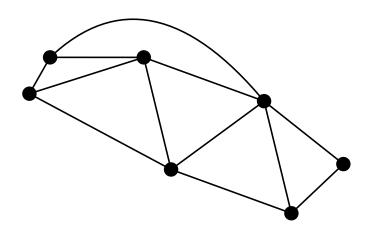


Recognizing and Drawing IC-planar Graphs

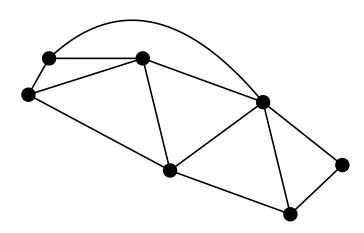
Philipp Kindermann
Universität Würzburg /
FernUniversität in Hagen

Joint work with Franz J. Brandenburg, Walter Didimo, William S. Evans, Giuseppe Liotta & Fabrizio Montecchiani

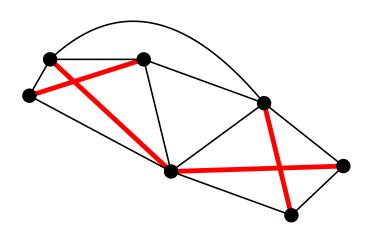
Planar graphs: Can be drawn without crossings.



Planar graphs: Can be drawn without crossings.

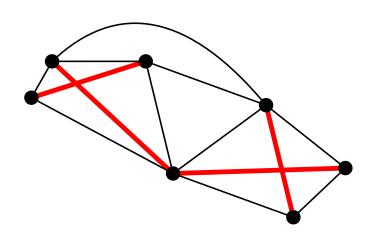


Planar graphs: Can be drawn without crossings.



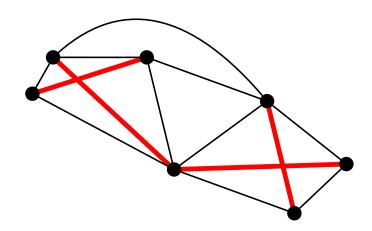
Planar graphs: Can be drawn without crossings.

•
$$\leq 4n - 8$$
 edges



Planar graphs: Can be drawn without crossings.

- $\leq 4n 8$ edges
- straight-line: $\leq 4n 9$ edges

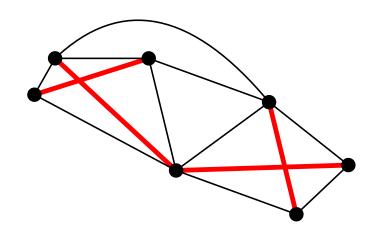


Planar graphs: Can be drawn without crossings.

1-planar graphs: Each edge is crossed at most once.

- $\leq 4n 8$ edges
- straight-line: $\leq 4n 9$ edges
- Recognition: NP-hard

[Grigoriev & Bodlander ALG'07]



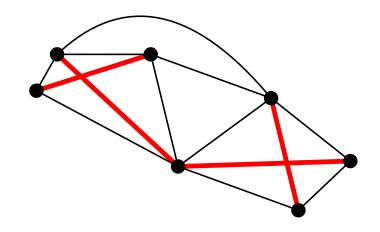
Planar graphs: Can be drawn without crossings.

1-planar graphs: Each edge is crossed at most once.

- $\leq 4n 8$ edges
- straight-line: $\leq 4n-9$ edges
- Recognition: NP-hard
- for planar graphs $+\ 1$ edge

[Grigoriev & Bodlander ALG'07]

[Korzhik & Mohar JGT'13]



Planar graphs: Can be drawn without crossings.

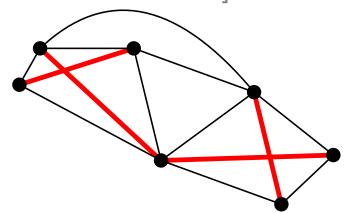
1-planar graphs: Each edge is crossed at most once.

- $\leq 4n 8$ edges
- straight-line: $\leq 4n-9$ edges
- Recognition: NP-hard
- for planar graphs + 1 edge
- with given rotation system

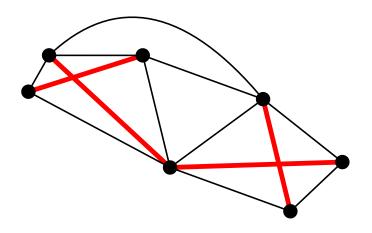
[Grigoriev & Bodlander ALG'07]

[Korzhik & Mohar JGT'13]

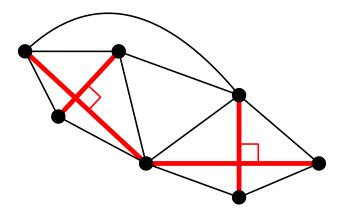
[Auer et al. JGAA'15]



RAC graphs: Can be drawn straight-line with only right-angle crossings.



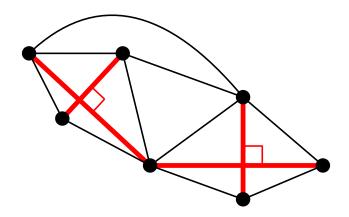
RAC graphs: Can be drawn straight-line with only right-angle crossings.



RAC graphs: Can be drawn straight-line with only right-angle crossings.

Increases readability

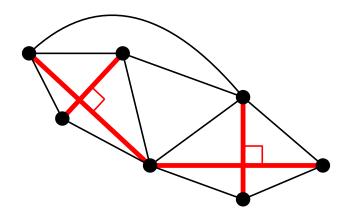
[Huang et al. PacificVis'08]



RAC graphs: Can be drawn straight-line with only right-angle crossings.

Increases readability... even for planar graphs

[Huang et al. PacificVis'08] [van Krefeld GD'11]



RAC graphs: Can be drawn straight-line with only right-angle crossings.

Increases readability

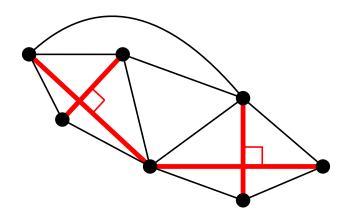
... even for planar graphs

• $\leq 4n - 10$ edges

[Huang et al. PacificVis'08]

[van Krefeld GD'11]

[Didimo et al. WADS'09]



RAC graphs: Can be drawn straight-line with only right-angle crossings.

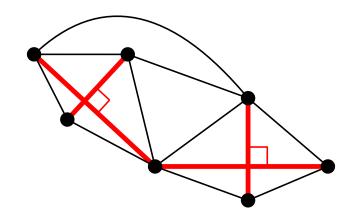
- Increases readability
 - ... even for planar graphs
- $\leq 4n 10$ edges
- Recognition: NP-hard

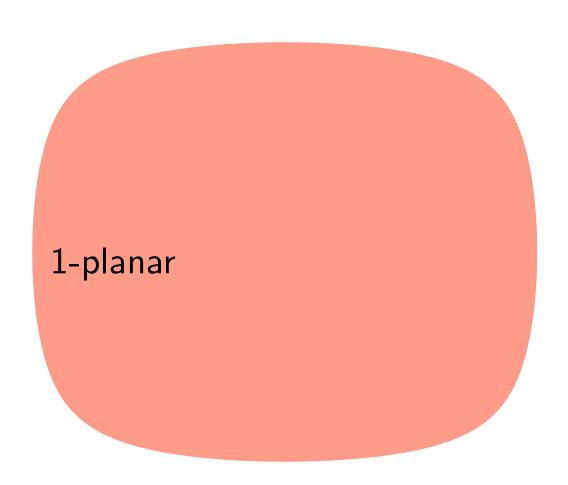
[Huang et al. PacificVis'08]

[van Krefeld GD'11]

[Didimo et al. WADS'09]

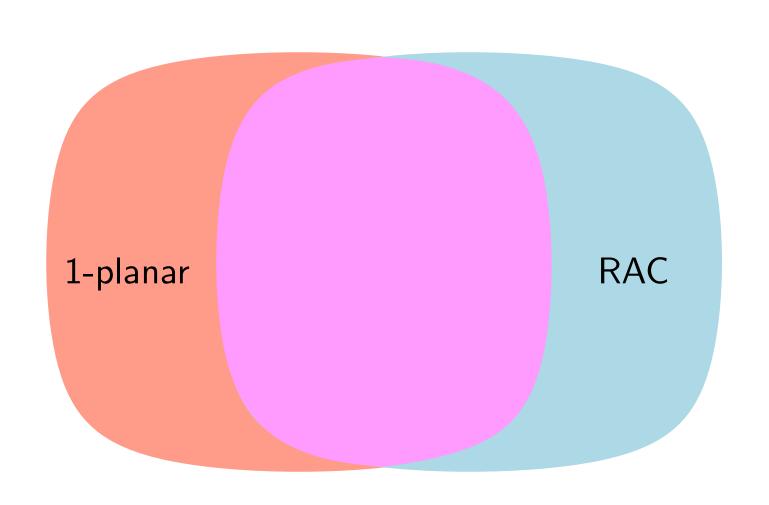
[Argyriou et al. JGAA'12]





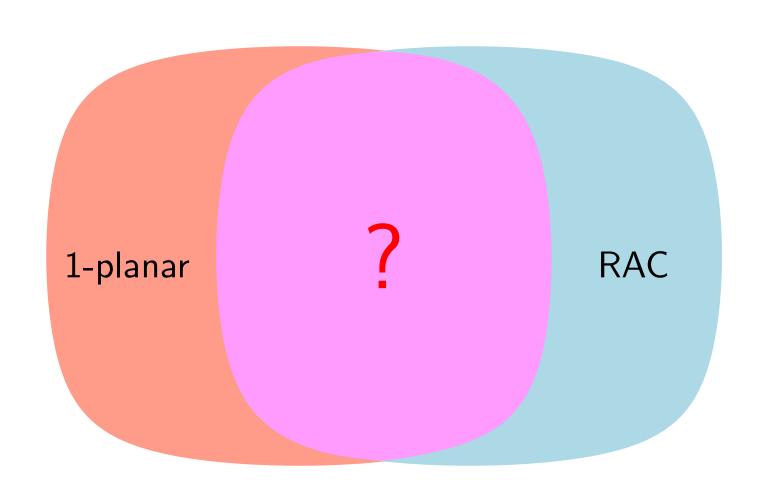
• 1-planar \neq RAC

[Eades & Liotta DMA'13]



• 1-planar \neq RAC

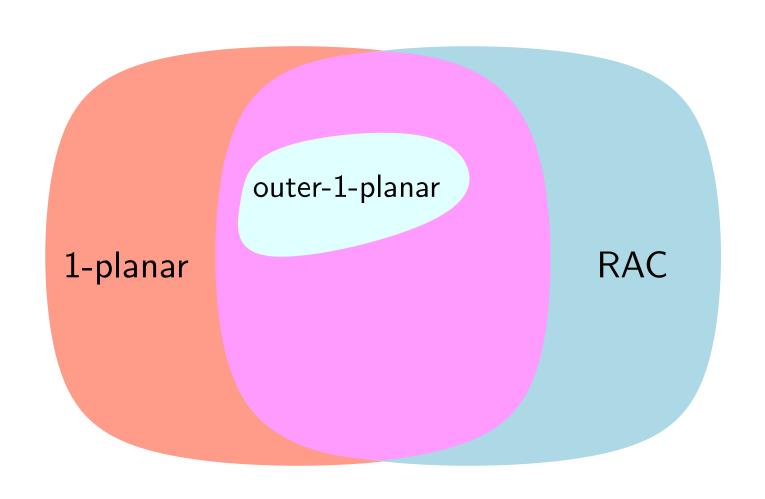
[Eades & Liotta DMA'13]



- 1-planar \neq RAC
- ullet outer-1-planar \subset RAC

[Eades & Liotta DMA'13]

[Dehkordi & Eades IJCGA'12]

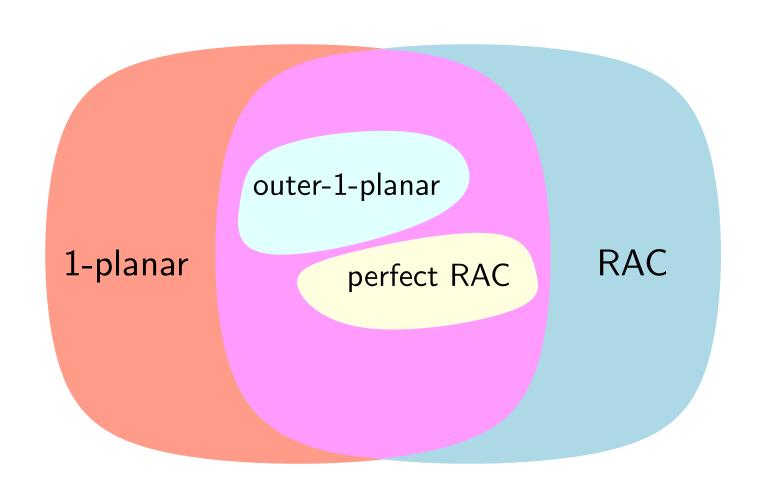


- 1-planar \neq RAC
- outer-1-planar \subset RAC
- ullet perfect RAC \subset 1-planar

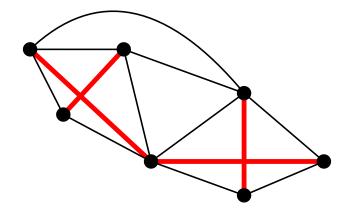
[Eades & Liotta DMA'13]

[Dehkordi & Eades IJCGA'12]

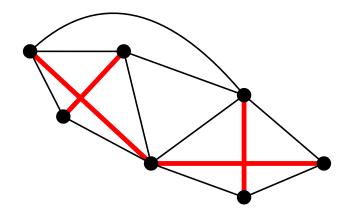
[Eades & Liotta DMA'13]



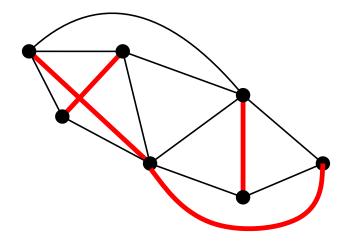
IC-planar graphs: Each edge is crossed at most once independent crossings



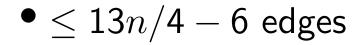
IC-planar graphs: Each edge is crossed at most once independent crossings and each vertex is incident to at most one crossing edge.

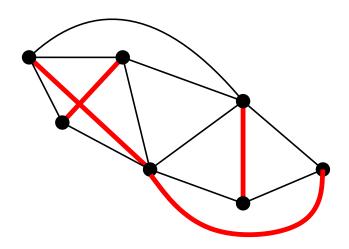


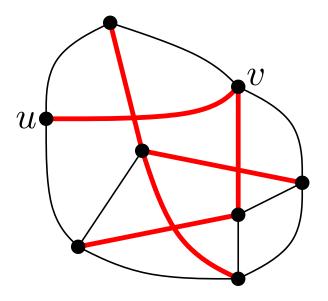
IC-planar graphs: Each edge is crossed at most once independent crossings and each vertex is incident to at most one crossing edge.

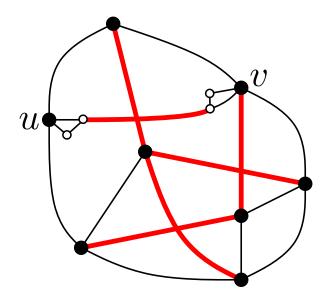


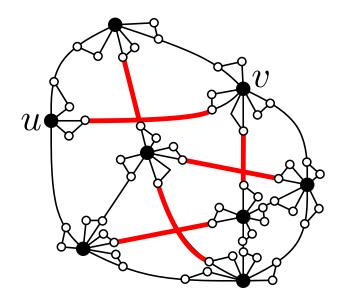
IC-planar graphs: Each edge is crossed at most once independent crossings and each vertex is incident to at most one crossing edge.

