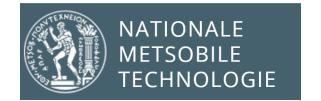


Drawing Planar Graphs with Few Segments on the Grid

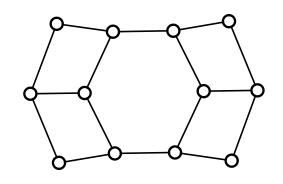
Philipp Kindermann Universität Würzburg

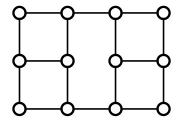
joint work with

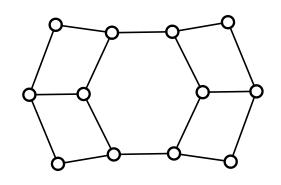
Thomas Schneck Antonios Symvonis



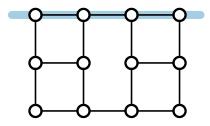
1825 1956 2009

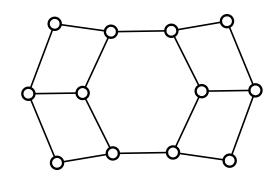


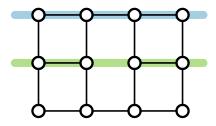


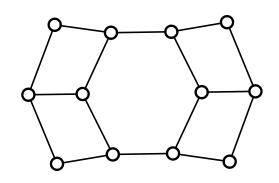

of geometric entities in a drawing

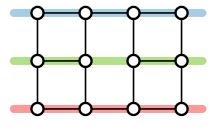
of geometric entities in a drawing

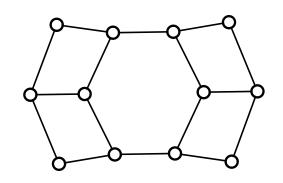


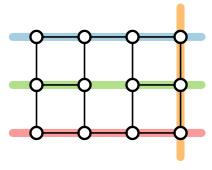

of geometric entities in a drawing

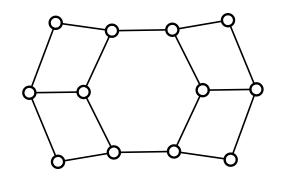


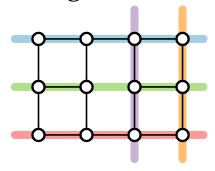

of geometric entities in a drawing

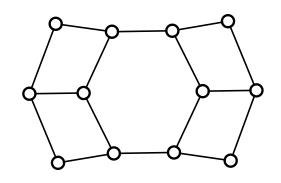

of geometric entities in a drawing

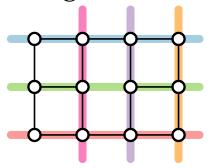


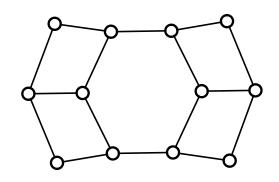

of geometric entities in a drawing

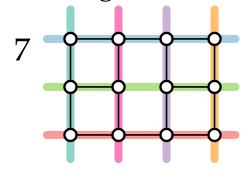


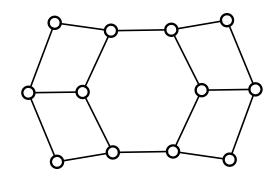


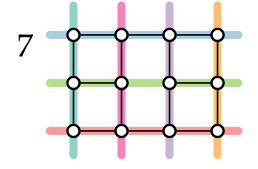

of geometric entities in a drawing

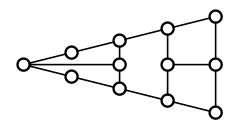


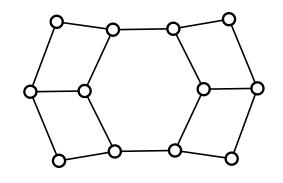

of geometric entities in a drawing

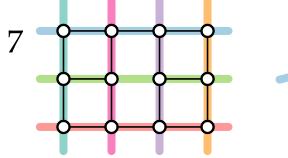


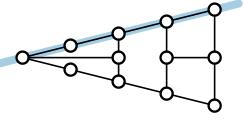

of geometric entities in a drawing

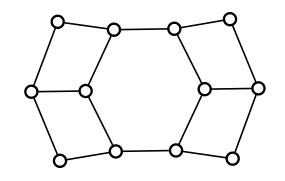


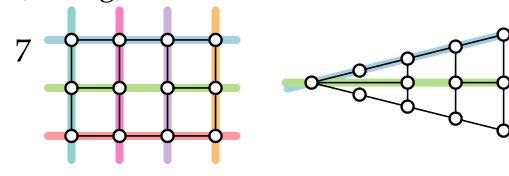

of geometric entities in a drawing

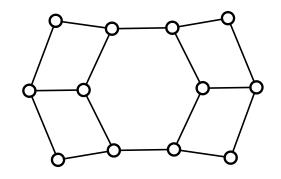


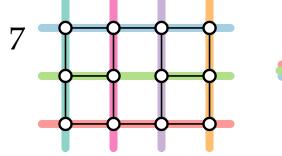

of geometric entities in a drawing

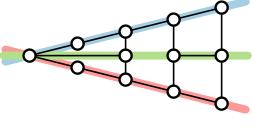


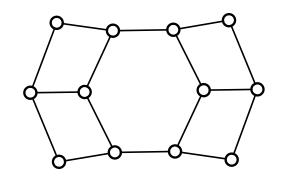


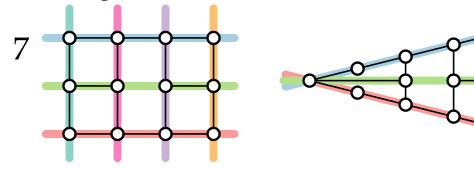

of geometric entities in a drawing

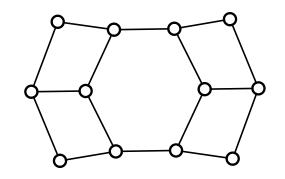


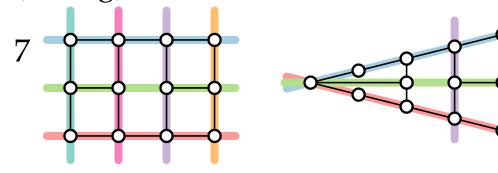


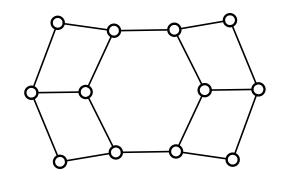

of geometric entities in a drawing

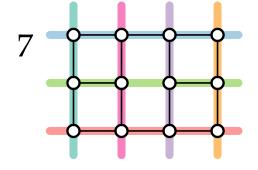


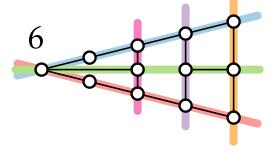

of geometric entities in a drawing

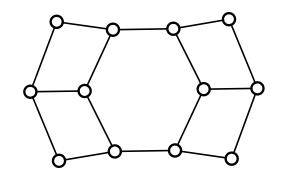




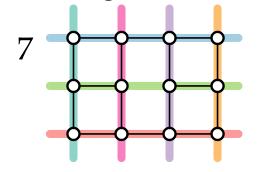

of geometric entities in a drawing

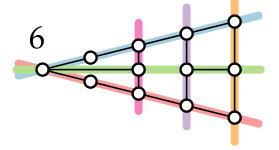


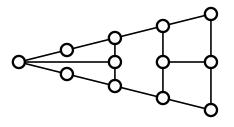

of geometric entities in a drawing

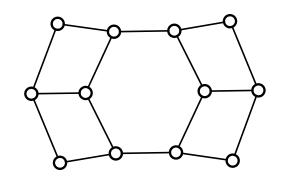


of geometric entities in a drawing

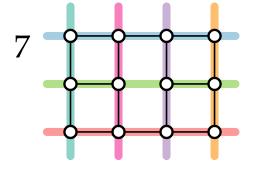


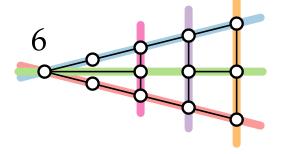


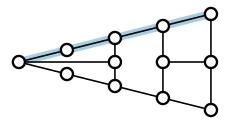


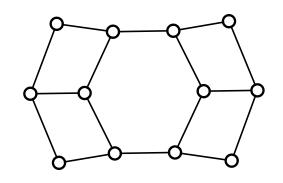

of geometric entities in a drawing

(strong) line cover number

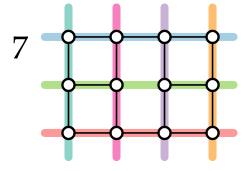


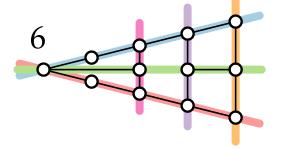


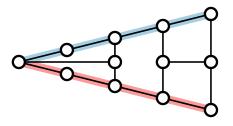


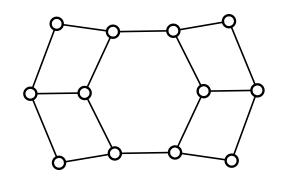

of geometric entities in a drawing

(strong) line cover number

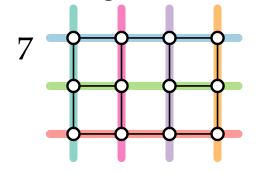


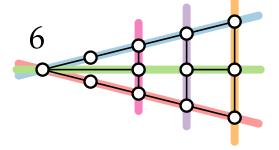


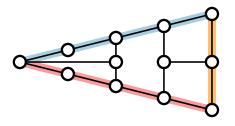


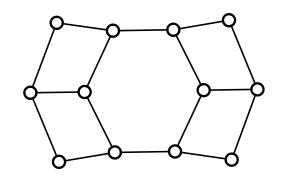

of geometric entities in a drawing

(strong) line cover number

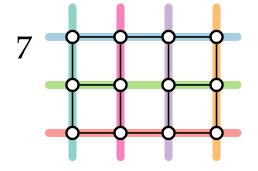


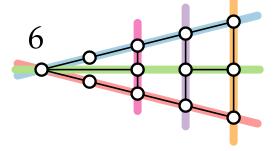


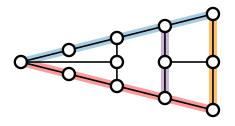


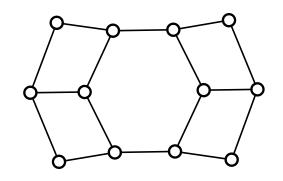

of geometric entities in a drawing

(strong) line cover number

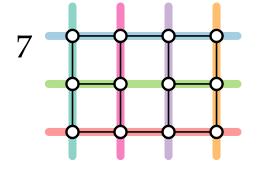


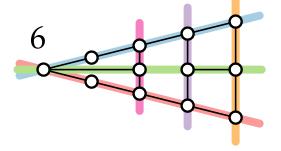


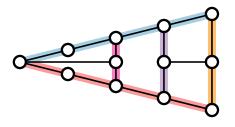


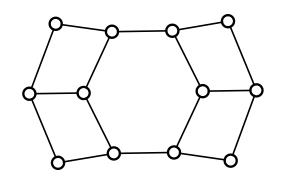

of geometric entities in a drawing

(strong) line cover number

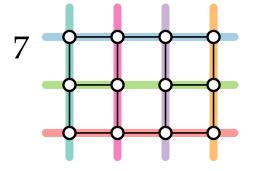


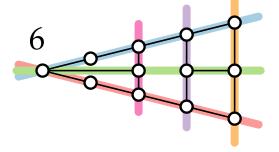


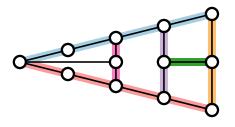


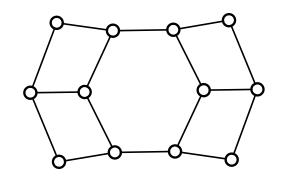

of geometric entities in a drawing

(strong) line cover number

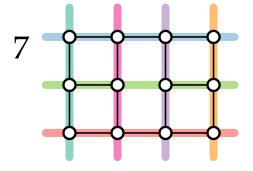


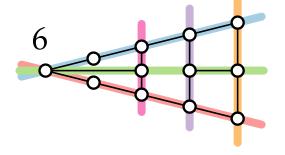


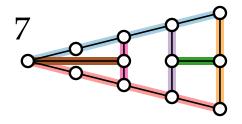


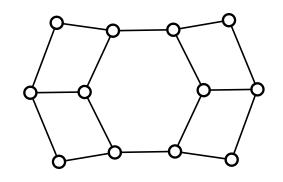

of geometric entities in a drawing

(strong) line cover number

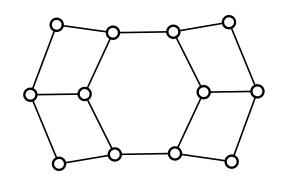


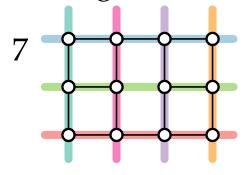


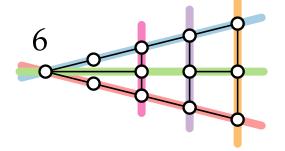



of geometric entities in a drawing

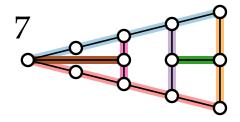
(strong) line cover number

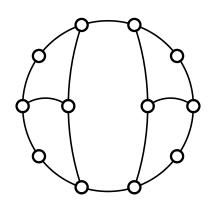


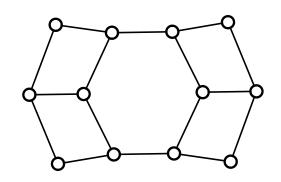




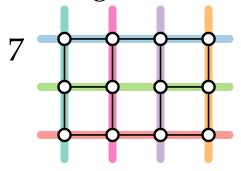
of geometric entities in a drawing

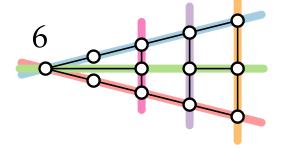



(strong) line cover number

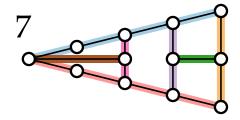


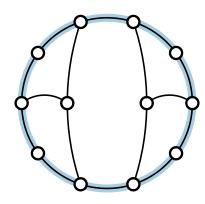
segment number

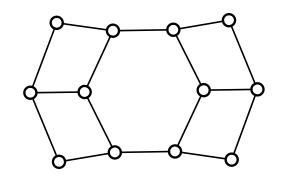




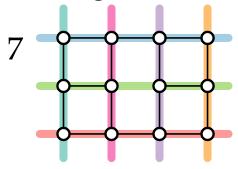
of geometric entities in a drawing

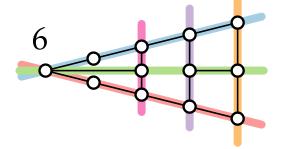



(strong) line cover number

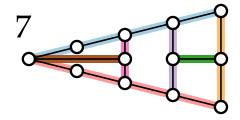


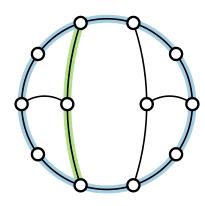
segment number

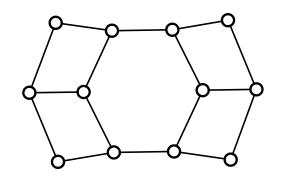




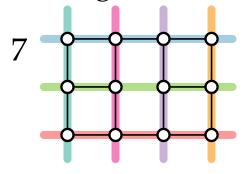
of geometric entities in a drawing

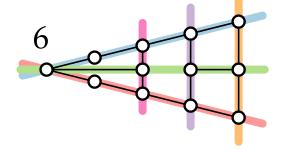



(strong) line cover number

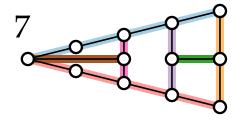


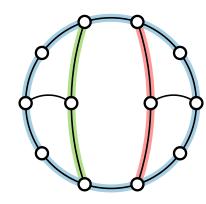
segment number

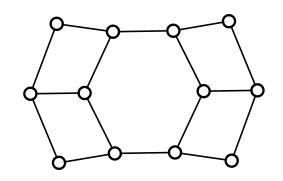




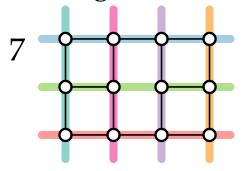
of geometric entities in a drawing

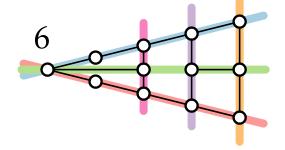



(strong) line cover number

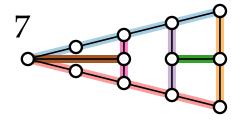


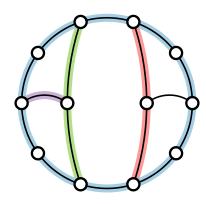
segment number

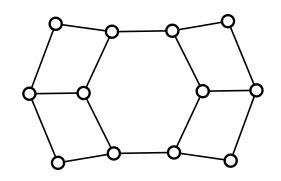




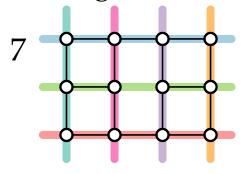
of geometric entities in a drawing

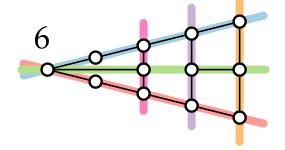



(strong) line cover number

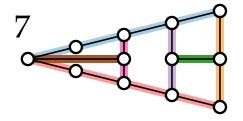


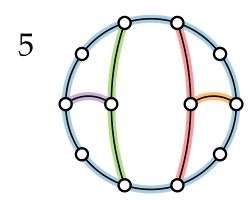
segment number

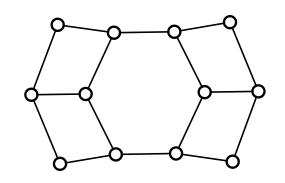




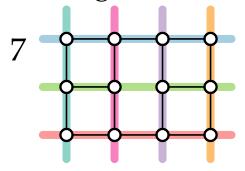
of geometric entities in a drawing

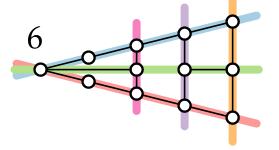



(strong) line cover number

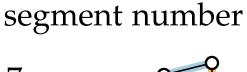


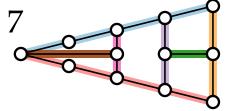
segment number

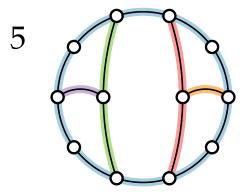


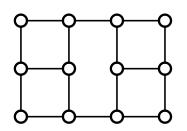


of geometric entities in a drawing

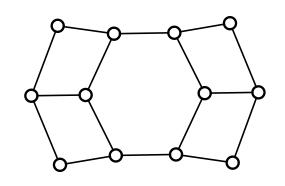


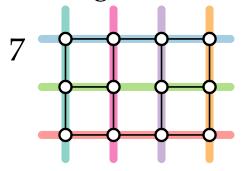

(strong) line cover number

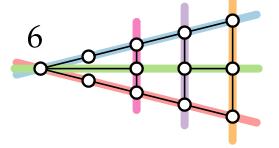




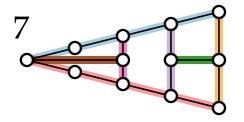
path cover number



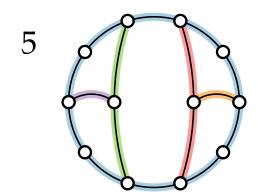


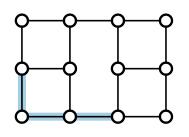


of geometric entities in a drawing

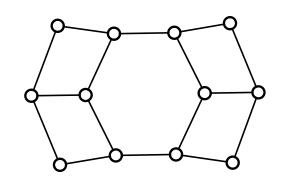


(strong) line cover number

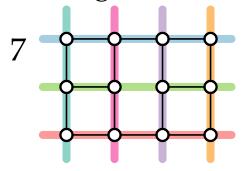


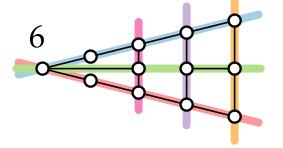


path cover number

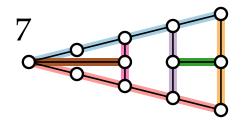


segment number

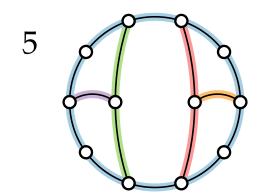


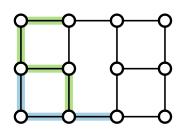


of geometric entities in a drawing

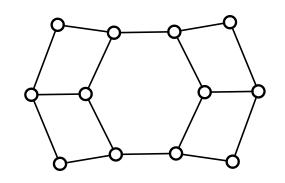


