones in square brackets), the
green, bold 1 indicates the NNI− operation, and the dark-red, cursive 2’s the
NNI+ operations.

Proof. Since N is tree child, the parents u and u′ of v are tree vertices. If, say, u was
ancestor of u′, then N would contain the transitive edge (u, v). The second statement
follows directly from the first.

We extend the notation from Section 4.1 with structures and sets specific to normal
networks. Like for tree-child networks there are also critical edges for normal networks.
These are present in r2 and r3 structures, but also in the following structure. Let N ∈
NN n. A d2 structure of N is a length two path P from a tree vertex x via a tree vertex
u to a reticulation w such that there also exists a path P ′ from x to w that is disjoint
from P . The critical edge of a d2 structure is the sibling edge (u, v) of the edge (u,w).
Figure 4.14 illustrates both of these definitions. Note that pruning the critical edge of a d2

structure creates a transitive edge. We define ES as the set of pure tree edges in N that
are not critical edges of an r2, an r3, or a d2 structure. Also, let ERP contain each edge
that is a parent edge of a reticulation edge. Similarly, let ETP contain each edge that is a
parent edge of a pair of pure tree edges

d2
x

w

u

v

Figure 4.14: A d2 structure in a normal network with the critical edge highlighted in red.

We need another function besides α and δ to describe the SNPR neighbourhood precisely.
Let γR : E → N be the function that maps from an edge to the number of reticulation
edges that are not descendant edges of e but partner reticulation edges of descendant
reticulation edges of e.
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4.4.1 SNPR neighbourhood

We first consider SNPR0, then SNPR+ and SNPR−. With the first lemma we count the
number of normal respecting SNPR0 on N .

Lemma 4.27.
Let N ∈ NN n. The number of normal respecting SNPR0 operations on N is

|ΘSNPR0

NN (N)| = 4n2 + 10nr − 2n(r2 + r3 + d2)− 6n+ 2r2 − 3r(r2 + r3 + d2)− 7r

+ 4r2 + 5r3 + 4d2 + 2−
∑
e∈ES

(δ(e) + γR(e))−
∑
e∈ER

αT (e)−
∑

e∈ERP

δT (e).

Proof. Let (e, f) ∈ ΘSNPR0

NN (N). We distinguish the following cases by the type of e =
(u, v). Assume e is a reticulation edge. Since N is normal and thus contains no pure
reticulation edge, we know that e is prunable. There are thus 2r choices for e. Let
e′ = (u, v′) be the partner reticulation edge of e. By Lemma 4.12 we know that f cannot
be a reticulation edge. This already limits the choices of f to (m−2r) edges. Furthermore,
to not create a transitive edge, we know by Lemma 4.26 that in the resulting network
neither of the parents of u is an ancestor of the other. This implies that f cannot be an
ancestral edge of e′, since otherwise e would become a transitive edge. Moreover, f can
also not be a descendant edge of v′, since otherwise e′ in N ′ would be a transitive edge.
This is equivalent to f not being a descendant edge of the parent edge of e′. Note that
this includes the requirement that f cannot be a descendant of e. Combining the choices
for e and f , the number of SNPR0 operations that prune a reticulation edge is

2r(m− 2r)−
∑
e∈ER

αT (e)−
∑

e∈ERP

δT (e)

= 4nr + 2r2 − 2r −
∑
e∈ER

αT (e)−
∑

e∈ERP

δT (e).
(4.14)

Recall from Observation 4.5 that m = 2n+ 3r− 1. We use αT and δT to not double count
reticulation edges.

Next, assume e ∈ ES ; that is, e is a non-critical tree edge. Since the number of pure
tree edges of N is m− 3r, the number of choices for e is |ES | = m− 3r− r2 − r3 − d2. By
our definition of non-critical tree edges for normal networks, we know that we can prune e
without creating a transitive edge. However, regrafting e to a reticulation edge f = (x, y)
where y but not f is a descendant of e would create a transitive edge. Note that we defined
γR to count exactly such edges (x, y) with respect to e. In addition, f cannot be e or a
descendant of e. Combining the choices for e and f , the number of SNPR0 operations
that prune a non-critical tree edge is

(m− 3r − r2 − r3 − d2)(m− 1)−
∑
e∈ES

(δ(e) + γR(e))

= (2n− 1− r2 − r3 − d2)(2n+ 3r − 2)−
∑
e∈ES

(δ(e) + γR(e))

= 4n2 + 6nr − 2n(r2 + r3 + d2 + 3)− 3r(r2 + r3 + d2 + 1)

+2(r2 + r3 + d2 + 1)−
∑
e∈ES

(δ(e) + γR(e)).

(4.15)

A critical edge of an r2 and a d2 structure of N can only be regrafted trivially. A critical
edge of an r3 structure can be regrafted to only one edge nontrivially. Therefore, the
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number of SNPR0 operations that prune a critical edge is

2r2 + 3r3 + 2d2. (4.16)

Adding Equations (4.14) to (4.16) together completes the proof.

The following lemma follows from Lemma 4.14 by disregarding triangles.

Lemma 4.28.
Let N ∈ NN n, n ≥ 2. There are 4n+ 4r − 4 trivial operations in ΘSNPR0

NN (N).

Next, we count the operations we disregard due to redundancies.

Lemma 4.29.
Let N ∈ NN n, n ≥ 2.
The number of nontrivial redundant SNPR0 of ΘSNPR0

NN (N) minus the number of redun-

dancy sets of nontrivial SNPR0 of ΘSNPR0

NN (N) is

4n+ 4r1 − 2r3 − 4d2 − 8.

Proof. By Proposition 4.16 we know that redundancies of SNPR0 are tied to NNI0 on
pure tree edges, and to triangles, diamonds and trapezoids. A normal network contains
neither triangles nor trapezoids. The redundant operations for diamonds are not normal
respecting. Therefore, we only have to count the number of NNI0 on pure tree edges that
are normal respecting. The number of pure inner tree edges in N is (n+ r1−2). However,
the pure tree edge of an r3 structure only allows one NNI0; the pure tree edge of a d2

structure allows none. Hence, there are 2(n+ r1 − 2)− r3 − 2d2 NNI0 that each induce a
redundancy set of size three by Lemma 4.8. Counting two operations per redundancy set,
the statement follows.

We subtract from the number of normal respecting SNPR0 (Lemma 4.27) the number of
trivial SNPR0 (Lemma 4.28) and the number of operations we can discard per redundancy
set (Lemma 4.29). This gives us the size of the SNPR0 normal neighbourhood of N .

Proposition 4.30.
Let N ∈ NN n, n ≥ 2.
Then the SNPR0 normal neighbourhood USNPR0

NN of N has size

|USNPR
NN (N)| = 4n2 + 10nr − 2n(r2 + r3 + d3)− 14n+ 2r2 − 3r(r2 + r3 + de)− 11r

− 4r1 + 4r2 + 7r3 + 8d2 + 14

−
∑
e∈ES

(δ(e) + γR(e))−
∑
e∈ER

αT (e)−
∑

e∈ERP

δT (e).

Next, we look at the SNPR+ neighbourhood and the SNPR− neighbourhood of N .
Recall that ETP is the set of edges that are parent edge of a pair of pure tree edges.

Lemma 4.31.
Let N ∈ NN n with n ≥ 2.
Then the SNPR+ normal neighbourhood USNPR+

NN of N has size

|USNPR+

NN (N)| = 4n2 − 2nr − 6n− 2r2 + 2−
∑
e∈EPS

αT (e)− 2
∑

e∈ETP

δT (e),

and the SNPR− normal neighbourhood USNPR−
NN of N has size

|USNPR−
NN (N)| = 2r.
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Proof. We start with the SNPR+ neighbourhood. Let (e, f) ∈ ΘSNPR+

NN (N). Let (e, f)(N) =
N ′ with the newly added edge (u′, v′). We know from tree-child networks (see Lemma 4.18)
that e has to be a pure tree edge with a sibling pure tree edge; that is, e ∈ EPS . By Ob-
servation 4.5 there are thus 2n − 2r − 2 choices for e. On the other hand, we know that
f has to be a tree edge, that f is not e, and that f cannot be a descendant of e. These
requirements ensure that N ′ is a tree-child network. In addition, to ensure that N ′ is
normal, the operation (e, f) cannot add a transitive edge. By Lemma 4.26, this is the case
if the new reticulation v′ is a child of two tree vertices where neither is ancestor of the
other. This implies that f cannot be an ancestral edge of e. Furthermore, f can also not
be the sibling edge of e or a descendant of it, since otherwise the partner reticulation edge
of (u′, v′) in N ′ would be a transitive edge. In other words, f cannot be a descendant of
the parent edge of e. There are (2n+ r− 1) choices for f to be a tree edge from which we
subtract the number of ancestral tree edges of e and the number of descendant tree edges
of the parent edge of e. Combining the choices for e and f , we get that the number of
normal respecting SNPR+ on N is

(2n− 2r − 2)(2n+ r − 1)−
∑
e∈EPS

αT (e)− 2
∑

e∈ETP

δT (e)

= 4n2 − 2nr − 6n− 2r2 + 2−
∑
e∈EPS

αT (e)− 2
∑

e∈ETP

δT (e).

Since by Proposition 4.19 two SNPR+ operations on a tree-child network are only re-
dundant if they create a triangle, we know that there are no redundancies for SNPR+

operations on normal networks. The number of operations above equals thus the number
of SNPR+ normal neighbours of N .

Applying an SNPR− to a normal network yields again a normal network (see Theo-
rem 3.20). Concerning redundancies, we know by Proposition 4.19 that two SNPR− on
a tree-child network are only redundant if they remove the two reticulation edges of a
triangle. Since normal networks do not contain triangles, we know that each SNPR− on
one of the 2r reticulation edges of N gives a different SNPR− normal neighbour of N .

We can now add the SNPR0, the SNPR+, and the SNPR− normal neighbourhood sizes
from Proposition 4.30 and Lemma 4.31 together, which gives us the SNPR normal neigh-
bourhood size of a normal network. Recall that ES is the set of pure tree edges that are
not critical edges, that ER is the set of reticulation edges, that ERP is the set of parent
edges of reticulation edges, that EPS is the set of pure tree edges with a sibling pure tree
edge, and that ETP is the set of edges with two tree edges as child.

Theorem 4.32.
Let N ∈ NN n with n ≥ 2.
Then the SNPR normal neighbourhood USNPR

NN of N has size

|USNPR
NN (N)| = 8n2 + 8nr − 2n(r2 + r3 + d2)− 20n− 3r(r2 + r3 + d2)− 9r

− 4r1 + 4r2 + 7r3 + 8d2 + 16

−
∑
e∈ES

(δ(e) + γR(e))−
∑
e∈ER

αT (e)−
∑

e∈ERP

δT (e)−
∑
e∈EPS

αT (e)− 2
∑

e∈ETP

δT (e).

4.5 Other network classes

We now look at the neighbourhood problem for other classes of phylogenetic networks. In
particular, we consider whether the method from the previous sections can also be used
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to obtain exact formulas for neighbourhood sizes of other classes. For this, we recall two
properties of tree-child networks that were particular helpful to find such formulas. First,
the tree-child property is a local property that can be easily checked. For example, with
only a few structures and edge types it was easy to describe which edges can be pruned
and to which edges can be regrafted such that operations are tree-child respecting. Second,
every vertex and every edge in a tree-child network is uniquely identifiable. This was one
of our main tools when counting trivial operations and redundancy sets. However, the
number of parameters needed in the formulas for tree-child or normal neighbourhoods is
still large.

Level-1 networks. Huber et al. [HLMW16] solved the NNI neighbourhood problem of
unrooted level-1 networks without parallel edges. For an unrooted level-1 network N with
b3 blobs of size three, b4 blobs of size four, b blobs in total, l links (edges incident to two
blobs), and t inner vertices not contained in a cycle, they showed that the NNI level-1
neighbourhood has a size of

2n− 6 + 6b− 5b3 − 2b4 − 2l + t.

Gambette et al. [GvIJ+17] noted that rooted level-1 networks “do not permit a simple
formula”. However, we can give upper bounds on the sizes of NNI neighbourhoods of a
rooted level-1 network using links.

Let N be a rooted level-1 network (with possibly parallel edges); i.e. N ∈ LV1,n. A
link of N is an edge that is incident to two different blobs of N . Let lp (resp. li) denote
the number of links of N that are pure (resp. impure) tree edges. Note that an NNI0

operations with a link as axis is not level-1 respecting. We use this observation to give the
following bounds for the NNI neighbourhoods of N . Recall that t1 denotes the number of
transitive edges in N .

Lemma 4.33.
Let N ∈ LV1,n with n ≥ 2.
Then the neighbourhoods of N under NNI operations have sizes

(i) |UNNI0

LV1
(N)| ≤ 2n+ 10r − 2r1 − 4li − 2lp − 3t1 − 4,

(ii) |UNNI−
LV1

(N)| = t3,

(iii) |UNNI+

LV1
(N)| ≤ 2n− 2, and

(iv) |UNNI
LV1

(N)| ≤ 4n+ 10r − 4r1 − 4li − 2lp − 3t1 − 6.

Proof. Concerning the NNI0 neighbourhood of N , we count possible operations based on
the type of the axis e of an operation. If e is a pure inner tree edge and not a link, then
there are two NNI0 on e. There are n+ r1− lp−2 such edges in N . If e is an impure inner
tree edge and not a link, then there are four NNI0 on e. There are r − r1 − li such edges
in N . If e is a reticulation edge and not a transitive edge, then there are three NNI0 on e.
There are 2r − t1 such edges in N . The bound now follows from adding the numbers for
the three possible types of e together.

The result on the NNI− neighbourhood of N follows from Corollary 4.4. The upper
bound on the NNI+ neighbourhood of N follows from the number of pure tree edges with
a pure tree sibling edge in N . It is only an upper bound, since if at least one of those two
edges is in a blob, then the resulting network is a level-2 network. The upper bound on
the NNI neighbourhood follows from (i) to (iii).
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To derive exact formulas it is necessary to identify all trivial operations and redundancy
sets. The results form Lemma 4.24 on trivial and redundant NNI operations on tree-
child networks could partially be integrated into the bounds in Lemma 4.33. However,
for example redundant operations that transform a triangle into a diamond or a trapezoid
in tree-child networks may not be level-1 respecting if they involve a link. Furthermore,
parallel edges are another source for trivial and redundant operations. So while with some
effort exact formulas could be obtained, we restrain from this here to avoid introducing
even more parameters.

Next, consider the SNPR neighbourhood of a level-1 network. Note that being a level-1
network is not a local property. Therefore, when regrafting or adding an edge, one cannot
simply check in a neighbourhood of a few edges to see if the operation would be level-1
respecting. A formula would need to describe that a pruned edge cannot be regrafted or an
edge added such that two blobs merge. Furthermore, parallel edges make it also harder to
count redundancies. Hence, level-1 networks miss the two properties we described above
that made it comprehensible for us to find exact formulas for the SNPR neighbourhoods
of tree-child and normal networks.

Tree-sibling networks. The tree-sibling property is like the tree-child property a local
and easy to check property. Furthermore, it can be shown that vertices and edges in
a tree-sibling network are unique. A rigor analysis of structures determining tree-sibling
respecting operations, trivial, and redundant operations would thus yield a formula similar
to the one for the tree-child neighbourhood.

Reticulation-visible and tree-based networks. Consider the network N in Figure 4.15,
which is a reticulation-visible and tree-based network. Note that N contains non-unique
vertices and edges, for example the edges f and g. This gives us the following observation.

Observation 4.34.
Let N ∈ RVn with n ≥ 2
There can be more than one automorphism on N that fixes the leaf set of N .

For N in Figure 4.15, consider two SNPR0 that prune the leaf 3 and where one regrafts
to f and the other to g. Since the edges are indistinguishable, the resulting networks
from these operation would be the same. However, if we consider an SNPR0 operation
that prunes the edge e, then regrafting to f makes the operation trivial, but regrafting
to g does not. Therefore, edges that are in general indistinguishable in N may not be
indistinguishable for all operations.

1 2

u v

N

3

e

f g

Figure 4.15: A reticulation-visible (and tree-based) network N with non-unique vertices
and edges. The vertices u and v are isomorphic and so are the three groups
of edges with the same colour and style.

Both these observations add complexity to the problem of counting trivial and redundant
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operations. A formula for the neighbourhood size under SNPR would have to capture how
groups of indistinguishable edges relate to other edges. This does not seem to be possible
with parameters for some fixed structures and by counting the number of ancestors and
descendants of edges. Furthermore, like with the level-1 property, the reticulation-visible
and tree-based property of a network are not local but global properties. We conclude
that reticulation-visible or tree-based networks do not permit a simple formula for the
neighbourhood size.

Phylogenetic networks. We now consider the space of all phylogenetic networks. Note
that every operation is by default respecting the class Nn. The problems due to indistin-
guishable edges and vertices discussed above still exist, however. We therefore consider
only bounds for the neighbourhood sizes under NNI, SNPR, and also PR.

Gambette et al. [GvIJ+17] considered NNI0 on rooted phylogenetic networks and gave
a sharp upper bound on the neighbourhood size that depends on the number of edges
of different types (pure and impure tree and reticulation edges). With our notation this
bound is

|UNNI0

N (N)| ≤ 2n+ 10r − 2r1 − 4.

We can improve this bound slightly by factoring in that transitive edges do not give rise
to NNI0 operations. Furthermore, we give bounds for the other NNI neighbourhoods.

Proposition 4.35.
Let N ∈ Nn with n ≥ 2.
Then the neighbourhoods of N under NNI operations have sizes

(i) |UNNI0

N (N)| ≤ 2n+ 10r − 2r1 − 3t1 − 4,

(ii) |UNNI−
N (N)| ≤ t3,

(iii) |UNNI+

N (N)| ≤ 2n+ 4r − 2, and

(iv) |UNNI
N (N)| ≤ 4n+ 14r − 2r1 − 3t1 + t3 − 6.

Proof. We discussed above how to derive the bound on the NNI0 neighbourhood of N .
The bound on the NNI− neighbourhood of N follows from the definition of NNI−. The
bound on the NNI+ neighbourhood of N follows from twice the number of inner vertices
of N . The bound on the NNI neighbourhood of N follows from (i) to (iii).