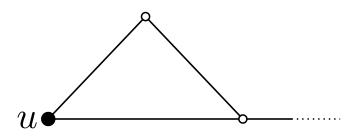


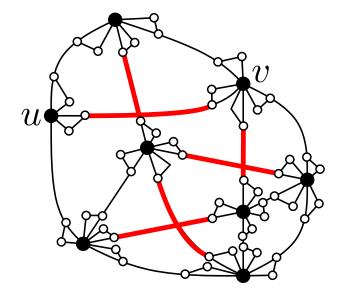


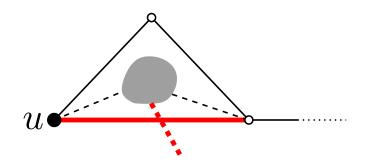


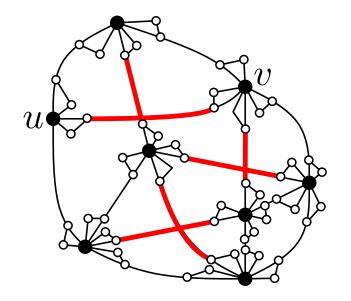


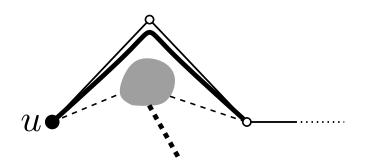


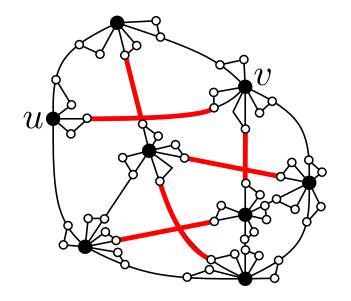




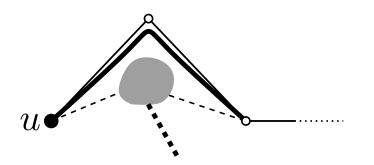


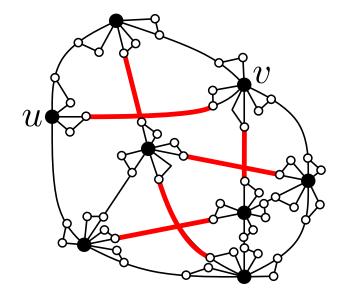






Reduction from 1-planarity testing.





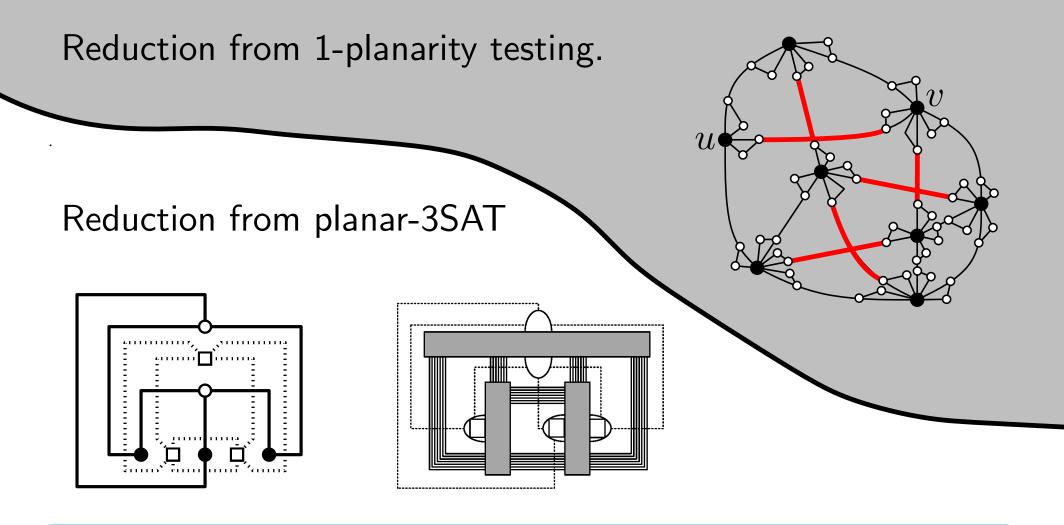
Theorem.

Testing IC-planarity is NP-hard

Reduction from 1-planarity testing. Reduction from planar-3SAT

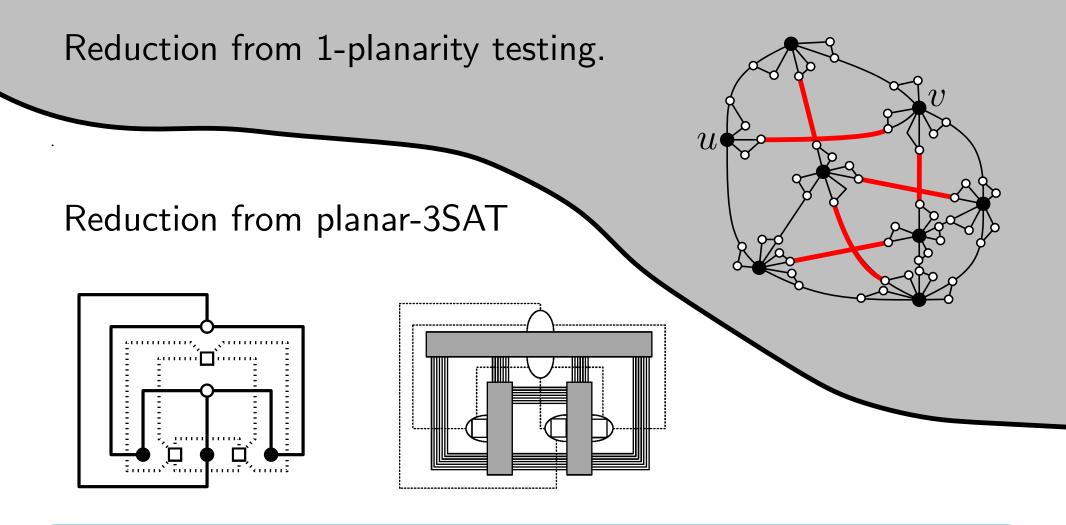
Theorem.

Testing IC-planarity is NP-hard



Theorem.

Testing IC-planarity is NP-hard



Theorem.

Testing IC-planarity is NP-hard even if the rotation system is given.

Triangulation + Matching

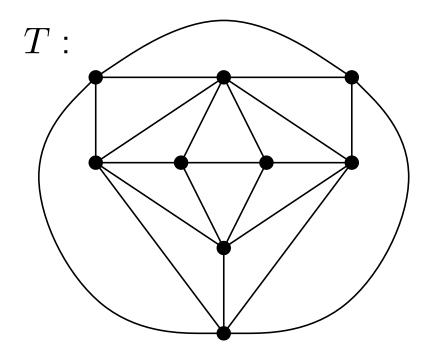
```
Given a triconnected plane graph T=(V,E_T) and a matching M=(V,E_M), is G=(V,E_T\cup E_M) IC-planar?
```

```
Given a triconnected plane graph T=(V,E_T) and a matching M=(V,E_M), is G=(V,E_T\cup E_M) IC-planar?
```

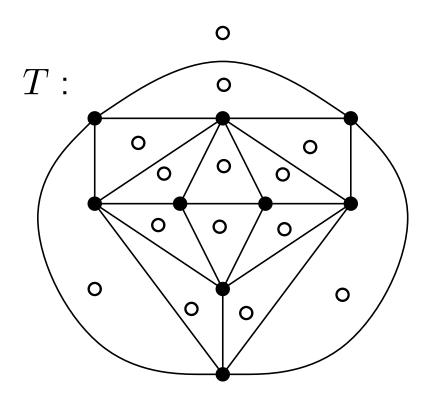
Task: Find a valid routing for each matching edge!

```
Given a triconnected plane graph T=(V,E_T) and a matching M=(V,E_M), is G=(V,E_T\cup E_M) IC-planar?
```

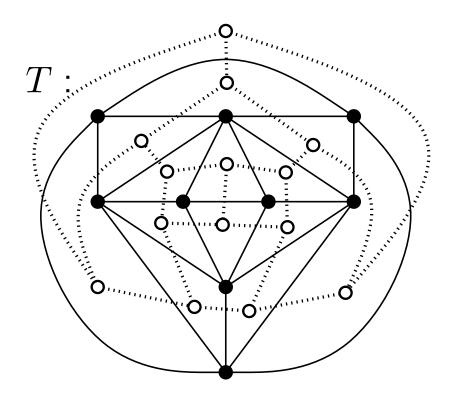
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?



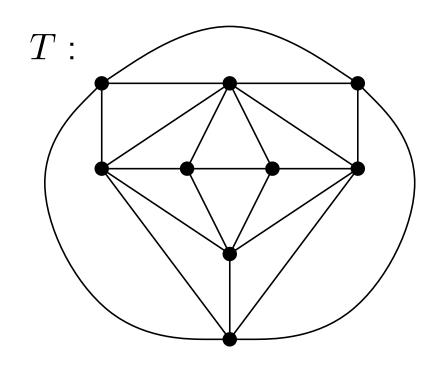
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?

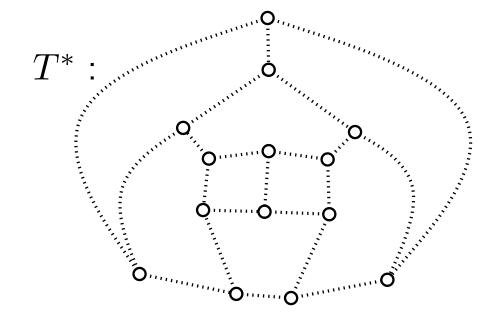


Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?

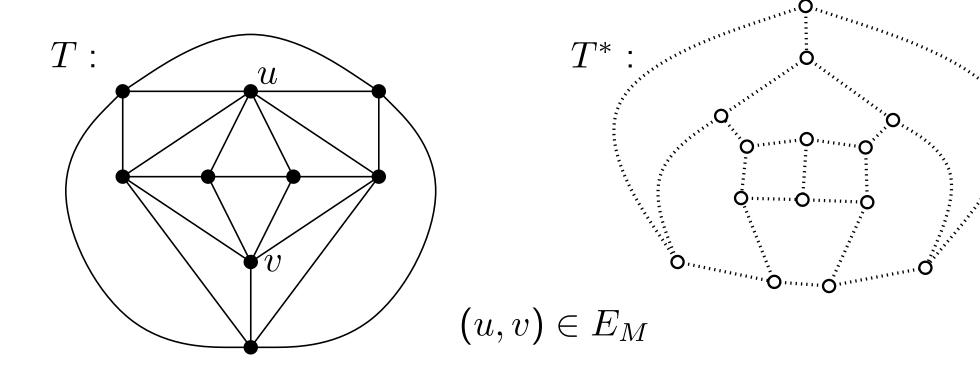


Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?

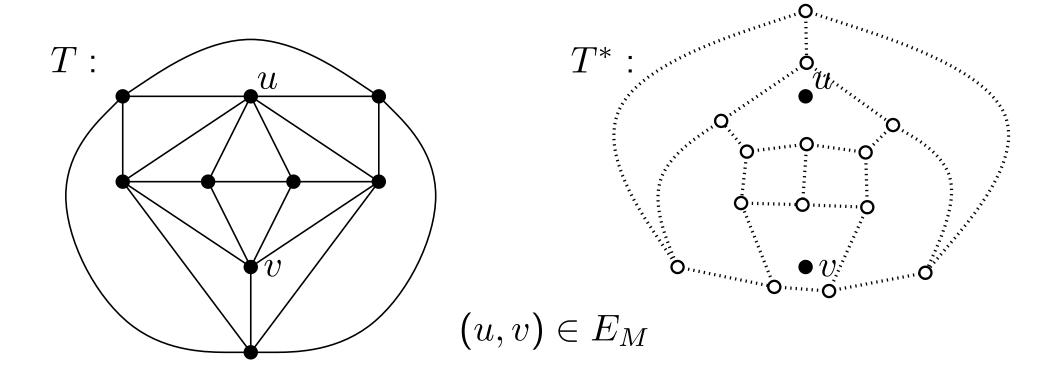




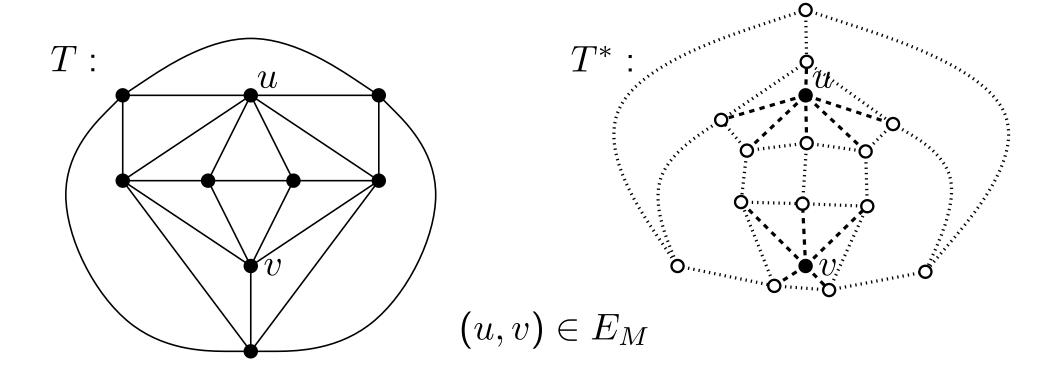
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?



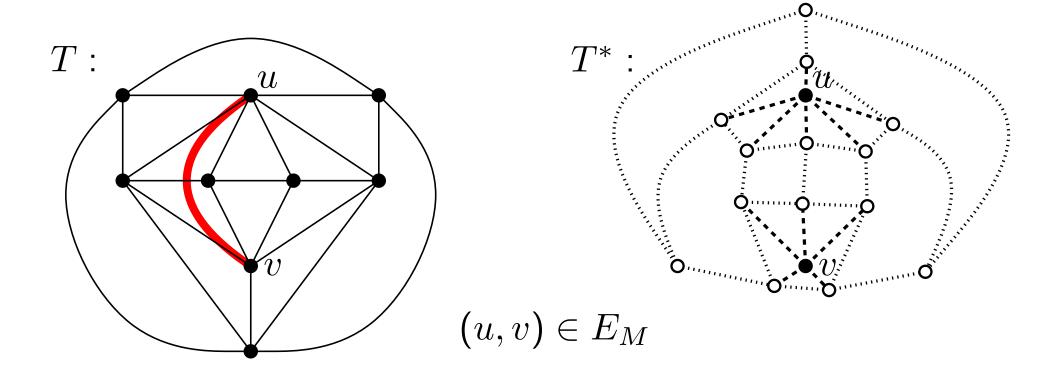
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?



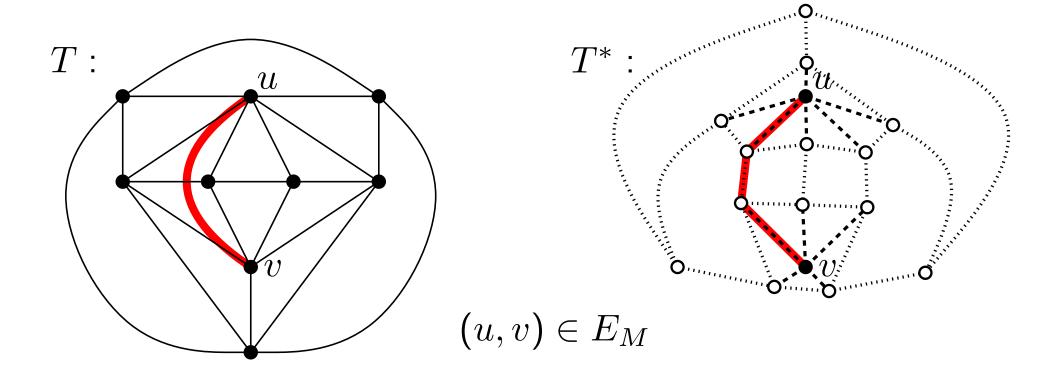
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?



