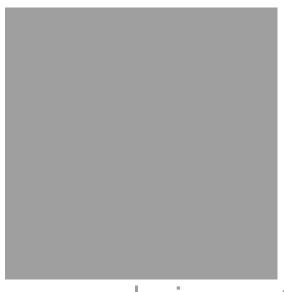


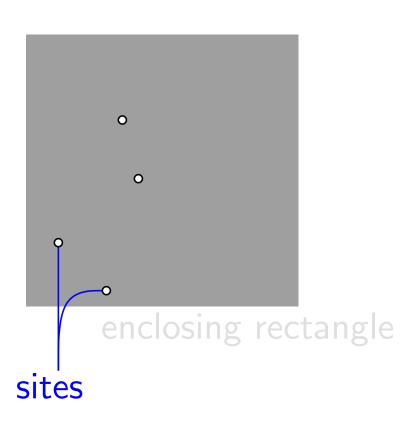
Two-Sided Boundary Labeling with Adjacent Sides

Philipp Kindermann Lehrstuhl für Informatik I Universität Würzburg

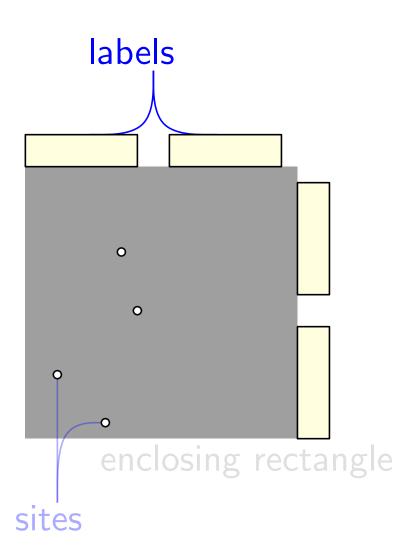
Joint work with Benjamin Niedermann, Ignaz Rutter, Marcus Schaefer, André Schulz & Alexander Wolff



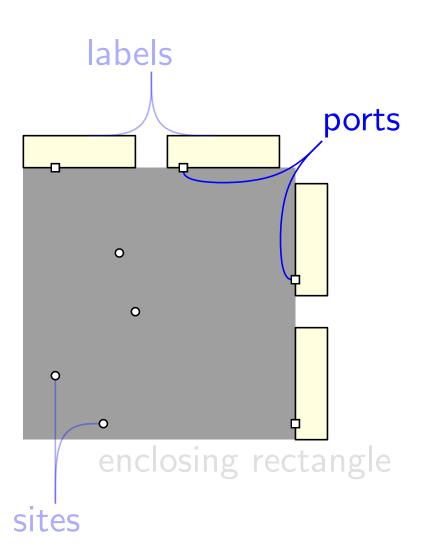
enclosing rectangle



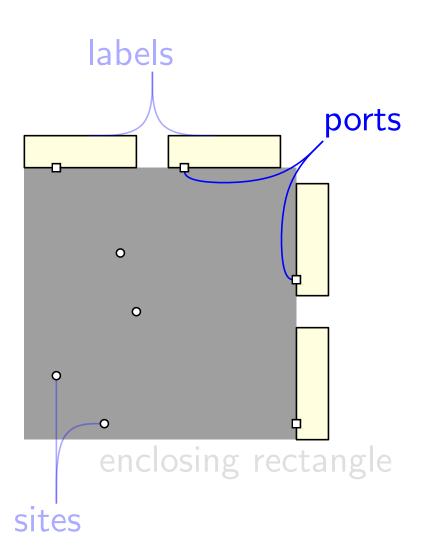
n sites in general position



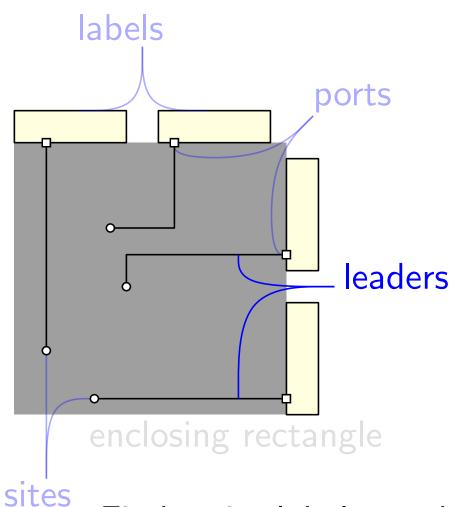
- n sites in general position
- labels on the boundary