We give upper bounds on the SNPR neighbourhoods of a phylogenetic network by simply
considering all possible operations. Francis et al. [FHMW18] also did this to obtain an
upper bound on the neighbourhood size for unrooted phylogenetic networks and their
generalisation of SPR.

Proposition 4.36.
Let N ∈ Nn with n ≥ 2.
Then the neighbourhoods of N under SNPR operations have sizes

(i) |USNPR0

N (N)| ≤ 4n2 + 10nr − 10n+ 6r2 − 7r + 4−
∑

e∈E δ(e),

(ii) |USNPR−
N (N)| ≤ 2r,

(iii) |USNPR+

N (N)| ≤ 4n2 + 12nr − 4n+ 9r2 − 6r + 1−
∑

e∈E δ(e), and

(iv) |USNPR
N (N)| ≤ 8n2 + 22nr − 14n+ 15r2 − 13r + 5− 2

∑
e∈E δ(e).
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Proof. For the upper bound on the SNPR0 neighbourhood of N , note that we can prune
any edge e that is not an outgoing edge of a reticulation and then regraft it to an edge f
that is not e or a descendant of e. We can also ignore the two trivial SNPR0 that regraft
to edges incident to the tail of e. There are thus (m − r)(m − 3) −

∑
e∈E δ(e) potential

neighbours. The given bound then follows from m = 2n+ 3r − 1 (Observation 4.5).
For the upper bound on the SNPR+ neighbourhood of N , note that for an operation

(e, f) ∈ ΘSNPR+

N (N) the edge f cannot be a descendant of e. However, every other com-
bination of e and f gives a potential neighbour. The result thus follows from expanding
m2 −

∑
e∈E δ(e).

For the upper bound on the SNPR− neighbourhood of N , note that there are 2r different
reticulation edges that can be removed. The last statement follows from the first three.

Note that while counting SNPR− neighbours was easy for tree-child networks, it is
harder in the general case. Assume that a network N contains a chain of pairs of parallel
edges. Then removing any reticulation edge from one of these pairs yields the same SNPR−

neighbour. That means that a network with r > 0 reticulation may have only a single
SNPR− neighbour.

We can also consider the PR neighbourhood of a phylogenetic network. This adds po-
tential neighbours to the bounds in Proposition 4.36 that come from head PR0 operations.

Proposition 4.37.
Let N ∈ Nn with n ≥ 2.
Then the neighbourhoods of N under PR operations have sizes

(i) |UPR0

N (N)| ≤ 4n2 + 14nr − 10n+ 12r2 − 15r + 4−
∑

e∈E δ(e)−
∑

e∈ER
α(e),

(ii) |UPR−
N (N)| ≤ 2r,

(iii) |UPR+

N (N)| ≤ 4n2 + 12nr − 4n+ 9r2 − 6r + 1−
∑

e∈E δ(e), and

(iv) |UPR
N (N)| ≤ 8n2 + 26nr − 14n+ 21r2 − 21r + 5− 2

∑
e∈E δ(e)−

∑
e∈ER

α(e).

Proof. We add to the formulas from Proposition 4.36 that the 2r reticulation edges can
be pruned and then regrafted to any edge that is not an ancestor of the pruned edge or
the edge itself. We also ignore the two trivial operations that regraft to incident edges of
the pruned edge. This adds 2r(2n+ 3r − 4)−

∑
e∈ER

α(e) possible PR0 neighbours.

4.6 Concluding remarks

In this chapter we have studied the neighbourhood problem under SNPR and NNI. We
started with trees and then increased the complexity with tree-child and normal networks.
In the previous section, we looked at the problem for level-1 networks and general phy-
logenetic networks. For trees, tree-child networks, and normal networks we derived exact
formulas for the SNPR neighbourhood. Furthermore, we also found formulas for the NNI
neighbourhood of a tree and of a tree-child network. Our method to derive these formulas
was a three-step counting scheme. In the first step, we counted all possible operations that
respect the current class. In the second step, we subtracted all trivial operations, and in
the third step, we counted redundancies of operations. This last step becomes the most
challenging with increasing complexity.

It is interesting to look back and see how the complexity of the neighbourhood problem
changes from trees to networks. For this, we identify three key factors that determine the
formulas for the SNPR0 neighbourhood. These are the size, the sum of descendants of
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edges, and the occurrence of certain small subgraphs. If we first look at a tree in Tn, then
its size given by n determines how many edges can be pruned and its sum of descendants
of edges tells us to how many edges the pruned edges cannot be regrafted. Thirdly, every
inner edge gives rise to redundancies of SNPR0 operations, which correspond to the two
possible NNI0 on this edge. With the formula for the SNPR tree-child neighbourhood of
a network in T Cn,r, we can consider how these factors generalise to networks. First, the
size is of course now given by n and r. Second, we have to count again the sum of descen-
dants but have to take care which edges can actually be pruned and whether the resulting
network will be tree-child. We found that the latter is determined by the types of edges
and by the occurrence of small structures within N , like triangles. Lastly, accounting for
redundancies becomes more complex, though interestingly, we found that many redundan-
cies are still tied to NNI. However, there are also sources of redundancies independent of
NNI operations. For example, we found that SNPR0 on the two reticulation edges of a
triangle yield the same neighbours. In total the occurrence of seven different structures in
a tree-child network affect its neighbourhood size. Beyond tree-child networks, if we look
at a level-1 network it becomes more challenging to even count level-1 respecting SNPR,
since no operation may join two blobs. On the other hand, for a general phylogenetic net-
work, which does not have the property that every vertex and edge is uniquely identifiable,
the main challenge is to count redundancies.

The problem of accounting for redundancies becomes even more complex when consider-
ing PR instead of SNPR. On top of the redundancies between tail PR0 come redundancies
between head and tail PR0. Recall that the proof of classification of sources of SNPR
redundancies in a tree-child network (Proposition 4.16) was based on fixing reticulations
and cycles. This approach may or may not be extendable to redundancies with PR0. Nev-
ertheless, we gave upper bounds on the PR neighbourhood of a phylogenetic network in
Proposition 4.37.
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We have seen in Chapter 4 how to find and count the neighbours of a network. In other
words, we have looked at what networks can be reached with a path of length one. In
Chapter 3 we have seen that most classes of phylogenetic networks form metric spaces
under SNPR and PR. This means that there exists a path between any two networks in
each of these spaces. Among these paths are shortest paths, which are the paths that
define the SNPR- or PR-distance of the two networks. These are the paths we study in
this chapter. In the following paragraphs, when we mention the PR-distance, the same
holds for the SNPR-distance.

It is NP-hard to compute the SNPR-distance [BLS17, Theorem 7.2] and, as we will see
in this chapter, also to compute the PR-distance. So far no method has been proposed
to compute the PR-distance of two networks N and N ′ in Nn. One approach could be
to start an exhaustive search from N until it reaches N ′. An improvement would be to
start one search from N and one from N ′ simultaneously and see when they meet. As we
have seen, the PR neighbourhood of a network can be in Ω(n2) (Theorem 4.20) and the
PR-distance of two networks can be in Ω(n+ r). Hence, an exhaustive search may have to
consider an exponentially growing number of possible paths. We are therefore interested
in what assumptions we can make about shortest paths between N and N ′ that may either
guide the search or restrict the search space. For example, if we know that both N and
N ′ are in tier r, does this imply that there is a shortest path from N to N ′ in Nn that is
fully contained in tier r? We will see that this is not the case.

We start with the PR-distance of a tree T and a network N . One main relation between
N and T is whether N displays T . Recall that we then write T ∈ D(N). Among several
other relations, we look at shortest paths between T and N when T is in D(N), when T is
in D(N ′) where we know the PR-distance of N and N ′, or when we know something about
the PR-distance of T to a tree T ′ ∈ D(N). The main result will be a characterisation of the
PR-distance of T and N in terms of the PR-distance of T to the trees in D(N). This result
will allow us to find a fixed-parameter tractable algorithm to compute the PR-distance
of T and N . We extend several results from Bordewich et al. [BLS17] and Klawitter and
Linz [KL19] from SNPR to PR.

We then look at shortest paths between two networks N and N ′ where we know the
number of reticulations of N and N ′. As mentioned above, we are particularly interested
in whether Nn,r is an isometric subgraph of Nn. Restricting this question to particular
classes, we also look at whether the distance of two networks in a particular class differs
from their distance in the overall space of networks. In other words, we ask whether these
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classes are isometric subgraph of Nn. We answer this negatively for the classes T Cn, NN n,
RVn, T Bn, and LVk,n.

Remark. The content of this chapter concerning the SNPR-distance is part of the joint
work with Simone Linz called “On the Subnet Prune and Regraft Distance” [KL19].

5.1 Tree to network

Let N ∈ Nn with r reticulations and let T ∈ Tn. In this section we look at bounds on the
PR-distance of T and N . Recall that T is displayed by N , written T ∈ D(N), if it is has
an embedding into N , meaning there is a subdivision of T that is a subgraph of N .

Note that since a PR− removes only a single reticulation, it follows that r is a lower
bound on the distance of T and N . Consider the case where N is tree-based with base tree
T . Then T has an embedding that covers all vertices of N except for r disjoint reticulation
edges. It is easy to see that there is then a PR−-sequence of length r from N to T that
removes these r reticulation edges one at a time. Bordewich et al. [BLS17] have shown
that there is also such a path if T is only displayed by N . Hence, we have the following
results.

Lemma 5.1 ([BLS17, Lemma 7.4]).
Let N ∈ Nn with r reticulations. Let T ∈ D(N). Then dSNPR(T,N) = r.

Corollary 5.2.
Let N ∈ Nn with r reticulations. Let T ∈ D(N). Then dPR(T,N) = r.

Next, consider the case where N is a tree, that is, N = T ′ ∈ Tn. The main question
is then whether dPR(T, T ′) is the same in Tn and in Nn or, in other words, if Tn is an
isometric subgraph of Nn under PR. Bordewich et al. [BLS17] have shown that this is the
case for SNPR. We rephrase their proof to show that it also holds for PR.

Theorem 5.3 ([BLS17, Proposition 7.1]).
The class of phylogenetic trees Tn is an isometric subgraph of the class of phylogenetic
networks Nn under SNPR. Moreover, for every T, T ′ ∈ Tn, every shortest path from T to
T ′ in N SNPR

n is fully contained in Tn.

Theorem 5.4.
The class of phylogenetic trees Tn is an isometric subgraph of the class of phylogenetic
networks Nn under PR. Moreover, for every T, T ′ ∈ Tn, every shortest path from T to T ′

in NPR
n is fully contained in Tn.

Proof. Let dT and dN denote the PR-distance in Tn and Nn, respectively. To prove the
statement, it suffices to show that dT (T, T ′) = dN (T, T ′) for every pair T, T ′ ∈ Tn. Note
that dT (T, T ′) ≥ dN (T, T ′) holds by definition. To prove the converse, let σ = (T =
N0, N1, . . . , Nk = T ′) be a shortest PR-sequence from T to T ′. Consider the following
2-colouring of the edges of each Ni, for i ∈ {0, . . . , k}. Colour all edges of N0 blue. For
i ∈ {1, . . . , k} preserve the colouring of Ni−1 to a colouring of Ni for all edges except those
affected by the PR. In particular, an edge that gets added or moved is coloured red, an
edge resulting from a vertex suppression is coloured blue if the two merged edges were blue,
and red otherwise, and edges resulting from a subdivision are coloured like the subdivided
edge.

Let Fi be the graph obtained from Ni by removing all red edges. We claim that Fi is
a forest with at most k + 1 components. Since F0 = T , the statement holds for i = 0. If
Ni is obtained from Ni−1 by a PR+, then Fi = Fi−1 since no blue component gets split.
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If Ni is obtained from Ni−1 by a PR0, then clearly at most one component gets split no
matter whether an edge gets pruned at its tail or its head. The same is the case when Ni is
obtained by a PR−. Note that Fk is conceptually equivalent to an agreement forest (which
gets defined precisely in the next chapter) for T and T ′ and thus dT (T, T ′) ≤ k = dN (T, T ′)
by Theorem 2.1 of Bordewich and Semple [BS05]. Furthermore, if σ would use a PR+,
then the forest Fk would contain at most k components. However, then dT (T, T ′) < k; a
contradiction.

Note that the previous two theorems imply that the classic SPR-distance of two trees
in Tn equals their SNPR- and PR-distance in Nn. Therefore and since computing the
SPR-distance of two trees is NP-hard [BS05], the following corollary is an immediate
consequence of Theorem 5.4.

Corollary 5.5.
Computing the PR-distance of an arbitrary pair of networks in Nn is NP-hard.

With the next lemmata we show that if two networks N and N ′ have a certain distance
k, then they display trees that also have at most distance k. This and the previous results
can be paraphrased to say that moving in higher tiers of Nn is not faster than in Tn in
terms of displayed trees.

Lemma 5.6 ([BLS17, Proposition 7.7]).
Let N,N ′ ∈ Nn such that dSNPR(N,N ′) = k. Let T ∈ D(N).
Then there exists a phylogenetic tree T ′ ∈ D(N) such that dSNPR(T, T ′) ≤ k.

Lemma 5.7.
Let N,N ′ ∈ Nn such that dPR(N,N ′) = k. Let T ∈ D(N).
Then there exists a phylogenetic tree T ′ ∈ D(N) such that dPR(T, T ′) ≤ k.

Proof. We extend the proof of Lemma 5.6 from SNPR to PR. The proof is by induction
on k. If k = 0, then the statement trivially holds. Suppose that k = 1. If T ∈ D(N ′),
then set T ′ = T , and we have dPR(T, T ′) = 0 ≤ 1. So assume otherwise, namely that
T 6∈ D(N ′). Note that if N ′ has been obtained from N by a PR+, then N ′ displays T .
Therefore we distinguish whether N ′ has been obtained from N by a PR0 or PR−.

Suppose that N ′ has been obtained from N by a PR0. If this is a tail PR0, then
Bordewich et al. [BLS17] have shown that there is a tree T ′ ∈ D(N ′) with dPR(T, T ′) = 1.
So assume otherwise, namely that a head PR0 prunes the reticulation edge e = (u, v) at v
of N . Let e′ = (u′, v) be the partner edge of e. Fix a subdivision S of T that is a subgraph
of N . Since N ′ does not display T , the edge e is contained in S. The edge e′, on the other
hand, is not in S, since S is a tree. Let ē be the edge of T that is subdivided into the
path P of S that contains e. Let w be the start vertex of P . Then let P1 be the subpath
of P in S from w to v. Also let P2 be a path in N that starts at a vertex w′ of S, that
contains no edge of S, but that contains e′, and that ends at v. Note that such P2 has to
exist since there are at least two paths in N from the root to v. See also Figure 5.1 for an
illustration. Note that S without P1 but with P2 is a tree in N . Moreover, P2 and P \ P1

also exist in N ′. We can thus obtain S′ from S by removing P1, adding P2, suppressing v,
and subdividing the edge to which e gets regrafted. Note that S′ is a tree in N ′. See again
Figure 5.1. Furthermore, we can prune the edge ē in T and regraft it to obtain a tree T ′

such that S′ provides an embedding of T ′ into N and N ′. More precisely, we regraft the
pruned ē to the edge of N that is mapped to the path that contains w′. Hence, we have
that T ′ ∈ D(N ′) and dPR(T, T ′) = 1. The case where N ′ has been obtained from N by a
PR− works analogously.
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Figure 5.1: An example for the proof of Lemma 5.7. When a head PR0 prunes the edge
e = (u, v) in N to obtain N ′, then in a tree T ∈ D(N) we can use a PR0 that
prunes an edge ē to obtain a tree T ′ in D(N ′). For the embeddings S and S′

of T and T ′ into N and N ′, respectively, this means that the path from w to
leaf 3 is replaced with the path from w′ to leaf 3.

Now suppose that k ≥ 2 and the hypothesis holds for any two networks with PR-distance
at most k − 1. Let N ′′ ∈ Nn such that dPR(N,N ′′) = k − 1 and dPR(N ′′, N ′) = 1. Thus
by induction there are trees T ′′ and T ′ such that T ′′ ∈ D(N ′′) with dPR(T, T ′′) ≤ k − 1
and T ′ ∈ D(N ′) with dPR(T ′′, T ′) ≤ 1. It follows that dPR(T, T ′) ≤ k, thereby completing
the proof of the lemma.

With Corollary 5.2 and Lemma 5.7 (resp. Lemma 5.1 and Lemma 5.6) we can get further
bounds on the PR-distance (resp. SNPR-distance) of trees.

Lemma 5.8.
Let T ∈ Tn and N ∈ Nn with dPR(T,N) = k (resp. dSNPR(T,N) = k′).
Then dPR(T, T ′) ≤ k (resp. dSNPR(T, T ′) ≤ k′) for each T ′ ∈ D(N).

Proof. Since dPR(N,T ) = k and by Lemma 5.7, for every tree T ′ ∈ D(N) there exists a
tree T ′′ ∈ D(T ) with dPR(T ′, T ′′) ≤ k. As T is the only tree displayed by T , it follows
that T ′′ = T and thus dPR(T ′, T ) ≤ k.

Lemma 5.9.
Let N ∈ Nn with r reticulations. Let T, T ′ ∈ D(N). Then dPR(T, T ′) = dSNPR(T, T ′) ≤ r.

Proof. Note that dPR(T,N) = dSNPR(T,N) = r by Corollary 5.2. With Lemma 5.8 we
then get that every tree T ′′ ∈ D(N) has distance at most r to T . This also holds for T ′

and thus dPR(T, T ′) ≤ r.

Note that the situation of Lemma 5.9 is related to the Hybridisation Number problem,
where we are given two trees T and T ′ and look for the minimum number of reticulations
r needed such that there is a network N that displays both T and T ′ and that has only r
reticulations. As has already been known [BGMS05] and as follows from Lemma 5.9, we
get that if dPR(T, T ′) = r, then N needs at least r reticulations.

The main result of this section is the following theorem that characterises the distance
between a phylogenetic tree and a phylogenetic network.
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Theorem 5.10.
Let T ∈ Tn. Let N ∈ Nn with r reticulations. Then

dPR(T,N) = dSNPR(T,N) = min
T ′∈D(N)

dPR(T, T ′) + r.

