Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem

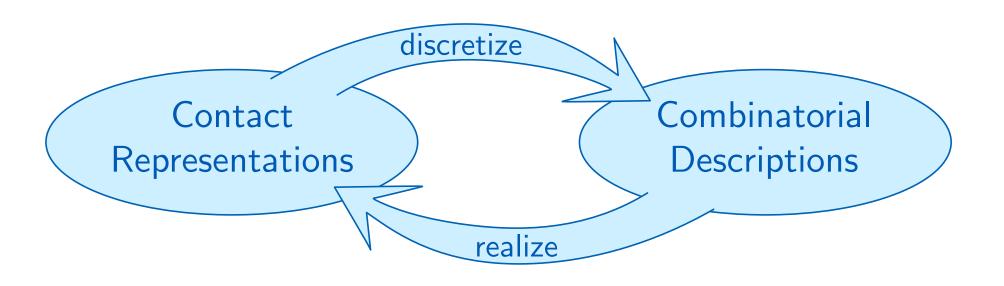
Jonathan Klawitter Martin Nöllenburg

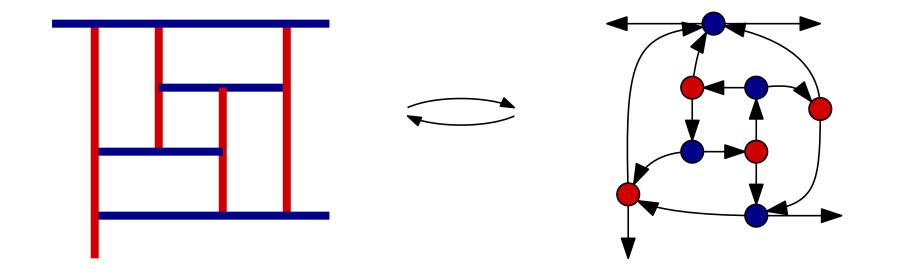
Torsten
Ueckerdt

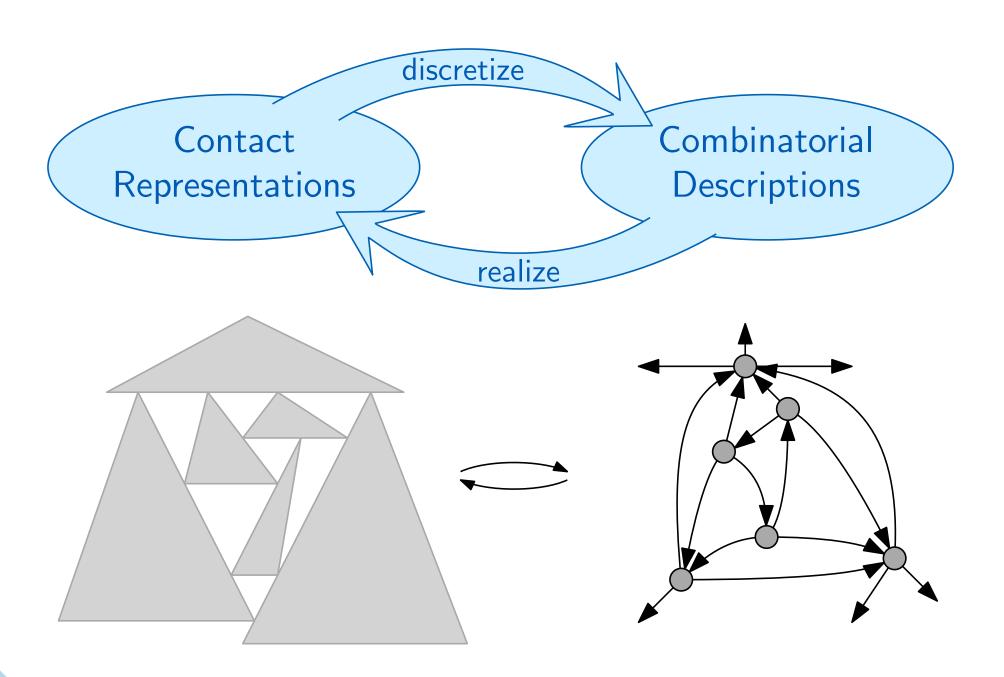
Karlsruhe Institute of Technology

September 25, 2015 23rd International Symposium on Graph Drawing & Network Visualization Los Angeles Combinatorial Properties of Triangle-Free Rectangle Arrangements

