Windrose Planarity
Embedding Graphs with Direction-Constrained Edges

Dr. Philipp Kindermann
LG Theoretische Informatik
FernUniversität in Hagen

Published at SODA’16. Joint work with Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Valentino Di Donato, Günter Rote & Ignaz Rutter
Upward Planarity

An undirected graph is planar: no crossings
An undirected graph is *planar*: no crossings
Upward Planarity

An undirected graph is *planar*: no crossings

A *directed* graph is *upwards planar*:
- no crossings
- all edges are y-monotone curves directed upwards
Upward Planarity

An undirected graph is *planar*: no crossings

A *directed* graph is *upwards planar*:
- no crossings
- all edges are y-monotone curves directed upwards
An undirected graph is *planar*: no crossings

A *directed* graph is *upwards planar*:
- no crossings
- all edges are y-monotone curves directed upwards
An undirected graph is \textit{planar}: no crossings

A \textit{directed} graph is \textit{upwards planar}:
- no crossings
- all edges are y-monotone curves directed upwards
Upward Planarity

An undirected graph is planar: no crossings.

A directed graph is upwards planar:
- no crossings
- all edges are y-monotone curves directed upwards.

planar
acyclic
Upward Planarity

An undirected graph is *planar*: no crossings

A *directed* graph is *upwards planar*:
- no crossings
- all edges are \(y \)-monotone curves directed upwards

\(\Rightarrow \) planar

\(\Rightarrow \) acyclic
Upward Planarity

An undirected graph is *planar*: no crossings

A *directed* graph is *upwards planar*:
- no crossings
- all edges are y-monotone curves directed upwards
Upward Planarity: Testing

Testing Upward Planarity is...
Testing Upward Planarity is...

- NP-complete in general

[Garg & Tamassia '95]
Upward Planarity: Testing

Testing Upward Planarity is...
- NP-complete in general [Garg & Tamassia '95]
- poly for single-source graphs [Di Battista et al. '98]
Upward Planarity: Testing

Testing Upward Planarity is...

- NP-complete in general [Garg & Tamassia '95]
- poly for single-source graphs [Di Battista et al. '98]
- poly for fixed embedding [Garg & Tamassia '95]
Testing Upward Planarity is...

- NP-complete in general [Garg & Tamassia '95]
- poly for single-source graphs [Di Battista et al. '98]
- poly for fixed embedding [Garg & Tamassia '95]
Upward Planarity: Testing

Testing Upward Planarity is...

- NP-complete in general [Garg & Tamassia '95]
- poly for single-source graphs [Di Battista et al. '98]
- poly for fixed embedding [Garg & Tamassia '95]

planar
acyclic
bimodal
Upward Planarity: Testing

Testing Upward Planarity is...

- NP-complete in general [Garg & Tamassia '95]
- poly for single-source graphs [Di Battista et al. '98]
- poly for fixed embedding [Garg & Tamassia '95]

planar ➔ acyclic ➔ bimodal
Testing Upward Planarity is...

- NP-complete in general \[\text{[Garg & Tamassia '95]}\]
- poly for single-source graphs \[\text{[Di Battista et al. '98]}\]
- poly for fixed embedding \[\text{[Garg & Tamassia '95]}\]

- planar
- acyclic
- bimodal
Windrose Planarity

q-constrained graph (G, Q):
q-constrained graph \((G, Q)\):
- \(G\): undirected planar graph
Windrose Planarity

q-constrained graph (G, Q):

- G: undirected planar graph
- Q: partition of all neighbors of v into $\uparrow v$, $\downarrow v$, $\leftarrow v$, and $\rightarrow v$.
Windrose Planarity

q-constrained graph (G, Q):
- G: undirected planar graph
- Q: partition of all neighbors of v into $\uparrow v, \downarrow v, \leftarrow v,$ and $\rightarrow v$.
Windrose Planarity

Two directions:

q-constrained graph \((G, Q)\):
- \(G\): undirected planar graph
- \(Q\): partition of all neighbors of \(v\) into \(\uparrow v\), \(\downarrow v\), \(\leftarrow v\), and \(\rightarrow v\).
Windrose Planarity

Two directions:

q-constrained graph (G, Q):
- G: undirected planar graph
- Q: partition of all neighbors of v into $\uparrow v$, $\downarrow v$, $\leftarrow v$, and $\rightarrow v$.