Proof. Let T ∗ ∈ D(N) such that dPR(T, T ∗) ≤ dPR(T, T ′) for each T ′ ∈ D(N). Then, by
Corollary 5.2 and Theorem 5.4, it follows that

dPR(T,N) ≤ dPR(T, T ∗) + dPR(T ∗, N) = min
T ′∈D(N)

dPR(T, T ′) + r. (5.1)

We next show that
dPR(T,N) ≥ min

T ′∈D(N)
dPR(T, T ′) + r.

Suppose that dPR(T,N) = k. Let σ = (T = N0, N1, N2, . . . , Nk = N) be a PR-sequence
from T to N . For each i ∈ {1, 2, . . . , k}, consider the two networks Ni−1 and Ni in σ. If Ni

has been obtained from Ni−1 by applying a PR+, then D(Ni−1) ⊆ D(Ni). Furthermore,
regardless of the PR used to obtain Ni from Ni−1, Lemma 5.6 implies that, for each
tree Ti−1 ∈ D(Ni−1), there exists a tree Ti in D(Ni) such that dPR(Ti−1, Ti) ≤ 1. It is
now straightforward to check that we can construct a sequence S = (T0, T1, T2, . . . , Tk) of
phylogenetic trees on X from σ that satisfies the following properties.

(i) For each i ∈ {0, 1, . . . , k}, we have Ti ∈ D(Ni).

(ii) For each i ∈ {1, 2, . . . , k}, if Ni has been obtained from Ni−1 by applying an SNPR+

operation, then Ti = Ti−1.

(iii) For each i ∈ {1, 2, . . . , k}, we have dPR(Ti−1, Ti) ≤ 1.

By construction and since σ contains at least r PR+, there exists a subsequence of S of
length at moth k − r that is a PR-sequence from T0 to Tk. Hence, we have dPR(T, Tk) ≤
k − r. Moreover, as Tk ∈ D(N), it follows from Lemma 5.1 that dPR(Tk, N) = r and thus

min
T ′∈D(N)

dPR(T, T ′) + r ≤ dPR(T, Tk) + dPR(Tk, N)

= k − r + r = k = dPR(T,N).
(5.2)

The same holds for SNPR. Combining Inequalities 5.1 and 5.2 establishes the theorem.

Given Theorems 5.4 and 5.10 and that dPR(T, T ′) = dSNPR(T, T ′) = dSPR(T, T ′), it
is worth noting that the problem of computing the PR-distance between a phylogenetic
network and a phylogenetic tree can be reduced to computing the SPR-distance between
pairs of trees. Calculating the SPR-distance between two phylogenetic trees is a well
understood problem and several exact algorithms exist (e.g. [BS05,WBZ16]). Furthermore,
this problem is known to be fixed-parameter tractable with the SPR-distance itself as
parameter [BS05, Theorem 3.4]. This means that there exists an algorithm to compute
k = dSPR(T, T ′) = dPR(T, T ′) in f(k)p(n) time where f is a computable function that only
depends on k and p is a polynomial function. Note that replacing k by a function f ′(k) or
calling such an algorithm as a black-box at most f ′(k) times, yields again a fixed-parameter
tractable algorithm in k. We use this observation to establish the following theorem.

Theorem 5.11.
Let T ∈ Tn and N ∈ Nn. Then computing dPR(T,N) = dSNPR(T,N) is fixed-parameter
tractable when parameterised by dPR(T,N).
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Proof. Let d = dPR(T,N) and let r be the number of reticulations of N . By Lemma 5.8
we know that k = dSPR(T, T ′) = dPR(T, T ′) ≤ d for all T ′ ∈ D(N). From the obser-
vation before the theorem, it follows that computing dSPR(T, T ′) is also fixed-parameter
tractable when parameterised by d. Next, note that |D(N)| ≤ 2r ≤ 2d, since we know by
Theorem 5.10 that r ≤ d. Again, by the observation above, computing dSPR(T, T ′) for at
most 2d trees T ′ ∈ D(N) is still fixed-parameter tractable when parameterised by d. By
Theorem 5.10 dPR(T,N) can be computed by computing dSPR(T, T ′) for each T ′ ∈ D(N).
Taken together, this implies that computing dPR(T,N) is fixed-parameter tractable.

5.2 Network to network

Next we analyse properties of shortest SNPR- and PR-sequences that connect a pair of
phylogenetic networks. Let σ = (N = N0, N1, . . . , Nk = N ′) be a PR-sequence from N to
N ′. We say that σ horizontally traverses tier r if σ contains two networks Ni−1 and Ni

with i ∈ {1, 2, . . . , k} such that both have r reticulations; in other words, Ni and Ni−1 are
PR0 neighbours.

Let N,N ′ ∈ Nn with r and r′ reticulations, respectively. Without loss of generality, we
may assume that r ≤ r′. From a computational viewpoint and in trying to shrink the
search space when computing dPR(N,N ′), it would be favourable if there always exists a
shortest PR-sequence connecting N and N ′ that traverses exactly one tier horizontally. In
particular, if r < r′, it would have positive implications for computing dPR(N,N ′) if all
PR0 operations could be pushed to be the beginning or the end of a shortest PR-sequence
from N to N ′. Note that we have seen with Theorem 5.10 that this is possible for a
tree and a network. On the other hand, if r = r′, then the existence of a shortest PR-
sequence from N to N ′ whose networks all belong to tier r would allow us to compute
dPR(N,N ′) by considering only tier r. In what follows, we present several results showing
that the existence of a shortest PR-sequence with such properties cannot be guaranteed.
In addition, at the end of the section we give two bounds on the distance of N and N ′.

Lemma 5.12.
Let n ≥ 4. Let N,N ′ ∈ Nn with r and r′ reticulations, respectively, such that 1 ≤ r < r′.
Then there does not necessarily exist a shortest SNPR-sequence from N to N ′ that traverses
at most one tier horizontally.

Proof. To prove the statement, we show that every shortest SNPR-sequence for the two
phylogenetic networks N and N ′ that are depicted in Figure 5.2 traverses at least two tiers
horizontally.

We start by observing four differences between N and N ′:

• Leaf 1 is a descendant of a reticulation in N , but not in N ′.

• Leaves 1 and 4 form a cherry in N ′, but not in N .

• Leaves 2 and 3 form a cherry in N ′, but not in N .

• Leaves 2 and 3 are descendants of two reticulations in N ′, but not in N .

Since N ′ has one more reticulation than N , at least one SNPR+ is required to transform
N into N ′. Also note that an SNPR+ cannot create a cherry. Furthermore, note that
an SNPR0 on N (or a network derived from N by an SNPR+) can create at most one
cherry. Therefore, to transform N into N ′ at least three SNPR are necessary and thus
dSNPR(N,N ′) > 2. Consequently, referring back to the networks shown in Figure 5.2,

σ = (N = N0, N1, N2, N3 = N ′)
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32 41 32 41 4132

N ′ = N3

32 41

N = N0

SNPR0 SNPR0SNPR+

N1 N2

Figure 5.2: For the two networks N and N ′ shown, every shortest SNPR-sequence between
them traverses two tiers horizontally.

is a shortest SNPR-sequence from N to N ′ that horizontally traverses tier 1 and tier 2.
To establish the statement, it is therefore sufficient to show that there exists no SNPR-

sequence, say
σ∗ = (N,M,M ′, N ′),

such that M can be obtained from N by an SNPR+, or N ′ can be obtained from M ′ by
an SNPR+. Note that a sequence that uses an SNPR+ (or an SNPR−) to transform M
into M ′ would either be covered by one of these two cases or would be a sequence that
traverses two tiers horizontally like σ. We thus proceed by distinguishing the first two
cases.

First, assume that σ∗ exists and that M has been obtained from N by an SNPR+. Then
M and N ′ have the same four differences as listed above for N and N ′ with the exception
that either leaf 2 or 3 (but not both) is possibly a descendant of two reticulations in M .
Suppose that M is indeed obtained from N by (i) subdividing the incoming edge of leaf 1
with a new vertex u, subdividing the edge directed into 2 with a new vertex v, and adding
the new edge (u, v), or (ii) subdividing the incoming edge of leaf 1 with a new vertex u,
subdividing the edge directed into 3 with a new vertex v, and adding the new edge (u, v).
Then M would equal either the network M1 or M2 shown in Figure 5.3. In both cases,
it requires two SNPR to transform M into a network, say M∗, in which leaf 1 is not a
descendant of any reticulation and leaves 2 and 3 are descendants of two reticulations.
One such M∗ is shown in Figure 5.3. However, M∗ 6= N ′ and, so, it would take in total at
least three SNPR operations to transform M into N ′. Now, suppose that M is obtained
from N by an SNPR+ other than (i) or (ii). With similar observations as above we note
that again at least three SNPR operations are necessary to transform M into N ′. Hence,
we conclude that M has not been obtained from N by an SNPR+.

4132

M ′

32 41

M1

32 41

M2

32 41

M∗

2 SNPR0

Figure 5.3: Networks in an SNPR-sequences from N to N ′ of Figure 5.2 for the proof of
Lemma 5.12.

Second, assume that σ∗ exists and that N ′ has been obtained from M ′ by an SNPR+

or, equivalently, M ′ has been obtained from N ′ by an SNPR−. Then M ′ is as shown in
Figure 5.3 since each of the three SNPR− operations that can be applied to N ′ results in
the same network M ′. Because of the aforementioned differences between N and N ′ that
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are also differences between N and M ′ with the exception that 2 and 3 are descendants of
only a single reticulation in M ′, it takes at least three SNPR operations to transform N
into M ′. Consequently, N ′ has not been obtained from M ′ in σ∗ by an SNPR+.

Lastly, since neither M nor N ′ has been obtained from N and M ′, respectively, by an
SNPR+, it follows that σ∗ cannot be chosen so that no tier is horizontally traversed. This
completes the proof.

We can extend Lemma 5.12 to PR if we add one reticulation to our counterexample.

Lemma 5.13.
Let n ≥ 4. Let N,N ′ ∈ Nn with r and r′ reticulations, respectively, such that 2 ≤ r < r′.
Then there does not necessarily exist a shortest PR-sequence from N to N ′ that traverses
at most one tier horizontally.

Proof. We extend the proof of Lemma 5.12 from SNPR to PR based on the example
shown in Figure 5.4. Again, we claim that the sequence σ = (N = N0, N1, N2, N3 = N ′)
is a shortest PR-sequence from N to N ′ and that there is no shortest PR-sequence that
starts or ends with a PR+. The proof of the former is analogous to the proof for SNPR.
Moreover, the same is the case for the proof that no shortest PR-sequence from N to N ′

starts with a PR+.

32 41 32 41 4132

N ′ = N3

32 41

N = N0

PR0 PR0PR+

N1 N2

Figure 5.4: For the two networks N and N ′ shown, every shortest PR-sequence between
them traverses two tiers horizontally.

It remains to show that no shortest PR-sequence from N to N ′ ends with a PR+. Assume
otherwise and let σ∗ = (N,M,M ′, N ′) be such a sequence. Then M ′ can be obtained from
N ′ by a PR− and is as shown in Figure 5.5. We further know from the proof of Lemma 5.12
that there is no length two PR-sequence from N to M ′ that does not use a head PR0. So
assume first that M is obtained from N by a head PR0 θ. Only one of the four reticulation
edges of N could be pruned by θ to result in a network M where leaf 1 is not child of a
reticulation and such that the leaves 1 and 4 could be joined into a cherry with one further
PR0. See for example M1 in Figure 5.5. However, we note that such M (or M1) does not
have PR-distance one to M ′. Assume therefore that M is obtained from M ′ by a head
PR0. With similar arguments we get that such M (like M2 in Figure 5.5) does not have
PR-distance one to N . Therefore, a suitable M cannot be obtained from N or M ′ by a
head PR0.

Since there is no PR-sequence from N to N ′ that starts or ends with a PR+, it follows
that σ∗ cannot exist and that each shortest PR-sequence from N to N ′ traverses two tiers
horizontally.

Bordewich et al. [BLS17, Proposition 7.5] have shown that

dSNPR(N,N ′) ≤ min{dSNPR(T, T ′) : T ∈ D(N) and T ′ ∈ D(N)}+ r + r′,
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4132

M ′ M1
M2

32 4 1 4132

Figure 5.5: Networks in an SNPR-sequences from N to N ′ of Figure 5.2 for the proof of
Lemma 5.12.

since there is always a path from N to N ′ via Tn. If N and N ′ display the same tree T ,
then r + r′ gives an upper bound on the distance of N and N ′. We now prove that this
bound can be sharp, even for PR.

Lemma 5.14.
Let r ≥ 2 and n ≥ 2r + 2. There exist N̄r, N̄

′
r ∈ Nn with r reticulations such that every

shortest SNPR- and PR-sequence from N̄r to N̄ ′r contains a phylogenetic tree.

Proof. To prove the statement, we show that every shortest PR-sequence

σ = (N̄r = N0, N1, . . . , Nk = N̄ ′r)

connecting the two phylogenetic networks N̄r and N̄ ′r depicted in Figure 5.6 has length
2k, for each i ∈ {1, 2, . . . , r}, Ni is obtained from Ni−1 by a PR−, and for each i ∈
{r + 1, r + 2, . . . , 2r}, Ni is obtained from Ni−1 by a PR+. Since N̄r and N̄ ′r both have r
reticulations, this implies that σ contains a phylogenetic tree. Note that σ exists because
we can transform N̄r into N̄ ′r by removing each reticulation edge in {e1, e2, . . . , er} with a
PR− and then adding each edge in {e′1, e′2, . . . , e′r} with a PR+. In addition, note that σ
is an SNPR-sequence.

1

l1

lr

2

l′rer

N̄r

e1

e2

l3
l2

l′1

l′2

l′r−2

1 2

l′1

l′r−1

l′r

N̄ ′r

l1
l2

lr
lr−1

lr−1

l′r−1

e′1

e′2

e′r

1

l1

2

N̄2

e1

e2

l2

l′1

l′2

1 2

l′1

N̄ ′2

l1
l2

l′2

e′1

e′2

Figure 5.6: Construction that is used in the proof of Lemma 5.14 to show that, for each
r ≥ 2, there exist two phylogenetic networks N̄r and N̄ ′r such that every shortest
SNPR- and PR-sequence from N̄r to N̄ ′r contains a phylogenetic tree.
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We pause to observe three properties of N̄ ′r that are crucial for the remainder of this
proof:

(P1) For each i ∈ {1, 2, . . . , r}, the leaf li is sibling of a reticulation.

(P2) Leaves 1 and 2 form a cherry, and are descendants of all reticulations.

(P3) There exists a directed path (ρ, w, v1, v2, . . . , vr), where ρ is the root, w is the child
of ρ, and each vi with i ∈ {1, 2, . . . , r} is a reticulation.

To illustrate, for r = 2, the networks N̄2 and N̄ ′2 are shown in Figure 5.6.
Now assume that there exists a PR-sequence

σ∗ = (N̄r = M0,M1,M2, . . . ,Mk′ = N̄ ′r)

from N̄r to N̄ ′r of length k′ ≤ 2r that is distinct from σ. Let

O∗ = (o1, o2, . . . , ok′)

be the sequence obtained from σ∗ such that for each i ∈ {1, 2, . . . , k′} the following holds:

• oi = 0 if Mi is obtained from Mi−1 by a PR0,

• oi = + if Mi is obtained from Mi−1 by a PR+, or

• oi = − if Mi is obtained from Mi−1 by a PR−.

Let m be the number of elements in O∗ that are equal to −.
Case 1. Assume that m > r. Since N̄r and N̄ ′r both have r reticulations, O∗ contains
exactly m elements that are equal to +. Hence, k′ ≥ 2m > 2r; a contradiction.
Case 2. Assume that m < r. Again, since N̄r and N̄ ′r both have r reticulations, O∗

contains exactly m elements that are equal to +. Thus, with k′ ≤ 2r, it follows that O∗

contains at most 2(r−m) elements that are equal to 0. Let i be an element in {1, 2, . . . , k′}
such that oi = +. Then, the number of leaves in {l1, l2, . . . , lr} that are siblings of different
reticulations in Mi−1 and Mi differs by at most one. Therefore, we need at least k1 ≥ r−m
PR0 operations to obtain a network from N̄r that satisfies (P1). Similarly, the number of
vertices on a path that consists only of reticulations in Mi−1 and Mi differs by at most
one. Therefore, we need at least k2 ≥ r−m PR0 operations to obtain a network from N̄r

that satisfies (P3).
Let i ∈ {1, 2, . . . , k′} such that oi = 0. Assume that the number of leaves in {l1, l2,

. . . , lr} that are siblings of reticulations in Mi is greater than this number in Mi−1. Then,
a tail PR0 operation to obtain Mi from Mi−1 either regrafts such a leaf lj as sibling to
an incoming edge of a reticulation or regrafts a reticulation edge to the incoming edge of
such a leaf. Alternatively, a head PR0 to obtain M1 form Mi−1 regrafts a reticulation edge
to the sibling edge of the incoming edge of such a leaf lj . Therefore, in either case, this
operation cannot increase the number of vertices that lie on a directed path of reticulations
in Mi compared to Mi−1. Similarly, if the number of vertices that lie on a directed path
of reticulations in Mi is greater than that number in Mi−1, then the number of leaves in
{l1, l2, . . . , lr} that are siblings of reticulations is not greater in Mi than in Mi−1. Again, a
PR0 operation cannot change both values for these networks at the same time. Overall, we
observe that the k1 PR0 used to satisfy property (P1) affect the leaves lj and reticulation
edges, whereas the k2 PR0 used to satisfy property (P3) affect the leaves l′j and (possibly)
leaf 1. It follows that k1 = k2 = (r −m) and, so, k′ = 2r.