The Squarability Problem



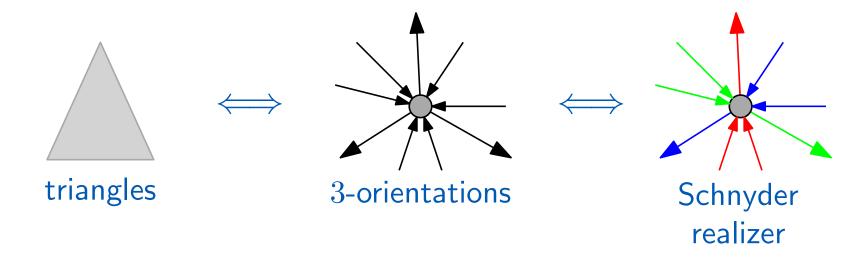




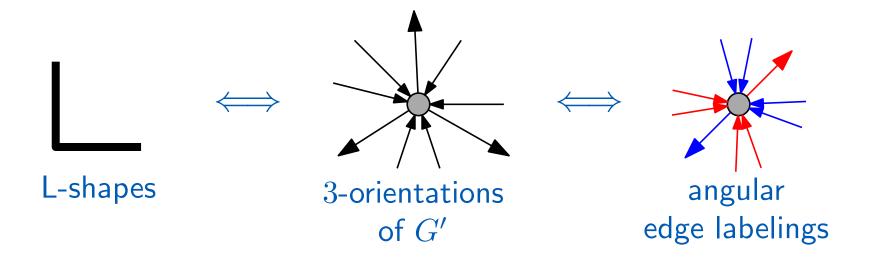
- **Thm.** For any quadrangulation G each of the following are in bijection. [de Fraysseix-Ossona de Mendez 2001]
 - (1) axis-aligned segment representations of G
 - (2) 2-orientations of G
 - \bigcirc separating decompositions of G

segments
$$\Leftrightarrow$$
 2-orientations \Leftrightarrow separating decompositions

- **Thm.** For any triangulation G each of the following are in bijection. [Schnyder 1991]
 - (1) bottom-aligned triangle representations of G
 - \bigcirc 3-orientations of G
 - \bigcirc Schnyder realizer of G



- **Thm.** For any plane Laman graph G each of the following are in bijection. [Kobourov-U-Verbeek 2013]
 - (1) axis-aligned L-shape representations of G
 - $oxed{2}$ 3-orientations of the vertex-face augmentation G'
 - \bigcirc angular edge labelings of G



- **Thm.** For any rectangular dual G each of the following are in bijection. [Kant-He 1997]
 - \bigcirc rectangle contact representations of G
 - (2) bipolar orientations of G
 - \bigcirc transversal structures of G

Applications

graph representations

incremental construction

enumeration

underlying poset structure

small grid drawings

local searches

random generation

corners = outgoing edges

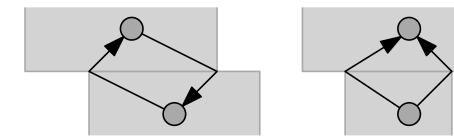
sides = several outgoing edges

corners = outgoing edges

Our Contribution:

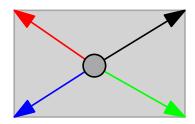
sides = several outgoing edges

1) Orientation



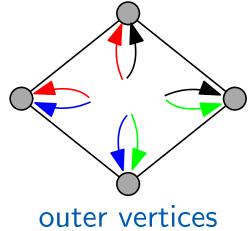
"who pokes who?"

2) Coloring



"with which feature?"