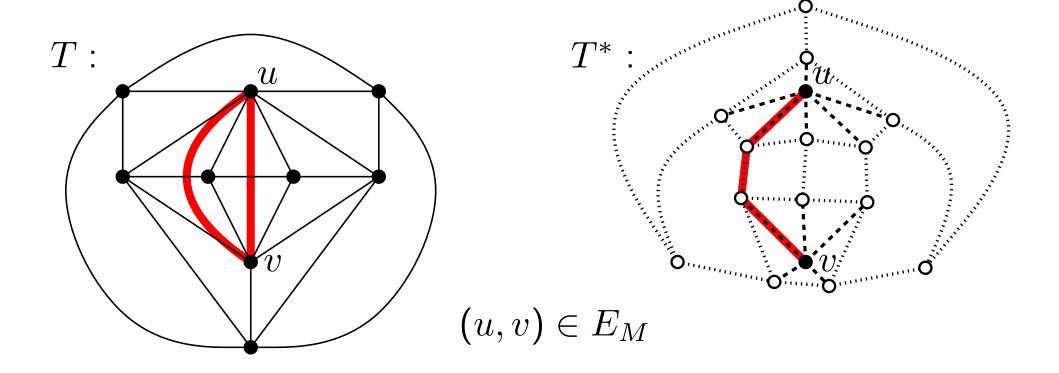
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?



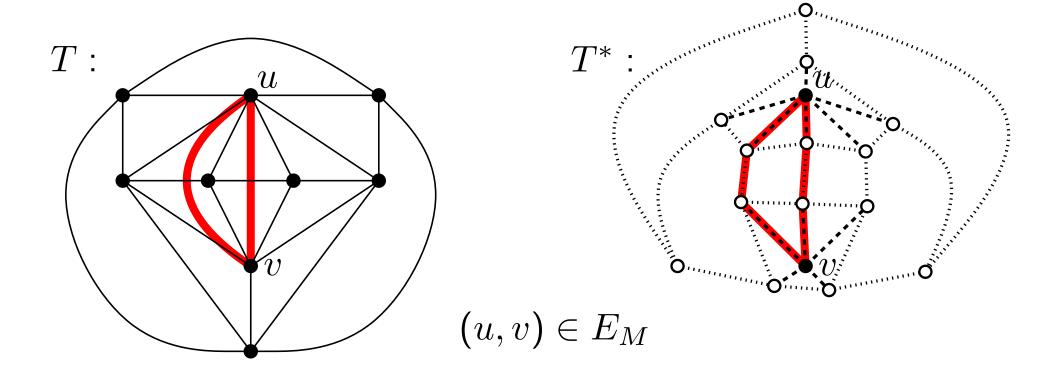
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?



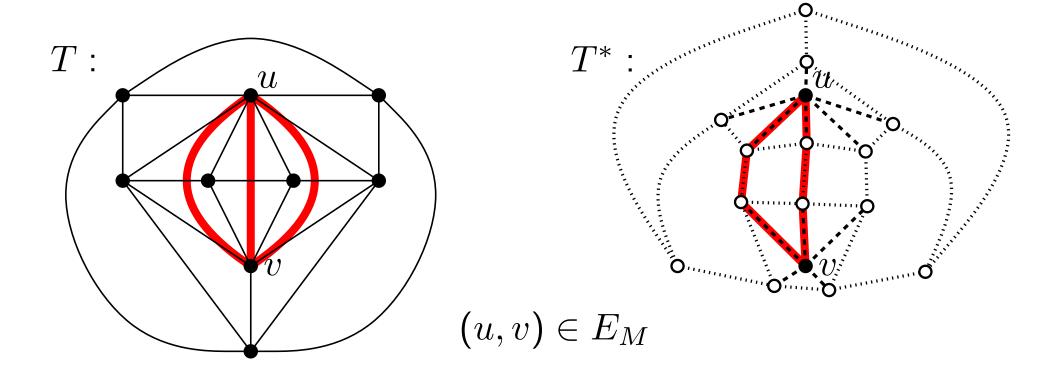
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?



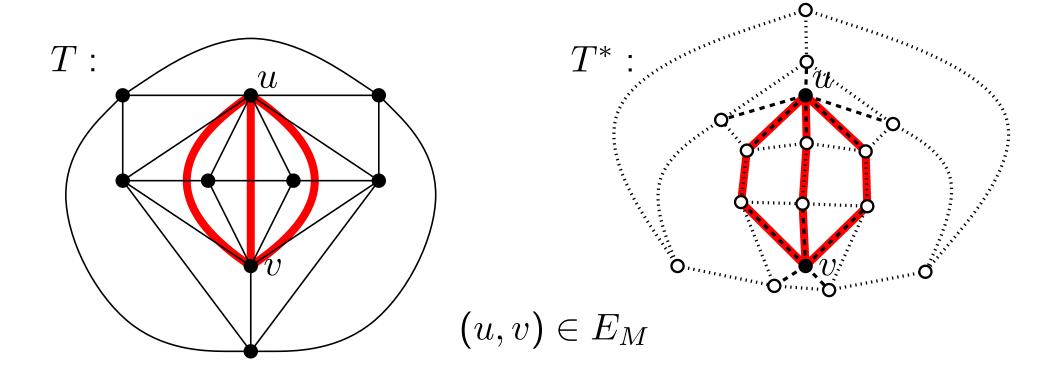
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?



Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?

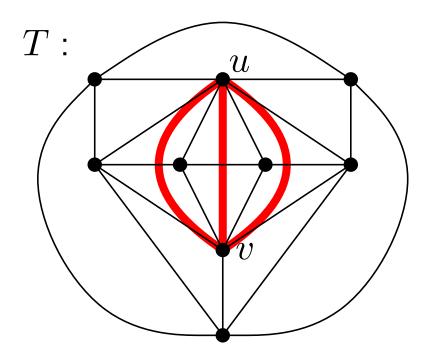


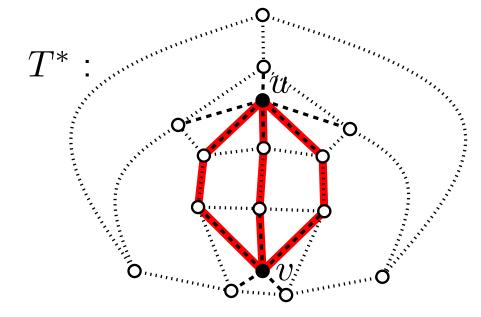
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?



Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?

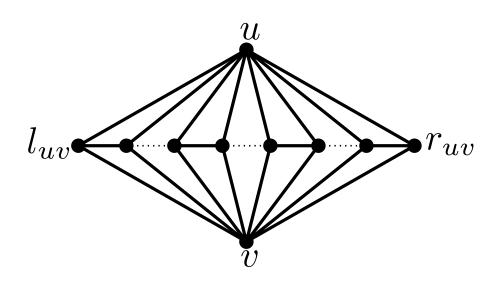
Task: Find a valid routing for each matching edge! Compute extended dual T^* of T. Routing in $T \triangleq \mathsf{path}$ of length 3 in T^*



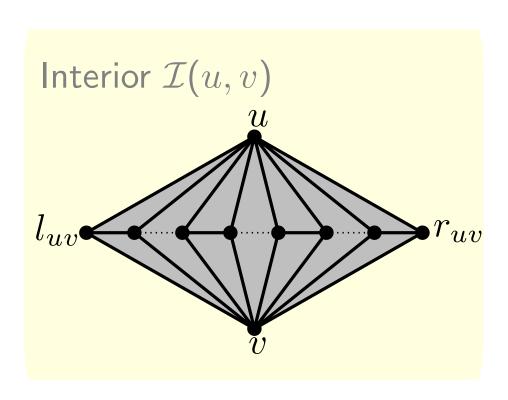


$$(u,v)\in E_M$$

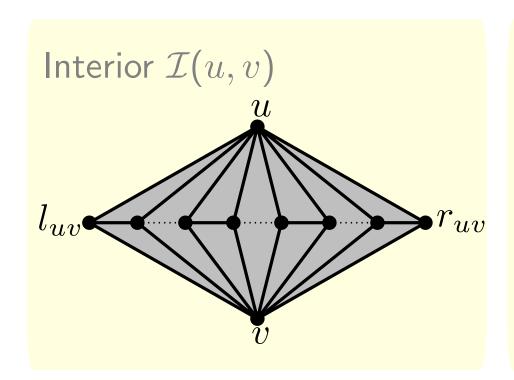
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?



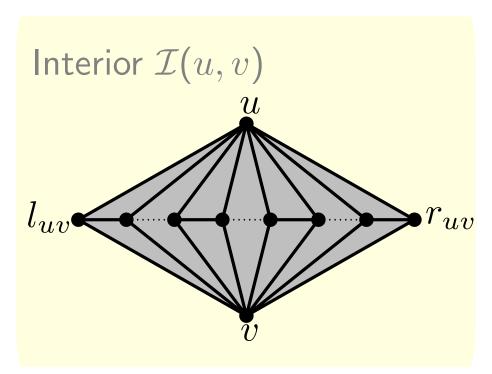
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?

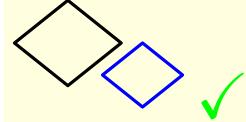


Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?

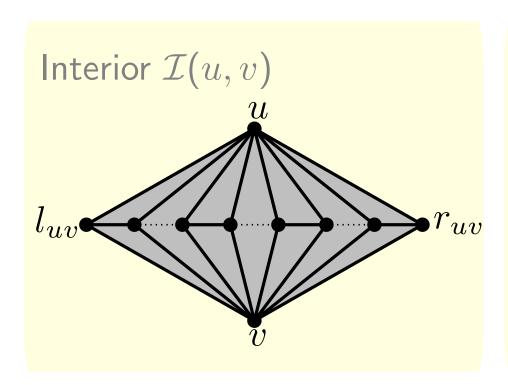


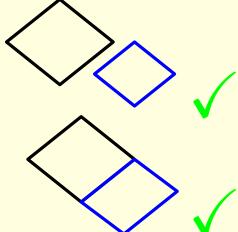
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?



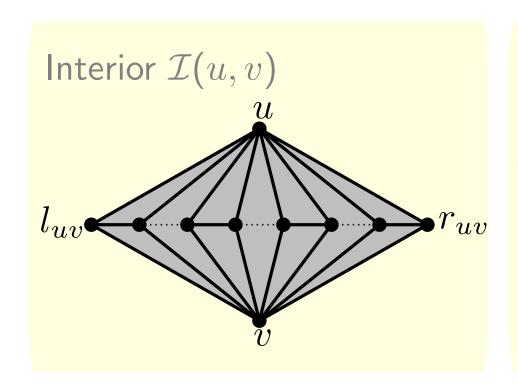


Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?

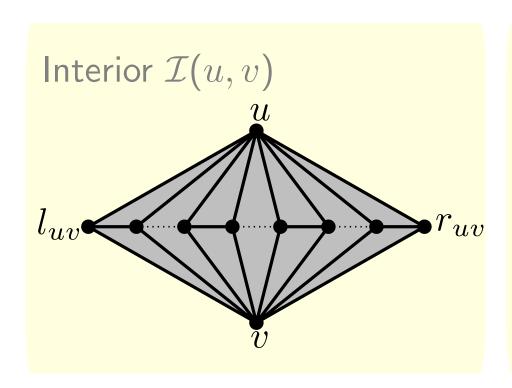


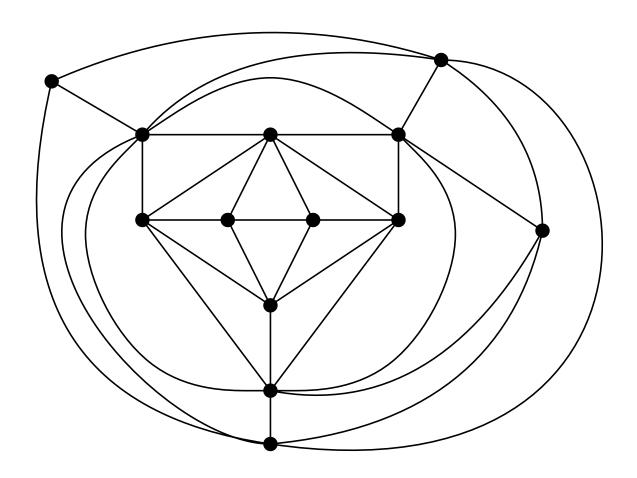


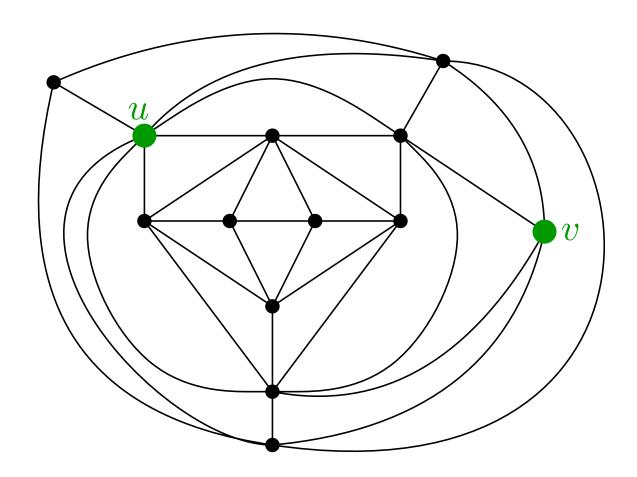
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?

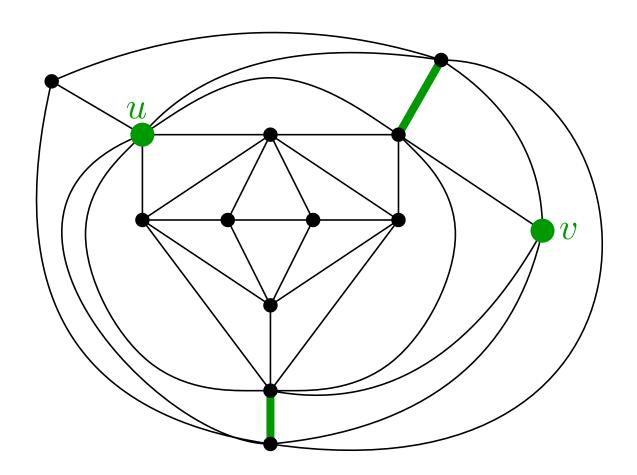


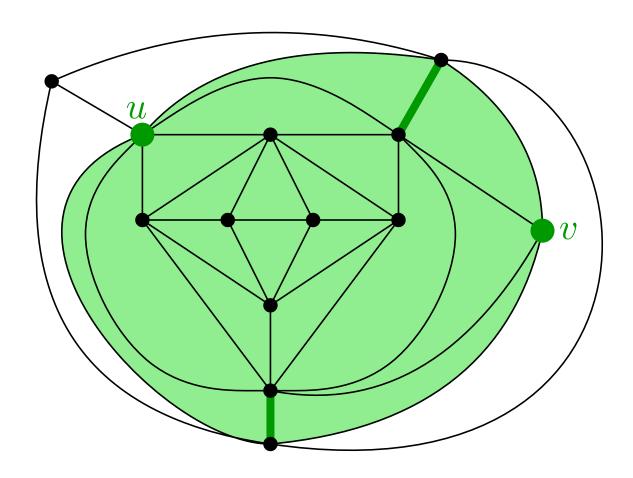
Given a triconnected plane graph $T=(V,E_T)$ and a matching $M=(V,E_M)$, is $G=(V,E_T\cup E_M)$ IC-planar?