5.2 Network to network 87

Lastly, to see that Mk′ does not satisfy property (P2), observe that neither the k1 + k2

PR0 operations nor the 2m PR− and PR+ operations that are used to satisfy (P1) and
(P3) result in a network that simultaneously satisfies (P2). Hence, it follows that at least
one additional PR0 is needed to transform N̄r into N̄ ′r; thereby contradicting that k′ ≤ 2r.
Case 3. Assume that m = r. Since N̄r and N̄ ′r both have r reticulations and k′ ≤ 2r, it
follows that k′ = 2r. We complete the proof by showing that, for each i ∈ {1, 2, . . . , r},
we have oi = − and, for each i ∈ {r + 1, r + 2, . . . , 2r}, we have oi = +. Assume that,
for some i ≤ r, we have oi = +. Choose i to be as small as possible. Let v be the unique
reticulation in Mi that is not a reticulation in Mi−1. Then v does not have leaves 1 and 2
as descendants and a leaf in {l1, l2, . . . , lr} as a sibling of a reticulation. Now, as O∗ does
not contain an element equal to 0, there exists an element oj = − with j > i such that Mj

does not contain the reticulation edge that was added in transforming Mi−1 into Mi. In
turn, this implies that the remaining r− 1 PR+ cannot transform N̄r into a network that
satisfies (P1) and (P3). Hence, if m = r, then σ∗ first uses r PR− and then r PR+ like σ.

Combining all three cases establishes the statement.

The statement of Lemma 5.14 requires N̄r and N̄ ′r to have at least two reticulations.
Nevertheless, using a slightly different construction than that for N̄r and N̄ ′r, Figure 5.7
shows two phylogenetic networks that both have one reticulation such that every shortest
PR-sequence connecting these two networks contains a phylogenetic tree. While omitting
a formal proof, we note that this claim can be verified by following the same ideas as in
the proof of Lemma 5.14.

1

2 l1

l1 l2 1 2

l2e′1e1

Figure 5.7: Two phylogenetic networks with one reticulation such that every shortest
SNPR- and PR-sequence connecting them contains a phylogenetic tree.

Lemma 5.14 also implies that to compute dPR(N,N ′) it may be necessary to consider
the space of all phylogenetic networks with at most r reticulations. However, for SNPR
even this can sometimes be insufficient. More precisely, we show that there are networks N
and N ′ with r reticulation such that every shortest SNPR sequence from N to N ′ contains
a network with more than r reticulations.

Lemma 5.15.
Let n ≥ 2, r ≥ 3, and let N,N ′ ∈ Nn with r reticulations.
There does not necessarily exist a shortest SNPR-sequence from N to N ′ such that each
network in the sequence has at most r reticulations.

Proof. To establish the lemma, we show that every shortest SNPR-sequence that connects
the two phylogenetic networks N and N ′ as depicted in Figure 5.8 contains a network
with four reticulations. First observe that dSNPR(N,N ′) ≥ 2 and, so, the SNPR-sequence
(N,M,N ′) is of minimum length.

We complete the proof by showing that there exists no SNPR-sequence (N,M ′, N ′) such
that M ′ is obtained from N by an SNPR− or SNPR0. Towards a contradiction, assume
that M ′ is obtained from N by an SNPR−. Clearly, leaf 1 is a child of a reticulation in
M ′. Moreover, as M ′ has two reticulations, it follows that N ′ is obtained from M ′ by an
SNPR+ and that leaf 1 is still a child or descendant of a reticulation in N ′; a contradiction.
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N
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SNPR−
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Figure 5.8: Every shortest SNPR-sequence from N to N ′, which both have three reticula-
tions, contains a network with four reticulations. This example is used in the
proof of Lemma 5.15

Now assume that M ′ is obtained from N by an SNPR0. If leaf 1 is a child of a reticulation
in M ′, then dSNPR(M ′, N ′) > 1. We may therefore assume that leaf 1 is not a child of
a reticulation in M ′. Hence, M ′ is the network that is shown on the right-hand side of
Figure 5.8 in which all three reticulations lie on a directed path. It now follows that
dSNPR(M ′, N ′) > 1 because it requires at least two SNPR to transform M ′ into a network
in which not all three reticulations are on a path and where leaf 1 is not a descendant of
any reticulation; again a contradiction.

Note that the example used in Lemma 5.15 does not work for PR, since the networks
N and N ′ have PR-distance one via a head PR0. In fact, we show that a PR+ directly
followed by a PR− can always be substituted with one or two PR0.

Lemma 5.16.
Let N,N ′ ∈ Nn,r such that there is a PR-sequence (N,M,N ′) that starts with a PR+.
Then there is a PR0-sequence from N to N ′ of length at most two.

Proof. Let the PR+ from N to M add the edge e and let the PR− from M to N ′ remove
the edge f . If f is also an edge of N , then it is straightforward to move f to e with two
PR0. Otherwise, let f ′ be the edge that gets subdivided when adding e into f and another
edge. Depending on whether f ′ gets subdivided by a tree vertex or a reticulation, N ′ can
be obtained from N with a head or tail PR0 that prunes f ′, respectively.

In the previous section, we have seen with Lemma 5.7 that the distance of N to a tree
that it displays it at most r. We now generalise this to when N ′ displays N .

Lemma 5.17.
Let N,N ′ ∈ Nn with r and r′ reticulations, respectively, such that N ′ displays N .
Then dPR(N,N ′) = dSNPR(N,N ′) = r′ − r.

Proof. Let l = r′ − r and let k = dPR(N,N ′). Note that k ≥ l since at least l PR+ are
needed from N to N ′ to increase the number of reticulations to r′. We now prove that
k ≤ l by induction on l. If l = 0, then N = N ′ and the statement holds.

Suppose that l ≥ 1 and that the lemma holds whenever a network in Nn displays N
and has fewer than r′ reticulations. Let S be a subdivision of N that is a subgraph of N ′;
i.e. S represents an embedding of N into N ′. Then there are l reticulations in N ′ such
that not both its incoming edges are covered by S. Otherwise N would have more than
r = r′ − l reticulations. Among these l reticulations of N ′, let v be the one closest to the
root. Let u and u′ be the parents of v. Then either u or u′ or both are tree vertices. To
see this, note that if u and u′ were reticulations and covered by S, then both incoming
edges of v would be covered by S. That would be a contradiction to our choices of v. If
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one of the parents was a reticulation and not covered by S, then we would have chosen
that parent instead of v. So assume without loss of generality that u is a tree vertex and
that the edge (u, v) is not covered by S. Remove (u, v) with a PR− from N ′ to obtain a
network with l− 1 reticulations that still displays N . The statement now follows from the
induction hypothesis.

Next, Lemma 5.7 gives us a lower bound on the distance of N and N ′ with regards to
the trees they display.

Lemma 5.18.
Let N,N ′ ∈ Nn. Then dSNPR(N,N ′) ≥ dPR(N,N ′) ≥ max

T∈D(N)
min

T ′∈D(N ′)
dPR(T, T ′).

Proof. Note that the first inequality holds by the definition of SNPR. We prove the second
one. Let k = dPR(N,N ′). By Lemma 5.7 we know that for every tree T ∈ D(N) there is a
tree T ′ ∈ D(N ′) with dPR(T, T ′) ≤ k. Hence, the minimum distance of any tree in D(N)
to a tree in D(N ′) provides a lower bound for k.

5.3 Isometric relations between classes

In Figure 2.3 we have seen inclusion relationships between different classes of phylogenetic
networks. Then in Chapter 3 we have proven that all these classes form metric spaces under
SNPR and PR. We now look at the isometric relationships of these spaces. In particular,
we want to know whether moving between two networks of a certain class might be faster
if we leave this class. We can also rephrase this into the question of whether adding
constraints to networks increases the distance.

Above we have seen and proven that Tn is an isometric subgraph of Nn under SNPR
and PR. Concerning higher tiers of Nn, however, we get the following theorem from the
results of the previous section.

Theorem 5.19.
Let n ≥ 4 and r ≥ 1.
Then Nn,r is not an isometric subgraph of Nn under SNPR and PR. Moreover, for r ≥ 3
and SNPR, Nn,r is not an isometric subgraph of the class of phylogenetic networks in Nn
that have at most r reticulations.

Proof. The first statement follows from Lemma 5.14 for r ≥ 2 and from Figure 5.7 for
r = 1. The second statement follows from Lemma 5.15.

We now show that allowing parallel edges can reduce the distance between two networks
(following the proof of Proposition 16 by the author and Linz [KL19]).

Lemma 5.20.
Let n ≥ 3. Let N ∗n be the class of phylogenetic networks in Nn that do not contain parallel
edges. Then N ∗n is not an isometric subgraph of Nn under SNPR and PR.

Proof. To establish the statement, we give an explicit examples of two networks N and
N ′ in N ∗n whose SNPR- and PR-distance in N ∗n is greater than in Nn. For this let N and
N ′ be the networks shown in Figure 5.9. Then σ = (N,M,N ′) is a length two SNPR- and
PR-sequence from N to N ′. Note that N ′ can be obtained from N by swapping the leaves
1 and 3. Since leaf 3 is the child of a reticulation in N , it cannot be pruned in N . The
sequence σ thus prunes the edge incident to leaf 1 to regraft it above leaf 3, which then
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enables the edge incident to leaf 3 to be pruned and regrafted to the former position of
leaf 1.

Towards a contradiction, assume that there exists a PR-sequence σ∗ = (N,M ′, N ′)
distinct from σ. Suppose σ∗ does not start by pruning the edge incident to leaf 1. Then
leaf 1 has to be moved or a triangle above it constructed from M ′ to N ′. Furthermore,
the edge incident to leaf 3 cannot be pruned in N , so leaf 3 has to be moved from M ′ to
N ′. However, making both these changes is not possible with a single PR. Therefore, σ is
the unique length two SNPR- and PR-sequence in Nn that connects N and N ′. Hence, as
M contains a pair of parallel edges, we have that the SNPR- and PR-distance of N and
N ′ in Nn is two, but at least three in N ∗n .

1

2
3

3

2
1

1

2

3

SNPR
N M N ′

SNPR

Figure 5.9: Two networks N,N ′ without parallel edges for which the only shortest SNPR-
and PR-sequence in Nn goes through M , which contains a pair of parallel
edges. This example is used in the proof of Lemma 5.20.

We can use the same line of argument as in Lemma 5.20 on the examples in Figure 5.10
to prove the following relations.

Theorem 5.21.
Let n ≥ 5. Then under SNPR and PR

(i) NN n is not an isometric subgraph of T Cn and Nn,

(ii) T Cn is not an isometric subgraph of T Sn and Nn,

(iii) RVn is not an isometric subgraph of T Bn and Nn,

(iv) T Sn is not an isometric subgraph of T Bn and Nn, and

(v) T Bn is not an isometric subgraph of Nn.

Note that while Francis and Steel [FS15] allow tree-based networks to have edges in
parallel, it is easily seen that one can add a single edge to each of the three networks
depicted in Figure 5.10 (v) to obtain an example showing that the class of tree-based
networks without parallel edges on n leaves is not an isometric subgraph of Nn either.

Next we look at level-k networks.

Lemma 5.22.
Let n ≥ 4 and i ≥ 1.
Then LV i,n is not an isometric subgraph of LV i+1,n and Nn under SNPR and PR.

Proof. To establish the statement for level-1 networks, we give an explicit example of two
networks N and N ′ in LV1,n whose SNPR- and PR-distance is three in LV1,n but only
two in LV2,n. For this let N and N ′ be the networks that are shown in Figure 5.9. Then
σ = (N,M,N ′) is a length two SNPR- and PR-sequence fromN toN ′. It is straightforward
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Figure 5.10: Examples to prove the statements of Theorem 5.21 with the same numbering.
In each example, the two networks N and N ′ are of the class of (i) normal,
(ii) tree-child, (iii) reticulation-visible, (iv) tree-sibling, or (v) tree-based net-
works, and only differ by interchanging the labels 1 and 3. The only shortest
SNPR- and PR-sequence between N and N ′ is through M , which is not in
this class.
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Figure 5.11: Two networks N,N ′ ∈ LV1,n for which the only shortest SNPR- and PR-
sequence in Nn goes through M 6∈ LV1,n. This example is used in the proof
of Lemma 5.22.

to check that dPR(N,N ′) > 1 and hence σ is a shortest path. Note that M is not a level-1
network.

We claim that there is no PR-sequence of length two from N to N ′ within LV1,n.
Towards a contradiction, assume the contrary, namely that there exists such a PR-sequence
σ∗ = (N,M ′, N ′). Suppose σ∗ starts with a PR− and thus removes a triangle. However,
then the PR+ from M ′ to N ′ cannot add a triangle that is incident to both leaf 2 and leaf
3. Next, suppose σ∗ starts with a PR+ that does not create a level-2 network. However,
then the PR− applied to M ′ can only remove one of the three blobs of M ′ and the resulting
network can thus not have a triangle that is incident to both leaf 2 and 3. Last, suppose
that σ∗ starts with a PR0 that does not create a level-2 network. Note that it takes at
least two PR0 to create a triangle that is incident to both leaf 2 and 3 as in N ′, since leaf
1 has to, so to say, be pruned from the triangle above leaf 2 and and leaf 3 attached to it.
Therefore the PR0 from N to M ′ has to work towards that. Going through all possible
PR0, we find that the only suitable PR0 prunes leaf 1 and attaches it to the edge incident
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leaf 3. Then M ′ is as M1 in Figure 5.11. (Note that a PR0 on N that regrafts leaf 1 to
another edge, would result in a network M ′ where leaf 3 cannot be moved.) As a result,
leaf 3 is prunable in M ′ = M1 and can be moved to the pair of parallel edges above leaf
2 with another PR0. This creates the desired triangle. However, the resulting network is
not N ′. The sequence σ∗ can thus not avoid a level-2 network M ′. Hence, we have that
the SNPR- and PR-distance of N and N ′ is two in LV2,n, but at least three in LV1,n.

Lastly, note that the example can easily be extended to higher levels and n.

We close this section with two remarks. Firstly, note that, for high enough r, Theo-
rem 5.21 and Lemma 5.22 also hold for the tiers r of the respective classes, that is, Cn,r is
not an isometric subgraph of Nn,r. Secondly, the networks presented in this chapter may
seem rather small. However, they can be regarded as skeletons of larger networks with the
same properties. For instance, in all examples that we used to establish the results of this
chapter, there is a leaf that can be replaced with a subtree or a subnetwork. Furthermore,
some edges can be subdivided to add further reticulation edges or subtrees to obtain larger
networks with the same properties.

5.4 Concluding remarks

In this chapter we have looked at shortest paths in the space of phylogenetic networks
under SNPR and PR between trees and networks. Using the sets of trees displayed by
a network, we gave several bounds on the distance of two trees or a tree and a network.
One interpretation of these results is that it is not faster to walk in higher tiers from one
network N to another network N ′ than it is from the displayed trees of N to the displayed
trees of N ′. Furthermore, we have seen that Tn is an isometric subgraph of Nn under PR.
This implies that it is NP-hard to compute the PR-distance in Nn. On the positive side,
we characterised the distance of a tree T and a network N in terms of the trees displayed
by N . This allowed us to use fixed-parameter tractable algorithm for the computation of
the SPR-distance of two trees as a black-box for a fixed-parameter tractable algorithm for
the computation of the PR-distance of T and N .

Looking at the distance of two networks in tier r, we found that an exhaustive algorithm
that wants to compute PR-distance in Nn may have to include all tiers below tier r,
including trees, into the search space. In addition, we showed that for SNPR even the tier
above may have to be included. This means that the tiers Nn,r with r ≥ 1 are not isometric
subgraphs of Nn under SNPR and PR. There remain several open problems. First, are
there two networks N and N ′ with r reticulations such that every shortest PR-sequence
from N to N ′ traverses tier r + 1? We have seen that the PR-distance of such networks
has to be at least three. Second, are there two networks N and N ′ with r reticulations
such that every shortest SNPR-sequence from N to N ′ traverses tier r + l where l is at
least two? Also, how large can l be?

Further negative results showed that the most popular classes of phylogenetic networks
are not isometric subgraphs of Nn. Moreover, this is not even the case if we restrict it
to the tiers of the class and Nn,r. This means that when considering two networks of a
certain class in tier r, one has to decide which PR-distance one wants to consider: the
PR-distance in that class, in Nn,r, or in Nn. This raises the question whether there is a
class of phylogenetic networks for which the SNPR- or the PR-distance in that class equals
the distance in Nn.
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In this chapter we look at how the notion of agreement forests on phylogenetic trees can
be generalised for phylogenetic networks.

In the previous chapter we have seen that working with sequences of rearrangement
operations can be challenging. For unrooted trees, Hein et al. [HJWZ96] proposed the use
of agreement forest for this problem. Agreement forests have been adopted to rooted trees
and work as follows. Consider the two trees T and T ′ in Figure 6.1 and the SPR-sequence
from T to T ′. Each of the SPR prunes one edge and then regrafts it again. If we only carry
out these prunings but do not regraft the edges, we end up with a forest F consisting of
multiple smaller phylogenetic trees. Now, reversing these prunings by regrafting the edges
again we end up with T and, similarly, regrafting the edges like in the SPR-sequence we
end up with T ′. Hence we note that T and T ′ “agree” on F , which is thus called an
agreement forest of T and T ′.

31 2 4 21 3 4

T

1 2 3 4

F

41 3 2

T ′
SPR SPR

31 2 4

ρ ρρ

ρ

ρ
F into T

41 3 2

F into T ′

ρ

Figure 6.1: A length two SPR-sequence from T to T ′ that first prunes leaf 3 and then leaf
4. This yields the agreement forest F of T and T ′. On the right is shown how
F can be embedded into T and T ′, where a grey edges show which pairs of
vertices get identified by the embedding.

A special case occurs when, in an SPR-sequence, an edge gets regrafted to the root edge
and then its resulting sibling edge gets pruned. See for example the SPR-sequence shown
in Figure 6.2. In this case, the agreement forest F of T and T ′ contains the isolated vertex
labelled ρ.

Recall that a graph G consisting of multiple components has an embedding into another
graphH if the components ofG have pairwise edge-disjoint embeddings intoH. In addition
we require that an embedding maps labelled vertices of G to vertices with the same label
in H. Looking again at the examples in Figures 6.1 and 6.2 we note that the agreement
forest F has embeddings into T and into T ′ such that all their edges are covered. Our
definition of an agreement forest and its generalisation below is based on this observation.