3) Local Rules



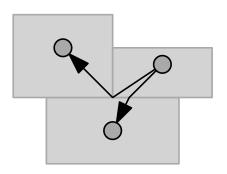
- 4) Graph Class
- ▷ planar
- maximal triangle-free

- 1) Orientation
- ▷ "corners = outgoing edges"
- 4) Graph Class
- ▷ planar

1) Orientation

▷ "corners = outgoing edges"

▷ planar



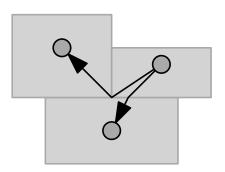
triangle $\rightsquigarrow 2$ edges for 1 corner

1) Orientation

▷ "corners = outgoing edges"

4) Graph Class

- ▷ planar
- > maximal triangle-free (only 4-faces and 5-faces)



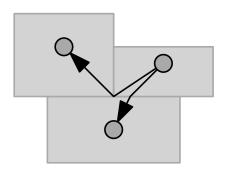
triangle $\rightsquigarrow 2$ edges for 1 corner

1) Orientation

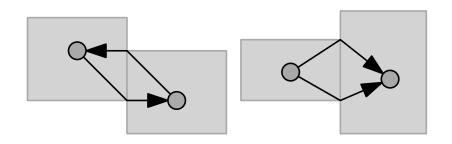
▷ "corners = outgoing edges"

4) Graph Class

- ▷ planar
- > maximal triangle-free (only 4-faces and 5-faces)



triangle \rightsquigarrow 2 edges for 1 corner



every contact involves 2 corners

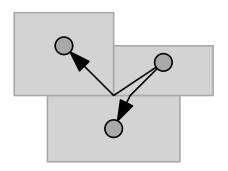
1) Orientation

▷ "corners = outgoing edges"

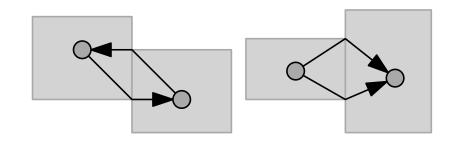
4) Graph Class

- ▷ planar
- maximal triangle-free (only 4-faces and 5-faces)

5) Augment Input Graph



triangle \rightsquigarrow 2 edges for 1 corner



every contact involves 2 corners

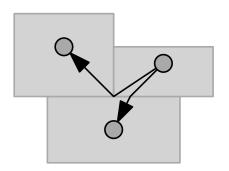
1) Orientation

▷ "corners = outgoing edges"

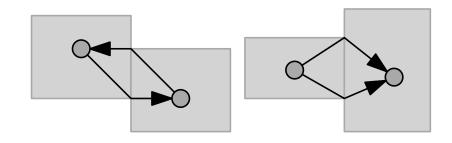
4) Graph Class

- ▷ planar
- maximal triangle-free (only 4-faces and 5-faces)

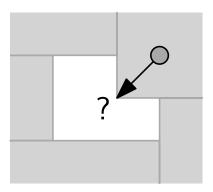
5) Augment Input Graph



triangle \rightsquigarrow 2 edges for 1 corner



every contact involves 2 corners



1 unused corner in each 5-face

1) Orientation

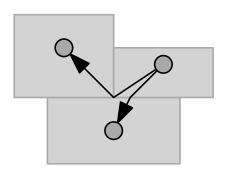
▷ "corners = outgoing edges"

4) Graph Class

- ▷ planar
- maximal triangle-free (only 4-faces and 5-faces)