(strong) line cover number

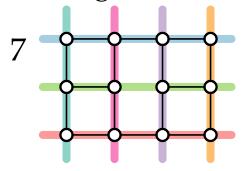


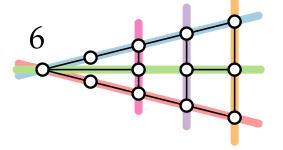


path cover number

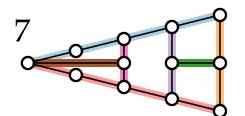


segment number

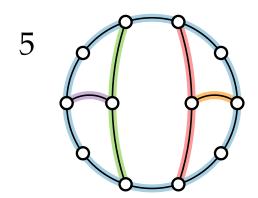


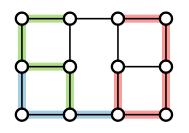


of geometric entities in a drawing

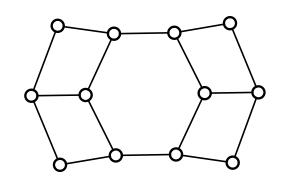


(strong) line cover number

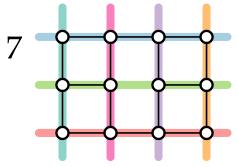


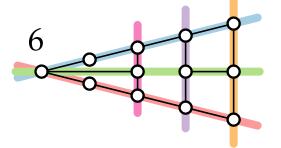


path cover number

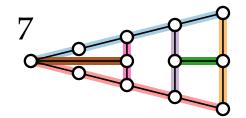


segment number

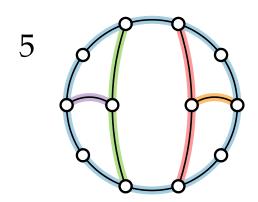


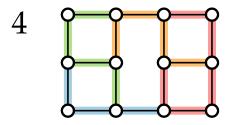


of geometric entities in a drawing

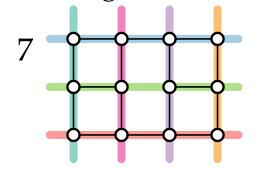


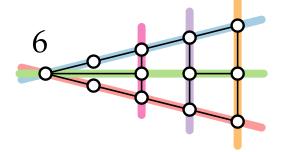
(strong) line cover number

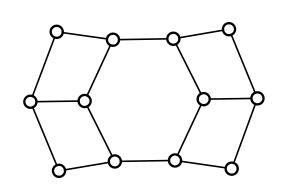



arc number

segment number

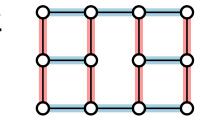


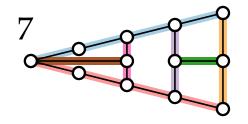

path cover number



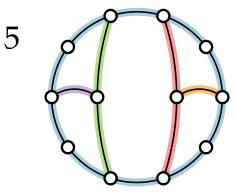
of geometric entities in a drawing

(strong) line cover number

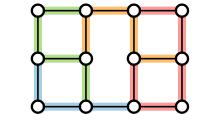




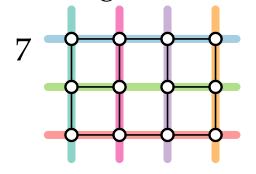
slope number

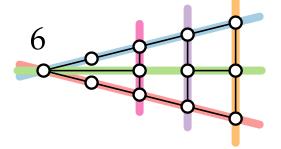


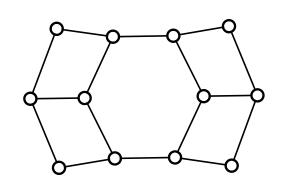
segment number



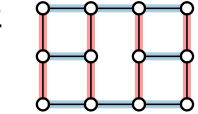
arc number


path cover number

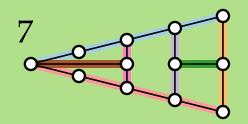



of geometric entities in a drawing

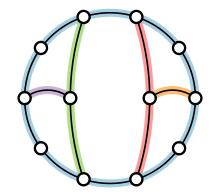
(strong) line cover number



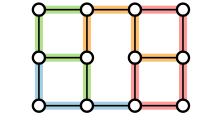
5



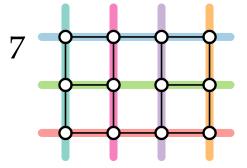
slope number

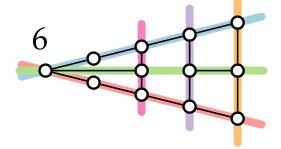


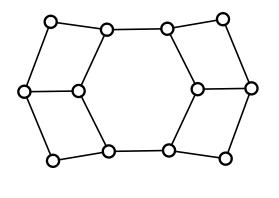
segment number



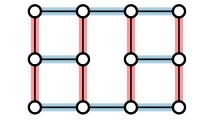
arc number


path cover number

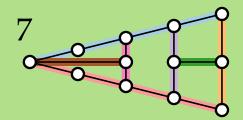

4


of geometric entities in a drawing

(strong) line cover number

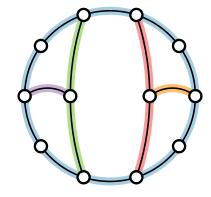


5



slope number

2



segment number

all other numbers are lower bounds

arc number

path cover number

4

Class	Segments		
	Lower	Upper	

Class	Segments		
	Lower	Upper	
tree	$\vartheta/2$ [1]	$\vartheta/2$ [1]	

Class	Segments			
	Lower	Upper		
tree	$\vartheta/2$ [1]	$\vartheta/2$ [1]		
outerplanar	<i>n</i> [1]			

Class	Segments		
	Lower	Upper	
tree	$\vartheta/2$ [1]	$\vartheta/2$ [1]	
outerplanar	n [1]		
max. outerp.	<i>n</i> [1]	<i>n</i> [1]	

Class	Segments		
	Lower	Upper	
tree	$\vartheta/2$ [1]	$\vartheta/2$ [1]	
outerplanar max. outerp. 3-trees	n [1] n [1] 2n [1]	n [1] 2n [1]	

Class	Segments		
	Lower	Upper	
tree	$\vartheta/2$ [1]	$\vartheta/2$ [1]	
outerplanar max. outerp. 3-trees 2-connected	n [1] n [1] 2n [1] 2n [1]	n [1] 2n [1]	

Class	Segments			
	Lower	Upper		
tree	θ/2 [1]	$\vartheta/2$ [1]		
outerplanar	<i>n</i> [1]			
max. outerp.	n [1]	<i>n</i> [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5n/2 [1]		

Class	Segments			
	Lower	Upper		
tree	θ/2 [1]	$\vartheta/2$ [1]		
outerplanar	<i>n</i> [1]			
max. outerp.	n [1]	n [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5n/2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]		

Class	Segments		
	Lower	Upper	
tree	θ/2 [1]	$\vartheta/2$ [1]	
outerplanar	n [1]		
max. outerp.	n [1]	n [1]	
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	
2-connected	2 <i>n</i> [1]		
3-connected	2 <i>n</i> [1]	5n/2 [1]	
cubic 3-conn.	n/2 [3]	n/2 [2]	
triangulation	2 <i>n</i> [4]	7n/3 [4]	

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

Class	Segments		
	Lower	Upper	
tree	0/2 [1]	$\vartheta/2$ [1]	
outerplanar	<i>n</i> [1]		
max. outerp.	n [1]	n [1]	
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	
2-connected	2 <i>n</i> [1]		
3-connected	2 <i>n</i> [1]	5n/2 [1]	
cubic 3-conn.	n/2 [3]	n/2 [2]	
triangulation	2 <i>n</i> [4]	7n/3 [4]	
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]	

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

Class	Segments			
	Lower	Upper		
tree	0/2 [1]	$\vartheta/2$ [1]		
outerplanar	<i>n</i> [1]			
max. outerp.	n [1]	n [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5n/2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]		
triangulation	2 <i>n</i> [4]	7n/3 [4]		
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]		
planar	2 <i>n</i> [4]	8n/3 [4]		

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

^[4] Durocher & Mondal 2014

Class	Segments		Grid	Segments
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	$\vartheta/2$ [1]		
outerplanar	n [1]			
max. outerp.	<i>n</i> [1]	n [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5n/2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]		
triangulation	2 <i>n</i> [4]	7n/3 [4]		
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]		
planar	2 <i>n</i> [4]	8n/3 [4]		

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

^[4] Durocher & Mondal 2014

Class	Segi	ments	Gric	Segments
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	$\vartheta/2$ [1]		
outerplanar	n [1]			
max. outerp.	<i>n</i> [1]	n [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5n/2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7n/3 [4]		
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]		
planar	2 <i>n</i> [4]	8n/3 [4]		

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

^[4] Durocher & Mondal 2014

Class	Segi	ments	Gric	Segments
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	$\vartheta/2$ [1]		
outerplanar	n [1]			
max. outerp.	<i>n</i> [1]	n [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7n/3 [4]	8n/3 [5]	$2^{O(n\log n)}$
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]		
planar	2 <i>n</i> [4]	8n/3 [4]		

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

^[4] Durocher & Mondal 2014 [5] Mondal 2016

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	$\vartheta/2$ [1]	3n/4 [6]	$O(n^2) \times O(n^{1.58})$
outerplanar	<i>n</i> [1]			
max. outerp.	<i>n</i> [1]	n [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O(n\log n)}$
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	$\vartheta/2$ [1]	$\vartheta/2$ [1]	$3n/4$ [6] $\vartheta/2$ [6]	
outerplanar	n [1]			
max. outerp.	<i>n</i> [1]	<i>n</i> [1]		
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O(n\log n)}$
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	ϑ/2 [1]	$\vartheta/2$ [1]	3 <i>n</i> /4 [6] ϑ /2 [6]	$O(n^2) \times O(n^{1.58})$ quasipolynomial
outerplanar	<i>n</i> [1]			
max. outerp.	<i>n</i> [1]	n [1]	3 <i>n</i> /2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]		
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [5]	$2^{O(n\log n)}$
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	ϑ/2 [1]	$\vartheta/2$ [1]	3 <i>n</i> /4 [6] ϑ /2 [6]	$O(n^2) \times O(n^{1.58})$ quasipolynomial
outerplanar	<i>n</i> [1]			
max. outerp.	<i>n</i> [1]	<i>n</i> [1]	3 <i>n</i> /2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7n/3 [4]	8n/3 [5]	$2^{O(n\log n)}$
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

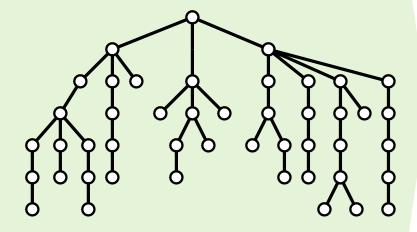
^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