A q-constrained graph is windrose planar:
Windrose Planarity

Two directions:

q-constrained graph \((G, Q)\):
- \(G\): undirected planar graph
- \(Q\): partition of all neighbors of \(v\) into \(\uparrow v\), \(\downarrow v\), \(\rightarrow v\), and \(\leftarrow v\).

A q-constrained graph is *windrose planar*:
- no crossings
Windrose Planarity

Two directions:

- \(q \)-constrained graph \((G, Q)\):
 - \(G \): undirected planar graph
 - \(Q \): partition of all neighbors of \(v \) into \(\uparrow v \), \(\downarrow v \), \(\leftarrow v \), and \(\rightarrow v \).

A \(q \)-constrained graph is windrose planar:
- no crossings
- all edges are \(xy \)-monotone curves

\[
\begin{align*}
\text{\(\uparrow v \)} & \quad \text{\(\downarrow v \)} \\
\text{\(\leftarrow v \)} & \quad \text{\(\rightarrow v \)}
\end{align*}
\]
Windrose Planarity

Two directions:

q-constrained graph \((G, Q)\):
- \(G\): undirected planar graph
- \(Q\): partition of all neighbors of \(v\) into \(\uparrow v\), \(\downarrow v\), \(\leftarrow v\), and \(\rightarrow v\).

A \(q\)-constrained graph is \textit{windrose planar}:
- no crossings
- all edges are \(xy\)-monotone curves
- \(u \in \uparrow v \Rightarrow u\) lies in the \(\circ\)-quadrant of \(v\)
Relationship to Upwards Planarity

Two directions:

q-constrained graph (G, Q):
- G: undirected planar graph
- Q: partition of all neighbors of v into $\uparrow v$, $\downarrow v$, $\leftarrow v$, and $\rightarrow v$.

A q-constrained graph is windrose planar:
- no crossings
- all edges are xy-monotone curves
- $u \in \uparrow v \Rightarrow u$ lies in the \circ-quadrant of v
Relationship to Upwards Planarity

Two directions:

\[q\text{-constrained graph } (G, Q): \]
- \(G \): undirected planar graph
- \(Q \): partition of all neighbors of \(v \) into \(v \) and \(\bar{v} \)

A \(q\)-constrained graph is windrose planar:
- no crossings
- all edges are \(xy \)-monotone curves
- \(u \in \hat{v} \Rightarrow u \) lies in the \(\circ \)-quadrant of \(v \)
Relationship to Upwards Planarity

One direction:

q-constrained graph \((G, Q)\):
- \(G\): undirected planar graph
- \(Q\): partition of all neighbors of \(v\) into \(\uparrow v\) and \(\downarrow v\)

A q-constrained graph is \textit{windrose planar}:
- no crossings
- all edges are \(xy\)-monotone curves
- \(u \in \uparrow v \Rightarrow u\) lies in the \(\circ\)-quadrant of \(v\)
One direction:

q-constrained graph \((G, Q)\):
- **G**: undirected planar graph
- **Q**: partition of all neighbors of \(v\) into \(\uparrow v\) and \(\downarrow v\)

A q-constrained graph is *windrose planar*:
- no crossings
- all edges are \(xy\)-monotone curves
- \(u \in \downarrow v \Rightarrow u\) lies in the \(\circ\)-quadrant of \(v\)
Relationship to Upwards Planarity

One direction:

A directed graph is upwards planar:
- no crossings
- all edges are y-monotone curves directed upwards
Relationship to Upwards Planarity

One direction:

A directed graph is upwards planar:
- no crossings
- all edges are y-monotone curves directed upwards

Theorem. Testing Windrose Planarity is NP-complete
Angle categories: 0°, 90°, 180°, 270°, and 360°
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°
Angle categories: 0°, 90°, 180°, 270°, and 360°
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°
Angle categories: 0°, 90°, 180°, 270°, and 360°

Labeled graph \((G, A)\): \(G\) plane graph, \(A\) labeling of angles
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°