5) Augment Input Graph

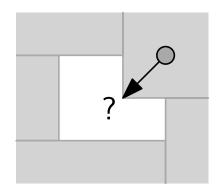
- > add vertices for inner faces



triangle \rightsquigarrow 2 edges for 1 corner



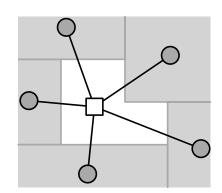
every contact involves 2 corners

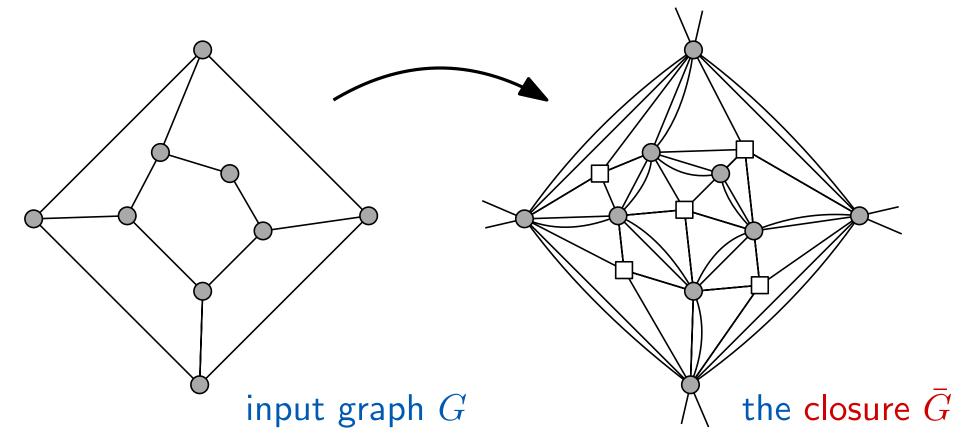


1 unused corner in each 5-face

5) Augment Input Graph

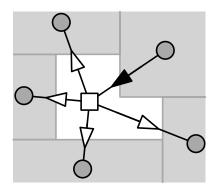
- > add vertices for inner faces
- \triangleright add 2 half-edges to each outer vertex

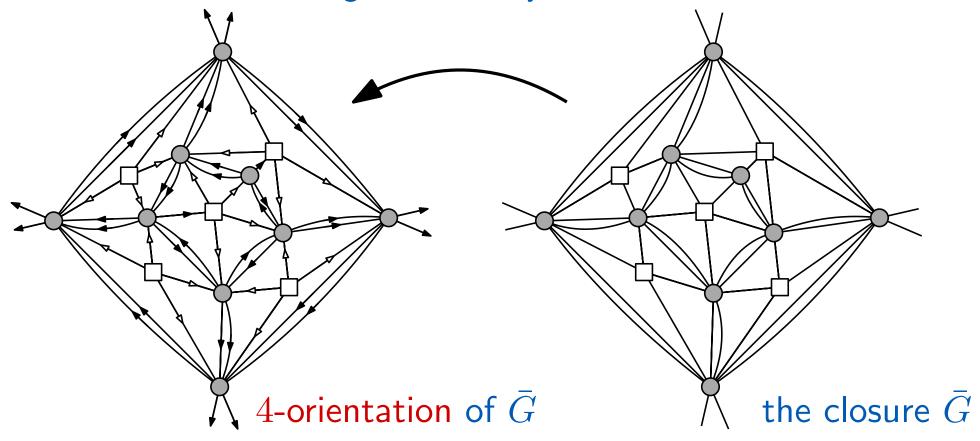




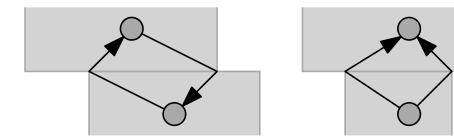
1) Orientation

- ▷ original vertices: "outgoing edges = corners"
- \triangleright 4-orientation: outdegree 4 at every vertex



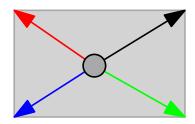


1) Orientation



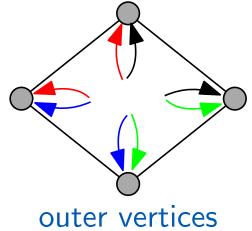
"who pokes who?"

2) Coloring



"with which feature?"

3) Local Rules

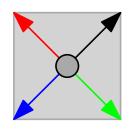


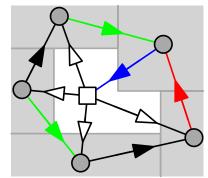
- 4) Graph Class
- ▷ planar
- maximal triangle-free