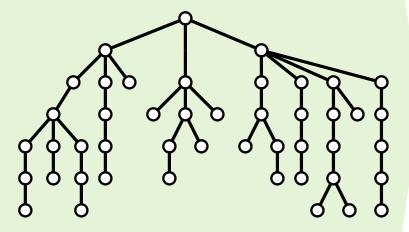
Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	ϑ/2 [1]	$\vartheta/2$ [1]	3 <i>n</i> /4 [6] ϑ /2 [6]	$O(n^2) \times O(n^{1.58})$ quasipolynomial
outerplanar	n [1]			
max. outerp.	<i>n</i> [1]	<i>n</i> [1]	3 <i>n</i> /2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [6]	$O(n) \times O(n^2)$
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

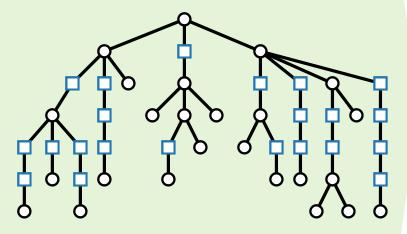
^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	ϑ/2 [1]	$\vartheta/2$ [1]	$3n/4$ [6] $\vartheta/2$ [6]	$O(n^2) \times O(n^{1.58})$ quasipolynomial
outerplanar	n [1]			
max. outerp.	<i>n</i> [1]	n [1]	3 <i>n</i> /2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7n/3 [4]	8n/3 [6]	$O(n) \times O(n^2)$
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

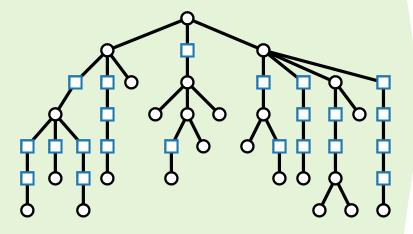

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013


^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

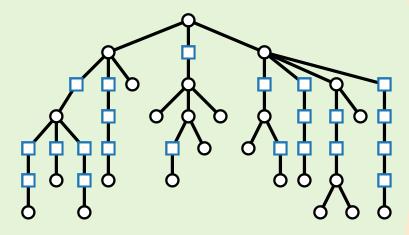
Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	$\vartheta/2$ [1]	$3n/4$ [6] $\vartheta/2$ [6]	$O(n^2) \times O(n^{1.58})$ quasipolynomial
outerplanar	n [1]			
max. outerp.	<i>n</i> [1]	n [1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5n/2 [1]		
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7n/3 [4]	8n/3 [6]	$O(n) \times O(n^2)$
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]		
planar	2 <i>n</i> [4]	8n/3 [4]		


^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

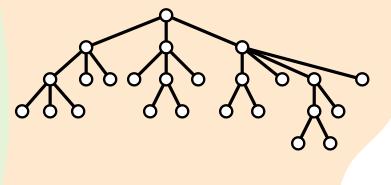
^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017



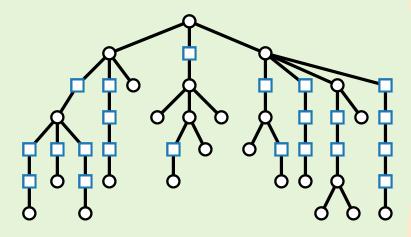
 β deg-2 vtcs



 β deg-2 vtcs


Remove β deg-2 vtcs

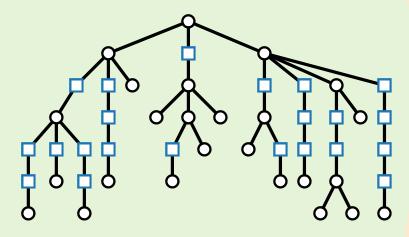
Tree *T n* vtcs



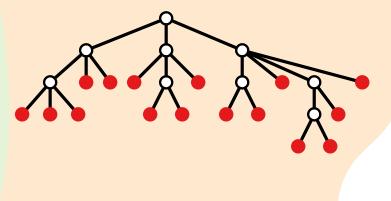
Remove β deg-2 vtcs

 \Rightarrow Tree T' $n-\beta$ vtcs

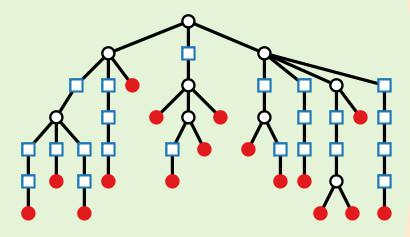
Tree *T n* vtcs


Remove β deg-2 vtcs

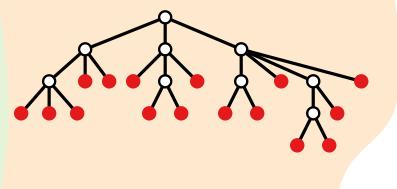
 \Rightarrow Tree T' $n-\beta$ vtcs


α leaves

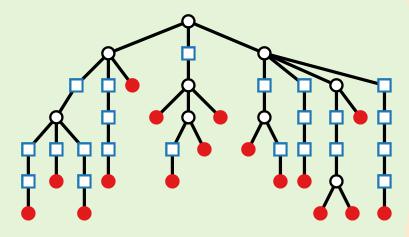
Tree *T n* vtcs


Remove β deg-2 vtcs

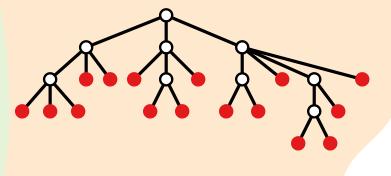
 \Rightarrow Tree T' $n-\beta$ vtcs


α leaves

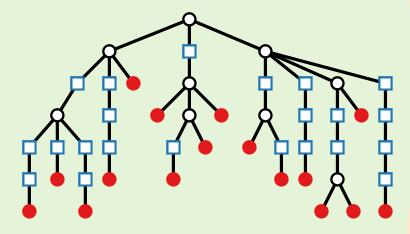
Tree *T n* vtcs


Remove β deg-2 vtcs

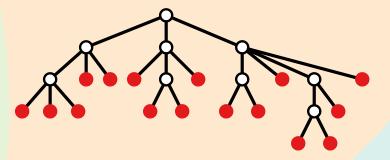
 \Rightarrow Tree T' $n-\beta$ vtcs


α leaves

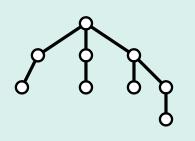
Tree *T n* vtcs


Remove β deg-2 vtcs

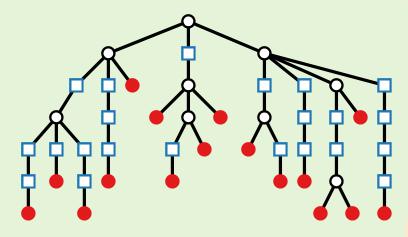
 \Rightarrow Tree T' $n-\beta$ vtcs


Remove α leaves

Tree *T n* vtcs

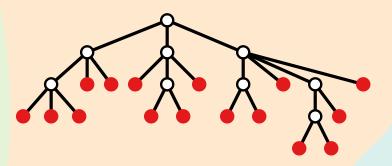

Remove β deg-2 vtcs

 \Rightarrow Tree T' $n-\beta$ vtcs

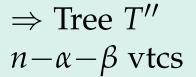


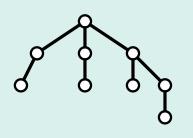
Remove α leaves

 $\Rightarrow \text{Tree } T''$ $n - \alpha - \beta \text{ vtcs}$



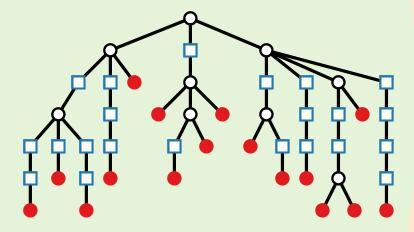
Tree *T n* vtcs

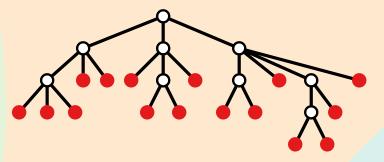



Remove β deg-2 vtcs

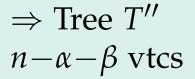
 \Rightarrow Tree T' $n-\beta$ vtcs

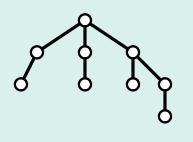
Remove α leaves

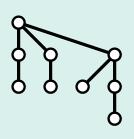


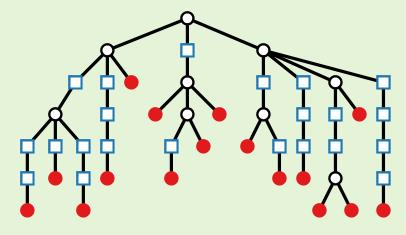

$$n-\alpha-\beta$$
 segment

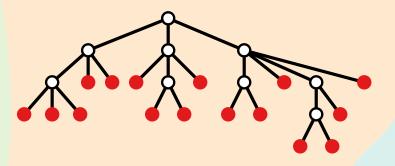
Tree *T n* vtcs



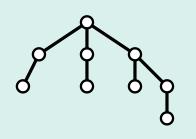

Remove β deg-2 vtcs


 \Rightarrow Tree T' $n-\beta$ vtcs


Remove α leaves + $\alpha/2$ segments

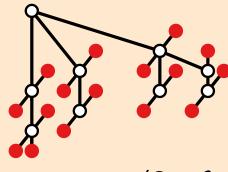


Tree *T n* vtcs



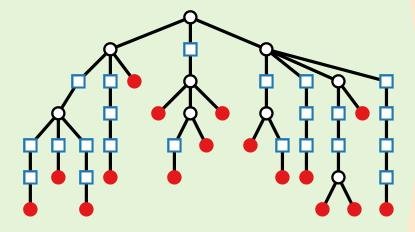
Remove β deg-2 vtcs

 \Rightarrow Tree T' $n-\beta$ vtcs

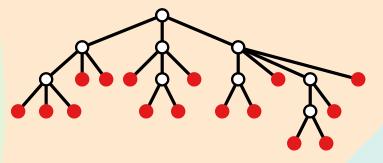


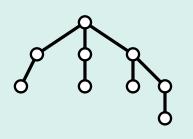
 \Rightarrow Tree T'' $n-\alpha-\beta$ vtcs

Remove α leaves


+ $\alpha/2$ segments

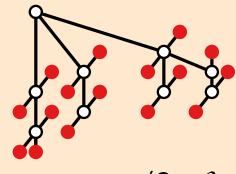
 $n-\alpha/2-\beta$ segments


Tree *T n* vtcs


Remove β deg-2 vtcs

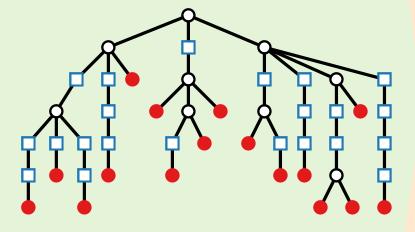
+ 0 segments

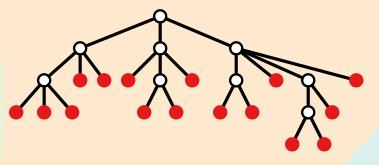
 \Rightarrow Tree T' $n-\beta$ vtcs

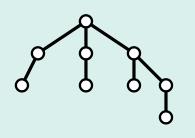


 \Rightarrow Tree T'' $n-\alpha-\beta$ vtcs

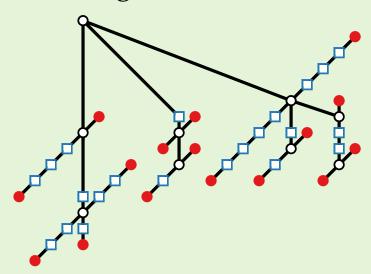
Remove α leaves


+ $\alpha/2$ segments

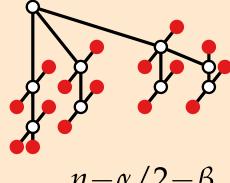

 $n-\alpha/2-\beta$ segments


Tree *T n* vtcs

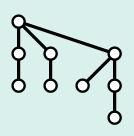
 \Rightarrow Tree T' $n-\beta$ vtcs



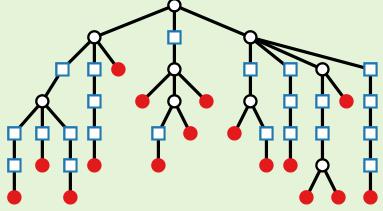
 \Rightarrow Tree T'' $n-\alpha-\beta$ vtcs