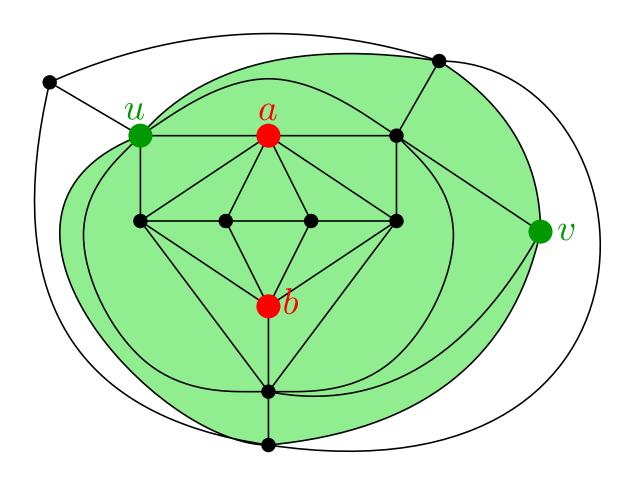


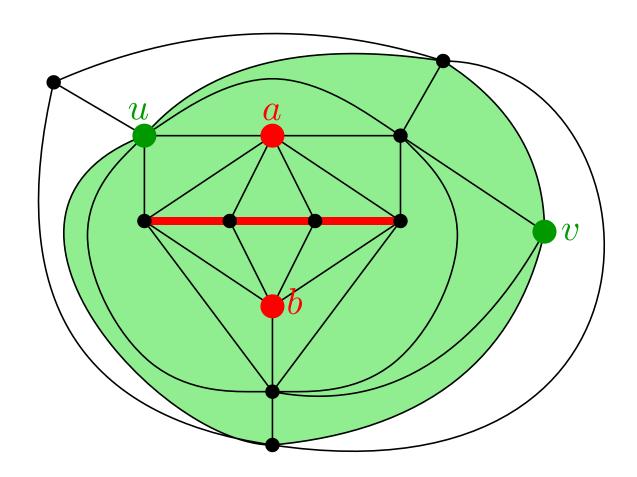


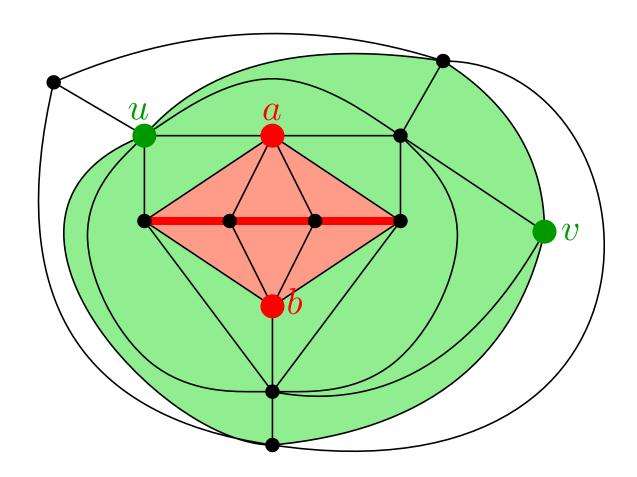


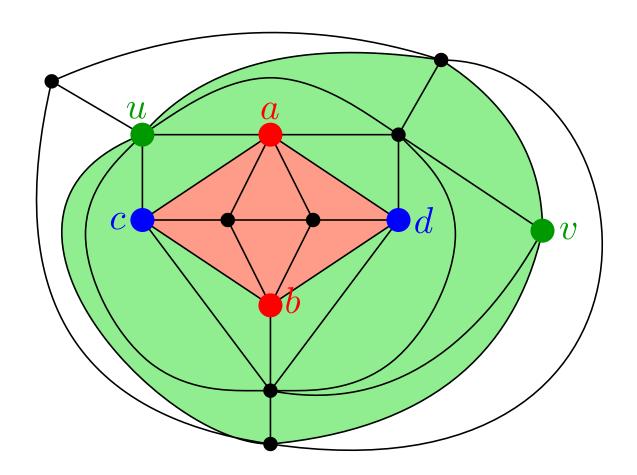


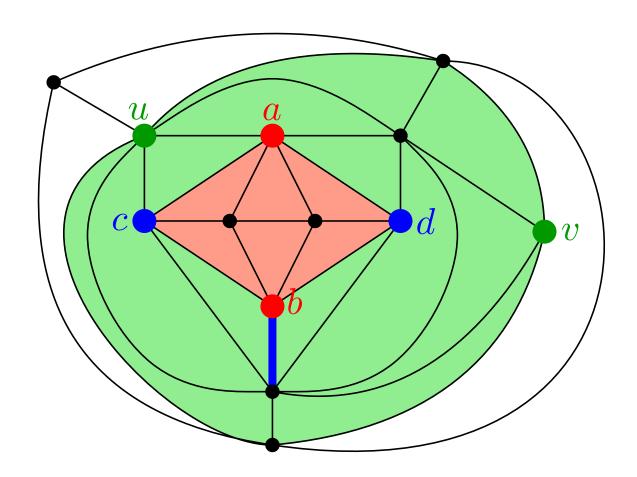


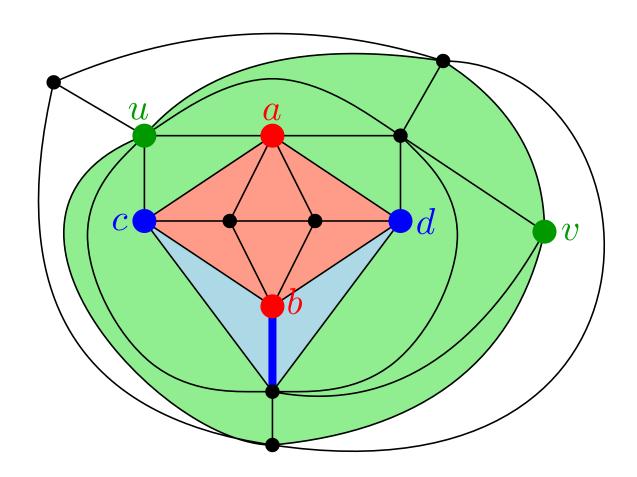


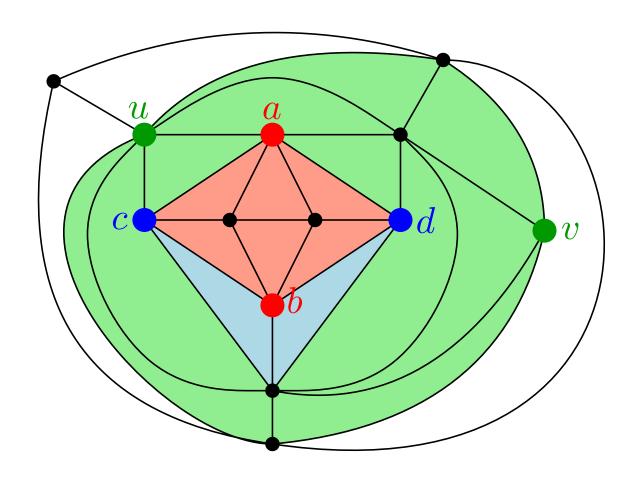






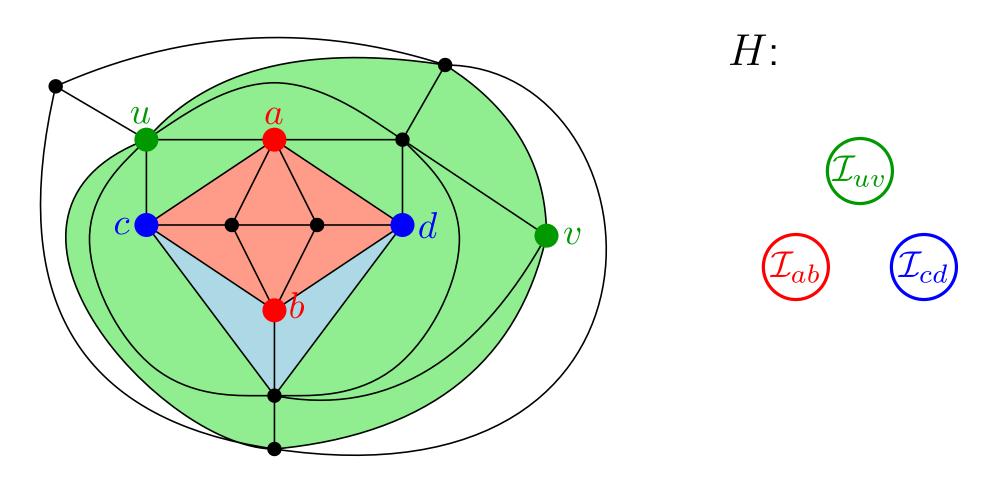






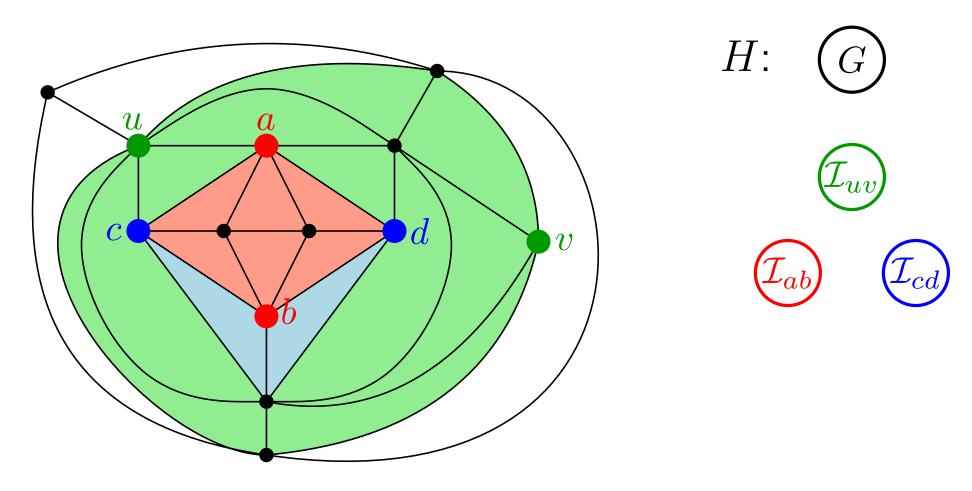
H:

Hierarchical structure: Tree $H = (V_H, E_H)$



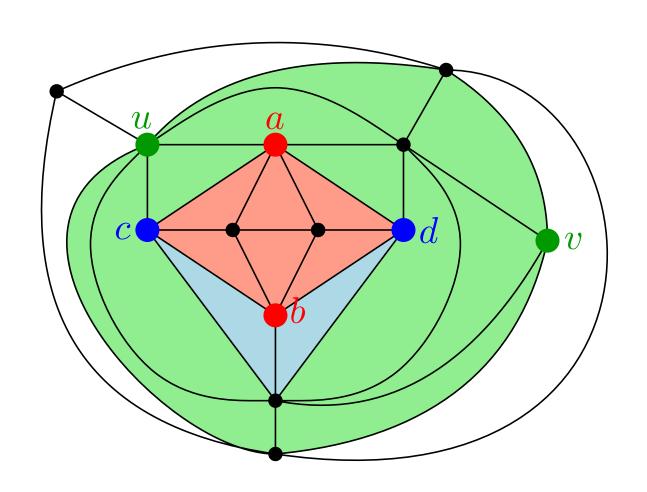
Hierarchical structure: Tree
$$H = (V_H, E_H)$$

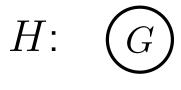
 $V_H = \{\mathcal{I}_{uv} \mid (u, v) \in M\}$

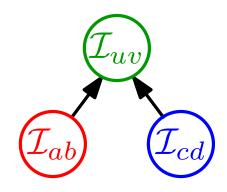


Hierarchical structure: Tree
$$H = (V_H, E_H)$$

 $V_H = \{\mathcal{I}_{uv} \mid (u, v) \in M\} \cup \{G\}$

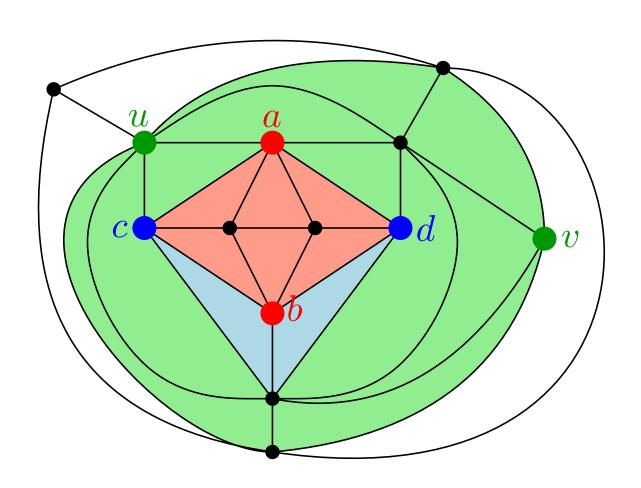


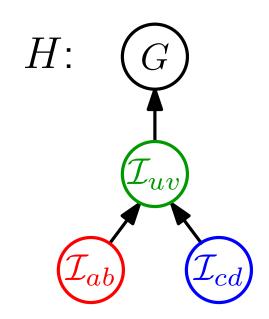




Hierarchical structure: Tree
$$H = (V_H, E_H)$$

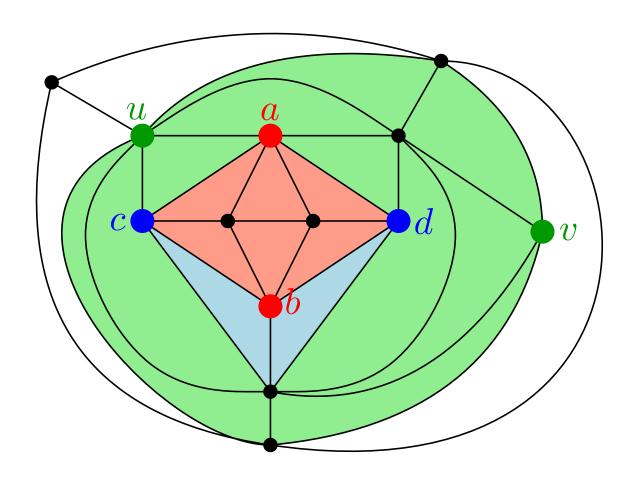
 $V_H = \{\mathcal{I}_{uv} \mid (u, v) \in M\} \cup \{G\}$
 $(\mathcal{I}_{uv}, \mathcal{I}_{ab}) \in E_H \Leftrightarrow \mathcal{I}_{uv} \subset \mathcal{I}_{ab}$

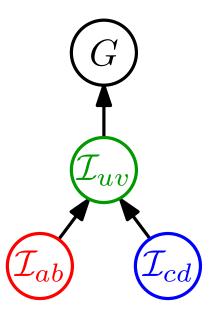


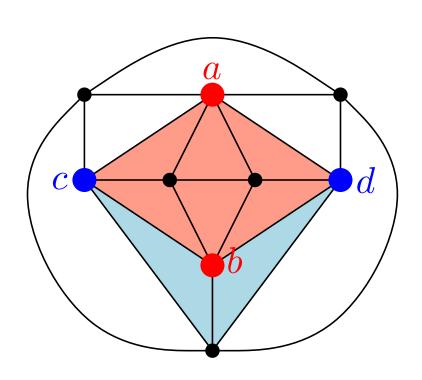


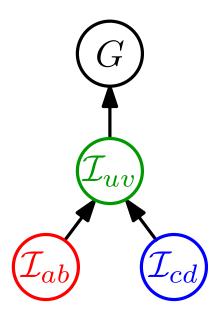
Hierarchical structure: Tree
$$H = (V_H, E_H)$$