Labeled graph (G, A): G plane graph, A labeling of angles

Angular drawing: end of segments have slopes $\approx \pm 1$
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°

Labeled graph \((G, A)\): G plane graph, A labeling of angles

Angular drawing: end of segments have slopes \(\approx \pm 1\)
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°

Labeled graph \((G, A)\): \(G\) plane graph, \(A\) labeling of angles

Angular drawing: end of segments have slopes \(\approx \pm 1\)
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°

Labeled graph (G, A): G plane graph, A labeling of angles

Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if:
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°

Labeled graph (G, A): G plane graph, A labeling of angles

Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if:

- **Vertex condition**: sum of angle cat. at vertex is 360°
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°

Labeled graph (G, A): G plane graph, A labeling of angles

Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if:

- **Vertex condition:** sum of angle cat. at vertex is 360°
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°

Labeled graph (G, A): G plane graph, A labeling of angles

Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if:

- **Vertex condition**: sum of angle cat. at vertex is 360°
- **Cycle condition**: sum of angle cat. at (int.) face of length k is $k \cdot 180^\circ - 360^\circ$
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°

Labeled graph \((G, A)\): \(G\) plane graph, \(A\) labeling of angles

Angular drawing: end of segments have slopes \(\approx \pm 1\)

\((G, A)\) admits angular drawing if:
- **Vertex condition**: sum of angle cat. at vertex is 360°
- **Cycle condition**: sum of angle cat. at (int.) face of length \(k\) is \(k \cdot 180° - 360°\)
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°

Labeled graph (G, A): G plane graph, A labeling of angles

Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if: \Rightarrow A is angular labeling

- **Vertex condition**: sum of angle cat. at vertex is 360°
- **Cycle condition**: sum of angle cat. at (int.) face of length k is $k \cdot 180^\circ - 360^\circ$
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°

Labeled graph (G, A): G plane graph, A labeling of angles

Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if: $\Rightarrow A$ is angular labeling
- **Vertex condition**: sum of angle cat. at vertex is 360°
- **Cycle condition**: sum of angle cat. at (int.) face of length k is $k \cdot 180^\circ - 360^\circ$

Angular labeling A
\Rightarrow q-constraints Q_A
unique
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°

Labeled graph (G, A): G plane graph, A labeling of angles

Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if: $\Rightarrow A$ is angular labeling
- Vertex condition: sum of angle cat. at vertex is 360°
- Cycle condition: sum of angle cat. at (int.) face of length k is $k \cdot 180^\circ - 360^\circ$

Angular labeling A \Rightarrow q-constraints Q_A unique
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°

Labeled graph \((G, A)\): \(G\) plane graph, \(A\) labeling of angles

Angular drawing: end of segments have slopes \(\approx \pm 1\)

\((G, A)\) admits angular drawing if: \(\Rightarrow A\) is angular labeling

- **Vertex condition**: sum of angle cat. at vertex is 360°
- **Cycle condition**: sum of angle cat. at (int.) face of length \(k\) is \(k \cdot 180° - 360°\)

Angular labeling \(A\)

\(\Rightarrow\) q-constraints \(Q_A\)

unique

q-constraints \(Q\)

+ large-angle assignment \(L\)

\(\Rightarrow\) angular labeling \(A_{Q,L}\)

unique
Angular Drawing

Angle categories: 0°, 90°, 180°, 270°, and 360°

Labeled graph (G, A): G plane graph, A labeling of angles

Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if: $\Rightarrow A$ is angular labeling

- **Vertex condition**: sum of angle cat. at vertex is 360°
- **Cycle condition**: sum of angle cat. at (int.) face of length k is $k \cdot 180^\circ - 360^\circ$

Angular labeling A

\Rightarrow q-constraints Q_A unique

q-constraints Q

+ large-angle assignment L

\Rightarrow angular labeling $A_{Q,L}$ unique

Angular drawing $\hat{=} \triangleleft$ windrose planar drawing
Triangulated Graphs
Triangulated Graphs
Triangulated Graphs
Triangulated Graphs

- No (int.) $> 180^\circ$ angle categories
Triangulated Graphs

- No (int.) $> 180^\circ$ angle categories
- At least one 0° angle category per (int.) face
Triangulated Graphs