Remove β deg-2 vtcs

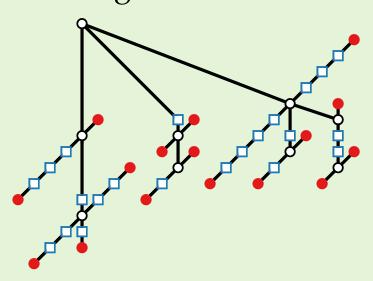
+ 0 segments



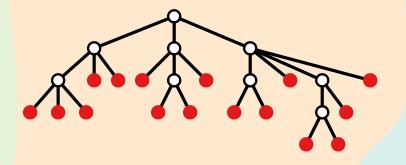
Remove α leaves


+ $\alpha/2$ segments

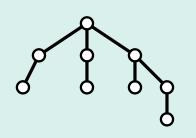
 $n-\alpha/2-\beta$ segments



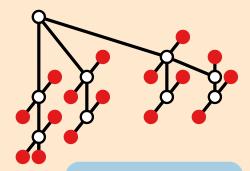
Tree *T n* vtcs



Remove β deg-2 vtcs

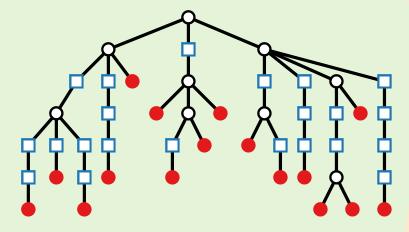

+ 0 segments

 \Rightarrow Tree T' $n-\beta$ vtcs

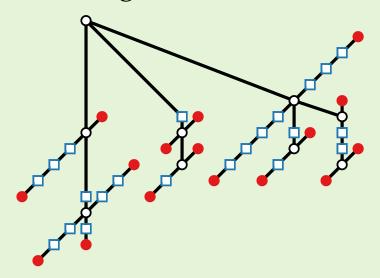


 $\Rightarrow \text{Tree } T''$ $n - \alpha - \beta \text{ vtcs}$

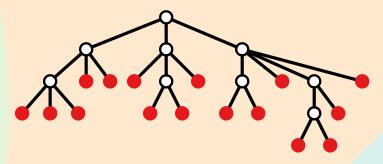
Remove α leaves


+ $\alpha/2$ segments

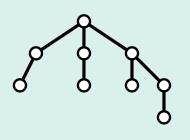
 $n-\alpha/2-\beta$ segments



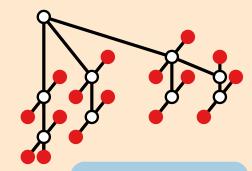
Tree *T n* vtcs



Remove β deg-2 vtcs

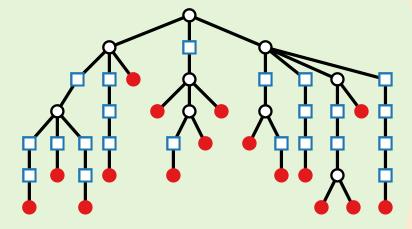

+ 0 segments

 \Rightarrow Tree T' $n-\beta$ vtcs

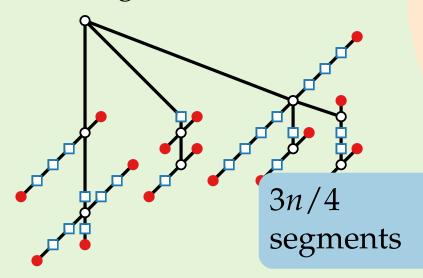

 \Rightarrow Tree T'' $n-\alpha-\beta$ vtcs

$$\alpha > (n - \beta)/2$$

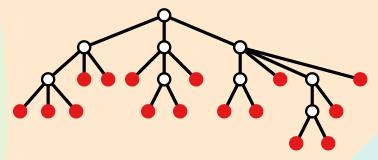
Remove α leaves


+ $\alpha/2$ segments

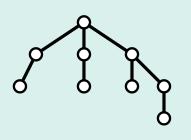
 $n-\alpha/2-\beta$ segments



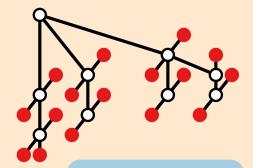
Tree *T n* vtcs



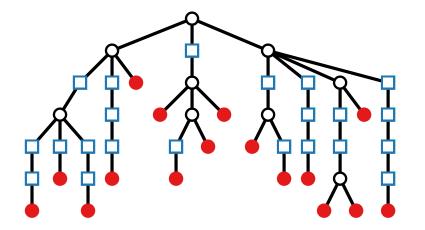
Remove β deg-2 vtcs

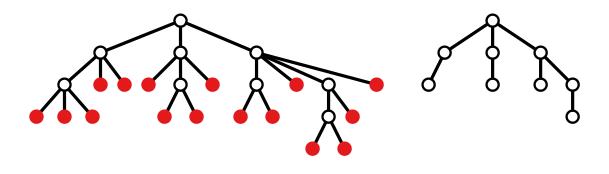

+ 0 segments

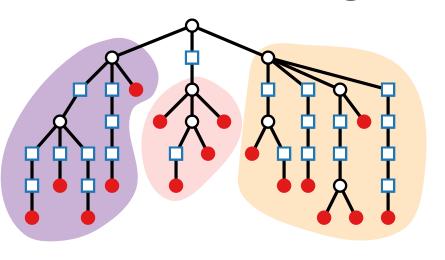
 \Rightarrow Tree T' $n-\beta$ vtcs

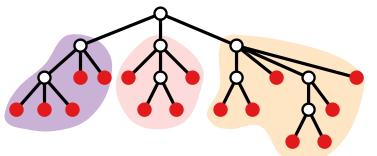

 \Rightarrow Tree T'' $n-\alpha-\beta$ vtcs

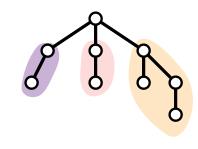
 $\alpha > (n - \beta)/2$

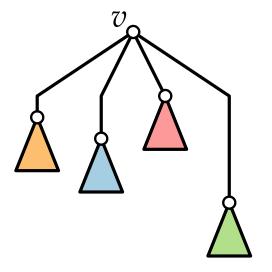

Remove α leaves

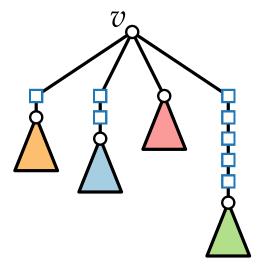

+ $\alpha/2$ segments

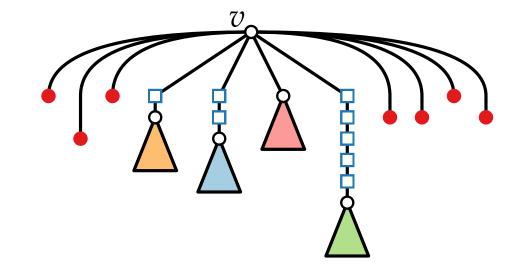


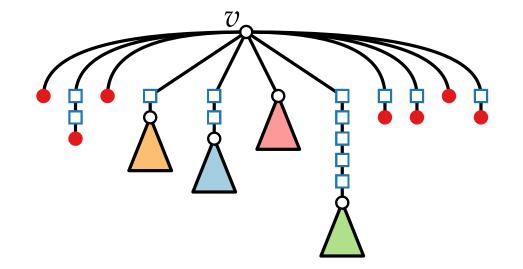

 $n-\alpha/2-\beta$ segments

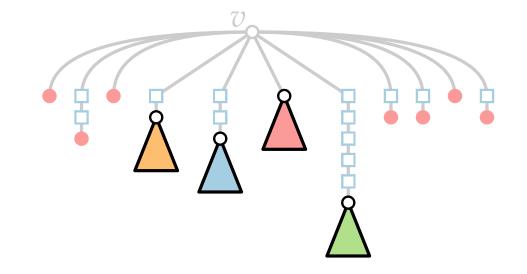


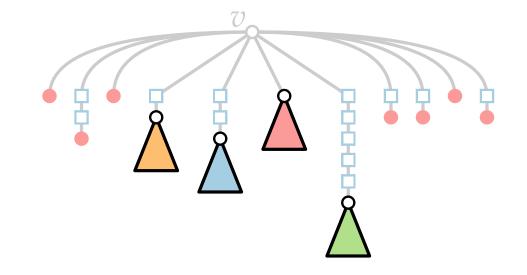


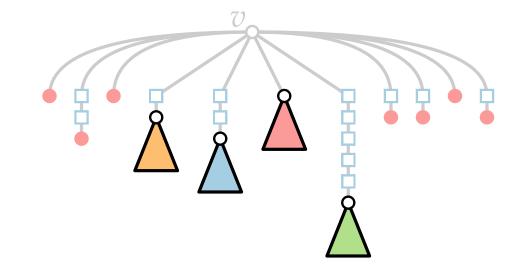


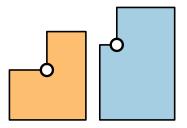


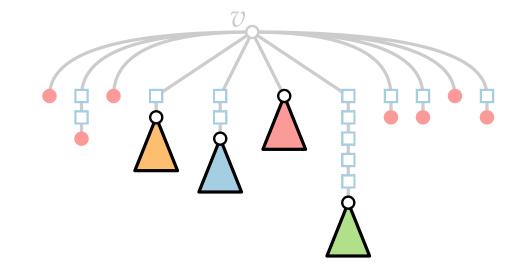


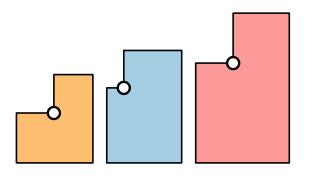

v_{o}

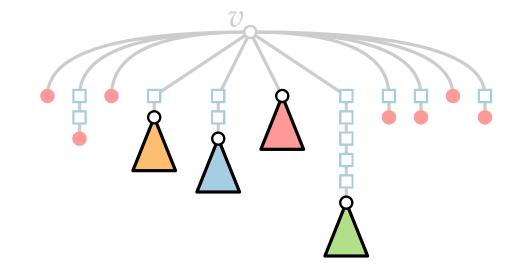


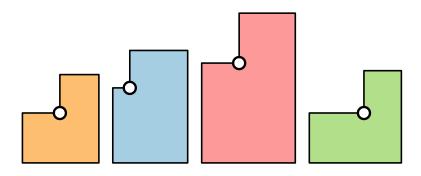


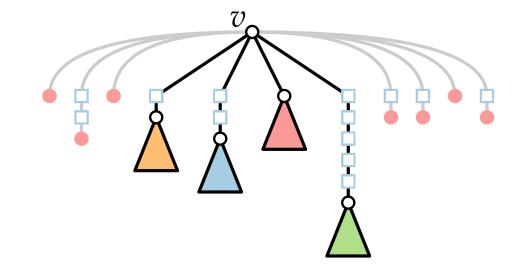


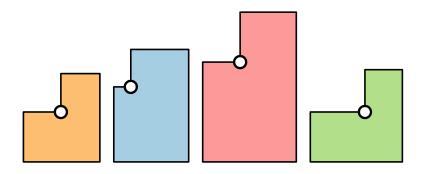


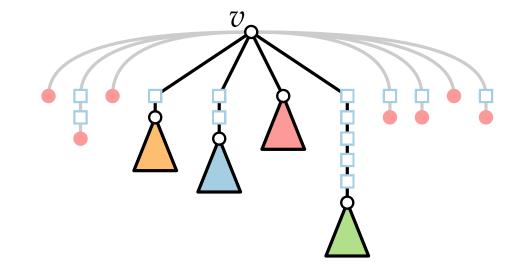


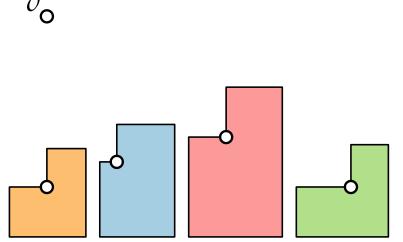


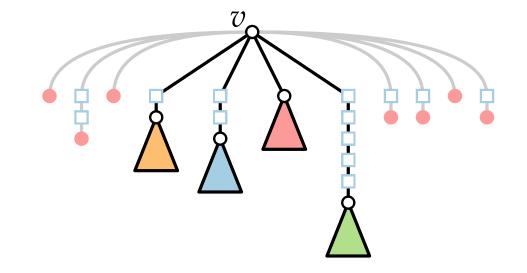


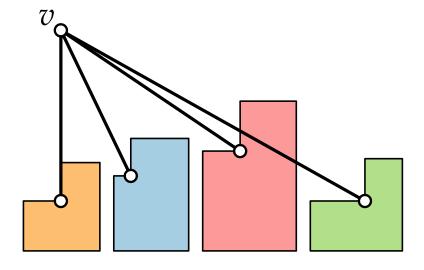


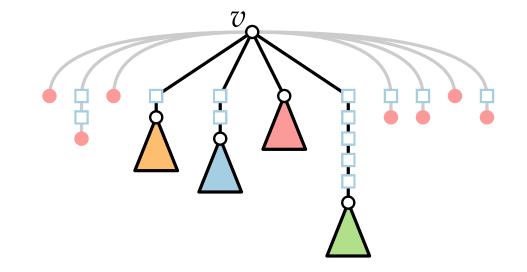


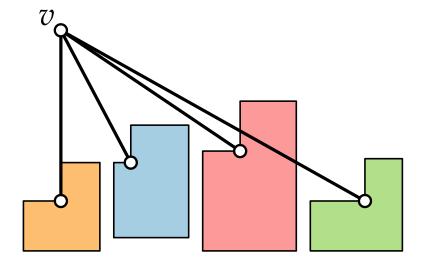


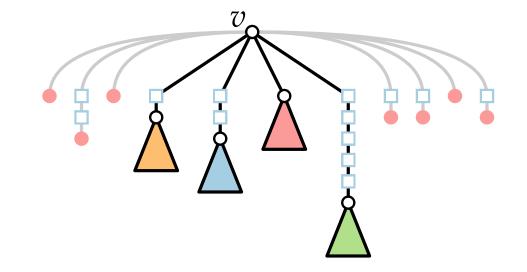

- (1) Draw $^{\triangle} ^{\triangle} ^{\triangle} ^{\triangle}$
- (2) Layout $v + \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle}$

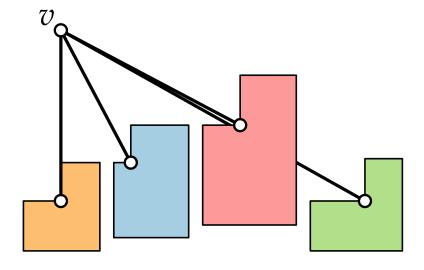


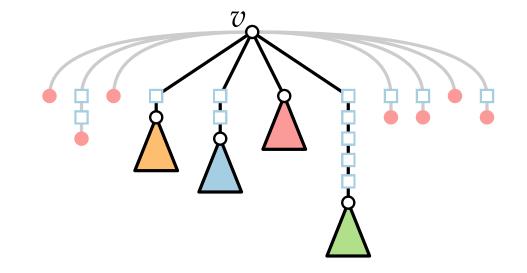

- (1) Draw $^{\triangle} ^{\triangle} ^{\triangle} ^{\triangle}$
- (2) Layout $v + \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle}$

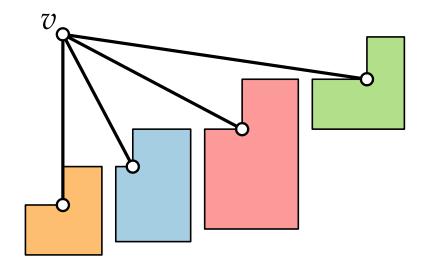


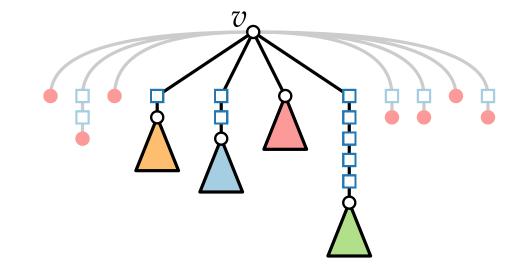

- (1) Draw $^{\triangle} ^{\triangle} ^{\triangle} ^{\triangle}$
- (2) Layout $v + \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle}$

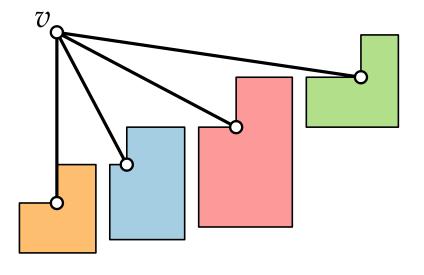


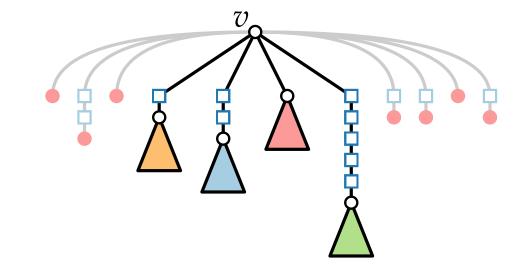

- (1) Draw $^{\triangle} ^{\triangle} ^{\triangle} ^{\triangle}$
- (2) Layout $v + \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle}$

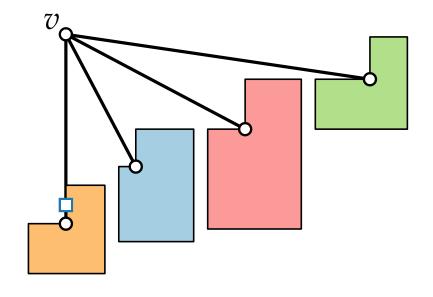


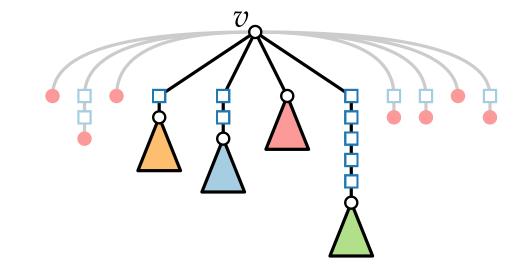

- (1) Draw $^{\triangle} ^{\triangle} ^{\triangle} ^{\triangle}$
- (2) Layout $v + \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle}$

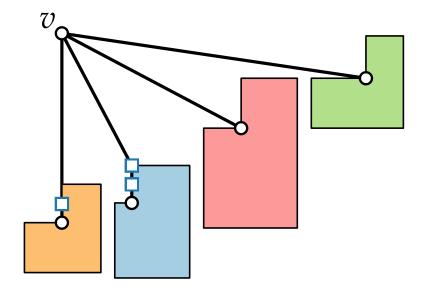


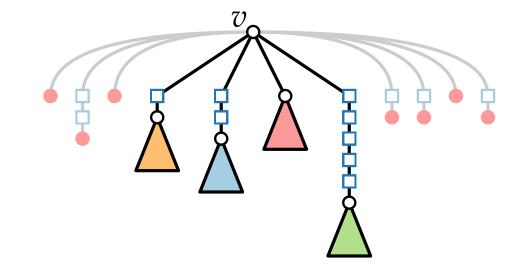

- (1) Draw $^{\triangle} ^{\triangle} ^{\triangle} ^{\triangle}$
- (2) Layout $v + \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle}$