An agreement forest F of T and T ′ with the minimum number of components among all
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31 2 4

T

1 2 3 4

FT ′
SPR SPR

31 2 4

ρ ρρ
ρ

ρ

41 3 231 2 4 31 2 4

ρ
F into T F into T ′

Figure 6.2: A length two SPR-sequence from T to T ′ that first prunes the cherry {1, 2}
and then the cherry {3, 4}. This yields the agreement forest F of T and T ′.
Note that F contains the isolated vertex labelled ρ. On the right is shown how
F can be embedded into T and T ′.

agreement forests of T and T ′ is called a maximum agreement forest (MAF). Note that in
the examples above each SPR causes one component to split. Hence, Hein et al. [HJWZ96]
claimed that in the unrooted case the number of components minus one would equal the
SPR-distance of two unrooted trees. This was then corrected by Allen and Steel [AS01],
who showed that this is not the case for SPR, but for TBR on unrooted trees. Later
Bordewich and Semple [BS05] proved that, for the rooted case, if F is a MAF, then its
number of components characterises the SPR-distance of T and T ′. More precisely, for a
maximum agreement forest F of T and T ′ with k components, we define m(T, T ′) = k−1.

Theorem 6.1 (Bordewich and Semple [BS05, Theorem 2.1]).
Let T, T ′ ∈ Tn. Then

dSPR(T, T ′) = m(T, T ′).

Bordewich and Semple proved Theorem 6.1 by converting a shortest SPR-sequence into
an agreement forest and, conversely, deriving a SPR-sequence from a maximum agreement
forest.

This characterisation of the SPR-distance turned out to be a practical tool. Instead
of having to work with countless intermediate trees in possible SPR-sequences from T to
T ′, one can argue about the distance of T and T ′ based on a single graph – a MAF.
For example, using MAFs it has been shown that the following reduction rules pre-
serve the SPR-distance (or the TBR-distance in the unrooted case). We can replace
common pendant subtrees of T and T ′ with a new leaf and replace chains of common
leaves that occur identically in both trees with three new leaves. In other words, if T
and T ′ agree on a pendant subtree (or a chain), then this subtree is fully contained in
one of the trees for a MAF of T and T ′. Using the reduction rules as kernelisation,
fixed-parameter tractable algorithms for the problem of computing the SPR-distance pa-
rameterised with its natural parameter have been developed [AS01, BS05]. Similarly, a
divide-and-conquer approach for the computation of the SPR-distance has been developed
that uses MAFs [LS11]. Furthermore, MAFs have been used for exact and approximation
algorithms [HJWZ96,RSW07,BMS08,BSJ09,Wu09,WZ09,SFYW16,SvZvdS16,CHW17].
Beyond two phylogenetic trees, MAFs have also been generalised for non-binary trees and
for sets of more than two trees, again to develop fixed-parameter tractable algorithms and
approximation algorithms [Cha05, RSW07, vIKLS14, CFS15, CSW16]. With slight modi-
fication, agreement forests have also been used for results on the Hybridisation Number
problem [LS09, HL18]. Another problem related to MAF is the Maximum Agreement
Subtree problem (MAST), which ask for the largest common subtree of a set of given
phylogenetic trees [SW93,AK97,CFCH+00,Mar18]. This problem has also been extended
to the Maximum Agreement Subnetwork problem for two networks [CJSS05].

Here we are interested in how we can generalise MAFs to model a PR-sequence be-
tween two networks N and N ′ and whether such a generalisation can characterise the
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PR-distance. Just like for an SPR-sequence, we thus look at what happens when we only
consider the pruning part, but not the regrafting part of a PR-sequence. In addition, we
find a way to model that N and N ′ might have a different number of reticulation and thus
also a different number of edges. In this chapter we develop such a generalisation of MAFs
for networks. Based on this we define a metric called agreement distance and then consider
whether it characterises the PR-distance. Using the results from the previous chapter, we
are able to show that this is the case for the distance of a tree and a network. However,
we show that the agreement distance does not in general characterise the PR-distance of
two networks. Nevertheless, we prove that it still bounds the PR-distance and thus the
SNPR-distance with constant factors.

Remark. This chapter is based on “The agreement distance of rooted phylogenetic
networks” [Kla19] except for Section 6.3.2, which is derived from the joint work with
Simone Linz “On the Subnet Prune and Regraft Distance” [KL19].

6.1 Agreement graph

In this section we define maximum agreement graphs for two phylogenetic networks N
and N ′. The main idea is to find a graph that can be obtained from both N and N ′ with
a minimum number of prunings. Throughout this section, let N,N ′ ∈ Nn with r and r′

reticulations, respectively. Without loss of generality, assume that r′ ≥ r and let l = r′− r
be the difference in the number of reticulations of N and N ′. Further recall that we assume
that a path in a directed graph is a directed path and contains at least one edge.

Prunings and sprouts. Let G be a directed graph. Let u be a vertex of G that is either
labelled or has degree three. Let (u, v) be an edge of G. Recall that a pruning of (u, v)
at u is the process of deleting (u, v) and adding a new edge (ū, v), where ū is a new
(unlabelled) vertex. If u is now an indegree one, outdegree one vertex, then we suppress
u. Note that a pruning does not remove a label from u. The definition for a pruning of
the edge (u, v) at v is analogous. We mostly apply a pruning to a phylogenetic network
or a graph derived from a phylogenetic network. Therefore, the restriction that u is either
labelled or has degree three can be understood as u being either the root ρ, a (labelled)
leaf, or an internal vertex.

A sprout ofG is an unlabelled degree one vertex ofG. For example, applying a pruning to
a phylogenetic network yields a graph with exactly one sprout. A t-sprout (resp. h-sprout)
is a sprout that is the tail (resp. head) of its incident edge.

Agreement embeddings. Let (u, v) be an edge of N with u either a labelled vertex; i.e.
the root ρ, or a degree-three vertex. Consider a graph G obtained from N by pruning
(u, v) at u. Then G has exactly one sprout ū, and n + 1 labelled vertices of which n are
bijectively labelled by X and one with ρ. We can distinguish three cases. If u is ρ of N ,
then G contains an isolated vertex labelled ρ, say, ū′. If u is a reticulation in N , then
G contains an indegree two, outdegree zero vertex, say, ū′. If u is a inner tree vertex in
N , then u gets suppressed in the process of the pruning. In the first two cases, we get a
canonical embedding of G into N that is a bijection of the edges of G to the edges of N
and a surjection of the vertices of G to the vertices of N . Only ū and ū′ of G get mapped
to u of N . In the third case, we obtain such an embedding for a subdivision of G (which
reverses the suppression of u) into N . The case for pruning (u, v) at v is similar. Together
the three cases motivate the following definition.

Let G be a directed graph. We say G has an agreement embedding into N if there exists
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an embedding of G into N with the following properties.

• The pairwise edge-disjoint embeddings of the components of G into N together cover
all edges of N .

• At most two vertices of G are mapped to the same vertex of N . In this case, one of
these two vertices of G is a sprout and the other is either a labelled isolated vertex,
or an indegree two, outdegree zero vertex, or an indegree zero, outdegree two vertex.

• For each labelled vertex v of N , there exists exactly one vertex v̄ with the same label
in G and v̄ is mapped to v.

Note that if G has an agreement embedding into N , then G has n + 1 labelled vertices
of which n are bijectively labelled by X and one with ρ. Furthermore, note that to every
inner tree vertex of N either a tree vertex, or a t-sprout, or an h-sprout and an outdegree
two, indegree zero vertex of G gets mapped. The situation is similar for a reticulation, a
leaf, and the root.

Lemma 6.2.
Let G be a directed graph and N ∈ Nn.
Then G has an agreement embedding into N if and only if G can be obtained from N by
a sequence of prunings.

Proof. If G can be obtained from N by a sequence of prunings, then an agreement embed-
ding of G into N follows naturally. So assume that G has an agreement embedding into
N . Then G can be constructed from a sequence of prunings as follows. Assume that G
contains a t-sprout ū. If ū is mapped to a vertex u and the edge (ū, v̄) is mapped to the
path from u to v in N , with w the child of u in this path, then prune the edge (u,w) at
u. This covers either of the cases of when ū is mapped to ρ, or to the same reticulation
to which a degree two vertex of G is mapped, or to a tree vertex of N that lies on a path
to which an edge of G is mapped. In either case, applying this pruning also either creates
the isolated vertex ρ, a degree two vertex, or suppresses a vertex, respectively. A pruning
for an h-sprout works analogously. We can find such a pruning for each sprout of G. Now
consider the case where we have identified that we want to prune the edge e = (u, v) at u
and the edge f = (u,w) at w. Let p be the parent of u. If we now prune e at u, then the
edges f and (p, u) are removed when suppressing u and a new edge f ′ = (p, w) added. In
the resulting graph, we cannot prune f , but instead now want to prune f ′ at w. Further
note that since G has an agreement embedding into N , no two edges have to be pruned at
the same vertex. Hence, we can apply one pruning after the other on the edges identified
in N or on the edges they get extended to by preceding prunings. As noted, this does not
only create the sprouts, but also the labelled, isolated vertices and degree-two vertices and
shrinks the path of N to which edges of G get mapped to edges. Hence, this sequence of
prunings results in G.

Agreement graphs. Recall that we assume that N ′ has l more reticulations than N . Let
G be a directed graph with connected components S1, . . . , Sk and E1, . . . , El such that the
E1, . . . , El each consist of a single directed edge. Then G is an agreement graph of N and
N ′ if

• G without E1, . . . , El has an agreement embedding into N , and

• G has an agreement embedding into N ′.
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For such an agreement graph, we refer to each Si as an agreement subgraph and to each
Ej as a disagreement edge. A maximum agreement graph G for N and N ′ is an agreement
graph for N and N ′ with the minimum number of sprouts. Figures 6.3 and 6.4 give two
examples of maximum agreement graphs.

31 2 21 3 3

ρ ρ S1

S2

4 4 21

ρ

4 31 2 21 3

ρ ρ

4 4

G into N G into N ′N GN ′

Figure 6.3: A maximum agreement graph G for N and N ′ with its agreement embeddings
into N and N ′ shown on the right. Note that the agreement subgraph S2

consists of a labelled isolated vertex.
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S1 S2 S3 E1

1 2

ρ

41 3

ρ

23 4

G into N G into N ′N GN ′

Figure 6.4: A maximum agreement graph G for N and N ′ with its agreement embeddings
into N and N ′ shown on the right. Note that the disagreement edge E1 is only
used for N ′.

An agreement forest F for two trees T and T ′ is an agreement graph for T and T ′ where
each agreement subgraph Si for i ∈ {2, . . . , k} is a phylogenetic tree with an unlabelled
root and S1 is either a phylogenetic tree (with the root labelled ρ) or an isolated vertex
labelled ρ. Note that an agreement forest F contains no h-sprouts and that thus in the
respective agreement embeddings of F into T and T ′ a sprout of F is mapped either to
the root ρ or to a subdivision vertex of an edge of another agreement subgraph. See again
Figures 6.1 and 6.2 for examples. On the other hand, considering shortest PR-sequences
between N and N ′ in the examples in Figures 6.3 and 6.4 shows why in general in an
agreement embedding of an agreement graph G a sprout may have to be mapped to the
same vertex as a labelled isolated vertex (ρ or a leaf of N and N ′) or an unsuppressible
degree-two vertex of G.

Before we show that maximum agreement graphs induce a metric on Nn, we establish
further notation and terminology to ease talking about agreement embeddings and agree-
ment graphs. We use ē, f̄ , ū, v̄ if we refer to edges or vertices of an agreement graph and
e, f, u, v for edges and vertices of N or N ′. If we use symbols like ū and u in the same
context, then ū is usually mapped to u by the agreement embedding under consideration.

Let G = (VG, EG) be a graph with an agreement embedding into a network N =
(VN , EN ). We say a sprout ū ∈ VG is attached to ē ∈ EG in N if ū is mapped to a
vertex u ∈ VN that is an internal vertex of the path to which ē is mapped. Similarly, we
say ū ∈ VG is attached to x̄ ∈ VG in N if ū and x̄ are mapped to the same vertex x ∈ VN .
We say an edge ē = (ū, v̄) ∈ EG is attached to f̄ ∈ EG in N if either ū or v̄ is a sprout
and attached to f̄ . Note that ē being attached to f̄ does not imply f̄ being attached to
ē. Considering the example in Figure 6.3 and the agreement embedding of G into N , note
that one sprout is attached to the incoming edge of leaf 2 in N and another sprout is
attached to the isolated vertex labelled 3 in N .
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Embedding changes. Note that a graph G may have several agreement embeddings into
N or N ′. We now describe how, in some cases, an agreement embedding can be changed
into another one. For this, let ū and v̄ be two t-sprouts of G with outgoing edges ē = (ū, w̄)
and f̄ = (v̄, z̄), respectively, such that ū is attached to f̄ in N . Let ē be mapped to the
path P = (y, . . . , w) in N and let f̄ be mapped to the path P ′ = (x, . . . , y, . . . , z) in N .
Then an embedding change of G into N with respect to ū and v̄ is the change of the
embedding such that ē is mapped to the path (x, . . . , y, . . . , w) formed by a subpath of P ′

and the path P , and such that f̄ is mapped to the subpath (y, . . . , z) of P ′. See Figure 6.5
for an example. The definition for h-sprouts is analogous.

x̄

ū

v̄
x̄

ū

v̄

z̄w̄ z̄w̄

Figure 6.5: An embedding change with respect to ū and v̄.

We now use embedding changes to show that an agreement embedding of G into N ′ can
be changed into an agreement embedding with some nice properties.

Lemma 6.3.
Let N,N ′ ∈ Nn with r and r′ > r reticulations, respectively. Let G be a maximum
agreement graph for N and N ′.
Then there exist an agreement embedding of G into N ′ such that

• no sprout of an agreement subgraph is attached to a disagreement edge, and

• at least one disagreement edge is not attached to any other disagreement edge, and

• a disagreement edge Ei of G may only be attached to a disagreement edge Ej of G if
j < i.

Proof. Fix an agreement embedding of G into N ′. Assume that this embedding does not
fulfill the first property. Then let ū be a sprout of an agreement subgraph of G that is
attached to a disagreement edge (v̄, w̄) in N ′. Without loss of generality, assume that ū
is a t-sprout. Apply an embedding change with respect to ū and v̄. If v̄ was attached to
another disagreement edge (x̄, ȳ) in N ′, then repeat this step with ū and x̄. Otherwise ū
is now attached to a vertex or an edge of an agreement subgraph. This process terminates
since the vertex u to which ū gets mapped gets closer to the root in N ′ with every step.
Note that the embedding change of ū and v̄ may cause a sprout z̄ that was previously
attached to (v̄, w̄) in N ′ to now be attached to the edge incident to ū in N ′. However,
since this edge is an edge of an agreement subgraph, this does not negatively effect the
first property. Therefore, every sprout that was previously attached to an edge of an
agreement subgraph is still so after each step. Hence, the sprouts of agreement subgraphs
can be handled one after the other and without negatively affecting property three.

Next, assume that the current embedding fulfills the first, but not the third property.
Let Ei = (ū, v̄) be a disagreement edge of G, starting with Ei = E1. If ū and v̄ are each
attached to a vertex or an edge of an agreement subgraph or to a disagreement edge Ej
with j < i in N ′, then proceed with Ei+1. Otherwise, without loss of generality, assume
that ū is attached to a disagreement edge Ej = (x̄, ȳ) with j > i. Apply an embedding
change with respect to ū and x̄. The same arguments as above show that eventually ū
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is attached in N ′ in a good way. Since the embedding change does not affect a sprout
of any Em with m < i or of an agreement subgraph, this process does not affect the
first property or the previously handled disagreement edges. Therefore, the Ei’s can be
handled one after the other. Apply analogous steps, if necessary, to v̄ before proceeding
with Ei+1. The process terminates after Ei = El has been handled. Finally, note that the
third property implies the second.

Next, we show how to prune a particular edge of G such that the resulting graph is still
an agreement graph for N and N ′.

Lemma 6.4.
Let N,N ′ ∈ Nn. Let G be an agreement graph of N and N ′. Let ē = (ū, v̄) be an edge of
G. Then G can be transformed into a graph G′ such that

• ū (or v̄) is a sprout in G′,

• G′ contains at most one sprout more than G, and

• G′ is an agreement graph for N and N ′.

Proof. We prove this for a t-sprout ū. The proof for an h-sprout works analogously. If ū is
already a sprout, then there is nothing to do. If ū is labelled ρ or ū has degree three, then
obtain G′ by pruning the edge ē at ū. So assume that ū is an indegree zero, outdegree
two vertex. Consider the agreement embedding of G into N . Let ū be mapped to u in N .
Since u has degree three in N , there is an h-sprout w̄ mapped to u in N . This and the
following process are illustrated in Figure 6.6. Then identify w̄ with ū; i.e. regraft w̄ to
ū, and then prune ē from ū. Let G′′ be the resulting graph. In the agreement embedding
of the resulting graph into N , the new sprout ū is now attached to an edge f̄ = (x̄, ȳ).
To get w̄ back, restart this case distinction with the goal to prune f̄ at ȳ. Note that this
process terminates since the number of degree two vertices in G′′ is one less than in G and
thus at some point one of the first two cases has to apply. Let G′ be the resulting graph
when the process has terminated. Then G′ contains the sprout ū with incident edge ē and
contains at most one sprout more than G. That is because before the case distinction got
restarted, the sprout w̄ got removed first. Clearly, G′ has an agreement embedding into N .
If one of the first two cases applied, then it is also easy to show that G′ has an agreement
embedding into N ′. Otherwise, note that in the agreement embedding of G into N ′ an
h-sprout w̄′ is attached to the degree-two vertex ū. For the agreement embedding of G′

into N ′, this sprout w̄′ extends the same way as w̄ got extended in the embedding into N
(see again Figure 6.6).

w̄
ū
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ȳ

x̄

ē

Figure 6.6: For the proof of Lemma 6.4, how to prune the edge ē at a degree-two vertex
ū. First, regraft w̄; second, prune ē at ū; third, reobtain the sprout w̄.
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6.2 Agreement distance

In this section we show that maximum agreement graphs induce a metric on Nn. Let
N,N ′ ∈ Nn and let l be the difference in number of reticulations of N and N ′. Let G be
a maximum agreement graph for N and N ′ with l disagreement edges. Let s be the total
number of sprouts in the agreement subgraphs of G. Then define the agreement distance
dAD of N and N ′ as

dAD(N,N ′) = s+ l.