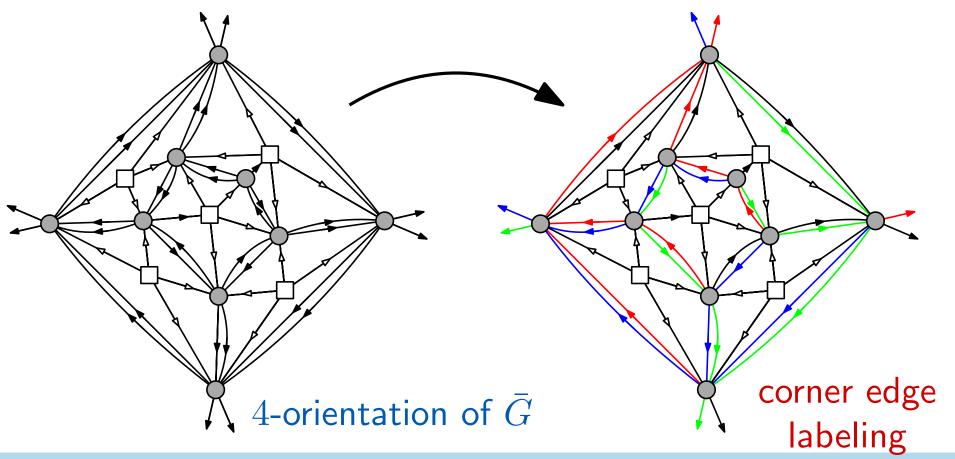
coloring and local rules

2) Coloring

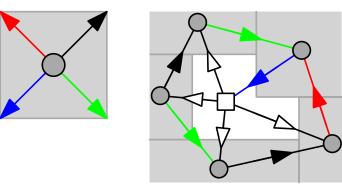
- > original vertices: one color per corner

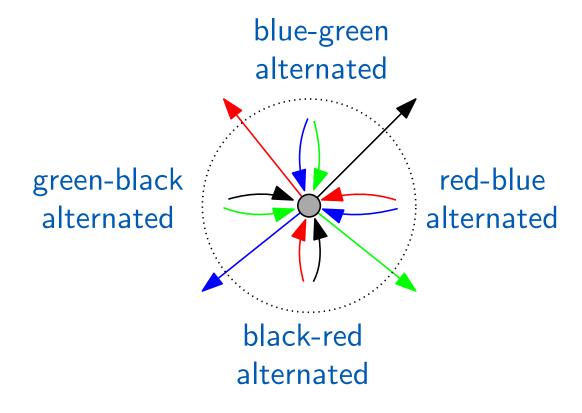






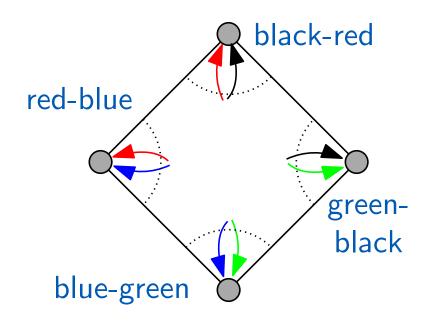
coloring and local rules





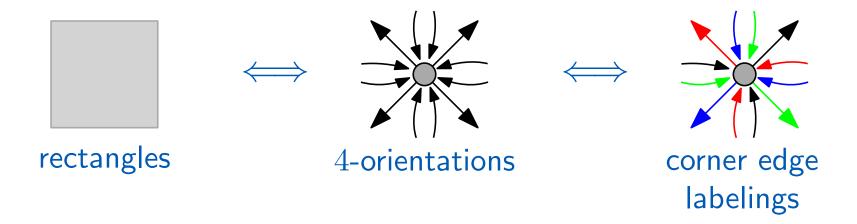
3) Local Rules

inner vertices



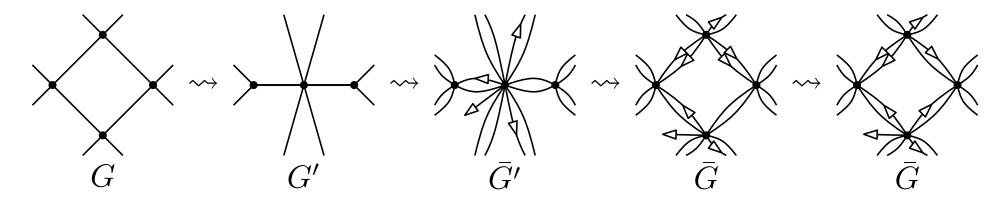
outer vertices

- **Thm.** For any maximal triangle-free, plane graph G with quadrilateral outer face, each of the following are in bijection.
 - (1) rectangle contact representations of G
 - $\stackrel{\textstyle \bigcirc}{}$ 4-orientations of the closure \bar{G}
 - (3) corner edge labelings of the closure \bar{G}



- **Lem.** In every augmented corner edge labeling each of the following holds.