- No \((\text{int.}) > 180^\circ\) angle categories
- At least one \(0^\circ\) angle category per (int.) face
Triangulated Graphs

- No (int.) $> 180^\circ$ angle categories
- At least one 0° angle category per (int.) face
Triangulated Graphs

• No (int.) $> 180^\circ$ angle categories
• At least one 0° angle category per (int.) face

Lemma.
Let (G, A_Q) be a triangulated angular labeled graph. Then, G^\uparrow is acyclic.
Triangulated Graphs

- No (int.) > 180° angle categories
- At least one 0° angle category per (int.) face

Lemma.
Let \((G, A_Q)\) be a triangulated angular labeled graph. Then, \(G^\uparrow\) is acyclic and has no internal sources or sinks.
Triangulated Graphs

- No (int.) $> 180^\circ$ angle categories
- At least one 0° angle category per (int.) face

Lemma.
Let (G, AQ) be a triangulated angular labeled graph. Then, G^\uparrow is acyclic and has no internal sources or sinks.
Triangulated Graphs

- No (int.) \(> 180^\circ \) angle categories
- At least one \(0^\circ \) angle category per (int.) face

Lemma.
Let \((G, A_Q) \) be a triangulated angular labeled graph. Then, \(G^\uparrow \) and \(G^\rightarrow \) are acyclic and have no internal sources or sinks.
Triangulated Graphs

- No (int.) > 180° angle categories
- At least one 0° angle category per (int.) face

Lemma.
Let \((G, A_Q)\) be a triangulated angular labeled graph. Then, \(G^\uparrow\) and \(G^\rightarrow\) are acyclic and have no internal sources or sinks.
Triangulated Graphs

- No (int.) > 180° angle categories
- At least one 0° angle category per (int.) face

Lemma. Let \((G, A_Q)\) be a triangulated angular labeled graph. Then, \(G^\uparrow\) and \(G^\rightarrow\) are acyclic and have no internal sources or sinks.
Triangulated Graphs

- No (int.) > 180° angle categories
- At least one 0° angle category per (int.) face

Lemma. Let \((G, A_Q)\) be a triangulated angular labeled graph. Then, \(G^\uparrow\) and \(G^\rightarrow\) are acyclic and have no internal sources or sinks.

What if there are no (int.) 180° angle categories?
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?

- topological order on G^\rightarrow: x-coordinates
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?
• topological order on G^\rightarrow: x-coordinates
What if there are no (int.) 180° angle categories?

- topological order on G^\rightarrow: x-coordinates
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?

* topological order on G^\rightarrow: x-coordinates
What if there are no (int.) 180° angle categories?

- topological order on G^{\rightarrow}: x-coordinates
- topological order on G^{\uparrow}: y-coordinates
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?
• topological order on G^\rightarrow: x-coordinates
• topological order on G^\uparrow: y-coordinates
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?

• topological order on G^\rightarrow: x-coordinates
• topological order on G^\uparrow: y-coordinates
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?
• topological order on G^\rightarrow: x-coordinates
• topological order on G^\uparrow: y-coordinates
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?

- topological order on $G\rightarrow$: x-coordinates
- topological order on $G\uparrow$: y-coordinates
What if there are no (int.) 180° angle categories?

- Topological order on G^\rightarrow: x-coordinates
- Topological order on G^\uparrow: y-coordinates
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?

- topological order on G^{-}: x-coordinates
- topological order on $G^{↑}$: y-coordinates
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?

- topological order on G^\rightarrow: x-coordinates
- topological order on G^\uparrow: y-coordinates
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?

- topological order on $G\rightarrow$: x-coordinates
- topological order on $G\uparrow$: y-coordinates
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?

• topological order on G^\rightarrow: x-coordinates
• topological order on G^\uparrow: y-coordinates
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?

- topological order on G^{-}: x-coordinates
- topological order on G^{\uparrow}: y-coordinates
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?

- topological order on $G\rightarrow$: x-coordinates
- topological order on $G\uparrow$: y-coordinates
Quasi-triangulated Graphs

What if there are no (int.) 180° angle categories?