This is well defined since l is fixed by N and N ′, and since s is minimum over all agreement
graphs for N and N ′ by the choice of G.

Theorem 6.5.
The agreement distance dAD on Nn is a metric.

Proof. We have to show that dAD is symmetric, non-negative, that for all M,M ′ ∈ Nn
dAD(M,M ′) = 0 if and only if M = M ′, and that dAD satisfies the triangle inequality. Let
N , N ′, and l be as above. First note that the agreement distance is symmetric and non-
negative by definition. Second, if N = N ′, then G = N is a maximum agreement graph
for N and N ′ with zero sprouts and zero disagreement edges and thus dAD(N,N) = 0.
Now let G be a maximum agreement graph for N and N ′ with zero sprouts and zero
disagreement edges; i.e. dAD(N,N ′) = 0. Together with the fact that N and N ′ are
internally binary, this implies that every unlabelled vertex of N and N ′ gets covered by a
degree three vertex of G. Thus G has to consist of a single connected component and has
an agreement embedding into both N and N ′ without subdivisions. This in turn implies
that N = G = N ′.

Next, we prove that the agreement distance satisfies the triangle inequality. For this let
N,N ′, N ′′ ∈ Nn with r, r′, and r′′ reticulations, respectively. Without loss of generality,
assume that r ≤ r′′. Let G′ (resp. G′′) be a maximum agreement graph for N and N ′

(resp. N ′ and N ′′) with s′ sprouts in its agreement subgraphs and l′ disagreement edges
(resp. s′′ and l′′). For the triangle inequality to hold, we have to show that

dAD(N,N ′′) ≤ d = dAD(N,N ′) + dAD(N ′, N ′′) = s′ + s′′ + l′ + l′′.

For this, we construct an agreement graph G for N and N ′′ with s sprouts in its agreement
subgraphs and l disagreement edges such that s+ l ≤ d. Note that G does not have to be
a maximum agreement graph. Also note that l is fixed by N and N ′′. The main idea for
the construction of G is to merge G′ and G′′ in terms of the prunings they represent in N ,
N ′ and N ′′. Containing, so to say, sprouts from both G′ and G′′ and the right amount of
disagreement edges, finding agreement embeddings of G into N and N ′′ will become easy.
We first consider the restricted cases of when N , N ′ and N ′′ either have the same number
of reticulations or only differ in the number of reticulations.
Case I – l′ = l′′ = 0. In this case, by Lemma 6.2 both G′ and G′′ can be obtained from
N ′ by applying s′ and s′′ prunings, respectively. We now apply all these prunings to N ′

to construct G in the following way. Like in Lemma 6.2, we identify to which edges of
N ′ this prunings correspond and whether they prune at the tail or the head of the edge.
Apply the s′ prunings of G′ to N ′ to obtain, of course, G′. Next, to apply the s′′ prunings
(in N ′) of G′′ to G′, we have to identify which edges to prune in G′.

Assume, without loss of generality, that we want to prune e = (u, v) at u in N ′. Further
assume G′ contains an edge ē = (ū, ȳ) such that ū is mapped to u and ē to a path containing
e. With Lemma 6.4 prune ē at ū and obtain a graph Ḡ. Note that Ḡ has an agreement
embedding into N and N ′. Next, assume G′ contains an edge ē′ = (x̄, ȳ) such that ē′ is
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mapped to a path containing e and u as internal vertex. Then, G′ contains a sprout w̄
that is mapped to u (and thus attached to ē′ in N ′). If w̄ is an h-sprout, prune ē′ at x̄
with Lemma 6.4 and obtain a graph Ḡ. Note that Ḡ has an agreement embedding into N
and N ′. So assume otherwise, namely that w̄ is a t-sprout. Let w̄ have the incident edge
(w̄, z̄). Subdivide ē′ with a new vertex ū and identify w̄ with ū. Prune ē = (ū, ȳ) at ū
and then use Lemma 6.4 to prune (x̄, z̄) at x̄ to reobtain w̄. Let Ḡ be the resulting graph.
Note that Ḡ has an agreement embedding into N ′. Furthermore, apply an embedding
change with respect to ū and w̄ to see that G still has an agreement embedding into N .
Repeat this process (now using Ḡ instead of G′) for each of the s′′ sprouts of G′′. Let G
be the resulting graph, which by construction has an agreement embedding into N ′ and
N . Furthermore, G has at most s ≤ s′ + s′′ sprouts.

Lastly, we have to show that G has an agreement embedding into N ′′. Consider the
agreement embeddings of G and G′′ into N ′. Let ū be a sprout of G obtained for a sprout
ū′′ of G′′. If ū and ū′′ are mapped to the same vertex u of N ′′, then it is straightforward
to handle ū when obtaining the agreement embedding of G into N ′′. On the other hand,
ū could “reach beyond” u, that is, its incident edge is mapped to a path containing u
as internal vertex. This case might be reduced to the former with an embedding change
of G into N ′. Otherwise, we know that ū′′ is attached to a degree two vertex x̄′′ in
N ′. Furthermore, there is then also a sprout w̄′′ of G′′ that is attached to x̄ in the
agreement embedding of G′′ into N ′′. Let w̄ be the sprout of G obtained for the sprout
w̄′′. Using the agreement embedding of G′′ into N ′′ to obtain the agreement embedding
of G into N ′′, we then let the sprout w̄ “reach beyond” x̄′′ in the same way as ū does in
the agreement embedding of G into N ′ (see also Figure 6.6). To conclude, note that with
s+ l = s ≤ s′ + s′′ = s′ + s′′ + l′ + l′′ the triangle inequality holds in this case.
Case II.a – s′ = s′′ = 0 and r < r′ < r′′. In this case, N ′ can be seen as N plus l′

reticulation edges and N ′′ can be seen as N ′ plus l′′ reticulation edges. Thus, N ′′ can also
be seen as N plus l′ + l′′ reticulation edges. Therefore G consisting of N and l = l′ + l′′

disagreement edges is a desired agreement graph for N and N ′′ showing that the triangle
inequality holds in this case.
Case II.b – s′ = s′′ = 0 and r < r′ > r′′. Fix agreement embeddings of G′ and G′′ into
N ′. Colour all edges to which a disagreement edge of G′ is mapped orange and to which
a disagreement edge of G′′ is mapped green. Intuitively, edges that are now both green
and orange in N ′ are neither in N nor in N ′′. We now align the agreement embeddings of
G′ (and G′′) such that a disagreement edge is mapped to either edges that are all orange
or all green-orange (resp. all green or all green-orange). Note that a disagreement edge is
mapped to a path that starts at a tree vertex and ends at a reticulation. Furthermore, if
such a path contains an internal vertex v, then the sprout of another disagreement edge
is mapped to v. Therefore, to align the agreement embeddings as described above, we
can apply a sequence of simple embedding changes to the sprouts of disagreement edges
as illustrated in Figure 6.7 (i) and (ii) (the rules for h-sprouts and swapped colours are
analogous). We can further align those disagreement edges of G′ and G′′ that are mapped
to green-orange edges with rule (iii) in Figure 6.7. Now let k′ be the number disagreement
edges of G′ (and thus also of G′′) that are mapped to green-orange edges.

Obtain a new N ′ from N ′ by removing all green-orange edges from N ′, obtain new G′ and
G′′ from G′ and G′′ by removing k′ disagreement edges. Note that G′′ has now k = l′′− k′
disagreement edges. Clearly, G′ (resp. G′′) has still an agreement embedding intoN andN ′

(resp. N ′ and N ′′). Then, in N ′, if a vertex is incident to an uncoloured edge e, an orange
edge, and a green edge, then colour e red. Such a colouring is illustrated in Figure 6.8.
Next and as long as possible, while a vertex is incident to an uncoloured edge e, a red edge
and a green or orange edge, colour e red. Obtain S from N ′ by removing all coloured edges
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Figure 6.7: For Case II.b, embedding changes of G′′ (green) into N ′ with respect to ū and
v̄ to align the embeddings of disagreement edges of G′ (orange with dots) and
G′′ in N ′.

and suppressing indegree one, outdegree one vertices. Removing the red edges prevents S
from having sprouts. Let G be the graph consisting of S and l disagreement edges and
k = l′′ − k′ connected components Fi consisting of a single directed edge. We claim that
G is an agreement graph for N and N ′′.

1 2

N N ′

ρ ρ

3 4

N ′′

ρ ρ ρ

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

e

f
F1 E1

F1

G into N G into N ′′

Figure 6.8: For Case II.b, N (resp. N ′′) can be obtained from N ′ by removing the orange
(with dots) (resp. green) edges. Embedding G into N , the agreement subgraph
F1 has to cover not only the green edge, but also the red edges (e and f), which
got removed from N ′ when obtaining G because a disagreement edge of both
N and of N ′′ were incident to them.

We construct an agreement embedding of G into N . The embedding of S into N is
given by the embeddings of S and N into N ′. Let Ei be a disagreement edge of G′′. Let
P be the green path in N ′ that corresponds to Ei. If an edge of P caused the creation of
a red edge e, extend P by e if possible; that is, if P would still be a directed path. Next
and as long as possible, if e caused another red edge e′, extend P by e′ if possible. Then
embed an Fi into N in the way that P is embedded onto N in the embedding of N into N ′.
The colours of the edges ensure that this is possible. See again Figure 6.8 for an example.
Furthermore, note that this construction eventually covers all green and red edges. Hence,
we constructed an agreement embedding of G into N . Finding an agreement embedding
of G into N ′′ works analogously but also uses the disagreement edges of G besides the Fi.
Since l = l′− l′′, we get s+ l = 2k+ l =≤ 2l′′+ l = l′+ l′′, and thus the triangle inequality
also holds in this case.
Case II.c – s′ = s′′ = 0 and r > r′ < r′′. In this case, N and N ′′ can be obtained
from N ′ by adding l′ and l′′ = l + l′ reticulation edges, respectively. Consequently, N ′

together with l disagreement edges and l′ further connected components that consists of
a single directed edge gives an agreement graph for N and N ′′. Since l = l′′ − l′, we get
s+ l = 2l′ + l = l′ + l′′, and thus the triangle inequality also holds in this case.
Case III.a – r ≤ r′ ≤ r′′. Assume agreement embeddings of G′ and G′′ with nice
properties as in Lemma 6.3. We now combine Case I and Case II.b to obtain G. Let H be
the graph G′′ without its disagreement edges. Note that H has an agreement embedding
into N ′ and has s′′ sprouts. Like in Case I, obtain a graph R from H by applying s′

prunings in the way the s′ sprouts of G′ are attached to vertices in N ′. Note that R has
an agreement embedding into N ′ and has at most s′ + s′′ sprouts. Then like in Case II.b,
obtain a graph S from R by removing all paths from R to which disagreement edges of
G′ are mapped. Again, handle conflicts between a sprout of a disagreement edge of G′
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and a sprout of R like the red edges in Case II.b. Now let G be the graph consisting of S
and l = l′ + l′′ disagreement edges. Note that S and thus G have at most s′ + s′′ sprouts
(ignoring those in the disagreement edges). Hence, s + l ≤ d. Constructing agreement
embeddings of G works again by combining the mechanisms from Case I and Case II.b.

The two cases for when r ≤ r′ ≥ r′′ and r ≥ r′ ≤ r′′ can be handled similarly to Case
III.a together with the ideas from Case II.b and Case II.c. We give a brief outline of how
G can be constructed.
Case III.b – r ≤ r′ ≥ r′′. Let S be the graph obtained from N ′ by removing all paths to
which the disagreement edges of G′ and G′′ are mapped (like in Case II.b) and by applying
the prunings of G′ and G′′ in the way they embed into N ′ (like in Case I). Again, in this
process we have to take care of cases where two sprouts are mapped to the same vertex.
Then the graph G consisting of S and k ≤ l′′ additional directed edges and l disagreement
edges is an agreement graph for N and N ′′ with at most s′+ s′′+ 2l′′ sprouts in agreement
subgraphs and l = l′ − l′′ disagreement edges. Hence, s+ l ≤ d.
Case III.c – r ≥ r′ ≤ r′′. Let S be the graph obtained from N ′ by applying the prunings
of G′ and G′′ in the way they embed into N ′ (like in Case I). Then the graph G consisting
of S and l′ additional directed edges and l disagreement edges is an agreement graph for
N and N ′′ with at most s′ + s′′ + 2l′ sprouts in agreement subgraphs and l = l′′ − l′

disagreement edges. Hence, s+ l ≤ d.
This concludes the proof.

6.3 Relation to rearrangement distances

In this section we look at the relation of the agreement distance to the SPR-, SNPR-, and
PR-distance. We distinguish the cases of distances between two trees, between a tree and
a network, and between two networks.

6.3.1 Tree to tree

First we prove that the agreement distance, if restricted to Tn, equals the SPR-distance.
As a consequence, we get that the agreement distance is NP-hard to compute.

Proposition 6.6.
The agreement distance on Tn is equivalent to the SPR-distance.

Proof. Let T, T ′ ∈ Tn. Let G be a maximum agreement graph for T and T ′ with compo-
nents S1, . . . , Sm. We distinguish whether G contains an h-sprout or not.

Assume G does not contain an h-sprout. Then G is a maximum agreement forest for
T and T ′. Therefore, dAD(T, T ′) = m − 1, that is, it equals the number of components
of G minus one. Furthermore, by removing sprouts and their incident edges from G we
obtain a forest F that is a maximum agreement forest for T and T ′ under the definition
of Bordewich and Semple [BS05]. Hence, the statement follows from Theorem 2.1 by
Bordewich and Semple [BS05].

Now assume G contains k h-sprouts. We now show how to derive a maximum agreement
graph G′ for T and T ′ without h-sprouts. Assume that G contains an h-sprout ū that is
a child of a degree two vertex v̄. Note that in the agreement embedding of G into T and
T ′ there is another h-sprout attached to v̄. Thus, deleting (ū, v̄) from G creates a new
t-sprout v̄ such that G is still a maximum agreement graph for T and T ′ (see Figure 6.9
(a)). So assume that G contains no such h-sprout. Hence, G contains k h-sprouts that are
adjacent to degree three vertices, to ρ or a t-sprout. Then since a tree does not contain
reticulations, note that G also contains k vertices with indegree zero but outdegree either
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Figure 6.9: How to convert h-sprouts from a maximum agreement graph G for two trees
to t-sprouts for Proposition 6.6, when the h-sprout ū is child of (a) a degree
two vertex, (b) a degree three vertex, or (c) a t-sprout, respectively.

zero (a labelled leaf of T ) or two. That is because in the agreement embedding of G into
T and T ′ the k h-sprouts have to get mapped to such k vertices. Let M be the set of
those vertices. Now, firstly, remove from G the k h-sprouts and their incident edges and
suppress resulting degree two vertices. If this results in an unlabelled, isolated vertex,
remove it too. This does not create any new sprouts since by assumption no h-sprout was
incident to a degree two vertex. Secondly, add k edges connecting each vertex in M with
a new t-sprout (see Figure 6.9 (b) and (c)). Let G′ be the resulting graph. Note that G′

contains either the same number of sprouts as G or less if an h-sprout was adjacent to a
t-sprout in G. (Note that if the latter case applies, then G was actually not a maximum
agreement graph.) Figure 6.9 also shows how to derive agreement embeddings of G′ into
T and T ′ from the agreement embeddings of G. Hence G′ is a maximum agreement graph
for T and T ′ without h-sprouts and the claim follows from the previous case.

Let G be a maximum agreement graph of T, T ′ ∈ Tn. From the proof of Proposition 6.6
we learn that we may assume that G contains no h-sprout. Therefore, each agreement
subgraph of G contains at most one sprout and the agreement subgraph containing the
vertex labelled ρ contains no sprout. Hence, dAD(T, T ′) equals the number of components
of G minus one and thus also m(T, T ′).

Bordewich and Semple [BS05, Theorem 2.2] have shown that computing the SPR-
distance of two phylogenetic trees is NP-hard. Together with Proposition 6.6 this implies
the following corollary.

Corollary 6.7.
Computing the agreement distance of an arbitrary pair of networks in Nn is NP-hard.

6.3.2 Tree to network

Building on the results in Section 5.1 we now look at the distances of a phylogenetic tree
T and a phylogenetic network N . We start with the case when T is displayed by N .

Lemma 6.8.
Let N ∈ Nn with r reticulations. Let T ∈ D(N). Then

dSNPR(T,N) = dPR(T,N) = dAD(T,N) = r.

Proof. By Lemma 5.1 and Corollary 5.2, we have that dSNPR(T,N) = dPR(T,N) = r and
know that there exists a PR+-sequence σ = (T = N0, N1, . . . , Nr = N) that transforms
T into N . Using σ, we now prove that G = {T = Tρ, E1, . . . , Er} is an agreement graph
for T and N . The proof is by induction on r. If r = 0, then T = N and the claim
trivially holds. Next, let e be the edge added from Ni−1 to Ni for i = {1, . . . , r}. Note
that Gi−1 = {T,E1, . . . , Ei−1} has an agreement embedding into Ni. Extending this
embedding by mapping Ei of Gi = {T,E1, . . . , Ei} to e, we get that Gi is an agreement
graph of T and Ni. This is illustrated in Figure 6.10. Therefore, G is an agreement graph



6.3 Relation to rearrangement distances 105

for T and N with r disagreement edges and no sprouts in its agreement subgraph. Hence

r = dPR(T,N) ≥ dAD(T,N).
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ρ

3 41 2
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N = Nr
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43
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Figure 6.10: An example of how to obtain an agreement embedding into N of an agreement
graph G = {T,E1, . . . , Er} for T and N for the proof of Lemma 6.8.

To establish the other direction, let G be a maximum agreement forest for N and T .
Recall that, by definition, G contains r disagreement edges and at least one agreement
subgraph. Thus,

dAD(T,N) ≥ r = dPR(T,N).

This completes the proof of the lemma.

In Theorem 5.10 we characterised the distance of T and N in terms of the distance of T
to the trees displayed by N . We now use this characterisation to establish the following
result.