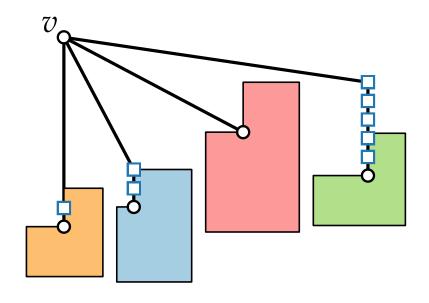


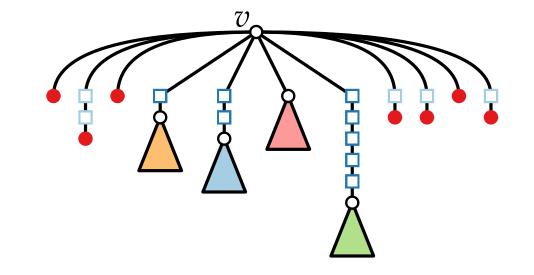

- (1) Draw $^{\triangle} ^{\triangle} ^{\triangle} ^{\triangle}$
- (2) Layout $v + \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle}$
- (3) Add □

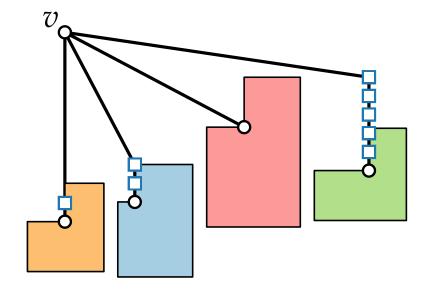


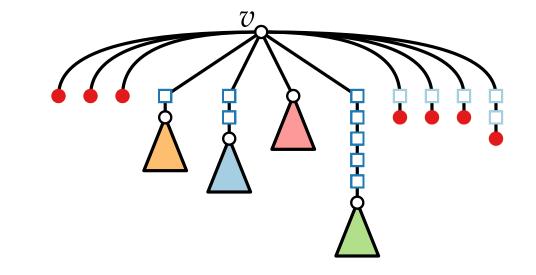

- (1) Draw $^{\triangle} ^{\triangle} ^{\triangle} ^{\triangle}$
- (2) Layout $v + \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle}$
- (3) Add □

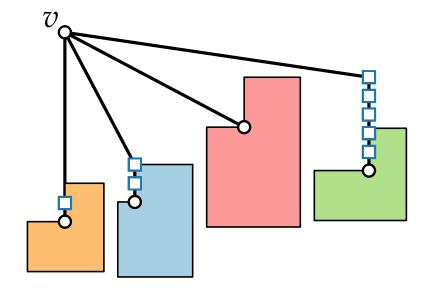


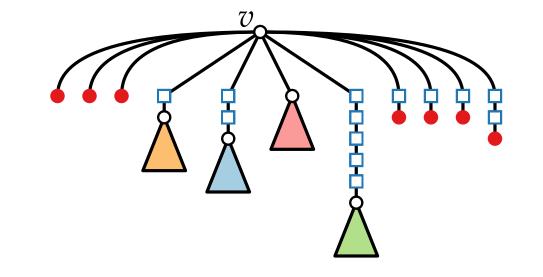

- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle}$
- (3) Add □

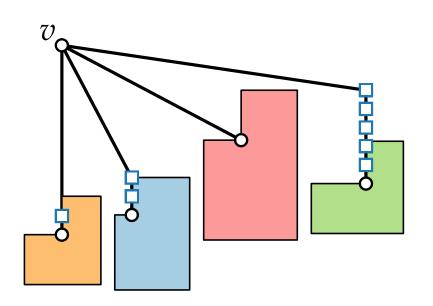


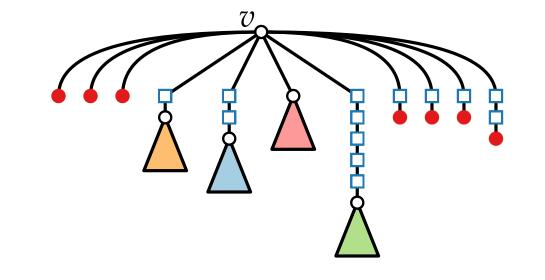

- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle}$
- (3) Add □

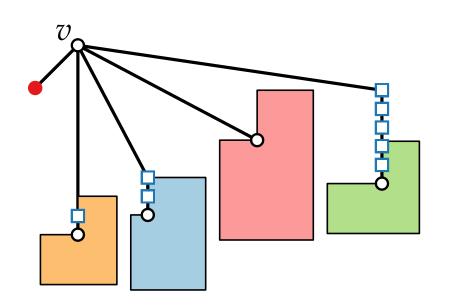


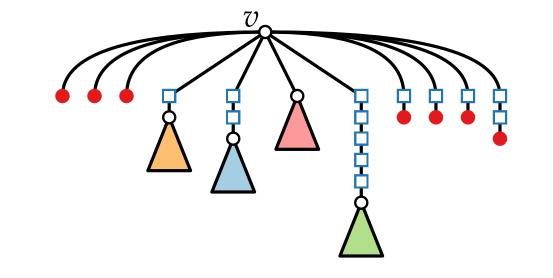

- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add □
- (4) Sort by # 🗆

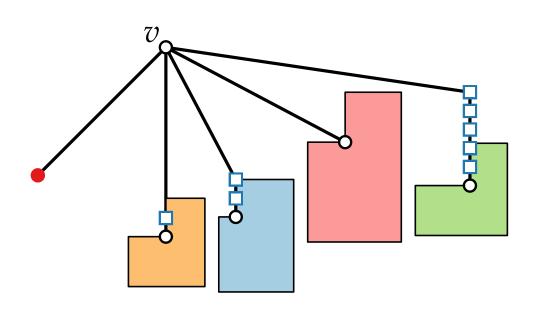


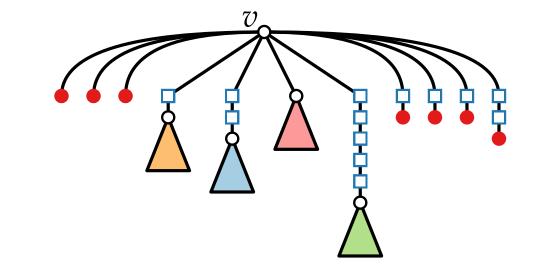

- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add □
- (4) Sort by # 🗆

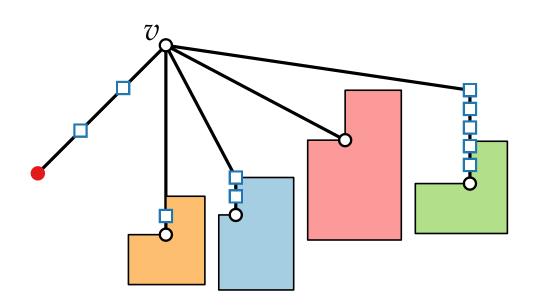

- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

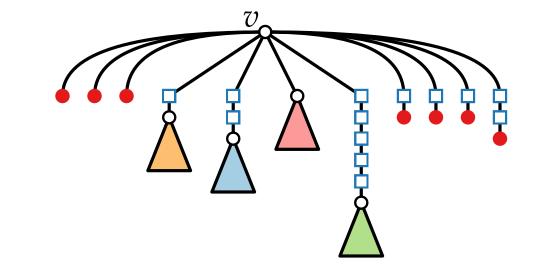


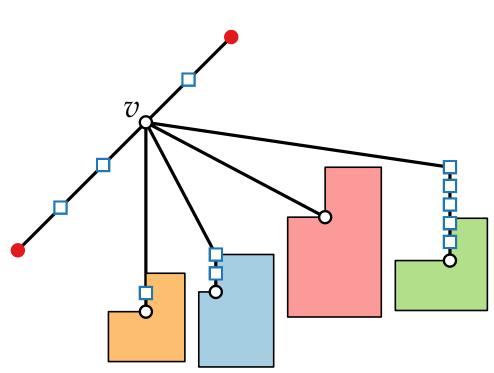

- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # 🗆

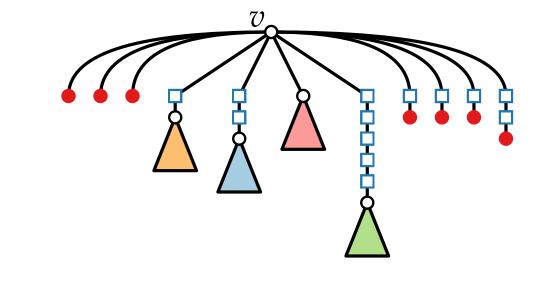


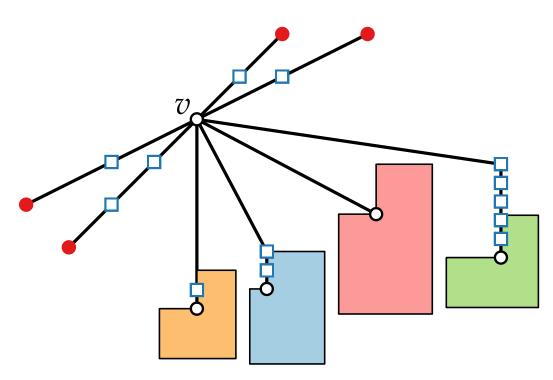


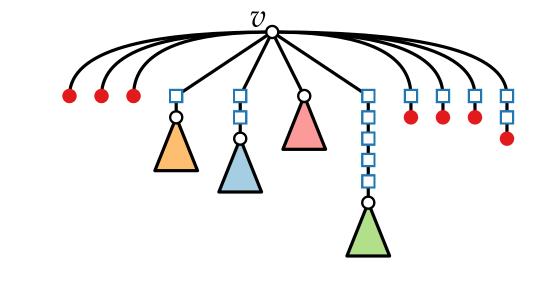

- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

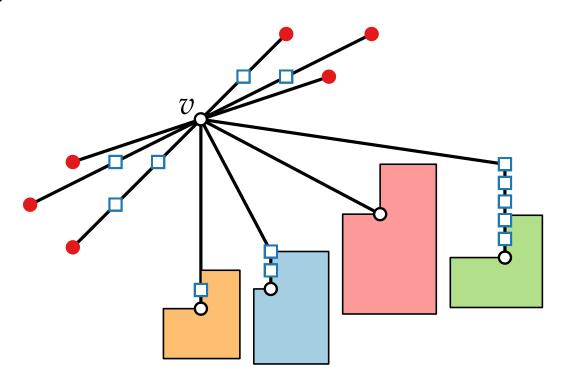


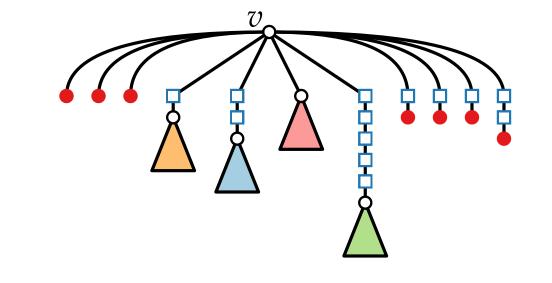

- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

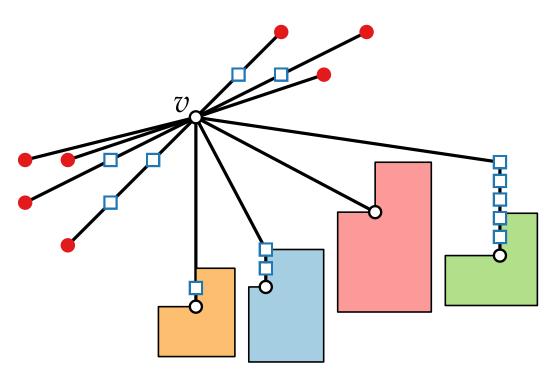


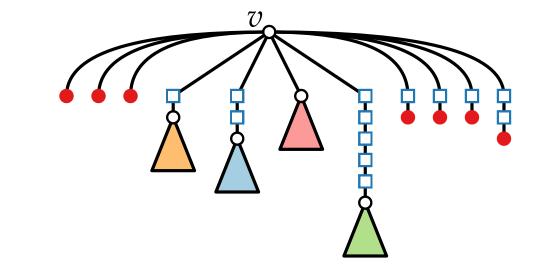

- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add □
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

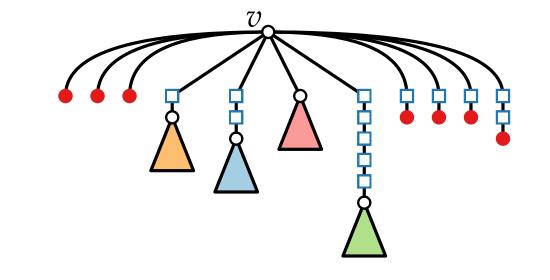


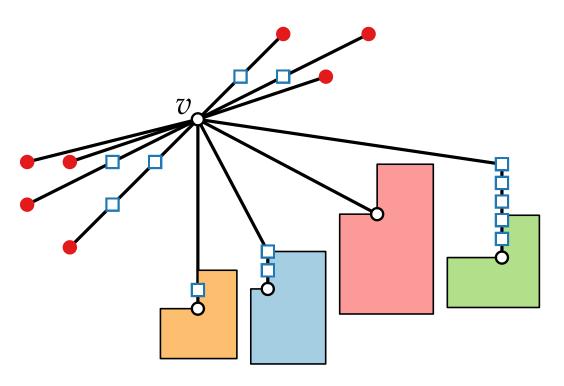

- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add □
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

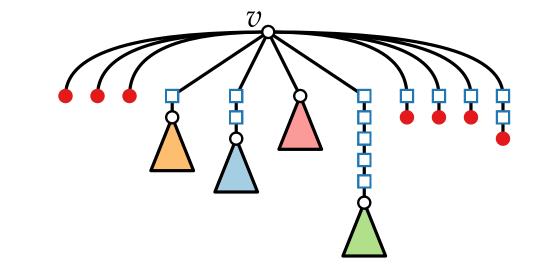


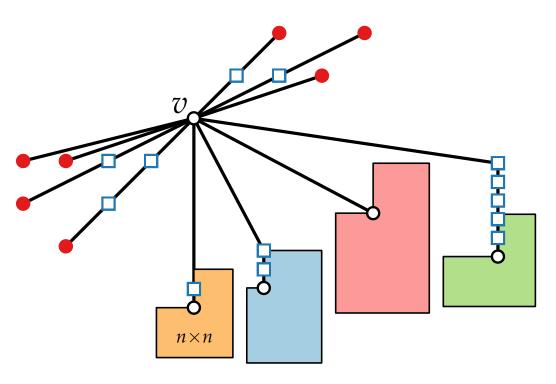

- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add □
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

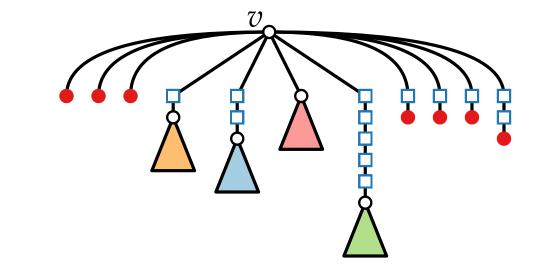

- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add □
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

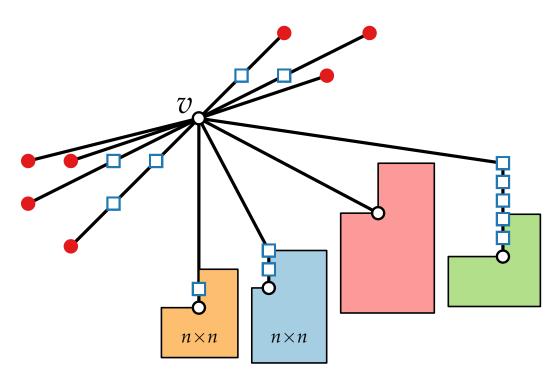

- (1) Draw $^{\triangle} ^{\triangle} ^{\triangle} ^{\triangle} ^{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