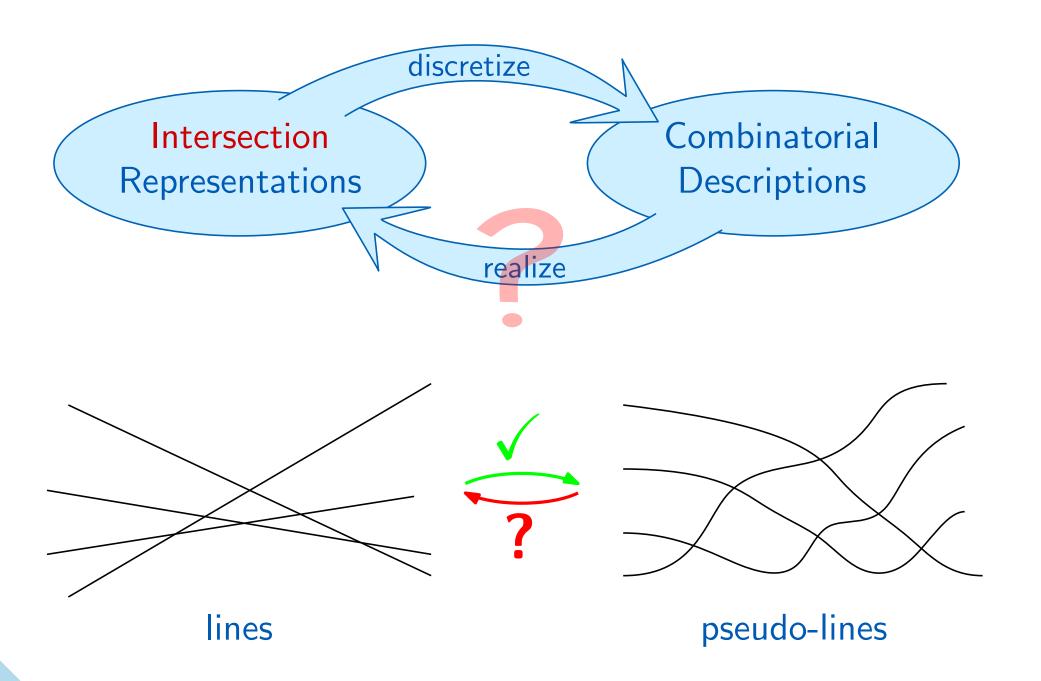
Lem. For every maximal triangle-free plane graph G its closure \bar{G} has a 4-orientation. Hence, G has a rectangle contact representation.



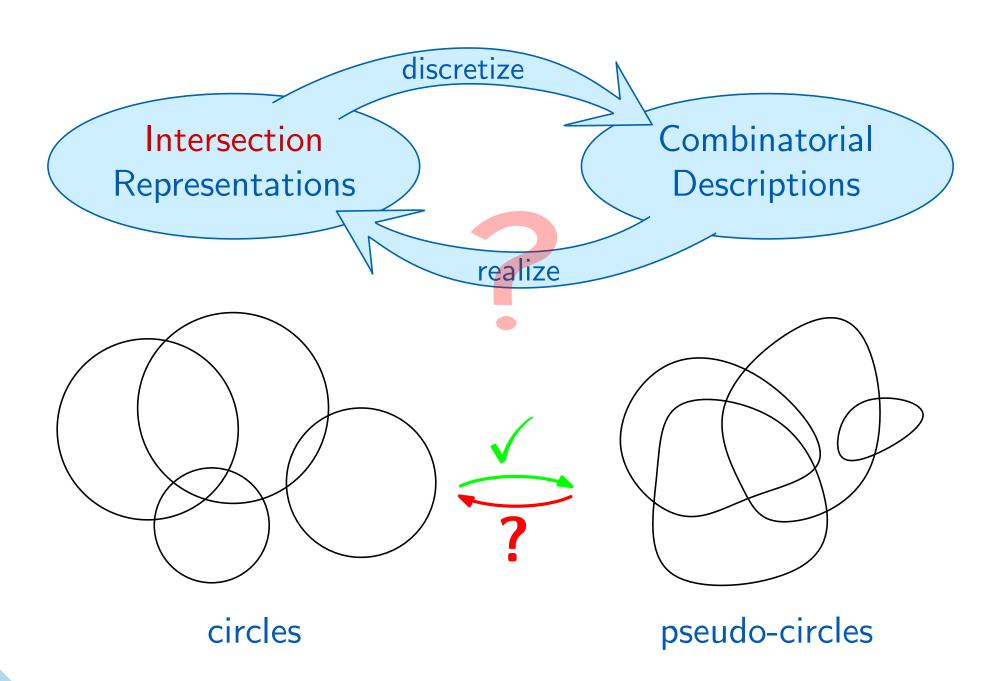
Combinatorial Properties of Triangle-Free Rectangle Arrangements