• topological order on G^\rightarrow: x-coordinates
• topological order on G^\uparrow: y-coordinates

Lemma.
quasi-triangulated angular labeled graph (G, A_Q),
all internal angles have category 0° or 90°
⇒ straight-line windrose planar drawing
on $n \times n$ grid in $O(n)$ time
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph.
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph. Task: Augment \((G, A_Q)\) to a quasi-triangulated angular labeled graph \((G^*, A_{Q^*})\) without internal angle category \(180^\circ\).
Triangulated graphs

Let \((G, AQ)\) be a triangulated angular labeled graph. Task: Augment \((G, AQ)\) to a quasi-triangulated angular labeled graph \((G^*, AQ^*)\) without internal angle category 180°.
Let \((G, A_Q)\) be a triangulated angular labeled graph. Task: Augment \((G, A_Q)\) to a quasi-triangulated angular labeled graph \((G^*, A_{Q^*})\) without internal angle category \(180^\circ\).
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph. Task: Augment \((G, A_Q)\) to a quasi-triangulated angular labeled graph \((G^*, A_{Q^*})\) without internal angle category 180°.
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph.

Task: Augment \((G, A_Q)\) to a quasi-triangulated angular labeled graph \((G^*, A_{Q^*})\) without internal angle category 180°.
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:
Let \((G, A_Q)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:
Let \((G, A_Q)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\)).
- if \((u, w)\) not on outer face:
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:

![Diagram of triangulated graph with vertices u, v, and w]

- if \((u, w)\) on outer face:
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:
- if \((u, w)\) on outer face:
Triangulated graphs

Let \((G, AQ)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \downarrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:
- if \((u, w)\) on outer face:

- Add \(w_N, w_E, w_S, \text{ and } w_W\)
Triangulated graphs

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $\uparrow u \neq \emptyset, \uparrow w \neq \emptyset$ (otherwise, set $v = u/w$)
- if (u, w) not on outer face:
 - if (u, w) on outer face:

- Add $w_N, w_E, w_S, \text{ and } w_W$
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:
 - if \((u, w)\) on outer face:

\[
\begin{align*}
 v &= u/w, \\
 w &= w_{N}, w_{E}, w_{S}, \text{ and } w_{W}
\end{align*}
\]
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:
 - if \((u, w)\) on outer face:

- Add \(w_N, w_E, w_S, \text{ and } w_W\)
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:
 - if \((u, w)\) on outer face:

- Add \(w_N, w_E, w_S, \text{ and } w_W\)
Triangulated graphs

Let \((G, AQ)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:
- if \((u, w)\) on outer face:

\[
\begin{array}{c}
\text{Add } w_N, w_E, w_S, \text{ and } w_W
\end{array}
\]
Triangulated graphs

Let \((G, AQ)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\)).
- if \((u, w)\) not on outer face:
- if \((u, w)\) on outer face:

- Add \(w_N, w_E, w_S, \) and \(w_W\)
Triangulated graphs

Let \((G, AQ)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:
 - if \((u, w)\) on outer face:
 - Add \(w_N, w_E, w_S, \) and \(w_W\)

\[\begin{array}{c}
\text{u} \\
\downarrow \\
\text{v} \\
\downarrow \\
\text{w}
\end{array}\]
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:
- if \((u, w)\) on outer face:

- Add \(w_N, w_E, w_S, \text{ and } w_W\)
Triangulated graphs

Let \((G, AQ)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:
 - if \((u, w)\) on outer face:
 - Add \(w_N, w_E, w_S,\) and \(w_W\)
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph.

- Assume that \(\hat{u} \neq \emptyset, \hat{w} \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:
- if \((u, w)\) on outer face:

- Add \(w_N, w_E, w_S, \) and \(w_W\)
Triangulated graphs

Let \((G, A_Q)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset\), \(\uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\)).
- If \((u, w)\) not on outer face:
 - Add \(w_N, w_E, w_S,\) and \(w_W\)

- If \((u, w)\) on outer face:
Triangulated graphs

Let \((G, AQ)\) be a triangulated angular labeled graph.