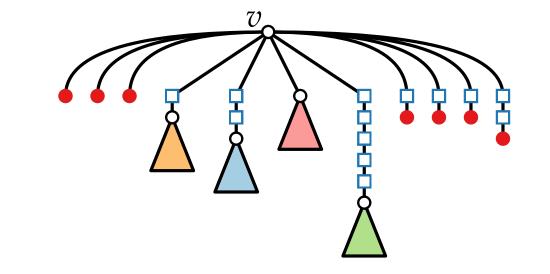

3n/4 segments

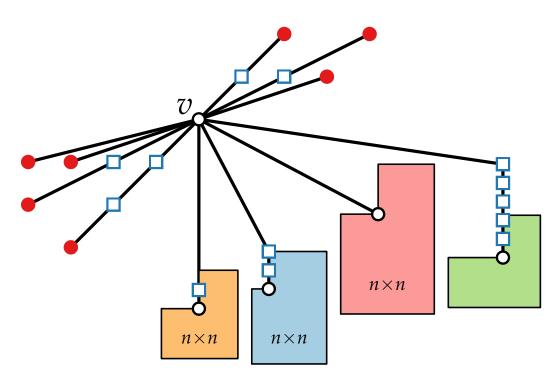


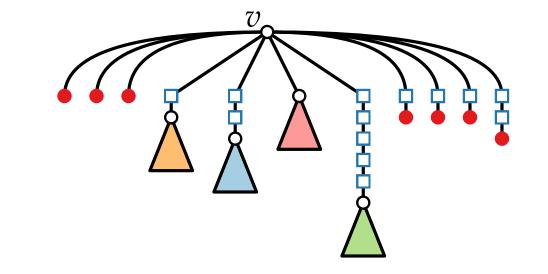

- (1) Draw $\overset{\triangle}{\triangle}\overset{\triangle}{\triangle}\overset{\triangle}{\triangle}\overset{\triangle}{\triangle}$
- (2) Layout $v + \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle}$
- (3) Add □
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

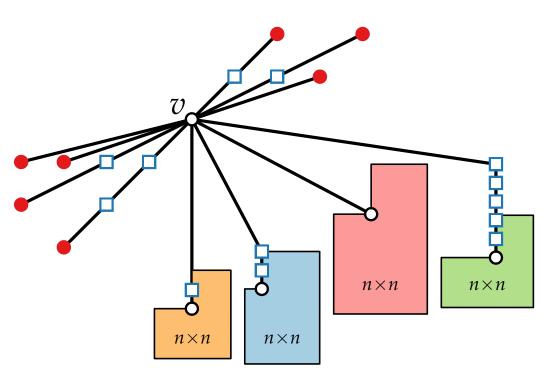


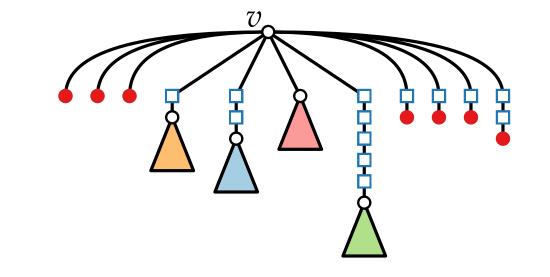

- (1) Draw $\overset{\triangle}{\triangle}\overset{\triangle}{\triangle}\overset{\triangle}{\triangle}\overset{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

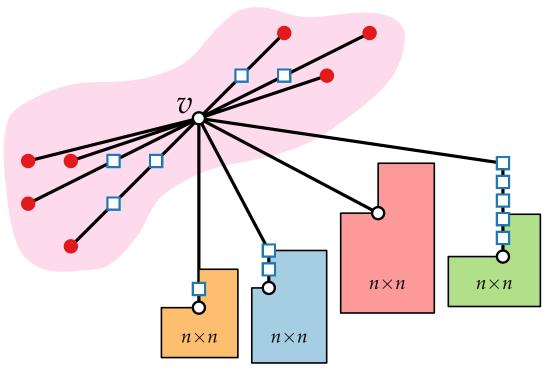



- (1) Draw $\overset{\triangle}{\triangle}\overset{\triangle}{\triangle}\overset{\triangle}{\triangle}\overset{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # •
- (5) Place + □ on common segments in order

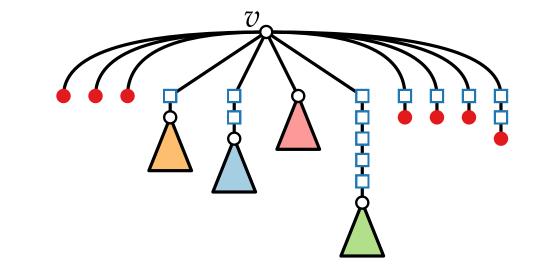


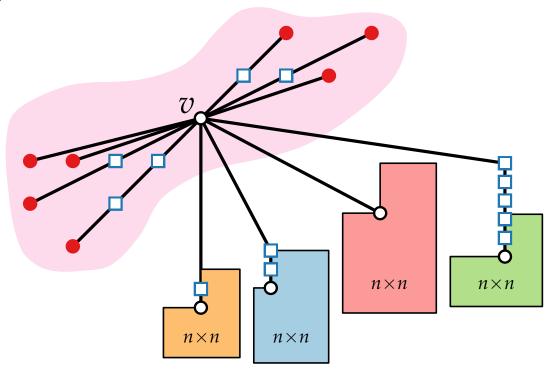

- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # •
- (5) Place + □ on common segments in order




- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

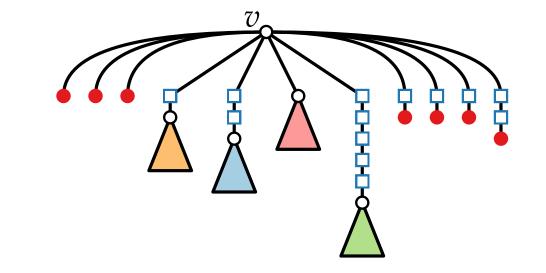
- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add □
- (4) Sort by # •
- (5) Place + □ on common segments in order

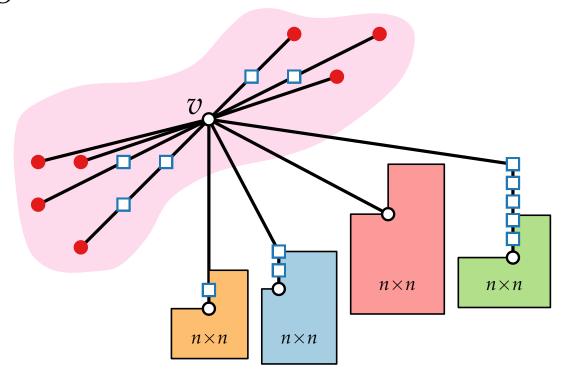




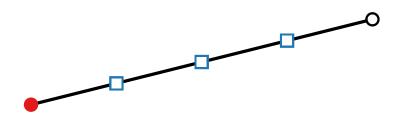
- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # □
- (5) Place + □ on common segments in order

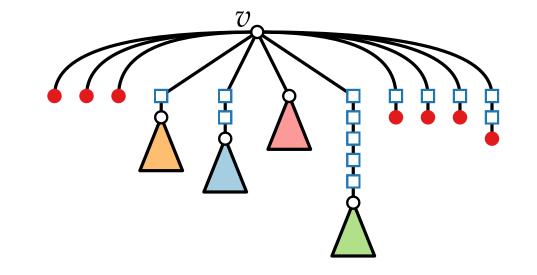
3n/4 segments $n \times n$ grid

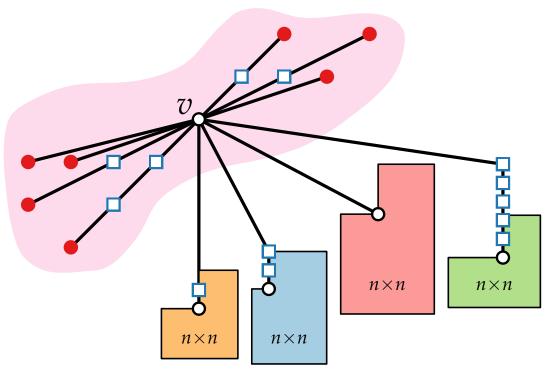

height ✓



- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle} \stackrel{\wedge}{\triangle}$
- (3) Add •
- (4) Sort by # □
- (5) Place + □ on common segments in order

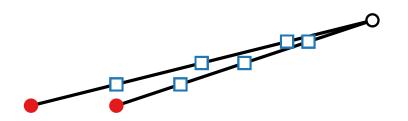

3n/4 segments $n \times n$ grid

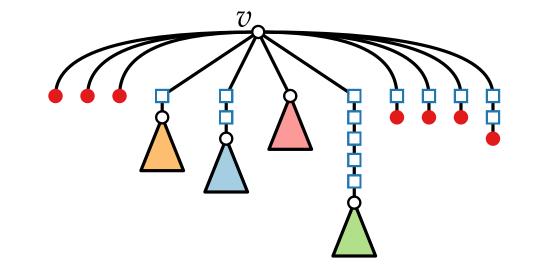


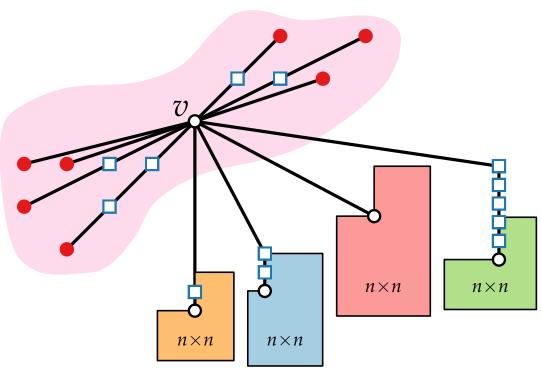


- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

3n/4 segments $n \times n$ grid

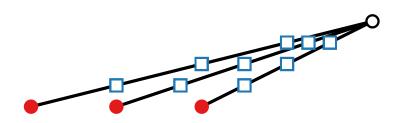


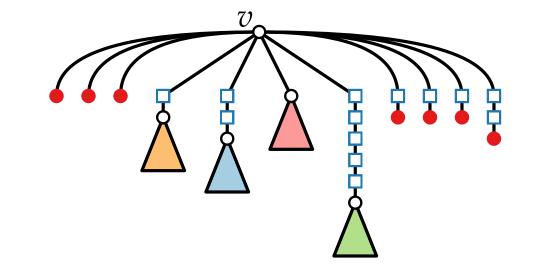


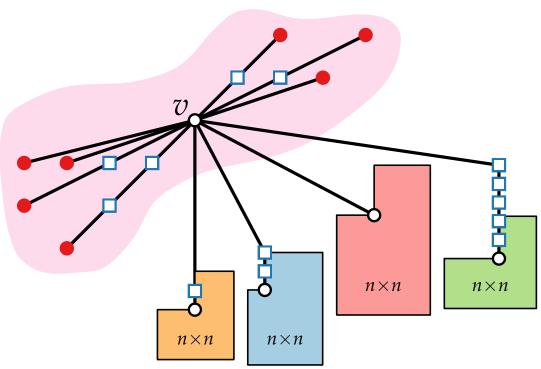


- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

3n/4 segments $n \times n$ grid

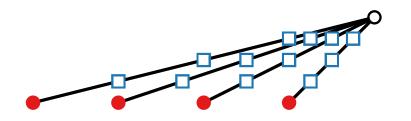


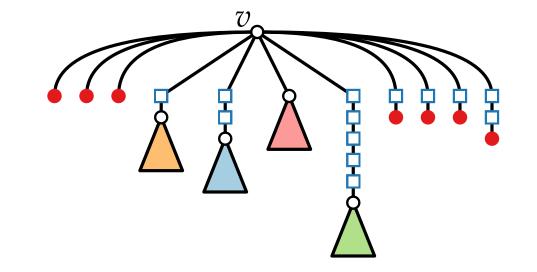


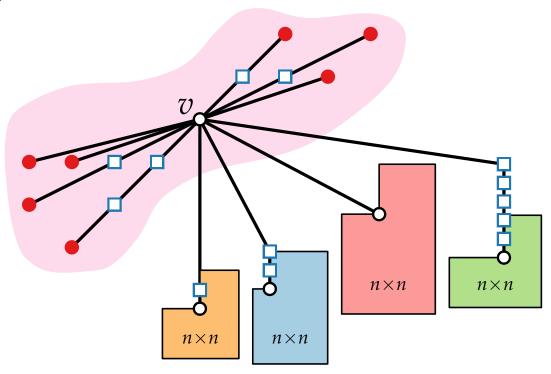


- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

3n/4 segments $n \times n$ grid

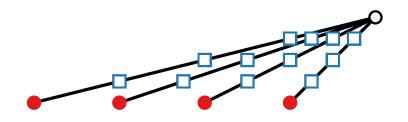


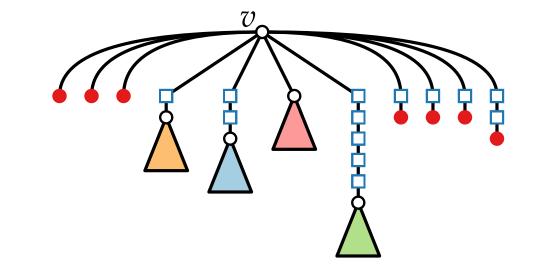


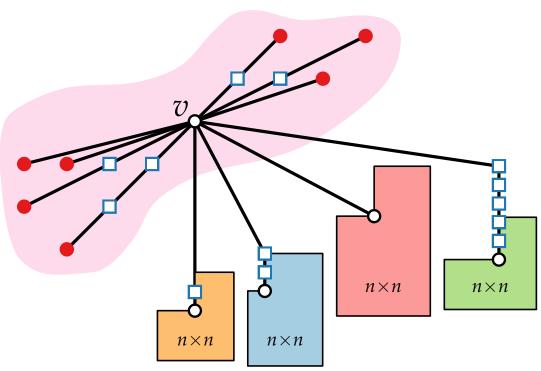


- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # 🗆
- (5) Place + □ on common segments in order

3n/4 segments $n \times n$ grid







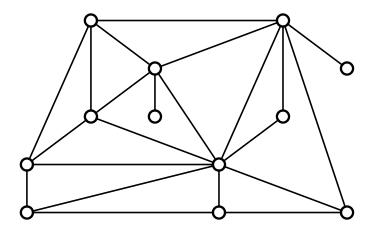
- (1) Draw $\stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle} \stackrel{\triangle}{\triangle}$
- (2) Layout $v + \triangle \triangle \triangle \triangle$
- (3) Add •
- (4) Sort by # □
- (5) Place + □ on common segments in order

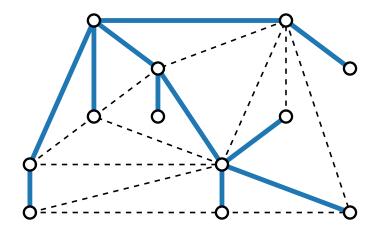
3n/4 segments $n \times n$ grid

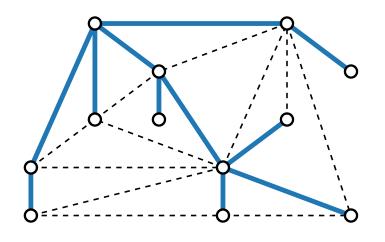
Improved Results

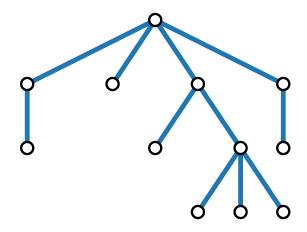
Class	Segments			Grid Segments	
	Lower	Upper		Segm.	Area
tree	θ/2 [1]	θ/2	[1]	3 <i>n</i> /4 [6] <i>θ</i> /2 [6]	$O(n^2) \times O(n^{1.58})$ quasipolynomial
outerplanar	n [1]				
max. outerp.	n [1]	n	[1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i>	[1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]				
3-connected	2 <i>n</i> [1]	5n/2	[1]		
cubic 3-conn.	n/2 [3]	n/2	[2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7n/3	[4]	8n/3 [6]	$O(n) \times O(n^2)$
4-conn. triang.	2 <i>n</i> [4]	9n/4	[4]		
planar	2 <i>n</i> [4]	8n/3	[4]		

