

Embedding Graphs with Direction-Constrained Edges

Dr. Philipp Kindermann LG Theoretische Informatik FernUniversität in Hagen

Published at SODA'16. Joint work with Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Valentino Di Donato, Günter Rote & Ignaz Rutter

An undirected graph is *planar*: no crossings

An undirected graph is planar: no crossings

An undirected graph is *planar*: no crossings

- no crossings
- all edges are y-monotone curves directed upwards

An undirected graph is *planar*: no crossings

- no crossings
- all edges are y-monotone curves directed upwards

An undirected graph is *planar*: no crossings

- no crossings
- all edges are y-monotone curves directed upwards

An undirected graph is *planar*: no crossings

A directed graph is upwards planar:

- no crossings
- all edges are y-monotone curves directed upwards

∟ planar

An undirected graph is *planar*: no crossings

- no crossings
- all edges are y-monotone curves directed upwards
- → planar
- → acyclic

An undirected graph is *planar*: no crossings

- no crossings
- all edges are y-monotone curves directed upwards
- → planar
- → acyclic

An undirected graph is *planar*: no crossings

- no crossings
- all edges are y-monotone curves directed upwards
- → planar → acyclic → ?

Testing Upward Planarity is...

Testing Upward Planarity is...

NP-complete in general

[Garg & Tamassia '95]

Testing Upward Planarity is...

- NP-complete in general
- poly for single-source graphs

[Garg & Tamassia '95]

[Di Battista et al. '98]

Testing Upward Planarity is...

- NP-complete in general
- poly for single-source graphs
- poly for fixed embedding

[Garg & Tamassia '95]

[Di Battista et al. '98]

[Garg & Tamassia '95]

Testing Upward Planarity is...

- NP-complete in general
- poly for single-source graphs
- poly for fixed embedding

[Garg & Tamassia '95]

[Di Battista et al. '98]

[Garg & Tamassia '95]

```
→ planar
```

→ acyclic

→ ?

Testing Upward Planarity is...

- NP-complete in general
- poly for single-source graphs
- poly for fixed embedding

[Garg & Tamassia '95]

[Di Battista et al. '98]

[Garg & Tamassia '95]

- → planar
- → acyclic
- bimodal

Testing Upward Planarity is...

- NP-complete in general
- poly for single-source graphs
- poly for fixed embedding

[Garg & Tamassia '95]

[Di Battista et al. '98]

[Garg & Tamassia '95]

→ acyclic

bimodal

Testing Upward Planarity is...

- NP-complete in general
- poly for single-source graphs
- poly for fixed embedding

[Garg & Tamassia '95]

[Di Battista et al. '98]

[Garg & Tamassia '95]

→ acyclic

bimodal

q-constrained graph (G, Q):

• G: undirected planar graph

- G: undirected planar graph
- Q: partition of all neighbors of v into \hat{v} , \hat{v} , \hat{v} , and \hat{v} .

- G: undirected planar graph
- Q: partition of all neighbors of v into \hat{v} , \hat{v} , \hat{v} , and \hat{v} .

Two directions:

- G: undirected planar graph
- Q: partition of all neighbors of v into \vec{v} , \vec{v} , \vec{v} , and \vec{v} .

Two directions:

q-constrained graph (G, Q):

- G: undirected planar graph
- Q: partition of all neighbors of v into \vec{v} , \vec{v} , \vec{v} , and \vec{v} .

Two directions:

q-constrained graph (G, Q):

- G: undirected planar graph
- Q: partition of all neighbors of v into \hat{v} , \hat{v} , \hat{v} , and \hat{v} .

A q-constrained graph is windrose planar:

no crossings

Two directions:

q-constrained graph (G, Q):

- G: undirected planar graph
- Q: partition of all neighbors of v into \hat{v} , \hat{v} , \hat{v} , and \hat{v} .

- no crossings
- all edges are xy-monotone curves

Two directions:

q-constrained graph (G, Q):

- G: undirected planar graph
- Q: partition of all neighbors of v into \hat{v} , \hat{v} , \hat{v} , and \hat{v} .

- no crossings
- all edges are xy-monotone curves
- $u \in \stackrel{\circ}{v} \Rightarrow u$ lies in the \circ -quadrant of v

Two directions:

q-constrained graph (G, Q):

- G: undirected planar graph
- Q: partition of all neighbors of v into \hat{v} , \hat{v} , \hat{v} , and \hat{v} .