The Squarability Problem

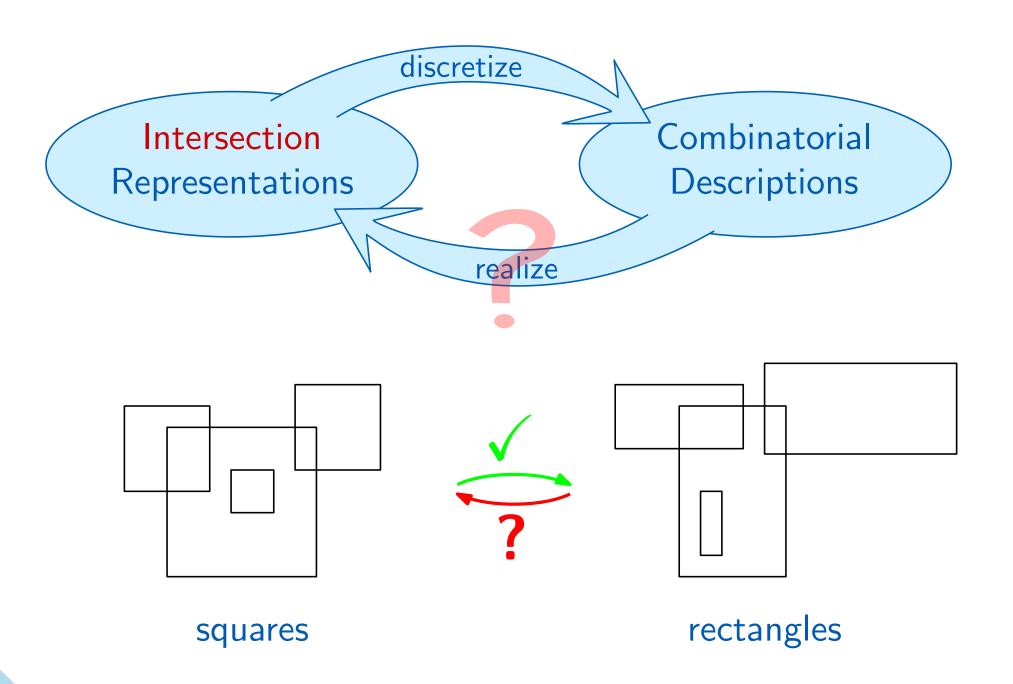
introduction (2)



introduction (2)



introduction (2)



computational complexity

Thm. It is NP-hard to decide whether a given pseudo-line arrangement is realizable with lines.

[Mnëv 1988, Shor 1991]

Thm. It is NP-hard to decide whether a given pseudo-circle arrangement is realizable with circles.

[Kang-Müller 2014]

Thm. It is NP-hard to decide whether a given pseudo-line arrangement is realizable with lines.

[Mnëv 1988, Shor 1991]

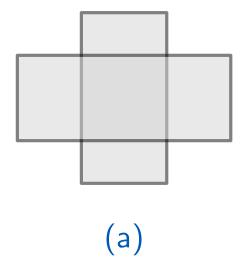
Thm. It is NP-hard to decide whether a given pseudo-circle arrangement is realizable with circles.

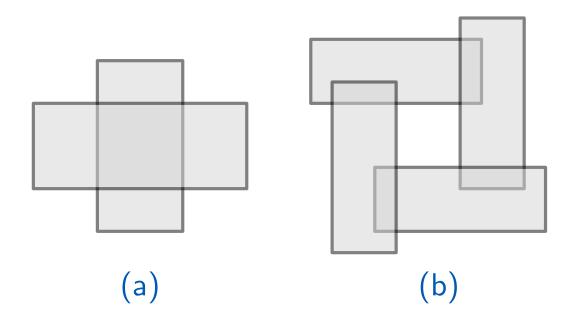
[Kang-Müller 2014]