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

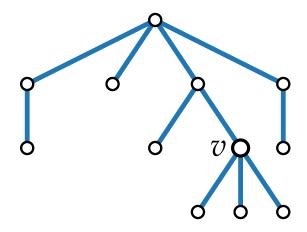

^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

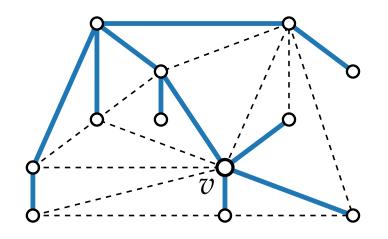

Improved Results

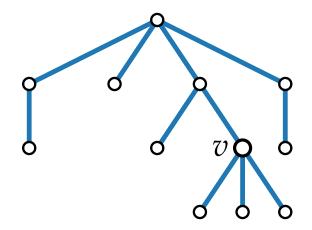

Class	Segments			Grid Segments	
	Lower	Upper		Segm.	Area
tree	θ/2 [1]	$\vartheta/2$ [1]]	3 <i>n</i> /4 <i>θ</i> /2 [6]	$n \times n$ quasipolynomial
outerplanar	<i>n</i> [1]				
max. outerp.	<i>n</i> [1]	n [1]		3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]				
3-connected	2 <i>n</i> [1]	5n/2 [1]			
cubic 3-conn.	n/2 [3]	n/2 [2]]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7n/3 [4]		8n/3 [6]	$O(n) \times O(n^2)$
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]			
planar	2 <i>n</i> [4]	8n/3 [4]			

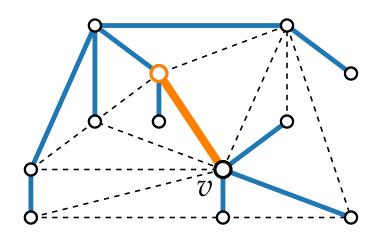

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

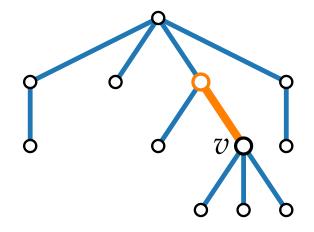
^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017



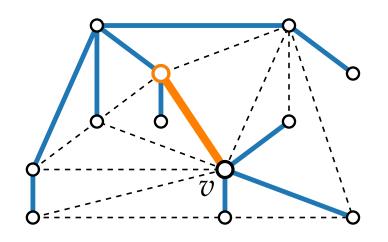


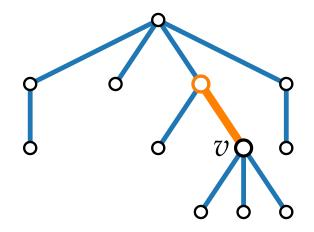





[Chiang, Lin, Lu '05]

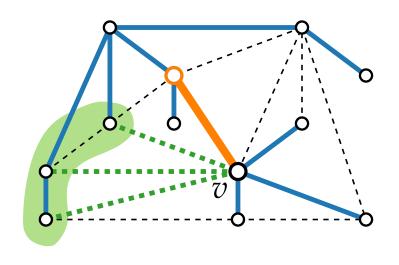
[Chiang, Lin, Lu '05]

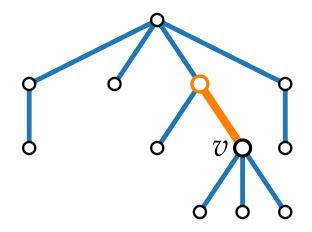




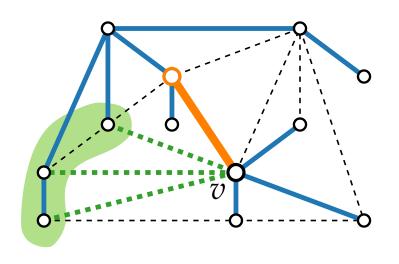
neighbors of v in circ. order:

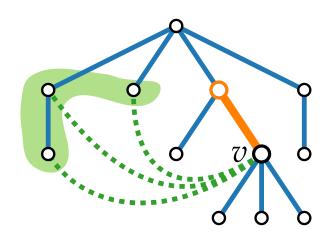
(1) parent


[Chiang, Lin, Lu '05]

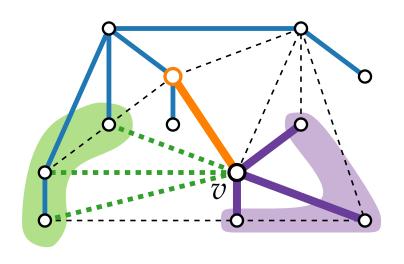


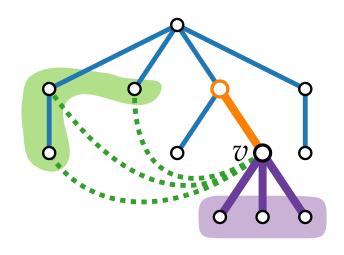
- (1) parent
- (2) $N^+(v)$: diff. subtree (left)


[Chiang, Lin, Lu '05]

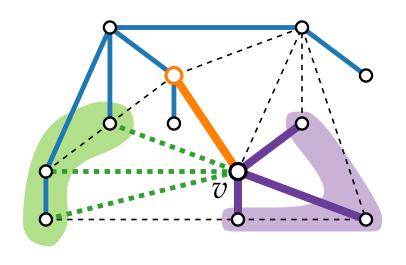


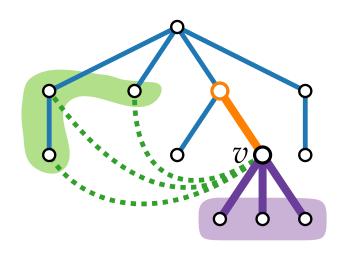
- (1) parent
- (2) $N^+(v)$: diff. subtree (left)


[Chiang, Lin, Lu '05]

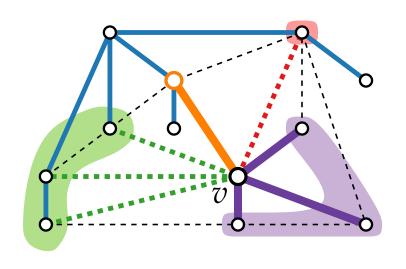


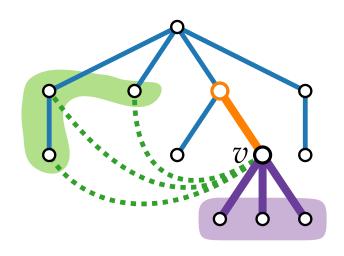
- (1) parent
- (2) $N^+(v)$: diff. subtree (left)


[Chiang, Lin, Lu '05]

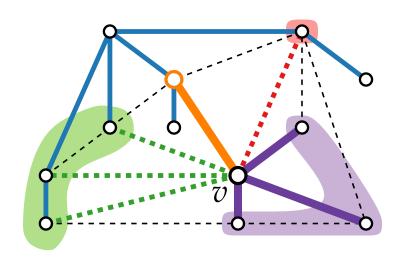


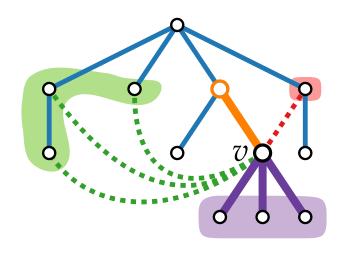
- (1) parent
- (2) $N^+(v)$: diff. subtree (left)
- (3) children


[Chiang, Lin, Lu '05]



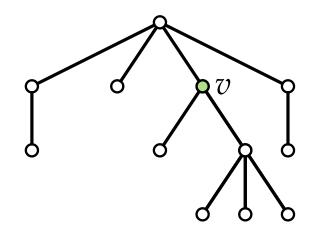
- (1) parent
- (2) $N^+(v)$: diff. subtree (left)
- (3) children
- (4) $N^-(v)$: diff. subtree (right)


[Chiang, Lin, Lu '05]

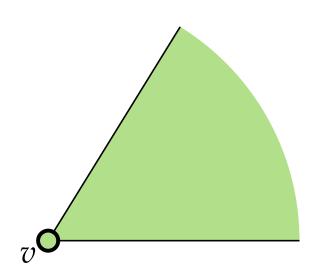


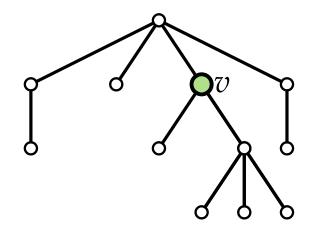
- (1) parent
- (2) $N^+(v)$: diff. subtree (left)
- (3) children
- (4) $N^-(v)$: diff. subtree (right)

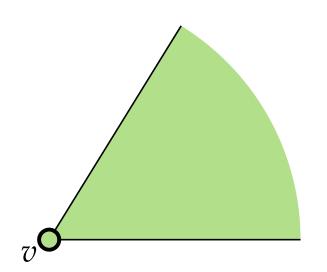
[Chiang, Lin, Lu '05]



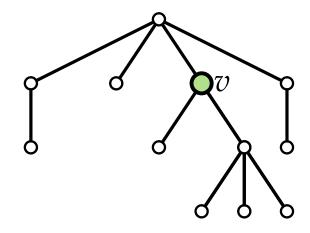
- (1) parent
- (2) $N^+(v)$: diff. subtree (left)
- (3) children
- (4) $N^-(v)$: diff. subtree (right)


[Angelini et al. '12]

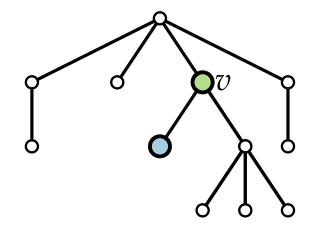

Assign angle interval to each vtx

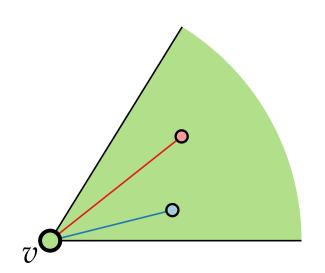

[Angelini et al. '12]

Assign angle interval to each vtx

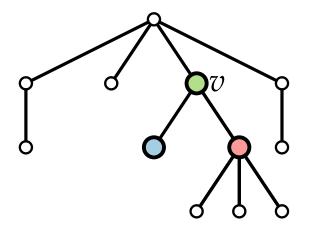


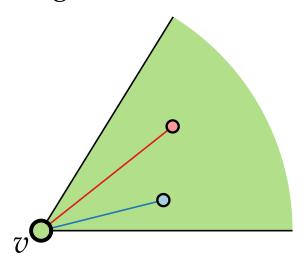
Assign angle interval to each vtx All segments in T[v] in interval

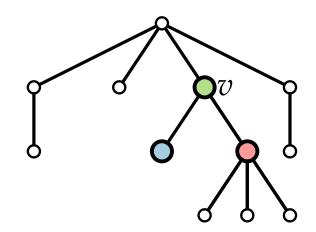

[Angelini et al. '12]


Assign angle interval to each vtx All segments in T[v] in interval

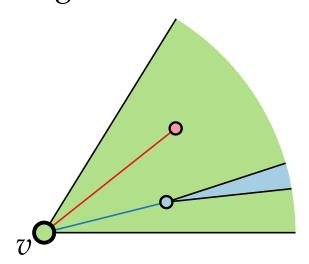
70

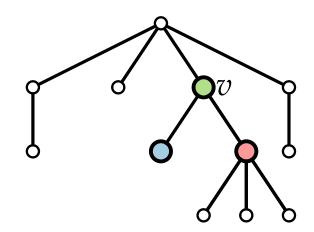

[Angelini et al. '12]

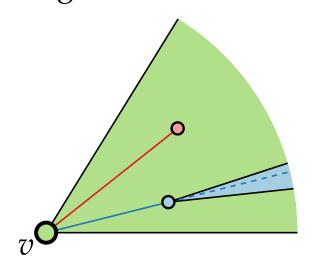

Assign angle interval to each vtx All segments in T[v] in interval

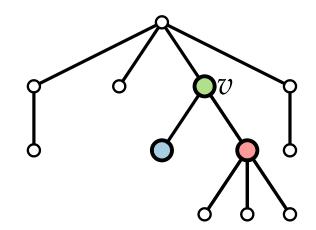


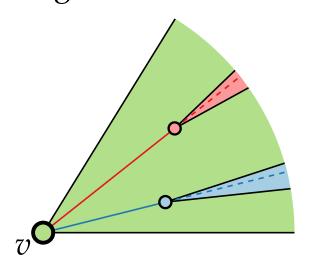
[Angelini et al. '12]

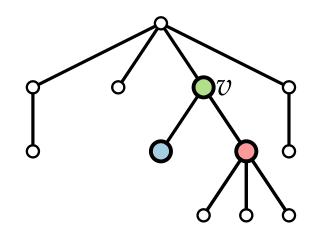


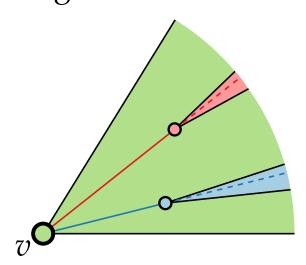

[Angelini et al. '12]

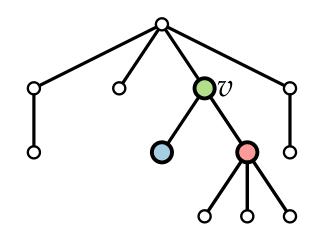



[Angelini et al. '12]



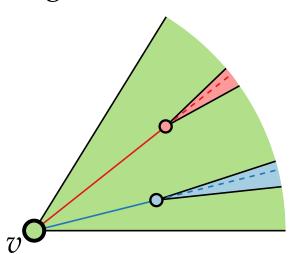

[Angelini et al. '12]

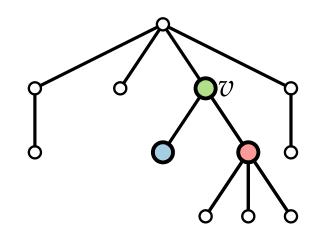

[Angelini et al. '12]



[Angelini et al. '12]

Assign angle interval to each vtx All segments in T[v] in interval Intervals of children: disjoint subintervals that contain parent edge

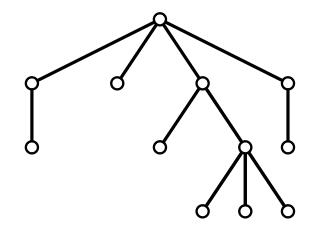


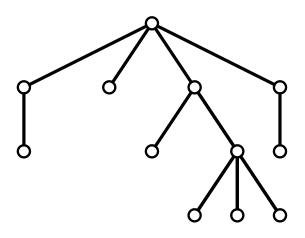

[Hossain & Rahman '15]

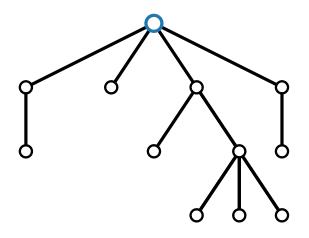
Slope-disjoint drawing of orderly spanning tree on $O(n) \times O(n^2)$ grid \Rightarrow planar (monotone) drawing on $O(n) \times O(n^2)$ grid

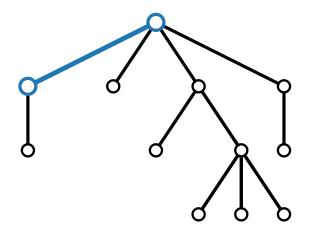
[Angelini et al. '12]

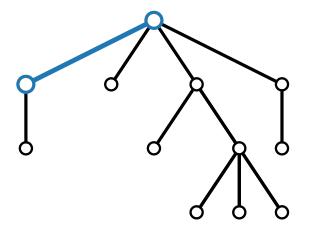
Assign angle interval to each vtx All segments in T[v] in interval Intervals of children: disjoint subintervals that contain parent edge

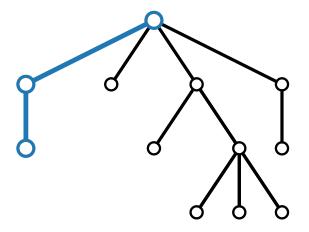


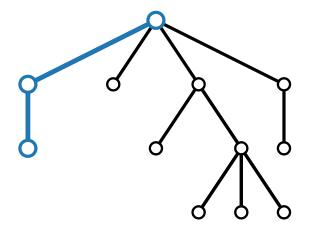


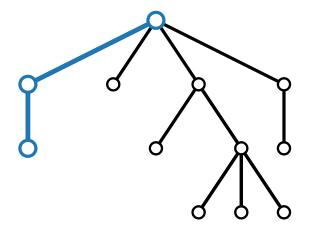

[Hossain & Rahman '15]


Slope-disjoint drawing of orderly spanning tree on $O(n) \times O(n^2)$ grid \Rightarrow planar (monotone) drawing on $O(n) \times O(n^2)$ grid

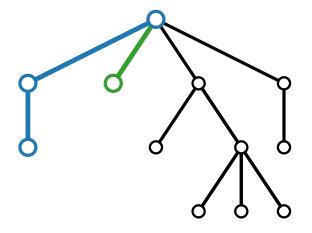

doesn't change the slopes!