- no crossings
- all edges are xy-monotone curves
- $u \in \overset{\circ}{v} \Rightarrow u$ lies in the \circ -quadrant of v

Two directions:

q-constrained graph (G, Q):

- G: undirected planar graph
- Q: partition of all neighbors of v into \hat{v} and \hat{v}

- no crossings
- all edges are xy-monotone curves
- $u \in \stackrel{\circ}{v} \Rightarrow u$ lies in the \circ -quadrant of v

One direction:

- G: undirected planar graph
- Q: partition of all neighbors of v into \hat{v} and \hat{v}

- no crossings
- all edges are xy-monotone curves
- $u \in \stackrel{\circ}{v} \Rightarrow u$ lies in the \circ -quadrant of v

One direction:

- G: undirected planar graph
- Q: partition of all neighbors of v into $\overset{\uparrow}{v}$ and $\overset{\downarrow}{v}$

- no crossings
- all edges are xy-monotone curves
- $u \in \stackrel{\circ}{v} \Rightarrow u$ lies in the \circ -quadrant of v

One direction: directed graph A directed graph is upwards planar:

- no crossings
- all edges are y-monotone curves directed upwards

One direction:

directed graph

Theorem.

Testing Windrose Planarity is NP-complete

- no crossings
- all edges are y-monotone curves directed upwards

Angular Drawing

Angle categories: 0° , 90° , 180° , 270° , and 360°

Angular Drawing

Angle categories: 0° , 90° , 180° , 270° , and 360°

Angular Drawing

Angle categories: 0° , 90° , 180° , 270° , and 360°

Angle categories: 0° , 90° , 180° , 270° , and 360° Labeled graph (G, A): G plane graph, A labeling of angles

Angle categories: 0°, 90°, 180°, 270°, and 360° Labeled graph (G, A): G plane graph, A labeling of angles Angular drawing: end of segments have slopes $\approx \pm 1$

Angle categories: 0°, 90°, 180°, 270°, and 360° Labeled graph (G, A): G plane graph, A labeling of angles Angular drawing: end of segments have slopes $\approx \pm 1$

Angle categories: 0°, 90°, 180°, 270°, and 360° Labeled graph (G, A): G plane graph, A labeling of angles Angular drawing: end of segments have slopes $\approx \pm 1$

Angle categories: 0°, 90°, 180°, 270°, and 360° Labeled graph (G, A): G plane graph, A labeling of angles Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if:

Angle categories: 0°, 90°, 180°, 270°, and 360° Labeled graph (G, A): G plane graph, A labeling of angles Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if:

• Vertex condition: sum of angle cat. at vertex is 360°

Angle categories: 0°, 90°, 180°, 270°, and 360° Labeled graph (G, A): G plane graph, A labeling of angles Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if:

Vertex condition: sum of angle cat. at vertex is 360°

Angle categories: 0°, 90°, 180°, 270°, and 360° Labeled graph (G, A): G plane graph, A labeling of angles Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if:

- Vertex condition: sum of angle cat. at vertex is 360°
- Cycle condition: sum of angle cat. at (int.) face of length k is $k \cdot 180^{\circ} 360^{\circ}$

Angle categories: 0° , 90° , 180° , 270° , and 360° Labeled graph (G, A): G plane graph, A labeling of angles Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if:

- Vertex condition: sum of angle cat. at vertex is 360°
- Cycle condition: sum of angle cat. at (int.) face of length k is $k \cdot 180^{\circ} 360^{\circ}$ 270°

Angle categories: 0°, 90°, 180°, 270°, and 360° Labeled graph (G, A): G plane graph, A labeling of angles Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if: $\Rightarrow A$ is angular labeling

- Vertex condition: sum of angle cat. at vertex is 360°
- Cycle condition: sum of angle cat. at (int.) face of length k is $k \cdot 180^{\circ} 360^{\circ}$

Angle categories: 0°, 90°, 180°, 270°, and 360° Labeled graph (G, A): G plane graph, A labeling of angles Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if: $\Rightarrow A$ is angular labeling

- Vertex condition: sum of angle cat. at vertex is 360°
- Cycle condition: sum of angle cat. at (int.) face of length k is $k \cdot 180^{\circ} 360^{\circ}$ 270°

angular labeling A \Rightarrow q-constraints Q_A unique

Angle categories: 0°, 90°, 180°, 270°, and 360° Labeled graph (G, A): G plane graph, A labeling of angles Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if: $\Rightarrow A$ is angular labeling

- Vertex condition: sum of angle cat. at vertex is 360°
- Cycle condition: sum of angle cat. at (int.) face of length k is $k \cdot 180^{\circ} 360^{\circ}$ 270°

angular labeling A \Rightarrow q-constraints Q_A unique

Angle categories: 0°, 90°, 180°, 270°, and 360° Labeled graph (G, A): G plane graph, A labeling of angles Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if: $\Rightarrow A$ is angular labeling

- Vertex condition: sum of angle cat. at vertex is 360°
- Cycle condition: sum of angle cat. at (int.) face of length k is $k \cdot 180^{\circ} 360^{\circ}$ 270°

angular labeling A \Rightarrow q-constraints Q_A unique

q-constraints Q

+ large-angle assignment L \Rightarrow angular labeling $A_{Q,L}$ unique

Angle categories: 0°, 90°, 180°, 270°, and 360° Labeled graph (G, A): G plane graph, A labeling of angles Angular drawing: end of segments have slopes $\approx \pm 1$