- Assume that \(\uparrow u \neq \emptyset, \uparrow w \neq \emptyset\) (otherwise, set \(v = u/w\))
- if \((u, w)\) not on outer face:
 - Add \(w_N, w_E, w_S, \) and \(w_W\)

\[\text{Theorem.}\]

A triangulated q-constrained graph \((G, Q)\) is windrose planar

\[\Leftrightarrow AQ\] is angular

\[\rightarrow\] draw with 1 bend per edge

on an \(O(n) \times O(n)\) grid in \(O(n)\) time
Lemma.
plane q-constrained graph \((G, Q)\)
\[\Rightarrow \text{find a large-angle assignment } L \text{ such that } A_{Q,L} \text{ is angular (if it exists) in } O(n \log^3 n) \text{ time}\]
Lemma.
plane q-constrained graph \((G, Q)\)
⇒ find a large-angle assignment \(L\) such that
\[A_{Q,L} \text{ is angular (if it exists) in } O(n \log^3 n) \text{ time} \]

Lemma.
Plane angular labeled graph \((G, A)\)
⇒ augment in \(O(n)\) time to a
triangulated labeled graph \((G', A')\)
Lemma.
plane q-constrained graph (G, Q)
⇒ find a large-angle assignment L such that
$A_{Q,L}$ is angular (if it exists) in $O(n \log^3 n)$ time

Lemma.
Plane angular labeled graph (G, A)
⇒ augment in $O(n)$ time to a
triangulated labeled graph (G', A')
Lemma.

Plane q-constrained graph \((G, Q)\)
⇒ find a large-angle assignment \(L\) such that
\(A_{Q,L}\) is angular (if it exists) in \(O(n \log^3 n)\) time

Lemma.

Plane angular labeled graph \((G, A)\)
⇒ augment in \(O(n)\) time to a
triangulated labeled graph \((G', A')\)
Lemma.
Plane q-constrained graph \((G, Q)\)
\(\Rightarrow\) find a large-angle assignment \(L\) such that
\(A_{Q,L}\) is angular (if it exists) in \(O(n \log^3 n)\) time

Lemma.
Plane angular labeled graph \((G, A)\)
\(\Rightarrow\) augment in \(O(n)\) time to a
triangulated labeled graph \((G', A')\)

Theorem.
Plane q-constrained Graph
\(\Rightarrow\) test windrose planarity in \(O(n \log^3 n)\) time
\(\rightarrow\) draw with 1 bend per edge on \(O(n) \times O(n)\) grid
Further Results

Theorem.
Windrose planar q-constrained graph \((G, Q)\) whose blocks are either edges or planar 3-trees
\[\Rightarrow \text{straight-line windrose planar drawing} \]
Further Results

Theorem.
Windrose planar q-constrained graph \((G, Q)\) whose blocks are either edges or planar 3-trees \(\Rightarrow\) straight-line windrose planar drawing

Theorem.
Straight-line windrose planar drawings require exponential area.
Further Results

Theorem.

Windrose planar q-constrained graph \((G, Q)\) whose blocks are either edges or planar 3-trees \(\implies\) straight-line windrose planar drawing

Theorem.

Straight-line windrose planar drawings require exponential area.
Further Results

Theorem.
Windrose planar q-constrained graph \((G, Q)\) whose blocks are either edges or planar 3-trees
\(\Rightarrow\) straight-line windrose planar drawing

Theorem.
Straight-line windrose planar drawings require exponential area.
Further Results

Theorem.
Windrose planar q-constrained graph \((G, Q)\) whose blocks are either edges or planar 3-trees
\[\Rightarrow \text{straight-line windrose planar drawing} \]

Theorem.
Straight-line windrose planar drawings require exponential area.
Open problems

• Draw windrose planar graphs straight-line?
Open problems

• Draw windrose planar graphs straight-line?

• Generalizations: each edge has a set of possible directions or allow more than two directions
Open problems

• Draw windrose planar graphs straight-line?

• Generalizations: each edge has a set of possible directions or allow more than two directions

• What about bimonotone (relationship between each pair of vertices)? Not always straight-line!
Open problems

• Draw windrose planar graphs straight-line?

• Generalizations: each edge has a set of possible directions or allow more than two directions

• What about bimonotone (relationship between each pair of vertices)? Not always straight-line!