Theorem 6.9.
Let T ∈ Tn, N ∈ Nn. Then

dSNPR(T,N) = dPR(T,N) = dAD(T,N).

Proof. Let r be the number of reticulations in N . Note that dSNPR(T,N) = dPR(T,N) by
Theorem 5.10. We first show that dAD(T,N) ≤ dPR(T,N). By Theorem 5.10, there exists
a phylogenetic tree T ′ that is displayed by N such that

dPR(T,N) = dPR(T, T ′) + dPR(T ′, N) = dPR(T, T ′) + r.

Hence, we have dAD(T, T ′) = dPR(T, T ′) = dPR(T,N)− r, where the first equality follows
from Theorem 5.4 and Proposition 6.6. Moreover, by Lemma 6.8, we have dAD(T ′, N) =
dPR(T ′, N) = r. Let G′ be a maximum agreement graph for T and T ′, and let G′′ be a
maximum agreement graph for T ′ and N . We know by Lemma 6.8 that such an G′′ exists
and that T ′ ∈ G′′. Now, let

G = G′ ∪ (G′′ − {T ′}).

Since G′ has an agreement embedding into T ′ and since T ′ has an agreement embedding
into N , we get an agreement embedding of G′ into N . This embedding covers all edges
of N , except those to which the disagreement edges of G′′ get mapped. Since G contains
both G′ and the disagreement edges of G′′, it follows that G is an agreement graph for T
and N . Note that G′ has dPR(T, T ′) sprouts in agreement subgraphs but no disagreement
edges and that G′′ has no agreement subgraphs but r = dPR(T ′, N) disagreement edges.
Hence,

dAD(T,N) ≤ dPR(T, T ′) + dPR(T ′, N) = dPR(T,N).
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We next show that dPR(T,N) ≤ dAD(T,N). Let G = {S1, S2, . . . , Sk, E1, , E2, . . . , Er}
be a maximum agreement graph for T and N . Assume for now that the agreement sub-
graphs of G contain no h-sprout. The proof is by induction on d = dAD(T,N). If d = 0,
then G = T = N and thus dPR(T,N) = 0. Now assume that inequality holds for all pairs
of a phylogenetic tree and a phylogenetic network with agreement distance at most d− 1.
If r = 0, then N is a phylogenetic tree and G = {S1, S2, . . . , Sk}. Then it follows from
Lemma 6.8 that dPR(T,N) = dAD(T,N).

We may therefore assume that r > 0. By Lemma 6.3 we can assume that no sprout of an
agreement subgraph of G is attached to a disagreement edge Ei and that no disagreement
edge is attached to Er = (ū, v̄). Then Er is mapped to an edge e = (u, v) of N . Since the
agreement subgraphs do not contain h-sprouts, it follows that the h-sprouts of the disagree-
ment edges are mapped to the r reticulations of N . Therefore, the edge e is a reticulation
edge. Furthermore, u is an inner tree vertex, since neither the agreement subgraphs Si nor
the disagreement edges contain any vertices with indegree two. Let G′ = G\{ER} and let
N ′ be the network obtained from N by deleting (u, v) and suppressing resulting degree two
vertices. Then G′ is a maximum agreement graph for T and N ′. Since dAD(T,N ′) < d,
it follows from the induction hypothesis that dPR(T,N ′) ≤ dAD(T,N ′). Furthermore, by
construction, N can be obtained from N ′ by a single PR+. Taken together, this implies
that

dPR(T,N) ≤ dPR(T,N ′) + 1 ≤ dAD(T,N ′) + 1 = dAD(T,N).

Now assume that an agreement subgraph of G contains an h-sprout. We show how to
derive a maximum agreement graph G′ of T and N ′ without this property, so that we
can apply the previous case. By Lemma 6.3 we can assume again that no sprout of an
agreement subgraph is attached to a disagreement edge. If the r h-sprouts of disagreement
edges of G are mapped to reticulations of N , then the embedding of G without its disagree-
ment edges into N is a tree. Then we obtain G′ from G as in the proof of Proposition 6.6.
Otherwise, there is an h-sprout of an agreement subgraph mapped to a reticulation of N .

We obtain G′ from G via the following three steps. First, if an h-sprout is child of
a degree two vertex, then apply the change shown in Figure 6.9 (a) like in the proof of
Proposition 6.6 to reduce the number of h-sprouts by one. Repeat this procedure as long
as this case applies. Recall that this maintains the agreement embeddings into T and
N . Every h-sprout of an agreement subgraph is now the child of a degree three vertex,
the root, or a t-sprout. Therefore, in the second step, it is possible to prune all m edges
incident to h-sprouts of agreement subgraphs at their tail. If an h-sprout is adjacent to
a t-sprout, then this has no effect. Let w̄ be a vertex that is mapped to the same vertex
v as an h-sprout in T . Note that such v is either a tree vertex or a leaf Then after the
second step there is an h-sprout that is incident to a t-sprout and that is mapped to v,
both in the agreement embedding into T and into N . Similarly, for each reticulation x of
N , there is an h-sprout that is incident to a t-sprout and that is mapped to x. We can thus
change the naming of components such that the disagreement edges are mapped to the r
components whose h-sprout is mapped to a reticulation. Hence, in the third step, merging
all pairs consisting of an h-sprout v̄ and a vertex w̄ that are mapped to the same vertex
in T yields an agreement embedding of the resulting graph G′ into T and N . Note that
this step regrafts at least m edges. Therefore, G′ contains at most as many sprouts as G
and its only h-sprouts belong to disagreement edges. Hence, G′ is a maximum agreement
graph for T and N as required. This concludes the proof.
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6.3.3 Network to network

After we have shown that the agreement distance equals the PR-distance on Tn and the
PR-distance of a tree and a network, we now consider its relation to the PR- and SNPR-
distance on Nn. We start on a positive note concerning the neighbourhoods of a phyloge-
netic network under PR and the agreement distance.

Lemma 6.10.
Let N,N ′ ∈ Nn. Then dAD(N,N ′) = 1 if and only if dPR(N,N ′) = 1.

Proof. Assume dPR(N,N ′) = 1. Depending on whether N ′ can be obtained from N by
applying a PR0 or a PR+ operation, obtain a maximum agreement graph G by either
mimicking the pruning or adding a disagreement edge to N . In either case, it follows that
dAD(N,N ′) = 1.

Now assume dAD(N,N ′) = 1 and let G be a maximum agreement graph for N and
N ′. If G contains a disagreement edge, then it is easy to see that dPR(N,N ′) = 1. So
assume G contains a single sprout ū. If ū is attached to a vertex x̄ of G in the agreement
embedding into N , then it has to be attached to x̄ also in the agreement embedding into
N ′. However, then N = N ′, which is a contradiction to dAD(N,N ′) = 1. If, on the other
hand, ū is attached to an edge of G in the agreement embedding into N (and thus into
N ′), then finding a PR0 that transforms N into N ′ is straightforward. It follows that
dPR(N,N ′) = 1.

Consider the two networks N and N ′ shown in Figure 6.11. Observe that dPR(N,N ′) = 3
(which can be shown with an exhaustive search), but that dAD(N,N ′) = 2. Intuitively,
the differences arises from the fact that no PR0 can prune, from N or N ′, any of the
two sprouts of the shown maximum agreement graph G and regraft it without creating a
directed cycle. Nor is there a shortest PR-sequence of length two that uses PR+ and PR−

operations. This shows that, in general, the agreement distance and the PR-distance differ
on Nn. Since allowing only tail PR0 (like SNPR) or not allowing parallel edges increases
the distance in general, it follows that the agreement distances also differs from the SNPR-
distance and distances of other generalisations of SPR. Furthermore, by Lemma 5.14 there
exist pairs of phylogenetic networks with r ≥ 1 reticulations for which every shortest PR-
or SNPR-sequence contains a phylogenetic tree. This implies that along such a sequence
reticulation edges get removed and added again. Therefore, and even if the PR-distance
(or SNPR-distance) and the agreement distance would be the same for such a pair, an
agreement graph can in general not fully model every shortest PR- and SNPR-sequence.
On the upside, however, we prove now that the agreement distance gives a lower and upper
bound for the PR-distance with constant factors. We start with the lower bound.

N

1

5 3 4

2

N ′

3

5 1 2

4
3

5

1 2
4

G

Figure 6.11: Two phylogenetic networks N and N ′ with dPR(N,N ′) = 3, but
dAD(N,N ′) = 2 as the maximum agreement graph G shows.
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Theorem 6.11.
Let N,N ′ ∈ Nn. Then dAD(N,N ′) ≤ dPR(N,N ′).

Proof. Given N and N ′ with PR-distance d = dPR(N,N ′), we construct an agreement
graph G of N and N ′ with s sprouts in the agreement subgraphs and l disagreement edges
such that s+ l ≤ d. Let N and N ′ have r and r′ reticulations, respectively. Without loss
of generality, assume that r′ ≥ r and let l = r′− r. The proof is now by induction on d. If
d = 0, then G = N is as desired. If d = 1, the statement follows from Lemma 6.10. Now
assume that for each pair of phylogenetic networks M,M ′ ∈ Nn with PR-distance at most
d′ < d for some arbitrary but fixed d > 1 there exists an agreement graph of M and M ′

proving that dAD(M,M ′) ≤ d′.
Fix a PR-sequence of length d from N to N ′. Let N ′′ ∈ Nn be the network of that

sequence such that dPR(N,N ′′) = d−1 and dPR(N ′′, N ′) = 1. By the induction hypothesis
there exists an agreement graph G′ for N and N ′′ showing that dAD(N,N ′′) ≤ d− 1. We
distinguish whether N ′ is obtained from N ′′ by a PR0, a PR+, or a PR− operation.

First, assume that N ′ can be obtained from N ′′ by pruning the edge e = (u, v) at u.
AssumeG′ contains an edge ē = (ū, ȳ) such that ū is mapped to u and ē to a path containing
e. With Lemma 6.4 prune ē at ū and obtain G. Then use the agreement embedding of G
into N ′′ to obtain an agreement embedding of G into N ′. Next, assume G′ contains an edge
ē′ = (x̄, ȳ) such that ē′ is mapped to a path containing e and u as internal vertex. Then,
G′ contains a t-sprout w̄ that is mapped to u (and thus attached to ē′ in N ′′). The vertex
w̄ cannot be an h-sprout, because u is a tree vertex and the previous case does not apply.
Let w̄ have the incident edge (w̄, z̄). Subdivide ē′ with a new vertex ū and identify w̄ with
ū. Prune ē = (ū, ȳ) at ū and then use Lemma 6.4 to prune (x̄, z̄) at x̄ to reobtain w̄. Let
G be the resulting graph, which has now an agreement embedding into N ′. Considering
the embedding of G into N ′′, apply an embedding change with respect to ū and w̄ to see
that G still has an agreement embedding into N . In either case, since G contains at most
one sprout more than G′, it follows that dAD(N,N ′) ≤ dAD(N,N ′′) + 1 ≤ d. The case
where N ′ is obtained from N ′′ by pruning an h-sprout works analogously.

Second, assume that N ′ has been obtained from N ′′ by a PR− that removed the edge
e = (u, v). Note that then G′ contains l + 1 disagreement edges. Assume G′ contains a
disagreement edge Ej = (x̄, ȳ) that maps to a path P that contains e in the agreement
embedding of G′ into N ′′. Note that u is a tree vertex and v a reticulation. Therefore, if P
contains u as internal vertex, then a t-sprout w̄ is attached to Ej in N ′′ and is mapped to
u. Apply an embedding change with regards to w̄ and x̄. Handle the case where P contains
v as internal vertex analogously. Then Ej is mapped precisely to e. Hence, obtain G from
G′ by removing Ej . The agreement embedding of G into N is then the same as of G′ and
the agreement embedding of G into N ′ is derived from that of G′ into N ′′ by removing Ej .
Now assume that e is not covered by a disagreement edge of G′. Let ē = (x̄, ȳ) be the edge
of G′ that covers e. With Lemma 6.4 prune ē at x̄ and ȳ such that the resulting graph
G′′ has at most two sprouts more than G′ and an agreement embedding into both N and
N ′′. Consider ē now a disagreement edge of G′′ and consider a disagreement edge of G′′ an
agreement subgraph. Then apply the previous case to obtain G. In either case, G contains
one disagreement edge less and at most two sprouts more in its agreement subgraphs and
therefore dAD(N,N ′) ≤ dAD(N,N ′′) + 2− 1 ≤ d.

Lastly, assume N ′ has been obtained from N ′′ by a PR+. If l > 0, obtain G from G′

by adding one disagreement edge. If l = 0, then G′ contains one disagreement edge. Thus
obtain G from G′ by considering this disagreement edge an agreement subgraph. In either
case, it is straightforward to find agreement embeddings of G into N and N ′. Since G
contains either one disagreement edge more or two sprouts more but one disagreement
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edge less, it follows again that dAD(N,N ′) ≤ d. This completes the proof.

Let N,N ′ ∈ Nn with a maximum agreement graph G = (VG, EG). Fix agreement
embeddings of G into N and N ′ and assume that they fulfill the properties of Lemma 6.3.
In the proof of the upper bound we will construct a PR-sequence based on agreement
embeddings of G along this sequence. To ease talking about PR operations on networks
along the sequence based on vertices and edges of G we define the following terminology.
Let ū ∈ VG be a t-sprout with outgoing edge ē = (ū, v̄) ∈ EG. Let e = (u, v) be the first
edge on the path in N to which ē is mapped. Pruning ū in N then means that the edge e
gets pruned at u. Regrafting ū to an edge f̄ ∈ EG in N then means that e gets regrafted
to the edge f ∈ EN that is the first edge on the path to which f̄ is mapped. Let x̄ be
a indegree two, outdegree zero vertex or the singleton labelled ρ of G. Regrafting ū to
a vertex x̄ ∈ VG in N then means that e gets regrafted to the edge f ∈ EN that is the
outgoing edge of the vertex x to which x̄ is mapped. The terminology for h-sprouts is
analogously defined. More precisely, the differences for an h-sprout ū are that the edge ē
is the incoming edge of ū, and that f is the last edge of the respective path to which f̄ is
mapped or the incoming edge of the tree vertex x.

We say a sprout ū is prunable (with respect to N) if it is attached to an edge ē in N
and unprunable if it is attached to a vertex x̄ in N . Let ū be a sprout that is attached to
an edge f̄ (or vertex x̄) in N ′. We say the sprout ū is blocked if regrafting it to f̄ (or x̄) in
N would create a directed cycle; otherwise we call it unblocked. This implies that there is
at least one sprout v̄ ∈ VG on the path from ū to f̄ (or x̄) in the embedding of G into N .
We call such a sprout v̄ blocking. See Figure 6.12 (a) and (b) for examples.

ū

v̄

x̄w̄

(a) (b)

ū
x̄

(c)

x̄

ȳ

(d)

ū1 ū2 ū3 ū3 ū1 ū2

into N ′into Nv̄

ū

Figure 6.12: Embeddings of G into N (and N ′ in (d)). In (a), the sprout ū is prunable,
but blocked by the blocking sprout v̄ if ū is supposed to take the place of w̄.
In (b), ū is unprunable, but unblocked. In (c), the disagreement edge (ū, v̄) is
not addable since ȳ is ancestor of x̄. In (d), the sprouts ū1, ū2, and ū3 form
a replacing cycle.

Let Ei = (ū, v̄) be a disagreement edge and x̄ and ȳ be the vertices or edges to which
ū and v̄, respectively, are attached to in N ′. If x̄ or ȳ is a disagreement edge Ej , then Ei
cannot be added to N before Ej . Furthermore, if ȳ is an ancestor of x̄ in the embedding into
N , adding Ei to N would create a directed cycle. Therefore we call a disagreement edge
Ei = (ū, v̄) addable if ȳ is not an ancestor of x̄ in N and neither x̄ nor ȳ is a disagreement
edge. For example, the edge (ū, v̄) in Figure 6.12 (c) is not addable.

If ū is a sprout attached to a vertex x̄ in N , then there is a sprout v̄ that is attached to
x̄ in N ′. We say that v̄ takes the place of ū. This allows us to define a replacing sequence
(ū1, . . . , ūk) of sprouts such that ūi takes the place of ūi+1 with regards to N and N ′. If
furthermore ūk takes the place of ū1, then we call it a replacing cycle. See Figure 6.12 (d)
for an example. Note that in a replacing sequence the sprout ū1 can be the sprout of a
disagreement edge.

Theorem 6.12.
Let N,N ′ ∈ Nn. Then dPR(N,N ′) ≤ 3 dAD(N,N ′).
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Proof. Let N,N ′ ∈ Nn with r and r′ reticulations, respectively. Without loss of generality,
assume that r′ ≥ r and let l = r′ − r. Let G be a maximum agreement graph for N and
N ′. Let S1, . . . , Sk be the agreement subgraphs of G and E1, . . . , El be the disagreement
edges of G. Fix agreement embeddings of G into N and into N ′. For the embedding into
N ′, assume that it fulfills the properties of Lemma 6.3. That is, no sprout of an agreement
subgraph Si is attached to a disagreement edge Ej , that at least one disagreement edge (if
one exists) is not attached to any other disagreement edge, and that Ei may be attached
to Ej only if j < i.

Let d = dAD(N,N ′). To prove the statement we show how to construct a PR-sequence

σ = (N = N0, N1, . . . , Nm = N ′)

with m ≤ 3d. While G has an agreement embedding into N and N ′, it may not have an
agreement embedding for several Ni, i ∈ {1, . . . ,m− 1}. However, starting at N = N0, we
preserve the mapping of vertices and edges of G to vertices and paths of Ni−1 to Ni with
each step. Furthermore, along the sequence we map disagreement edges of G to newly
added edges. In some cases, it is necessary to add edges to Ni−1 to obtain Ni with a PR+

to which no disagreement edge will be mapped. We call such edges shadow edges. From
each Ni−1 to an Ni we only prune edges at a vertex in Ni to which a sprout and its incident
edge are mapped, or add a disagreement edge, or add or alter a shadow edge. We describe
any change of G, or of the embeddings of G into Ni or N ′ explicitly.

To keep track of the length m of σ, we credit every PR operation either to a sprout or
to a disagreement edge. When we obtain Nm = N ′, each sprout and each disagreement
edge will have a credit of at most three and, hence, m ≤ 3d. Now, assume σ has been
constructed up to Ni−1.