(G, A) admits angular drawing if: $\Rightarrow A$ is angular labeling

- Vertex condition: sum of angle cat. at vertex is 360°
- Cycle condition: sum of angle cat. at (int.) face of length k is $k \cdot 180^{\circ} 360^{\circ}$

angular labeling A \Rightarrow q-constraints Q_A unique

q-constraints Q

+ large-angle assignment L \Rightarrow angular labeling $A_{Q,L}$ unique

ullet No (int.) $> 180^\circ$ angle categories

- No (int.) $> 180^{\circ}$ angle categories
- At least one 0° angle category per (int.) face

- \bullet No (int.) $> 180^{\circ}$ angle categories
- At least one 0° angle category per (int.) face

- \bullet No (int.) $> 180^{\circ}$ angle categories
- At least one 0° angle category per (int.) face

- No (int.) $> 180^{\circ}$ angle categories
- At least one 0° angle category per (int.) face

Lemma.

Let (G, A_Q) be a triangulated angular labeled graph. Then, G^{\uparrow} is acyclic.

- No (int.) $> 180^{\circ}$ angle categories
- At least one 0° angle category per (int.) face

Lemma.

Let (G, A_Q) be a triangulated angular labeled graph. Then, G^{\uparrow} is acyclic and has no internal sources or sinks.

- No (int.) $> 180^{\circ}$ angle categories
- At least one 0° angle category per (int.) face

Lemma.

Let (G, A_Q) be a triangulated angular labeled graph. Then, G^{\uparrow} is acyclic and has no internal sources or sinks.

- No (int.) $> 180^{\circ}$ angle categories
- At least one 0° angle category per (int.) face

Lemma.

Let (G, A_Q) be a triangulated angular labeled graph. Then, G^{\uparrow} and G^{\rightarrow} are acyclic and have no internal sources or sinks.

- No (int.) $> 180^{\circ}$ angle categories
- At least one 0° angle category per (int.) face

Lemma.

Let (G, A_Q) be a triangulated angular labeled graph. Then, G^{\uparrow} and G^{\rightarrow} are acyclic and have no internal sources or sinks.

- No (int.) $> 180^{\circ}$ angle categories
- At least one 0° angle category per (int.) face

Lemma. internally

Let (G, A_Q) be a triangulated angular labeled graph. Then, G^{\uparrow} and G^{\rightarrow} are acyclic and have no internal sources or sinks.

- No (int.) $> 180^{\circ}$ angle categories
- At least one 0° angle category per (int.) face

Lemma. internally

Let (G, A_Q) be a triangulated angular labeled graph. Then, G^{\uparrow} and G^{\rightarrow} are acyclic and have no internal sources or sinks.

What if there are no (int.) 180° angle categories?

What if there are no (int.) 180° angle categories?

What if there are no (int.) 180° angle categories?

What if there are no (int.) 180° angle categories?

- topological order on G^{\rightarrow} : x-coordinates
- topological order on G^{\uparrow} : y-coordinates

- topological order on G^{\rightarrow} : x-coordinates
- topological order on G^{\uparrow} : y-coordinates

- topological order on G^{\rightarrow} : x-coordinates
- topological order on G^{\uparrow} : y-coordinates

- topological order on G^{\rightarrow} : x-coordinates
- topological order on G^{\uparrow} : y-coordinates

- topological order on G^{\rightarrow} : x-coordinates
- topological order on G^{\uparrow} : y-coordinates

- topological order on G^{\rightarrow} : x-coordinates
- topological order on G^{\uparrow} : y-coordinates

- topological order on G^{\rightarrow} : x-coordinates
- topological order on G^{\uparrow} : y-coordinates

- topological order on G^{\rightarrow} : x-coordinates
- topological order on G^{\uparrow} : y-coordinates

- topological order on G^{\rightarrow} : x-coordinates
- topological order on G^{\uparrow} : y-coordinates

- topological order on G^{\rightarrow} : x-coordinates
- topological order on G^{\uparrow} : y-coordinates

- topological order on G^{\rightarrow} : x-coordinates
- topological order on G^{\uparrow} : y-coordinates

- topological order on G^{\rightarrow} : x-coordinates
- topological order on G^{\uparrow} : y-coordinates

What if there are no (int.) 180° angle categories?

- topological order on G^{\rightarrow} : x-coordinates
- topological order on G^{\uparrow} : y-coordinates

Lemma.

quasi-triangulated angular labeled graph (G, A_Q) , all internal angles have category 0° or 90°

 \Rightarrow straight-line windrose planar drawing on $n \times n$ grid in O(n) time

Let (G, A_Q) be a triangulated angular labeled graph. Task: Augment (G, A_Q) to a quasi-triangulated angular labeled graph (G^*, A_{Q^*}) without internal angle category 180° .