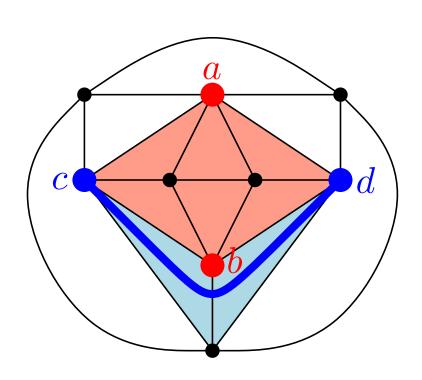
 $V_H = \{\mathcal{I}_{uv} \mid (u, v) \in M\} \cup \{G\}$
 $(\mathcal{I}_{uv}, \mathcal{I}_{ab}) \in E_H \Leftrightarrow \mathcal{I}_{uv} \subset \mathcal{I}_{ab}$
outdeg $(\mathcal{I}_{uv}) = 0 \Rightarrow (\mathcal{I}_{uv}, G) \in E_H$

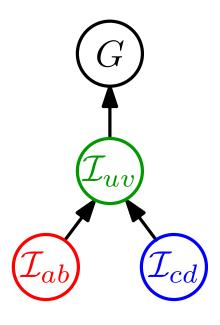


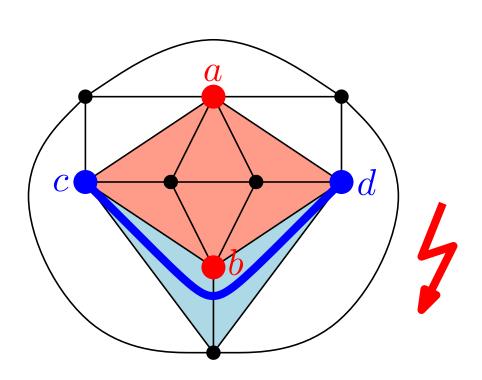


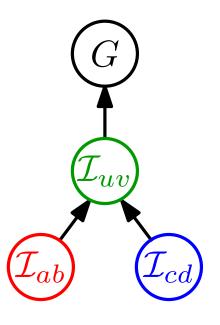


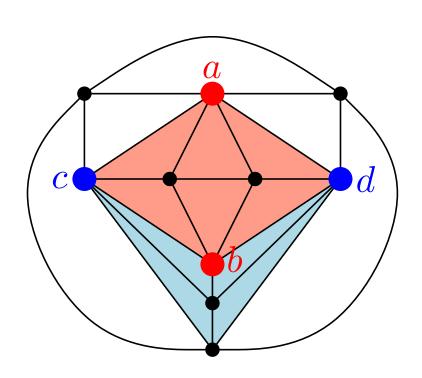


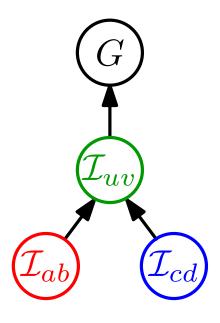


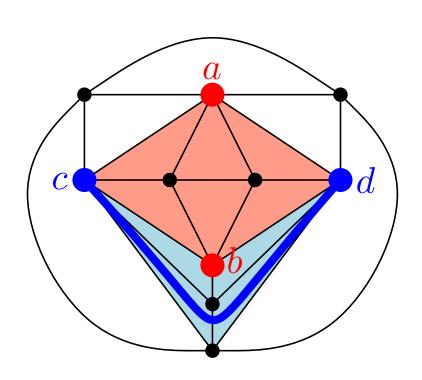


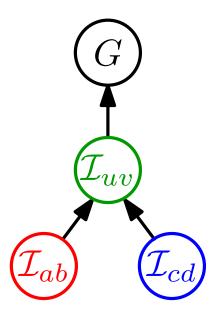


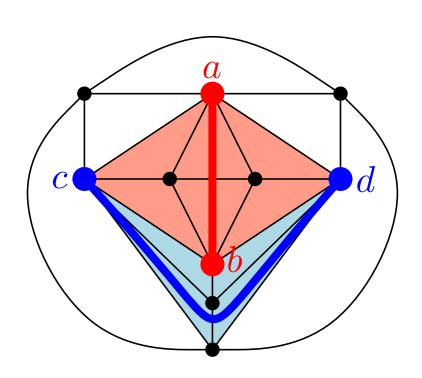


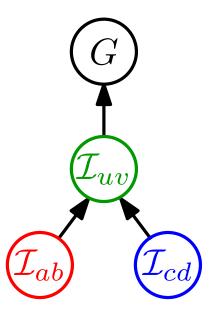


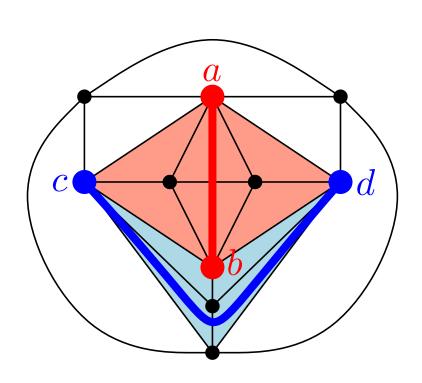


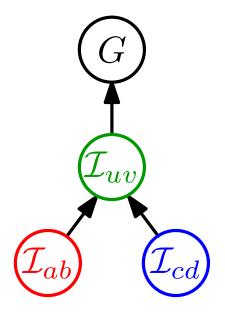




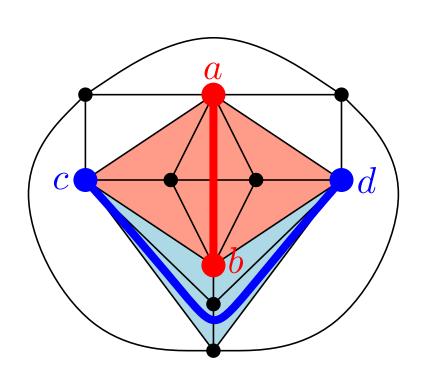


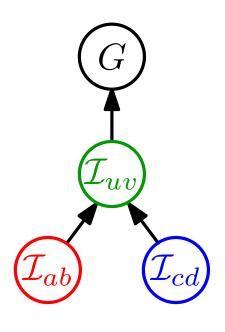




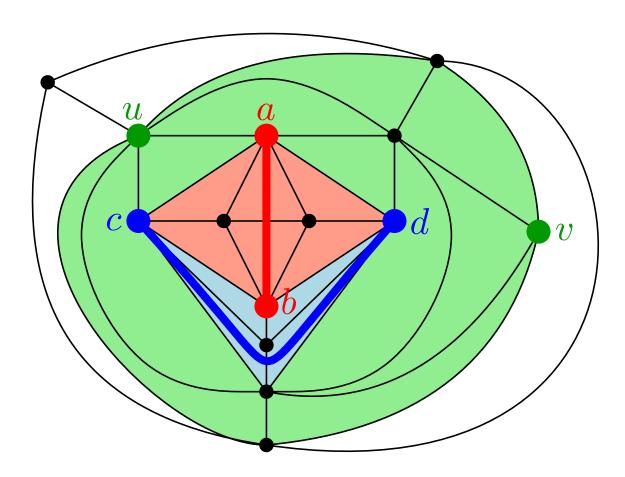


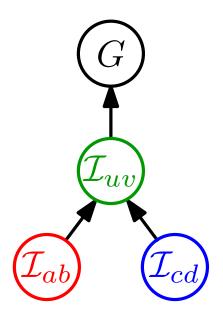
Always pick "middle" routing



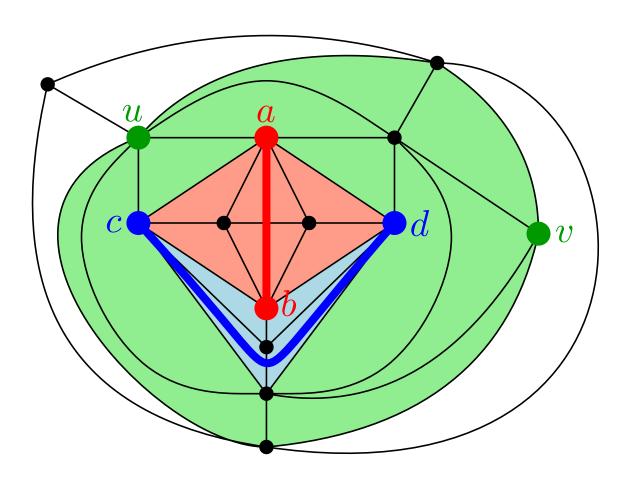


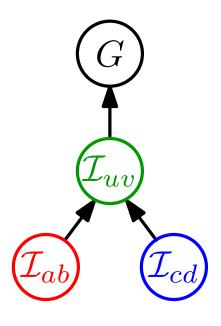
- Always pick "middle" routing
- Solve rest with 2SAT



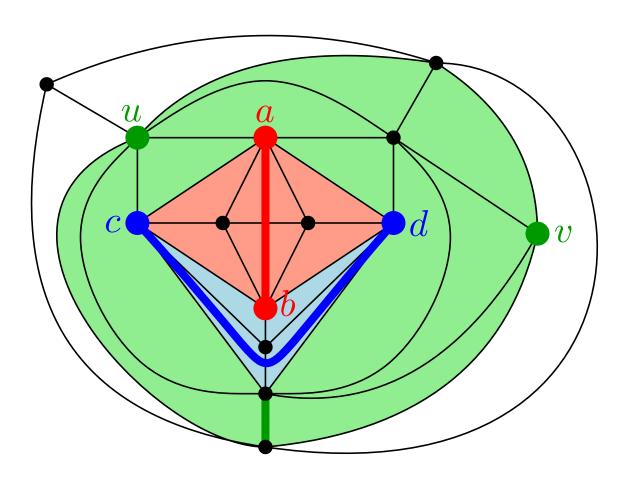


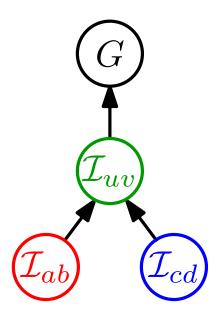
- Always pick "middle" routing
- Solve rest with 2SAT



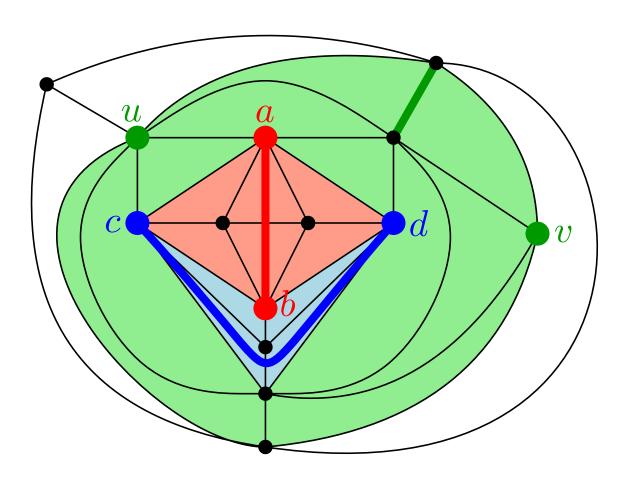


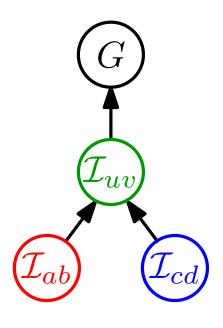
- Always pick "middle" routing
- Solve rest with 2SAT
- Recursively check which routings are valid



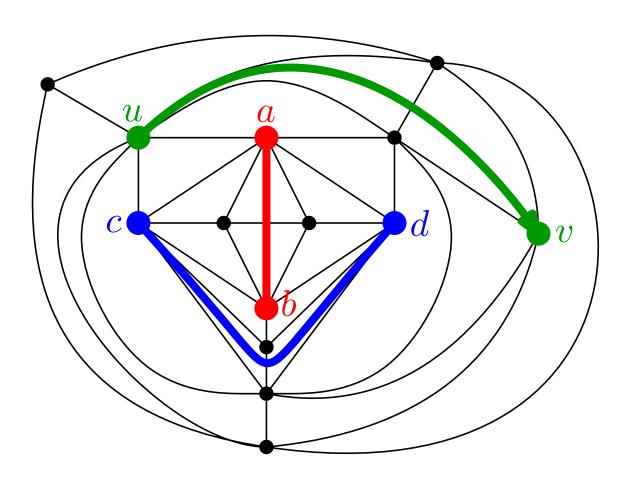


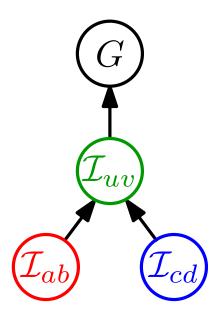
- Always pick "middle" routing
- Solve rest with 2SAT
- Recursively check which routings are valid





- Always pick "middle" routing
- Solve rest with 2SAT
- Recursively check which routings are valid

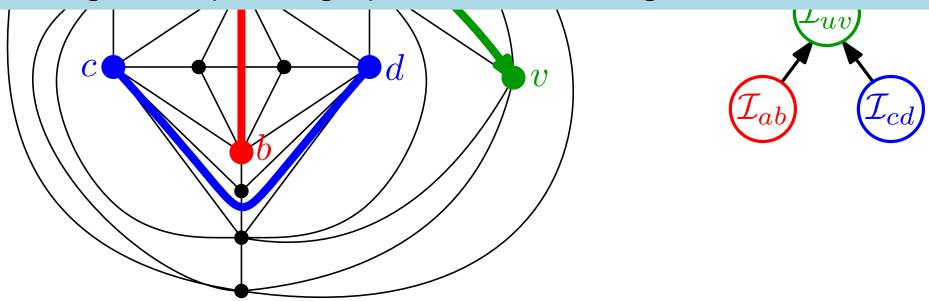




- Always pick "middle" routing
- Solve rest with 2SAT
- Recursively check which routings are valid

Theorem.

IC-planarity can be tested efficiently if the input graph is a triangulated planar graph and a matching



- Always pick "middle" routing
- Solve rest with 2SAT
- Recursively check which routings are valid

Theorem.

IC-plane graphs can be drawn straight-line on the $O(n) \times O(n)$ grid in O(n) time.

Theorem.

IC-plane graphs can be drawn straight-line on the $O(n) \times O(n)$ grid in O(n) time.

Using a special 1-planar drawing...

[Alam et al. GD'13]

Theorem.

IC-plane graphs can be drawn straight-line RAC? on the $O(n) \times O(n)$ grid in O(n) time.

Using a special 1-planar drawing...

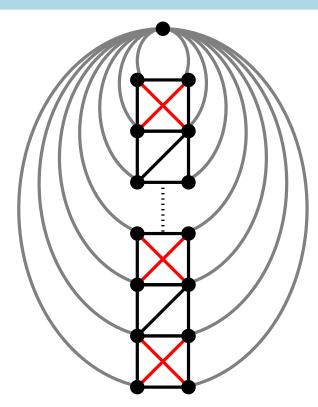
[Alam et al. GD'13]

Theorem.

IC-plane graphs can be drawn straight-line RAC? on the $O(n) \times O(n)$ grid in O(n) time.

Using a special 1-planar drawing...