To obtain Ni we apply the first applicable case of those described below to a sprout or
to a disagreement edge. Overall the strategy is to first handle easy cases, that is prunable,
unblocked sprouts (Case (A) and (A’)) and addable disagreement edges (Case (B) and
(B’)). Then Case (C), (C’) and (C”) handle unprunable, unblocked sprouts. With Case
(D) prunable, blocking sprouts are moved “aside” to make them non-blocking and Case
(D’) adds disagreement edges whose h-sprouts starts a replacing sequence of h-sprouts.
After exhaustively applying Case (D) and (D’), we can prove that there always exists a
prunable sprout (if any sprouts are left). A particular sprout (resp. disagreement edge) is
subject of at most one application of Case (D) (resp. (D’)) and one other case.
(A) Prunable, unblocked sprout to non-shadow edge. If there is a prunable, un-
blocked sprout ū in Ni−1, then obtain Ni by pruning ū in Ni−1 and regrafting it to the
edge f̄ or vertex x̄ to which ū is attached in N ′. This step gives ū a credit of one operation.
If ū is regrafted to a vertex x̄, let v̄ be the sprout that is attached to x̄ in Ni (i.e. ū takes
the place of v̄). Apply an embedding change of G into N with respect to ū and v̄. This
whole step is illustrated in Figure 6.13. Note that ū is now attached either to the same
edge f̄ or the same vertex x̄ in both Ni and N ′. Therefore, for the rest of the proof, fix
ū to f̄ or identify ū with x̄, respectively, in G. As a result, ū with a credit of only one is
now not a sprout anymore and thus not subject of another case.
(B) Addable disagreement edge without shadow edge. If there exists an addable
disagreement edge Ej for Ni−1, then obtain Ni by adding Ej to Ni−1 with a PR+. This
step gives Ej a credit of one operation. If a sprout of Ej is attached to a vertex in N ′,
then apply again embedding changes of G into Ni like in Case (A). Note that Ej is now
attached to the same vertices or edges in both Ni and N ′. Therefore, merge the sprouts
of Ej with the vertices or edges they are attached to in G. As a result, Ej with a credit
of only one is now no disagreement edge anymore, but an edge of an agreement subgraph
Sj′ of G. It will therefore not get any further credit.
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Figure 6.13: Illustration of Case (A) where a prunable unblocked sprout ū gets regrafted
to a vertex x̄, and the subsequent embedding change with regards to ū and v̄.

(C) Sprout at root, add shadow edge. If there is an unprunable t-sprout v̄ attached
to the root ρ in Ni−1, then there is another t-sprout ū that is attached to the root in
N ′. Assume that ū is a sprout of a disagreement edge (ū, w̄) in N ′, but that Case (B)
does not apply. Then w̄ must be attached to another disagreement edge in N ′. This
however can be changed with embedding changes (like in Lemma 6.3) such that (ū, w̄)
becomes addable and Case (B) applies. Therefore assume ū is a sprout of an agreement
subgraph. Since Case (A) does not apply and the root is an ancestor of ū, it follows that
ū is an unprunable, but unblocked t-sprout in Ni−1. Let ȳ be the indegree two, outdegree
zero vertex to which ū is attached in Ni−1. We now obtain Ni from Ni−1 by adding and
attaching a shadow edge (w̄, z̄) from the outgoing edge of ū to the incoming edge of leaf 1
with a PR+. After an embedding change of G into Ni with respect to w̄ and ū, the sprout
ū becomes prunable. Give ū a credit of one and apply Case (A) to obtain Ni+1. In total,
ū gets a credit of two and in Ni+1 and N ′ no sprout is attached to the root anymore. This
whole step is illustrated in Figure 6.15. As mentioned above, the embedding of G into
Ni+1 does not cover all edges anymore, since no edge is mapped to the shadow edge.
(C’) Sprout at leaf, add shadow edge. This case is analogous to Case (C) but for
h-sprouts. Here, if there is an unprunable h-sprout v̄ attached to a leaf l in Ni−1, then
there is another unprunable, unblocked h-sprout ū that takes the place of v̄. Then obtain
Ni again by adding a shadow edge from the outgoing edge of ρ to the incoming edge of ū.
After applying an embedding change, obtain Ni+1 by pruning ū and attaching it to the
incoming edge f̄ of v̄. After another embedding change, merge ū with the leaf l. If l = 1
and there is a shadow edge (w̄, z̄) attached to f̄ , then attach ū above z̄ to f̄ . This way,
z̄ is attached to the incoming edge of l = ū and not to the incoming edge of v̄ after the
embedding change.
(A’) Prunable, unblocked sprout to shadow edge. If after the previous two cases,
there is again a prunable, unblocked sprout ū, apply Case (A) again. However, if in this
process ū gets regrafted to a shadow edge incident to the vertex x̄, then remove the shadow
edge with a PR− after the embedding change of Case (A). This results in a total credit of
two for ū – one for the PR0 to move ū and one for the PR−.
(B’) Addable disagreement edge with shadow edge. Similarly, if there is now an
addable disagreement edge Ej = (ū, v̄), apply Case (B) in the following way. Assume
that v̄ of Ej is supposed to get regrafted to a vertex ȳ with an incoming shadow edge
f̄ = (w̄, z̄). Then apply a PR0 to Ni−1 to prune f̄ at w̄ and regraft it where ū is supposed
to be attached. Then again, if ū is supposed to be attached to a vertex x̄ with an outgoing
shadow edge f̄ ′, remove f̄ ′ with a PR− operation after an embedding change. This step is
illustrated in Figure 6.14. The case where only ū is supposed to be attached to a vertex
with an incident shadow edge but not v̄ is handled analogously. If there is no shadow edge
involved for either ū or v̄, then Case (B) directly applies. In either case, the total credit
for Ej is at most two.

The next case is used to decrease the number of blocking sprouts.
(D) Blocked and blocking, but prunable sprout. Let ū be a prunable, blocked
sprout that is blocking another sprout in Ni−1. Then obtain Ni from Ni−1 by pruning ū
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ȳ

PR0

x̄

ȳ
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Figure 6.14: Illustration of Case (B’) with two shadow edges.

and regrafting it to the outgoing edge of ρ if ū is a t-sprout, or to the incoming edge of
leaf 1 otherwise. Note that ū is now not blocking any other sprout in Ni. This step gives
ū a credit of one. Later on, ū will get one or two more credit, depending on whether Case
(A) or (A’) will apply to it.
(D’) Non-addable disagreement edges attached to vertex. Let Ej = (ū, v̄) be a
non-addable disagreement edge for which v̄ is attached to a vertex x̄ in N ′. That means
that a replacing sequence of h-sprouts starts with v̄ of Ej – we change this now. Obtain
Ni from Ni−1 by adding an edge (ū, v̄) from the outgoing edge of ρ to the incoming edge
of x̄. Identify Ej with this new edge and then, after an embedding change, merge v̄ with
x̄. The vertex ū is now a non-blocking and prunable, but blocked t-sprout with a credit of
one (just like the sprouts of Case (D)). Note that, after Case (D’) does not apply anymore,
there can be no replacing sequence of h-sprouts that starts with a sprout of a disagreement
edge left. (We do not, maybe even cannot, do the analogous for disagreement edges that
start a replacing sequence of t-sprouts.)

Applying Case (A) or Case (A’) may now start with a sprout that has already a credit
of one. However, as in both cases the credit is increased by at most two, the credit will
afterwards be at most three.

So far we have applied Case (A) and (B) until not further possible. Then Case (C) and
(C’) are applied at most once and n times, respectively. We then apply Cases (A), (A’),
(B), (B’) as long as possible. If then applicable we apply Case (D) or (D’) and repeat this
loop. Next, we show that if neither of the previous cases applies but there are still sprouts
in Ni−1 that there is then at least one unprunable, unblocked sprout in Ni−1.
Existence of unblocked sprout. Assume that there exists a replacing cycle τ of, without
loss of generality, t-sprouts in Ni−1. Then note that for a t-sprout to be blocked the vertex
or edge it will be attached to has to be a descendant. Since phylogenetic networks are
acyclic, the sprouts in τ cannot all replace a descendant. Therefore one of the sprouts has
to be an unblocked sprout.

Next, assume that there is no replacing cycle in Ni−1. If no unprunable t-sprout ū exists,
then the h-sprout with no ancestor h-sprout in Ni−1 is an unblocked sprout. So assume
otherwise and let ū be an unprunable t-sprout with no descendant t-sprout in Ni−1. If ū
is unblocked, we are done; so assume otherwise. This means that the vertex or edge to
which ū is supposed to be regrafted is a descendant of ū in Ni−1. Thus, by the choice
of ū, it can only be blocked by an h-sprout v̄. Since Case (D) moved prunable, blocking
sprouts aside, v̄ has to be unprunable. If v̄ is unblocked, we are done; so assume otherwise.
Then there is a replacing sequence τ = (v̄1, . . . , v̄m) with v̄ = v̄i for some i ∈ {2, . . . ,m}.
Note that v̄1 is prunable since Case (D’) does not apply and since there are no replacing
cycles anymore and thus v̄ 6= v̄1. Since further Case (D) does not apply, v̄1 is also not
a blocking sprout. Assuming that there is no unblocked sprout in τ , we know that for
every 1 ≤ j < i the h-sprouts v̄1 to v̄j are all descendants of v̄j+1 to v̄i and thus also of ū.
Since v̄1 is blocked, there has to be an unprunable h-sprout v̄′ blocking v̄1. Note that v̄′

is a descendant of v̄2 and thus not in τ . The situation with v̄′ is now the same as with v̄
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and the chain of descendants of h-sprouts below ū contains now v̄ = v̄i, . . . , v̄2, v̄
′. Finally,

we either find an unprunable h-sprout in the replacing sequence τ ′ 6= τ that contains v̄′

or the chain of descendants of h-sprouts below ū grows longer with h-sprouts v̄′2 and v̄′′.
Since Ni−1 is finite this chain cannot grow indefinitely and thus at some point we find an
unblocked h-sprout.
(C”) Unprunable, unblocked sprout. If there is an unprunable, unblocked sprout ū in
Ni−1 that is attached to the edge f̄ or a vertex x̄ in N ′ that has no shadow edge attached
in Ni−1, then use the same procedure as in Case (C) or (C’) to obtain Ni and then Ni+1.
This gives ū a credit of two, before it gets merged with x̄ or f̄ . This step is illustrated in
Figure 6.15.
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Figure 6.15: Illustration of Case (C) and Case (C”) where an unprunable, unblocked sprout
ū is moved to the vertex x̄ with two PR operations and two embedding
changes.

If there is an unprunable, unblocked sprout ū in Ni−1 that is attached to a vertex x̄ in
N ′ that has a shadow edge attached in Ni−1, then apply the process shown in Figure 6.16
to obtain Ni and Ni+1. This gives ū a credit of two, before it gets merged with x̄. Note
that this moves the shadow edge from x̄ to the vertex to which ū was attached to in Ni−1.
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ū

Ni−1 Ni Ni+1

Figure 6.16: Illustration of Case (C”) where an unprunable, unblocked sprout ū is moved
to a vertex x̄ with an incident shadow edge.

Since prunable sprouts cannot block after they got moved aside, since disagreement edges
cannot block either (by the properties of the agreement embedding into N ′), and since the
number of unprunable sprouts is decreased stepwise, the whole process resolves all sprouts
and disagreement edges. Hence, Nm = N ′. Since every sprout and every disagreement
edge got a credit of at most three, it follows that m ≤ 3d. This concludes the proof.

We prove a relation between the PR-distance and the SNPR-distance.

Lemma 6.13.
Let N,N ′ ∈ Nn. Then dPR(N,N ′) ≤ dSNPR(N,N ′) ≤ 2 dPR(N,N ′).

Proof. The first inequality follows from the definitions of PR and SNPR. For the second
inequality, let d = dPR(N,N ′) and σ = (N = N0, N1, . . . , Nd = N ′) be a PR-sequence
from N to N ′ of length d. Then we can construct an SNPR-sequence σ∗ = (N =
M0,M1, . . . ,Mk = N ′) with k ≤ 2d as follows. Assume we have constructed σ∗ up to
Mj−1 = Ni−1. Then, if Ni is obtained from Ni−1 by a tail PR0 or a PR+ or a PR−,
then apply the same operation to Mj−1 to obtain Mj . So assume, otherwise; i.e. Ni is
obtained from Ni−1 by a head PR0. Let e = (u, v) be the edge that gets pruned at v and
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f be the edge that gets subdivided to regraft e. Obtain Mi from Mi−1 with the SNPR+

that subdivides e with a new vertex u′, subdivides f with a new vertex v′, and adds the
edge (u′, v′). Next, obtain Mi+1 from Mi by removing (u′, v) and suppressing the resulting
degree two vertices. Then clearly Mi+1 = Ni. Since at most two SNPR operations are
needed per PR, it follows that k ≤ 2d.

The following corollary is a direct consequence of Theorems 6.11 and 6.12 and Lemma 6.13.

Corollary 6.14.
Let N,N ′ ∈ Nn. Then

dAD(N,N ′) ≤ dPR(N,N ′) ≤ 3 dAD(N,N ′)

and
dAD(N,N ′) ≤ dSNPR(N,N ′) ≤ 6 dAD(N,N ′).

6.4 Concluding remarks

In this chapter we defined maximum agreement graphs for two rooted binary phylogenetic
networks. Like maximum agreement forests for trees, a maximum agreement graph models
how the two networks agree on subgraphs derived from a minimum number of prunings.
If the two networks have different numbers of reticulations, then agreement graphs also
model how they disagree on that. Based on this, we defined the agreement distance on
phylogenetic networks. We then showed that agreement distance is a metric. Looking at
the relation of the agreement distance to distances induced by rearrangement operations,
we proved that the agreement distance equals the SPR-distance of two phylogenetic trees.
What is more, the agreement distance agrees also with the SNPR- and PR-distance of a
tree and a network. In general, for phylogenetic networks, the agreement distance is a
lower bound on the SNPR- and PR-distance. Furthermore, it bounds both the SNPR-
and PR-distance from above by a factor of at most three and six, respectively. These
upper bounds might not be tight. For example, for the PR-distance the bound might be
closer to twice the agreement distance. This thought is also motivated by the fact that
the neighbourhoods of a network under PR and the agreement distance are the same.

While the agreement distance is still NP-hard to compute, it avoids problems of shortest
SNPR- or PR-sequences that we have seen in the previous chapter. In particular, while
for such a shortest sequence it might matter at which step of the sequence a reticulation
edge is added, an agreement graph has simply as many disagreement edges as needed.
Furthermore, while a sequence might traverse networks with more or less reticulations
than the start and target network, this is also irrelevant for agreement graphs. Moreover,
we have seen that there are multiple SNPR- and PR-distances of two networks based on
whether we chose the distance within the class of the networks, like tree-child networks, in
Nn,r, or in Nn. This is by definition not the case for the agreement distance. We therefore
hope that it is easier to find exact and approximation algorithms for the agreement distance
than for the PR-distance, just as it has been more fruitful to work with agreement forests
than with shortest SPR-sequences.

Beyond rooted binary phylogenetic networks it is interesting to see whether agreement
graphs and the agreement distance can be generalised to multifurcating phylogenetic net-
works or even to directed graphs in general. For unrooted phylogenetic trees, Allen and
Steel [AS01] have shown that unrooted agreement forests characterise the TBR-distance.
This imposes the questions whether agreement graphs can also be defined for unrooted
phylogenetic networks and how they would relate to generalisations of the (unrooted) SPR
and the TBR operation.



7. Conclusions

In this thesis we have studied several problems concerning spaces of phylogenetic networks.
In Chapter 3 we proved that most classes of phylogenetic networks and their tiers are
connected under SNPR and PR, and, for some classes, also under NNI. In the affirmative
cases, this established that the distance induced by the rearrangement operations are
metrics. We also gave asymptotic bounds on the diameters of these spaces. Here, we
found that if tight bounds are known for diameters under SNPR or PR, then they are
linear in the size of the network, like they are for the space of phylogenetic trees.

In Chapter 4 we saw that the size of the SNPR neighbourhood of a normal or tree-
child network depends not only on its size and topology but also on the occurrences
of certain subgraphs. In particular, we found that the neighbour size is asymptotically
quadratic in the size of the network, like the size of the SPR neighbourhood of a tree.
However, compared to trees, counting neighbours is more challenging for networks since
different operations can lead to the same neighbours. We have seen that this problem
of redundant operations becomes even harder for networks where vertices and edges are
not necessarily uniquely identifiable, for example, like in reticulation-visible, tree-based,
or general phylogenetic networks.

In Chapter 5 we looked at the behaviour of shortest paths under SNPR and PR in the
space of phylogenetic networks. We saw that the space of phylogenetic trees is an isometric
subgraph of the space of phylogenetic networks under SNPR and PR. Furthermore, we
showed that there is always a shortest path from a tree to a network that can be divided
into two parts where the first part uses only horizontal operations while the second part
uses only vertical operations. This allowed us to characterise the distance of a tree and a
network in terms of the trees displayed by the network. As a consequence, their distance
can be computed with a fixed-parameter tractable algorithm. Concerning the distances
between two networks, we found that shortest paths may have bad properties. For example,
there are pairs of networks with the same number of reticulations such that every shortest
path between them contains a tree. Furthermore, for two networks of a certain class, one
has to decided which space to consider for their distance, because most spaces do not
embedded isometrically into each other under SNPR and PR.

In Chapter 6 we introduced maximum agreement graphs as generalisation of maximum
agreement forests. We showed that they induce a metric, the agreement distance, on
phylogenetic networks. Even though the agreement distance does not characterise the
SNPR- and PR-distance, it still bounds them with constant factors.

We conclude that many results on trees can be lifted to networks. However, at this stage
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they are still less precise. For example, the bounds on diameters of spaces of phylogenetic
networks can be sharpened. Furthermore, several problems remain open. While we were
able to use the fixed-parameter tractable algorithm for two trees to compute the distance
for a tree and a network, there is no known algorithm to compute the agreement distance
or a rearrangement distance of two networks yet. Here, maximum agreement graphs could
be of help.
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