Let (G, A_Q) be a triangulated angular labeled graph. Task: Augment (G, A_Q) to a quasi-triangulated angular labeled graph (G^*, A_{Q^*}) without internal angle category 180° .

Let (G, A_Q) be a triangulated angular labeled graph.

Task: Augment (G, A_Q) to a quasi-triangulated angular labeled graph (G^*, A_{Q^*}) without internal angle category 180° .

Let (G, A_Q) be a triangulated angular labeled graph.

Task: Augment (G, A_Q) to a quasi-triangulated angular labeled graph (G^*, A_{Q^*}) without internal angle category 180° .

Let (G, A_Q) be a triangulated angular labeled graph.

Task: Augment (G, A_Q) to a quasi-triangulated angular labeled graph (G^*, A_{Q^*}) without internal angle category 180° .

Let (G, A_Q) be a triangulated angular labeled graph.

• Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face:

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face:

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face:

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face:

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

Let (G, A_Q) be a triangulated angular labeled graph.

- Assume that $u \neq \emptyset$, $w \neq \emptyset$ (otherwise, set v = u/w)
- if (u, w) not on outer face: if (u, w) on outer face:

• Add w_N , w_E , w_S , and w_W

Theorem.

A triangulated q-constrained graph (G, Q) is windrose planar

- $\Leftrightarrow A_Q$ is angular
- \rightarrow draw with 1 bend per edge on an $O(n) \times O(n)$ grid in O(n) time

Lemma.

```
plane q-constrained graph (G, Q)
```

 \Rightarrow find a large-angle assignment L such that $A_{Q,L}$ is angular (if it exists) in $O(n \log^3 n)$ time

Lemma.

```
plane q-constrained graph (G, Q)
```

 \Rightarrow find a large-angle assignment L such that $A_{Q,L}$ is angular (if it exists) in $O(n \log^3 n)$ time

Lemma.

Plane angular labeled graph (G, A)

 \Rightarrow augment in O(n) time to a triangulated labeled graph (G', A')

Lemma.

plane q-constrained graph (G, Q)

 \Rightarrow find a large-angle assignment L such that $A_{Q,L}$ is angular (if it exists) in $O(n \log^3 n)$ time

Lemma.

Plane angular labeled graph (G, A)

 \Rightarrow augment in O(n) time to a triangulated labeled graph (G', A')

Lemma.

plane q-constrained graph (G, Q)

 \Rightarrow find a large-angle assignment L such that $A_{Q,L}$ is angular (if it exists) in $O(n \log^3 n)$ time

Lemma.

Plane angular labeled graph (G, A)

 \Rightarrow augment in O(n) time to a triangulated labeled graph (G', A')

Lemma.

plane q-constrained graph (G, Q)

 \Rightarrow find a large-angle assignment L such that $A_{Q,L}$ is angular (if it exists) in $O(n \log^3 n)$ time

Lemma.

Plane angular labeled graph (G, A)

 \Rightarrow augment in O(n) time to a triangulated labeled graph (G', A')

Theorem.

Plane q-constrained Graph

- \Rightarrow test windrose planarity in $O(n \log^3 n)$ time
- \rightarrow draw with 1 bend per edge on $O(n) \times O(n)$ grid

Theorem.

Windrose planar q-constrained graph (G, Q) whose blocks are either edges or planar 3-trees

⇒ straight-line windrose planar drawing

Theorem.

Windrose planar q-constrained graph (G, Q) whose blocks are either edges or planar 3-trees

⇒ straight-line windrose planar drawing

Theorem.

Theorem.

Windrose planar q-constrained graph (G, Q) whose blocks are either edges or planar 3-trees

⇒ straight-line windrose planar drawing

Theorem.

Theorem.

Windrose planar q-constrained graph (G, Q) whose blocks are either edges or planar 3-trees

⇒ straight-line windrose planar drawing

Theorem.

Theorem.

Windrose planar q-constrained graph (G, Q) whose blocks are either edges or planar 3-trees

⇒ straight-line windrose planar drawing

Theorem.

• Draw windrose planar graphs straight-line?

• Draw windrose planar graphs straight-line?

 Generalizations: each edge has a set of possible directions or allow more than two directions

• Draw windrose planar graphs straight-line?

 Generalizations: each edge has a set of possible directions or allow more than two directions

 What about bimonotone (relationship between each pair of vertices)? Not always straight-line!

• Draw windrose planar graphs straight-line?

 Generalizations: each edge has a set of possible directions or allow more than two directions

 What about bimonotone (relationship between each pair of vertices)? Not always straight-line!