[Alam et al. GD'13]

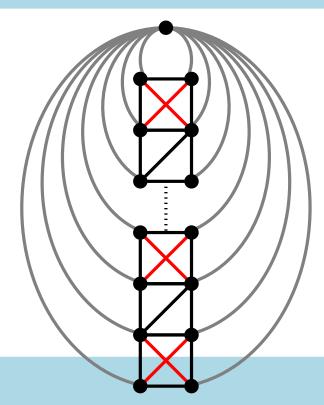


Theorem.

IC-plane graphs can be drawn straight-line RAC? on the $O(n) \times O(n)$ grid in O(n) time.

Using a special 1-planar drawing...

[Alam et al. GD'13]



Theorem.

Straight-line RAC drawings of IC-planar graphs may require exponential area.

Theorem.

IC-plane graphs can be drawn straight-line **RAC?** on the $O(n) \times O(n)$ grid in O(n) time.

Using a special 1-planar drawing...

[Alam et al. GD'13]

Theorem.

Straight-line RAC drawings of IC-plana exponential area.

Adjust Shift-Algorithm for planar graphs [de Fraysseix, Pach & Pollack Comb'90]

Adjust Shift-Algorithm for planar graphs [de Fraysseix, Pach & Pollack Comb'90]

Augment to 3-connected planar graph

Adjust Shift-Algorithm for planar graphs [de Fraysseix, Pach & Pollack Comb'90]

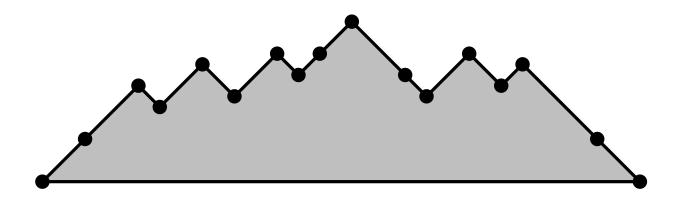
- Augment to 3-connected planar graph
 - Insert vertices in canonical order

Adjust Shift-Algorithm for planar graphs

- Augment to 3-connected planar graph
 - Insert vertices in canonical order
 - ullet Contour only has slopes ± 1

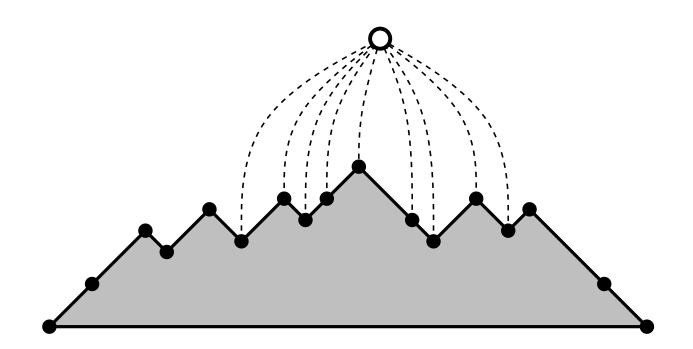
Adjust Shift-Algorithm for planar graphs

- Augment to 3-connected planar graph
- Insert vertices in canonical order
- ullet Contour only has slopes ± 1



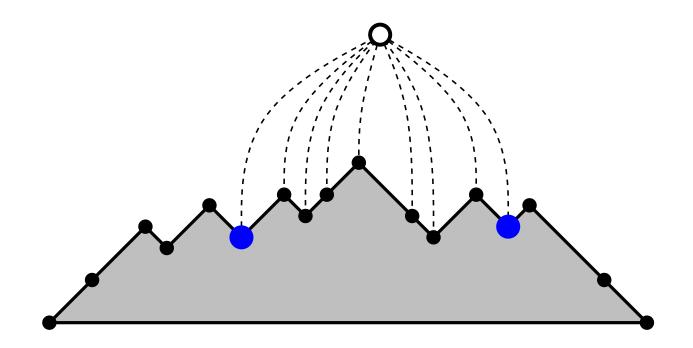
Adjust Shift-Algorithm for planar graphs

- - Augment to 3-connected planar graph
 - Insert vertices in canonical order
 - ullet Contour only has slopes ± 1



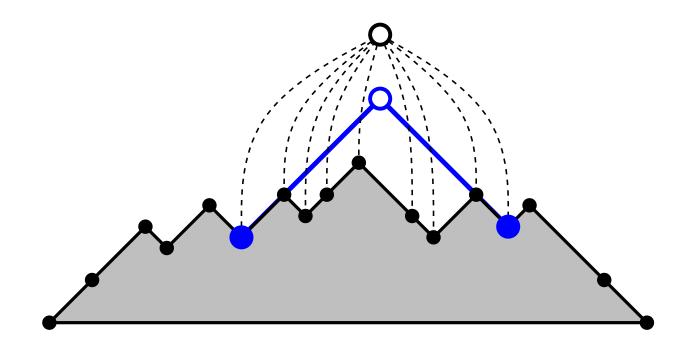
Adjust Shift-Algorithm for planar graphs

- - Augment to 3-connected planar graph
 - Insert vertices in canonical order
 - ullet Contour only has slopes ± 1



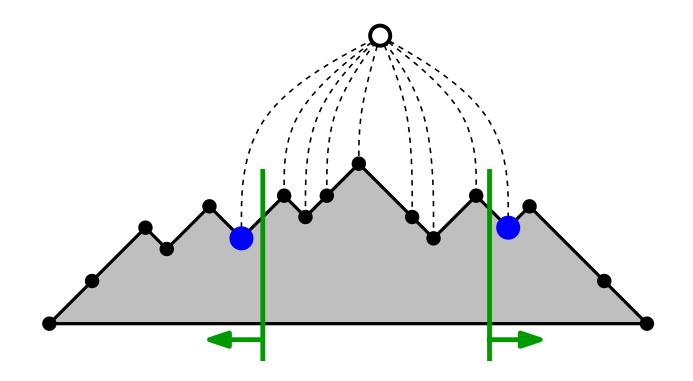
Adjust Shift-Algorithm for planar graphs

- - Augment to 3-connected planar graph
 - Insert vertices in canonical order
 - ullet Contour only has slopes ± 1



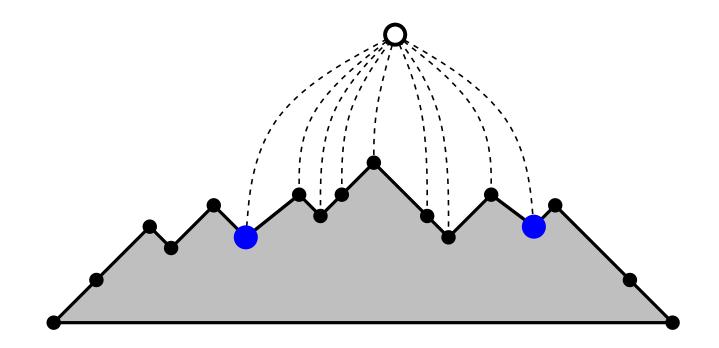
Adjust Shift-Algorithm for planar graphs

- - Augment to 3-connected planar graph
 - Insert vertices in canonical order
 - ullet Contour only has slopes ± 1



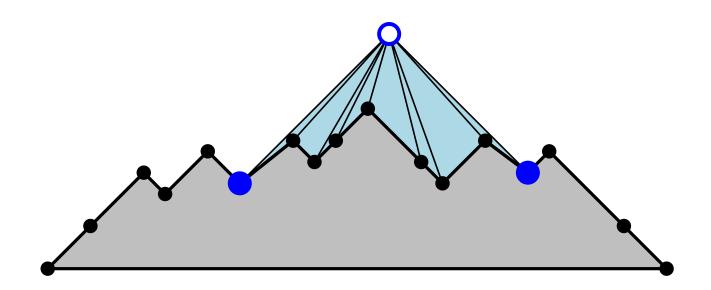
Adjust Shift-Algorithm for planar graphs

- - Augment to 3-connected planar graph
 - Insert vertices in canonical order
 - ullet Contour only has slopes ± 1



Adjust Shift-Algorithm for planar graphs

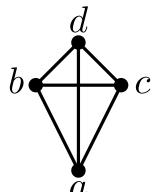
- - Augment to 3-connected planar graph
 - Insert vertices in canonical order
 - ullet Contour only has slopes ± 1



Adjust Shift-Algorithm for planar graphs [de Fraysseix, Pach & Pollack Comb'90]

- Augment to planar-maximal IC-planar graph
 - Insert vertices in canonical order
 - ullet Contour only has slopes ± 1

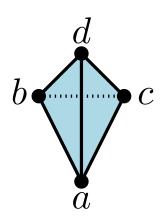
Adjust Shift-Algorithm for planar graphs



- Augment to planar-maximal IC-planar graph
 - Insert vertices in canonical order
 - ullet Contour only has slopes ± 1
 - Each crossing \rightarrow Kite K = (a, b, c, d)

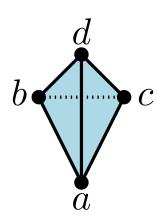
Adjust Shift-Algorithm for planar graphs

- Insert vertices in canonical order
- ullet Contour only has slopes ± 1
- Each crossing \rightarrow Kite K = (a, b, c, d)
- Remove one edge per crossing



Adjust Shift-Algorithm for planar graphs

- Insert vertices in canonical order
- ullet Contour only has slopes ± 1
- Each crossing \rightarrow Kite K = (a, b, c, d)
- Remove one edge per crossing
- ullet Adjust step in which d is placed

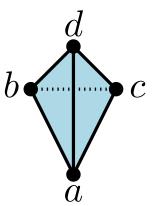


Adjust Shift-Algorithm for planar graphs

[de Fraysseix, Pach & Pollack Comb'90]

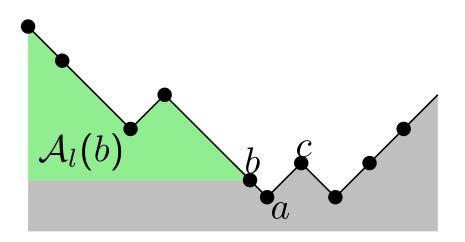
- Insert vertices in canonical order
- ullet Contour only has slopes ± 1
- Each crossing \rightarrow Kite K = (a, b, c, d)
- Remove one edge per crossing
- Adjust step in which d is placed

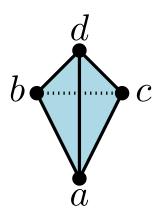
Highest number in canonical order

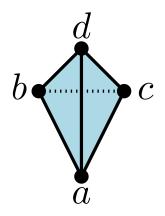


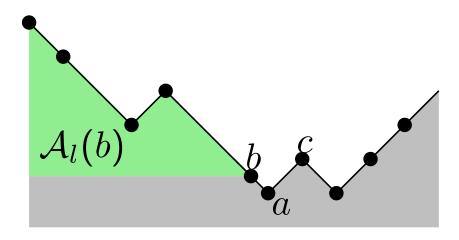
Adjust Shift-Algorithm for planar graphs

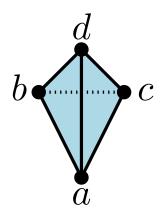
- Insert vertices in canonical order
- ullet Contour only has slopes ± 1
- Each crossing \rightarrow Kite K = (a, b, c, d)
- Remove one edge per crossing
- ullet Adjust step in which d is placed