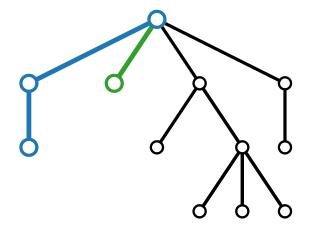


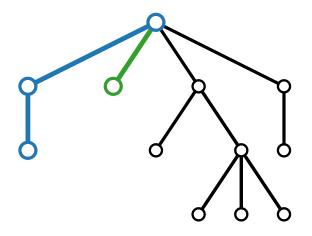


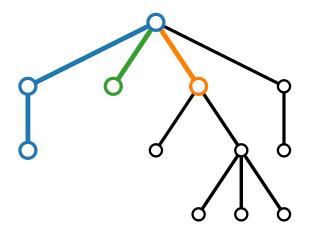
ccw pre-order traversal reuse slope whenever possible

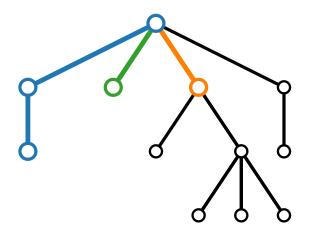


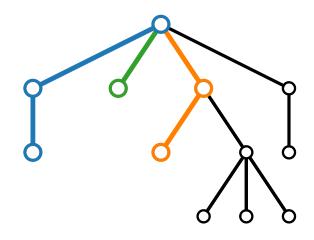
ccw pre-order traversal reuse slope whenever possible

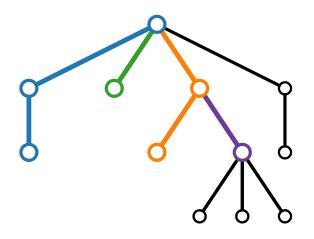


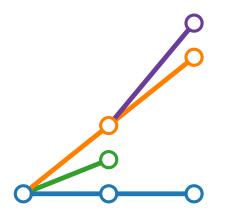

ccw pre-order traversal reuse slope whenever possible

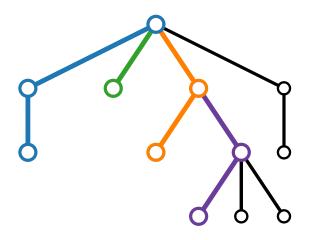


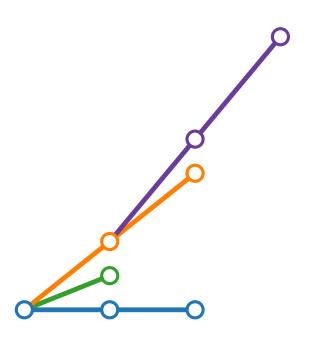


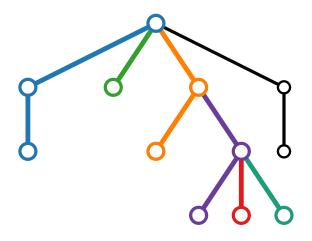


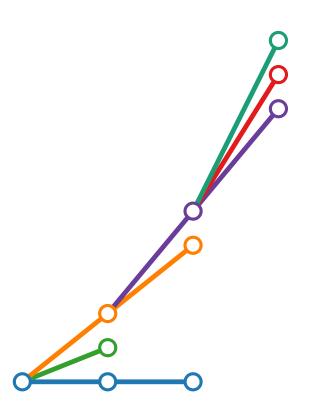


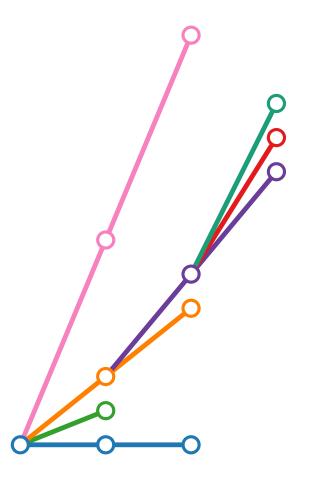


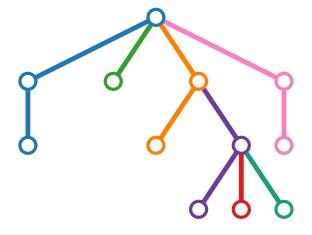


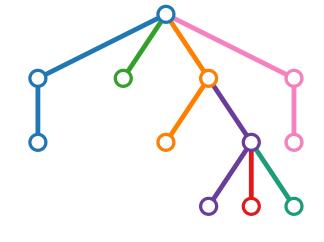


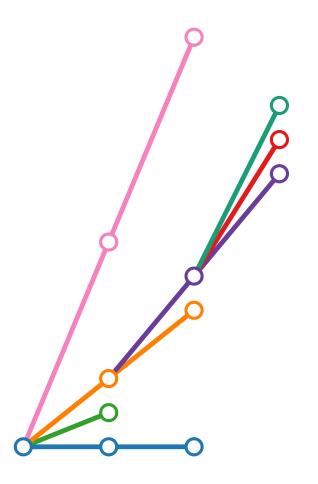






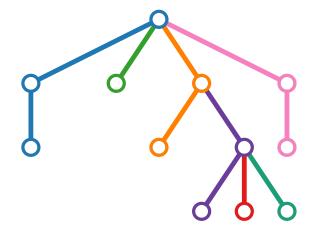


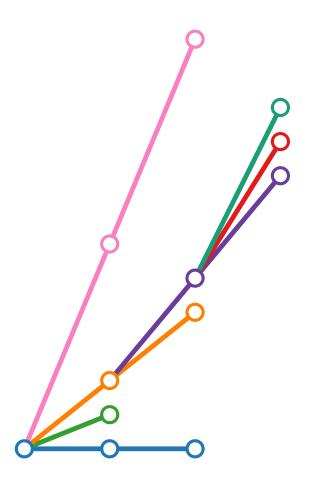




ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: n

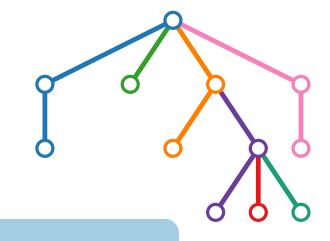


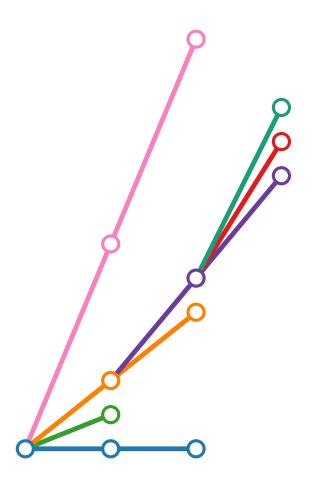


ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: n

max. width: *n*

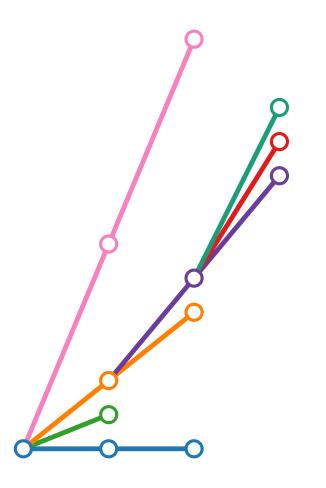



ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: n

max. width: *n*

 $\Rightarrow n \times n^2$ grid

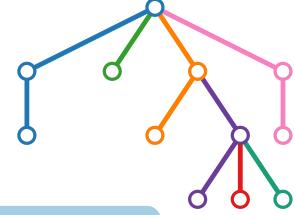


ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: n

max. width: *n*

 $\Rightarrow n \times n^2$ grid , 1 segment per leaf



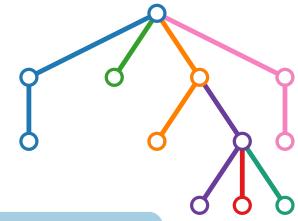
ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: n


max. width: *n*

 $\Rightarrow n \times n^2$ grid , 1 segment per leaf

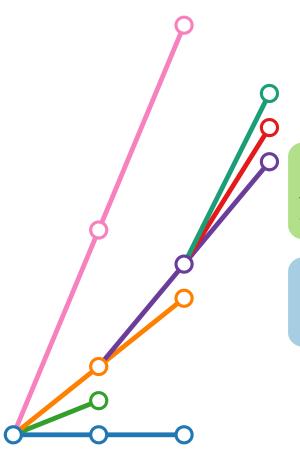
[Miura, Azuma, Nishizeki '05]


Every Schnyder tree is an orderly spanning tree

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: n

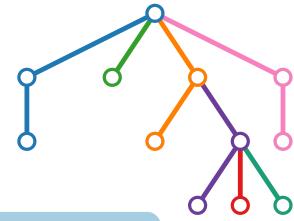
max. width: *n*



 $\Rightarrow n \times n^2$ grid , 1 segment per leaf

[Miura, Azuma, Nishizeki '05]

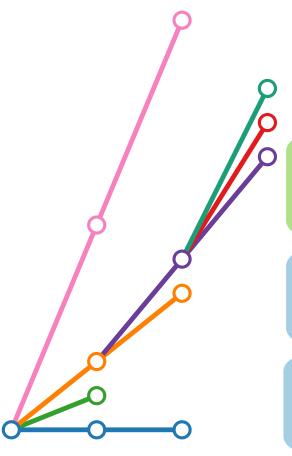
Every Schnyder tree is an orderly spanning tree


 T_1, T_2, T_3 Schnyder realizer of 3-conn. planar graph $\Rightarrow \leq 2n + 1$ leaves in total in T_1, T_2, T_3

ccw pre-order traversal reuse slope whenever possible otherwise use highest slope +1

highest slope: n

max. width: *n*


 $\Rightarrow n \times n^2$ grid , 1 segment per leaf

[Miura, Azuma, Nishizeki '05]

Every Schnyder tree is an orderly spanning tree

 T_1 , T_2 , T_3 Schnyder realizer of 3-conn. planar graph $\Rightarrow \leq 2n+1$ leaves in total in T_1 , T_2 , T_3

3-conn. planar graph $\Rightarrow (8n - 14)/3$ segments, $O(n) \times O(n^2)$ grid

Class	Segments		Grid Segments		
	Lower	Upper		Segm.	Area
tree	θ/2 [1]	θ/2	[1]	$3n/4$ $\vartheta/2$ [6]	$n \times n$ quasipolynomial
outerplanar	n [1]				
max. outerp.	<i>n</i> [1]	n	[1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i>	[1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]				
3-connected	2 <i>n</i> [1]	5n/2	[1]		
cubic 3-conn.	n/2 [3]	n/2	[2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7n/3	[4]	8n/3 [6]	$O(n) \times O(n^2)$
4-conn. triang.	2 <i>n</i> [4]	9n/4	[4]		
planar	2 <i>n</i> [4]	8n/3	[4]		

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	$\vartheta/2$ [1]	$3n/4$ $\vartheta/2$ [6]	$n \times n$ quasipolynomial
outerplanar	<i>n</i> [1]			
max. outerp.	n [1]	<i>n</i> [1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5n/2 [1]	8n/3	$O(n) \times O(n^2)$
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7n/3 [4]	8n/3 [6]	$O(n) \times O(n^2)$
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]		
planar	2 <i>n</i> [4]	8n/3 [4]		

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	$\vartheta/2$ [1]	3 <i>n</i> /4	$n \times n$ quasipolynomial
outerplanar	n [1]		7n/4	$O(n) \times O(n^2)$
max. outerp.	n [1]	<i>n</i> [1]	<i>3n/</i> 2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]	8n/3	$O(n) \times O(n^2)$
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7 <i>n</i> /3 [4]	8n/3 [6]	$O(n) \times O(n^2)$
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]		
planar	2 <i>n</i> [4]	8 <i>n</i> /3 [4]		

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree outerplanar	θ/2 [1] n [1]	$\vartheta/2$ [1]	3 <i>n</i> /4 <i>v</i> /2 [6] 7 <i>n</i> /4	$n \times n$ quasipolynomial $O(n) \times O(n^2)$
max. outerp. 3-trees	n [1] 2n [1]	n [1] 2n [1]	3n/2 [6] 8n/3 [6]	$O(n) \times O(n^2)$ $O(n) \times O(n^2)$
2-connected 3-connected	2 <i>n</i> [1] 2 <i>n</i> [1]	5 <i>n</i> /2 [1]	8n/3	$O(n) \times O(n^2)$
cubic 3-conn. triangulation	n/2 [3] 2n [4]	n/2 [2] $7n/3$ [4]	n/2 [2] 8n/3 [6]	$O(n) \times O(n)$ $O(n) \times O(n^2)$
4-conn. triang. planar	2 <i>n</i> [4] 2 <i>n</i> [4]	9n/4 [4] 8n/3 [4]	5n/2	$O(n) \times O(n^2)$

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	$\vartheta/2$ [1]	$3n/4$ $\vartheta/2$ [6]	$n \times n$ quasipolynomial
outerplanar	n [1]		7n/4	$O(n) \times O(n^2)$
max. outerp.	<i>n</i> [1]	n [1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]			
3-connected	2 <i>n</i> [1]	5n/2 [1]	8n/3	$O(n) \times O(n^2)$
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7n/3 [4]	8n/3 [6]	$O(n) \times O(n^2)$
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]	5 <i>n</i> /2	$O(n) \times O(n^2)$
planar	2 <i>n</i> [4]	8n/3 [4]	17n/6	$O(n) \times O(n^2)$

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017

Class	Segments		Grid Segments	
	Lower	Upper	Segm.	Area
tree	θ/2 [1]	$\vartheta/2$ [1]	3 <i>n</i> /4	$n \times n$ quasipolynomial
outerplanar	n [1]		7n/4	$O(n) \times O(n^2)$
max. outerp.	n [1]	n [1]	3n/2 [6]	$O(n) \times O(n^2)$
3-trees	2 <i>n</i> [1]	2 <i>n</i> [1]	8n/3 [6]	$O(n) \times O(n^2)$
2-connected	2 <i>n</i> [1]		17n/6	$O(n) \times O(n^2)$
3-connected	2 <i>n</i> [1]	5 <i>n</i> /2 [1]	8n/3	$O(n) \times O(n^2)$
cubic 3-conn.	n/2 [3]	n/2 [2]	n/2 [2]	$O(n) \times O(n)$
triangulation	2 <i>n</i> [4]	7n/3 [4]	8n/3 [6]	$O(n) \times O(n^2)$
4-conn. triang.	2 <i>n</i> [4]	9n/4 [4]	5 <i>n</i> /2	$O(n) \times O(n^2)$
planar	2 <i>n</i> [4]	8n/3 [4]	17n/6	$O(n) \times O(n^2)$

^[1] Dujmović et al. 2007 [2] Igamberdiev et al. 2015 [3] Mondal et al. 2013

^[4] Durocher & Mondal 2014 [5] Mondal 2016 [6] Hültenschmidt et al. 2017