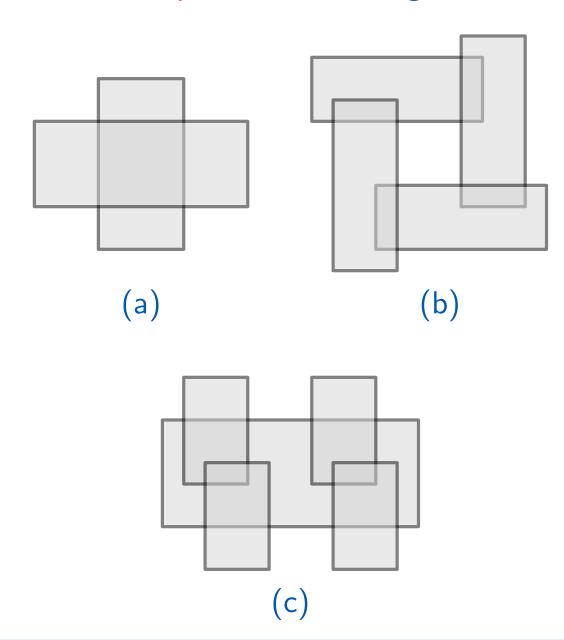
Our Contribution:

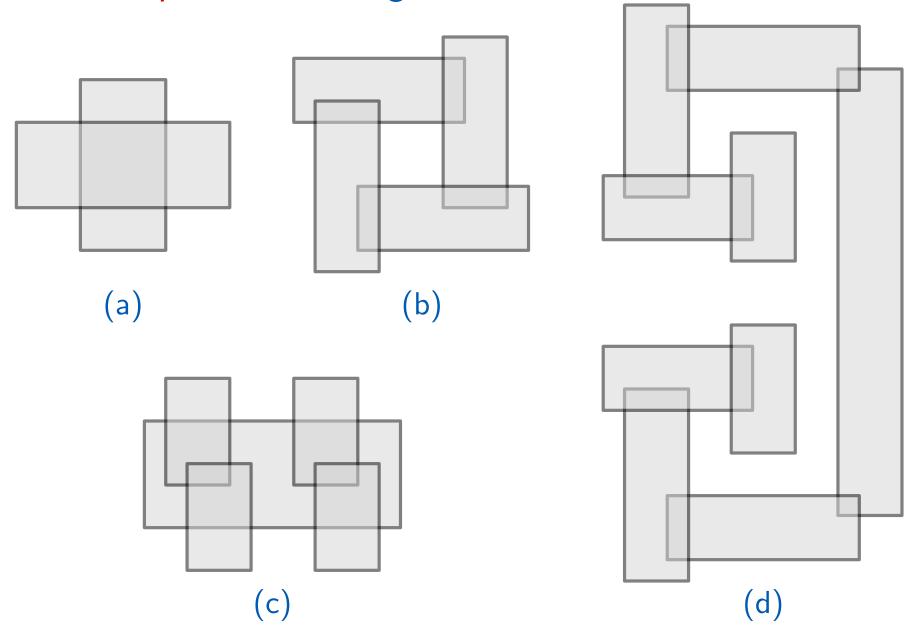
Question Is it NP-hard to decide whether a given rectangle arrangement is realizable with squares?

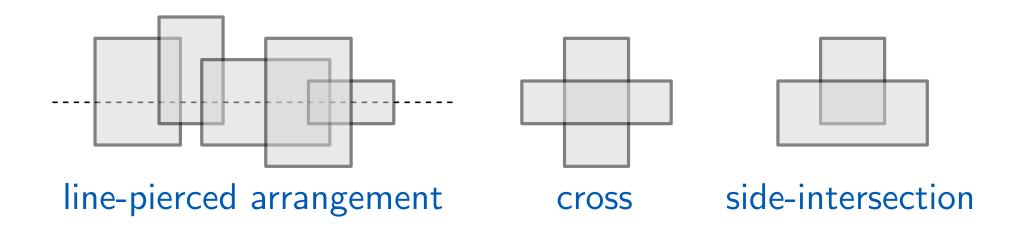
The Squarability Problem











Thm. Every line-pierced, triangle-free and cross-free rectangle arrangement is squarable.

Thm. Every line-pierced and cross-free rectangle arrangement without side-intersections is squarable.

Question Is every cross-free rectangle arrangement without side-intersections squarable?

Combinatorial Properties of Triangle-Free Rectangle Arrangements

The Squarability Problem

>Thank you for your attention! <

(joint work with Jonathan Klawitter and Martin Nöllenburg)