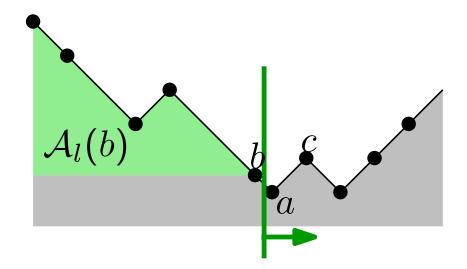


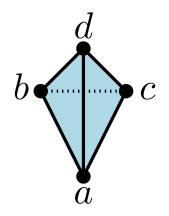


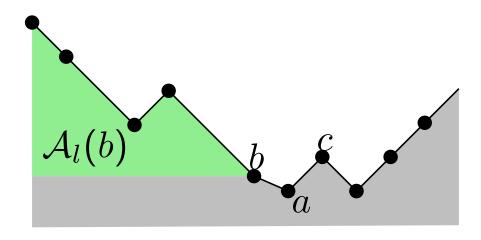


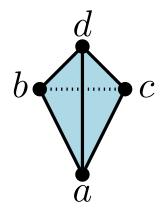


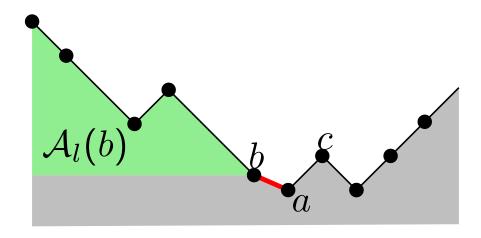


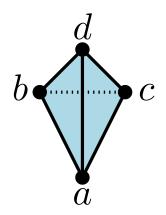


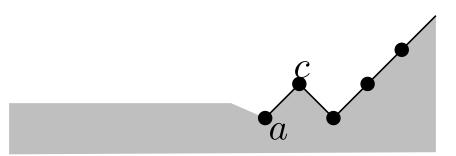


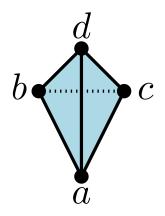


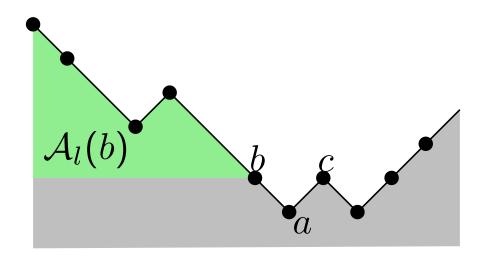


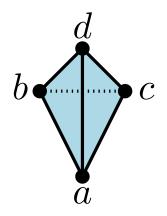


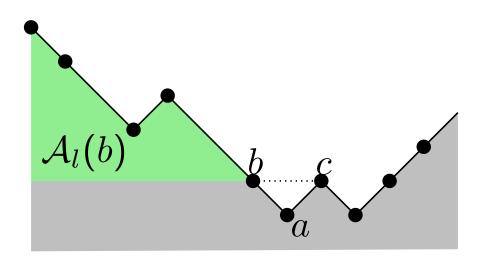


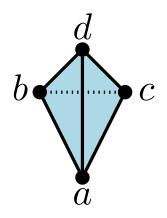


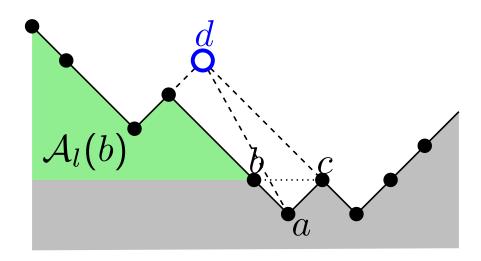


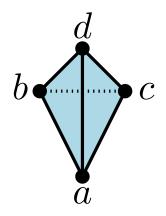


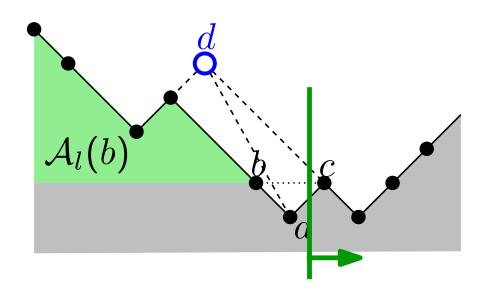


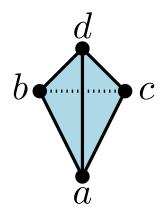


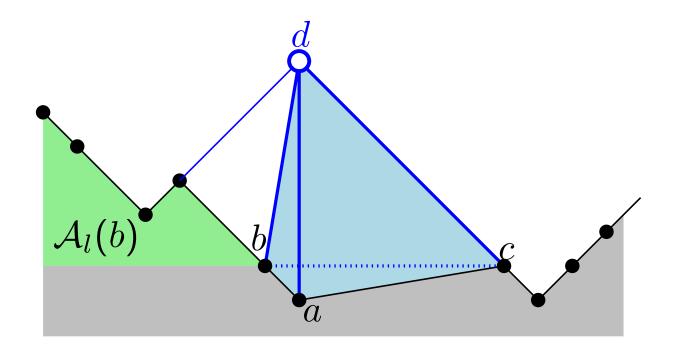


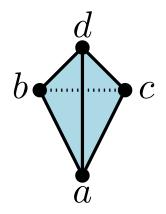


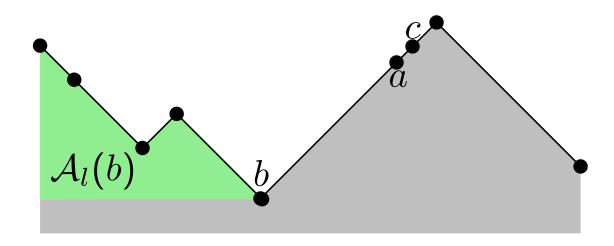


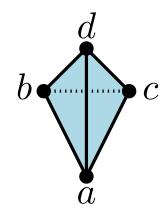


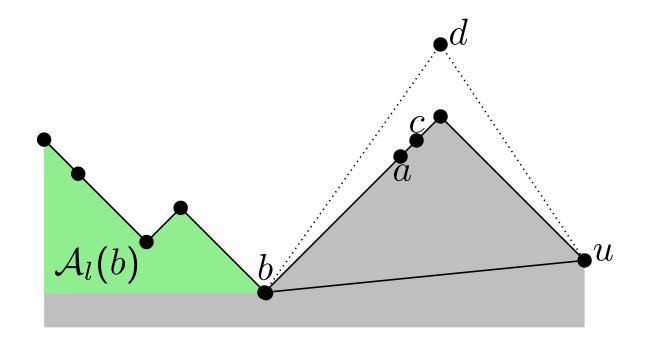


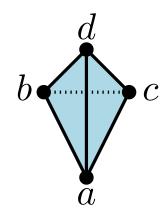


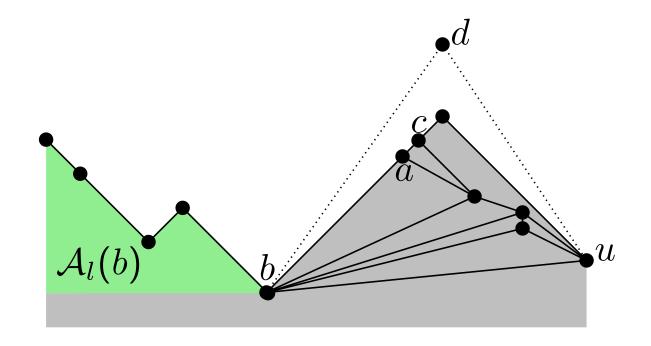


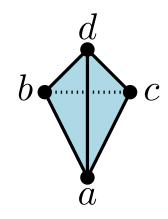


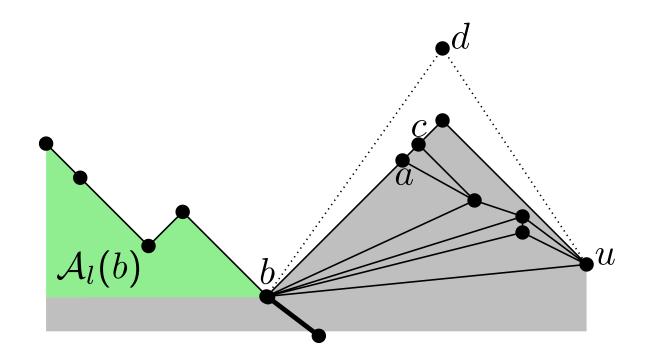


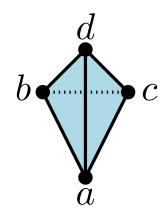


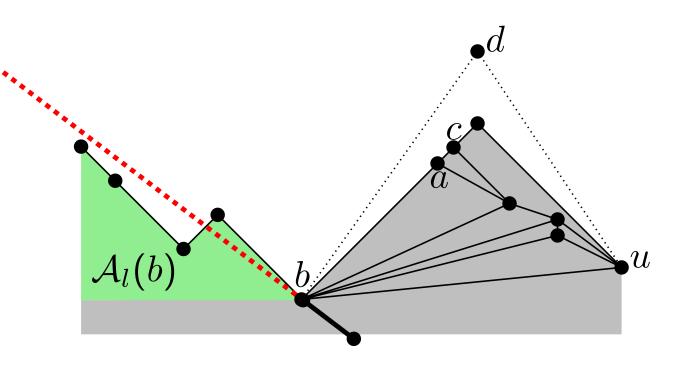


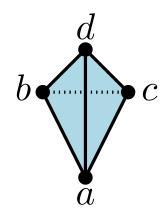


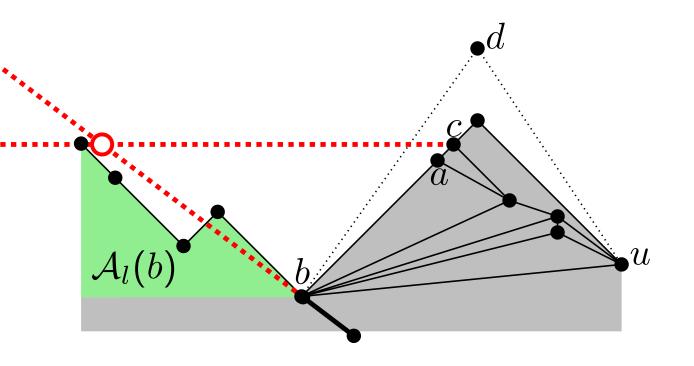


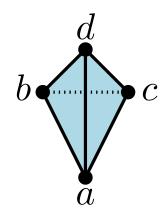


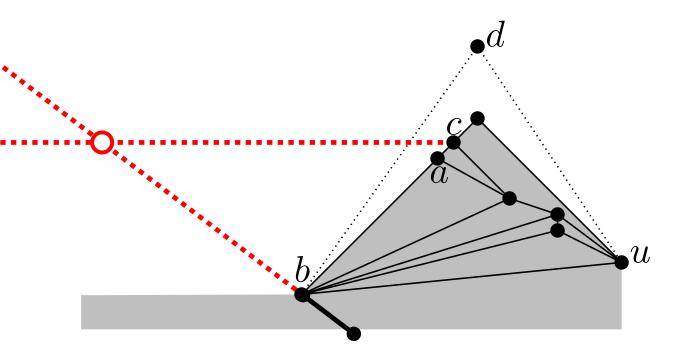


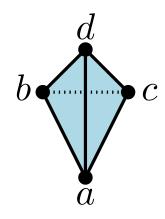


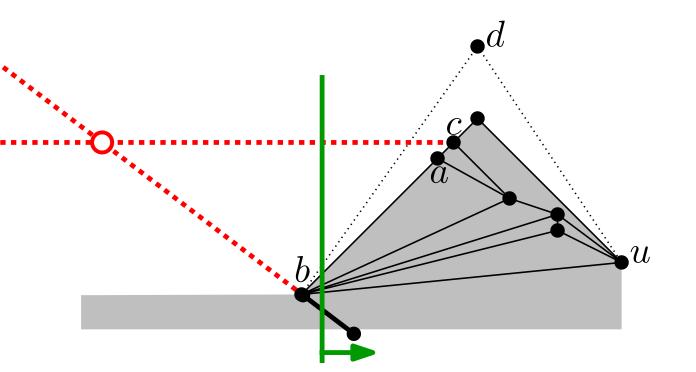




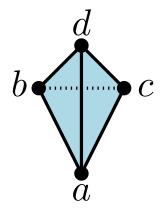


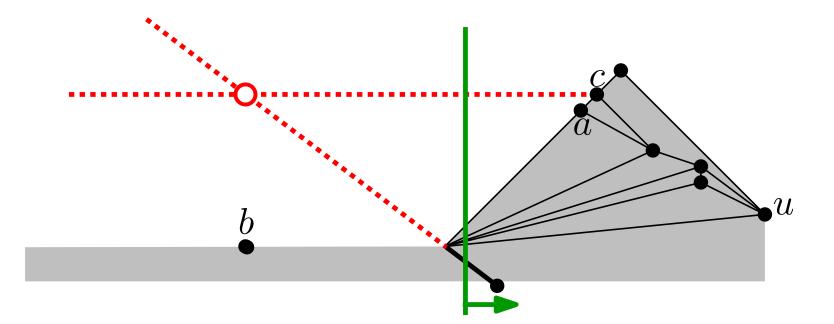




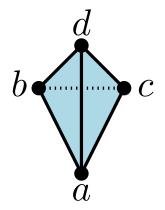


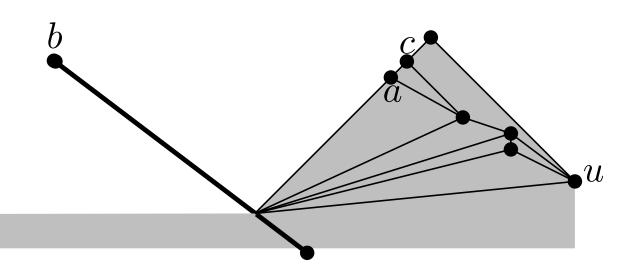
Adjust Shift-Algorithm for planar graphs



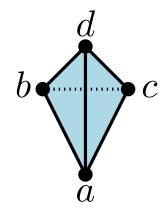


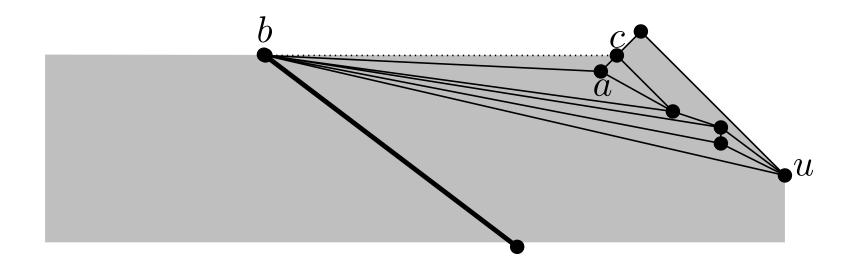
Adjust Shift-Algorithm for planar graphs



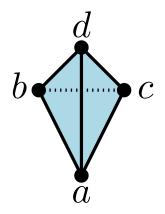


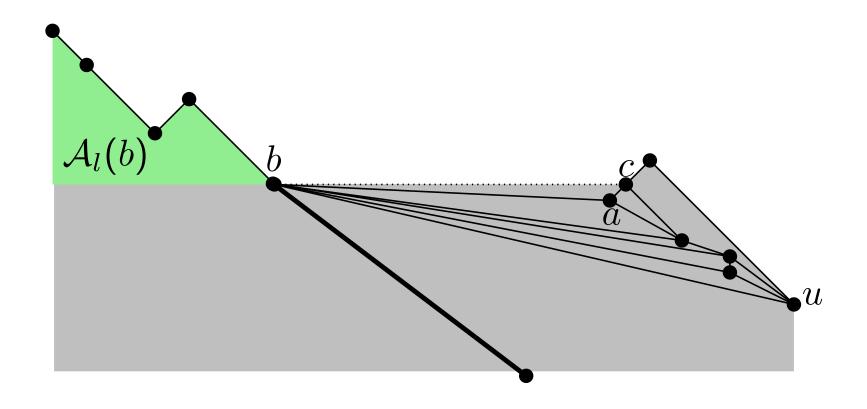
Adjust Shift-Algorithm for planar graphs

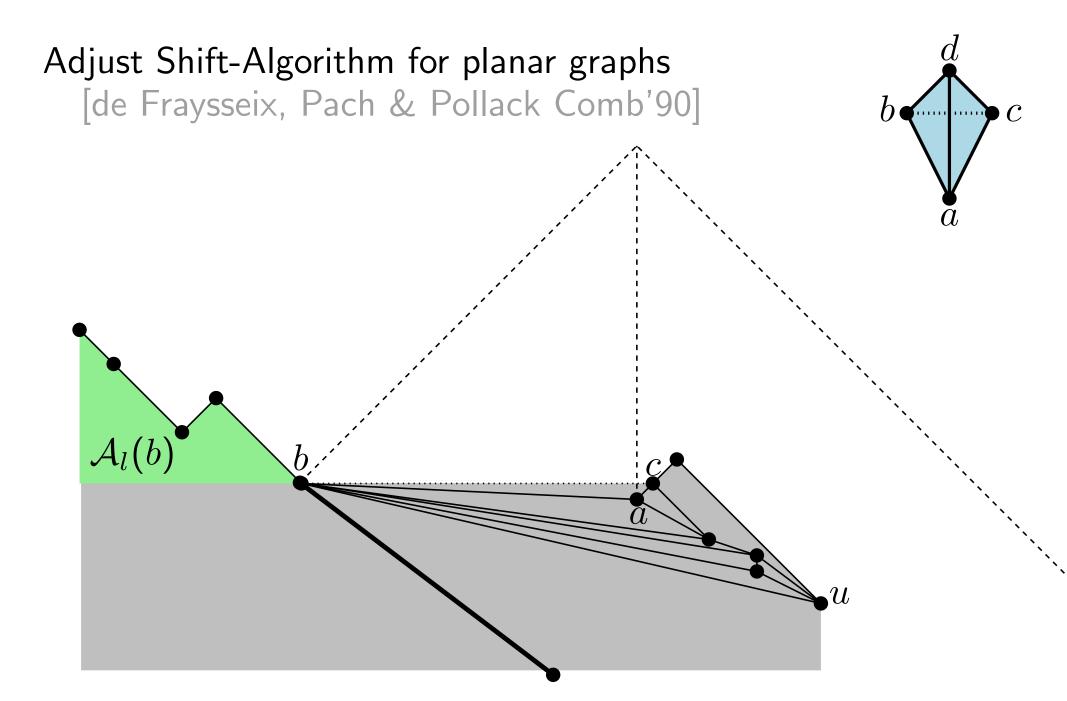


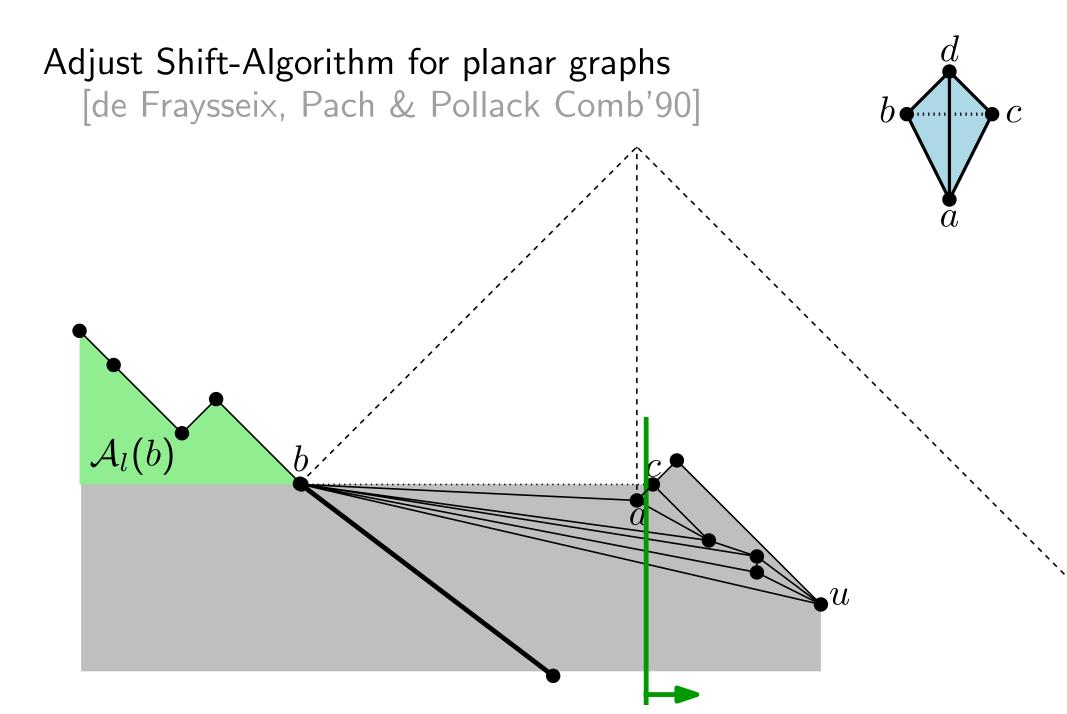


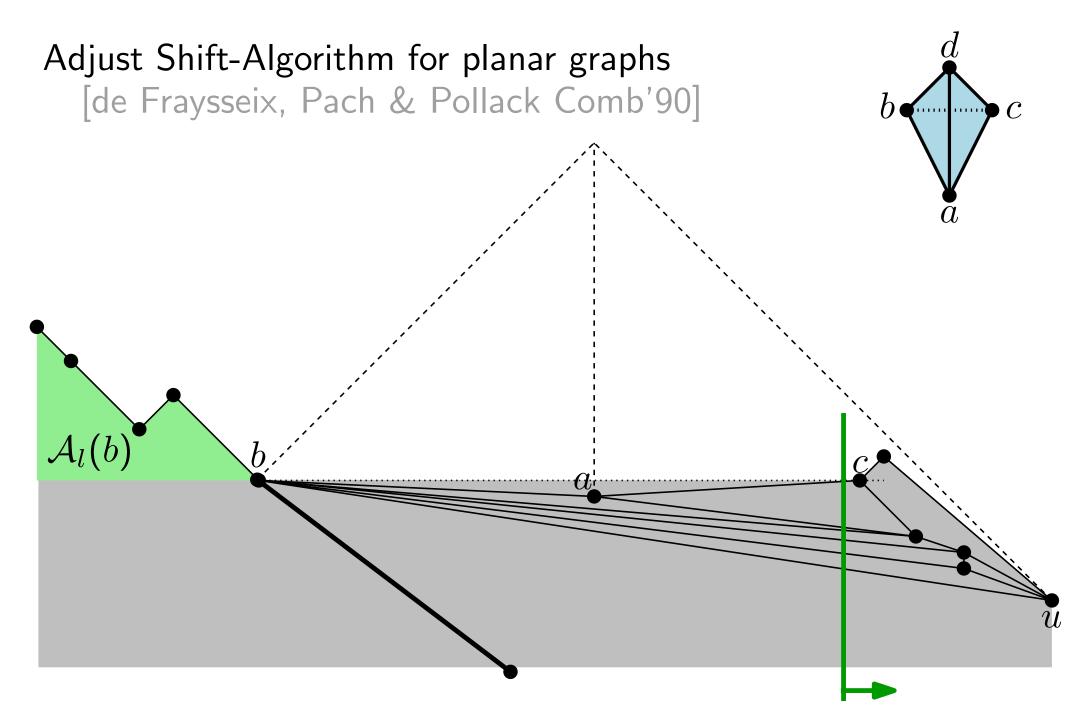
Adjust Shift-Algorithm for planar graphs

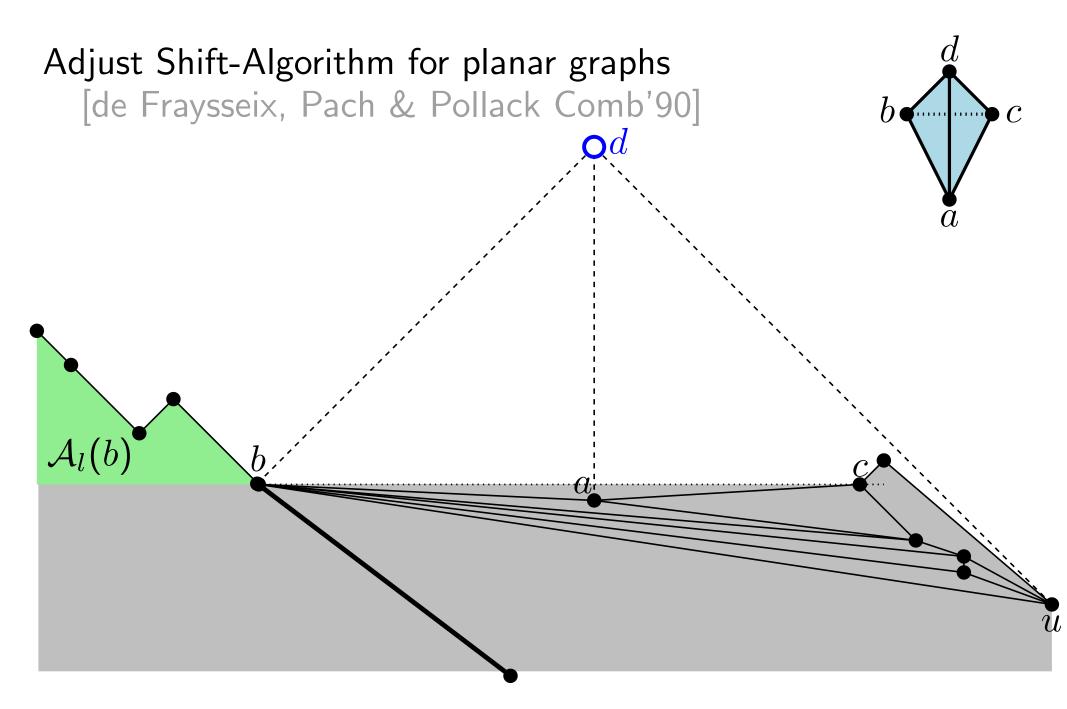


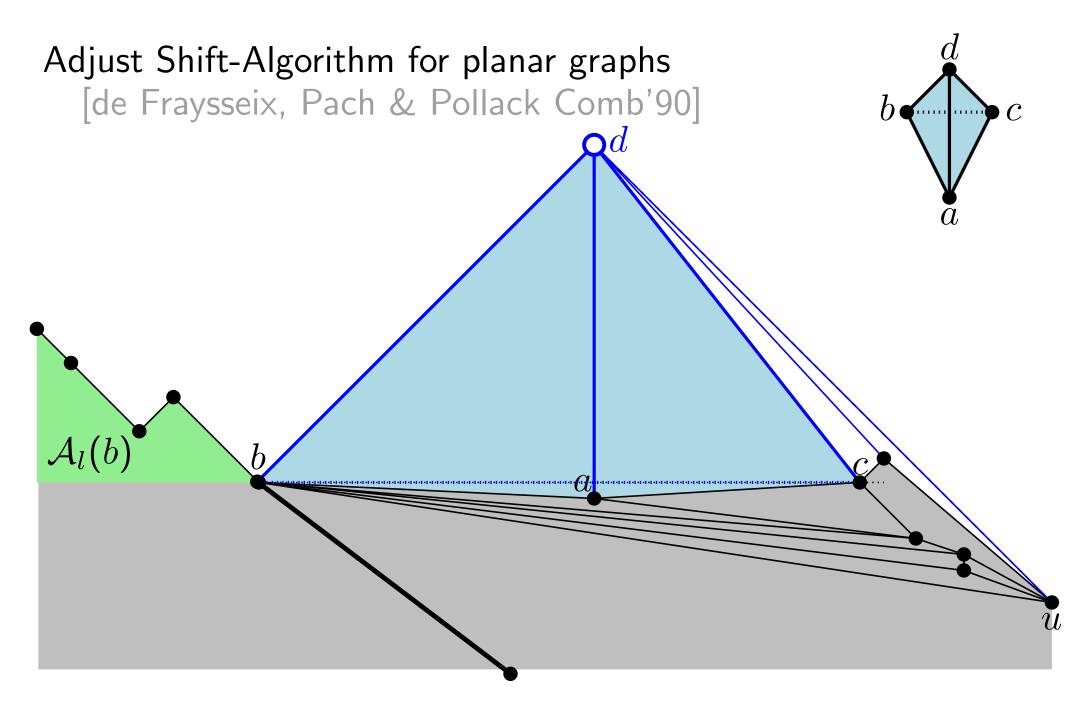




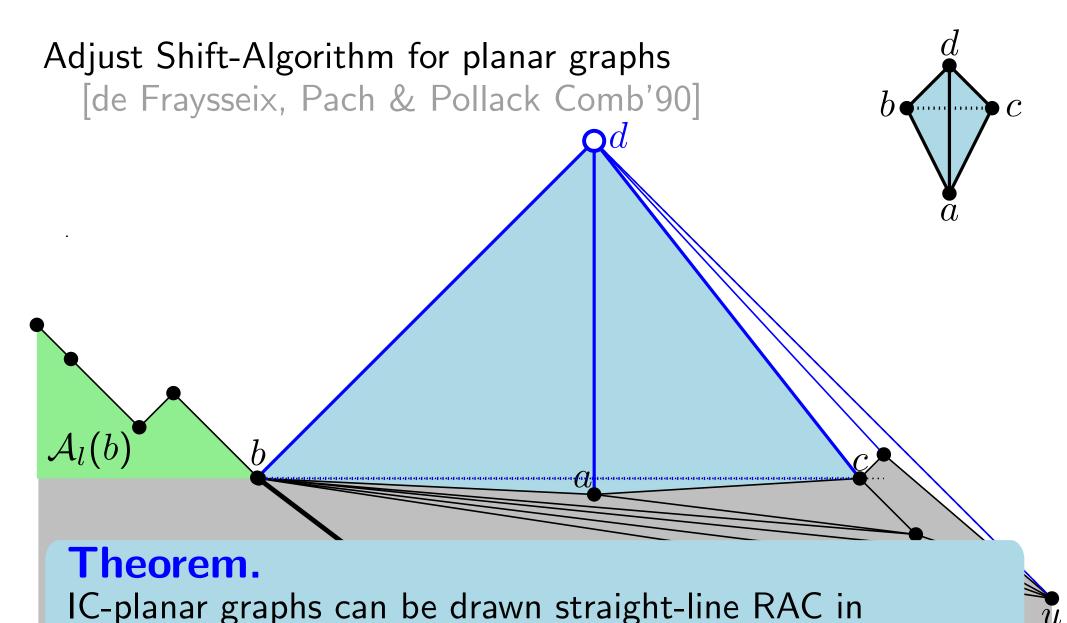


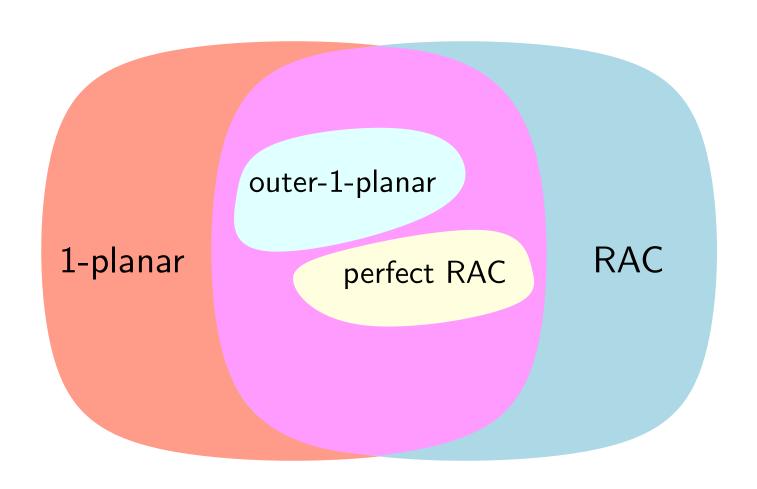


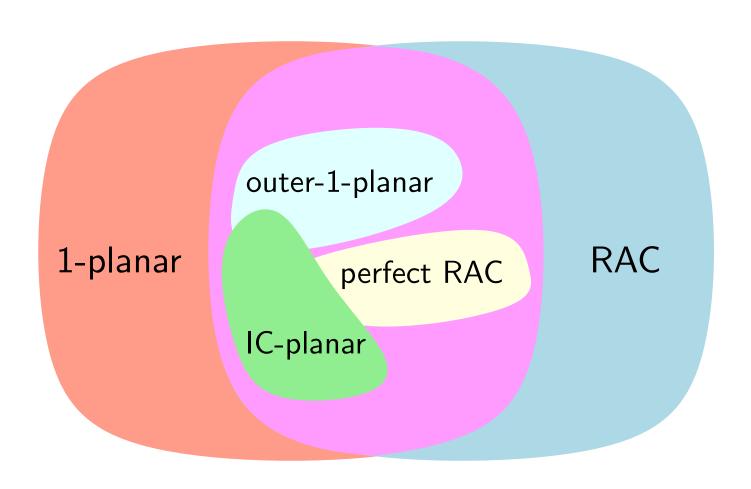


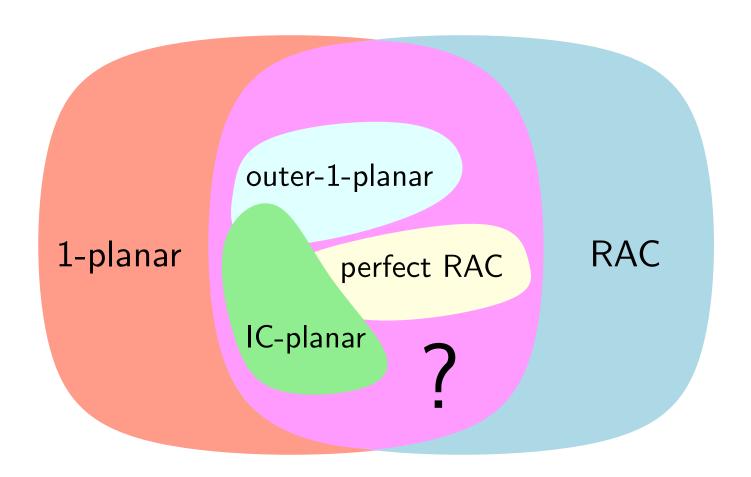


exponential area in $O(n^3)$ time.

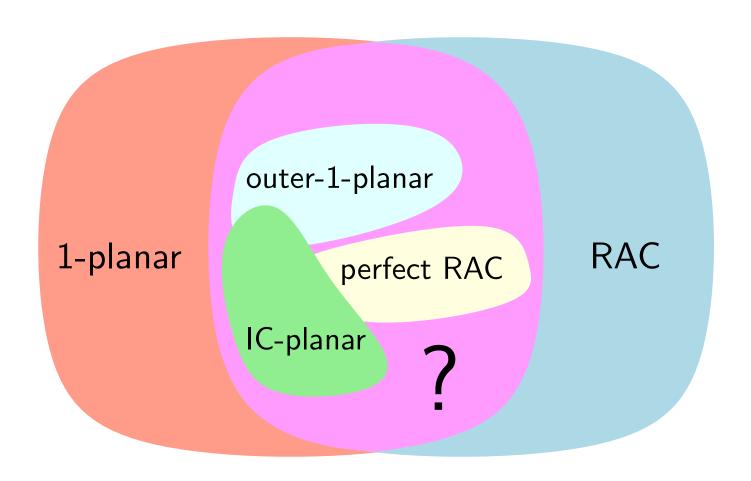








Draw in polynomial area with good crossing resolution?



Draw in polynomial area with good crossing resolution? What about maximal IC-planar graphs?