- n sites in general position
- labels on the boundary
- ports are fixed or sliding

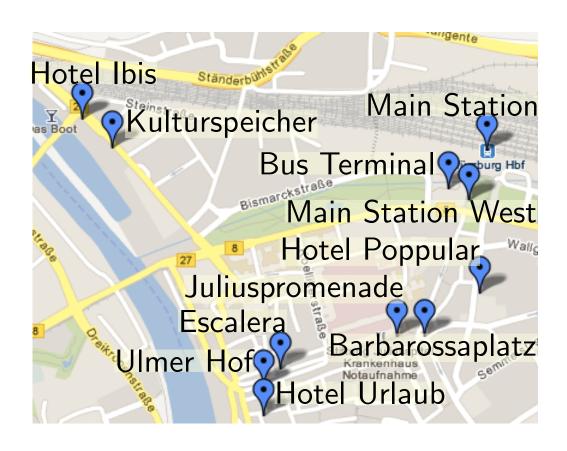


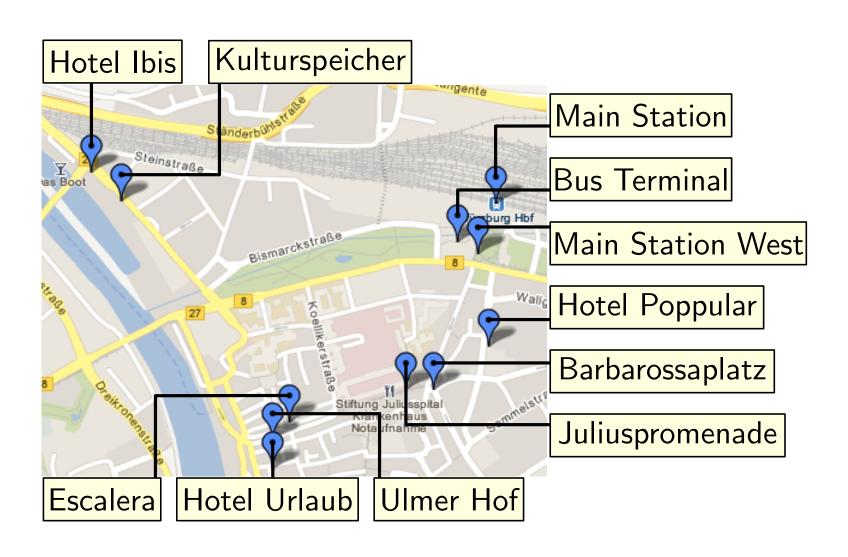
- n sites in general position
- labels on the boundary
- ports are fixed or sliding

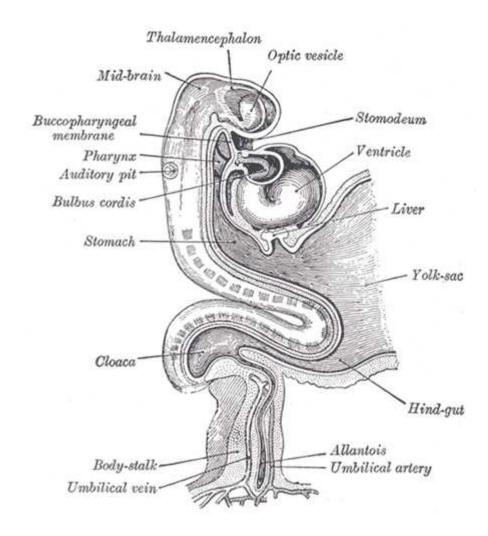


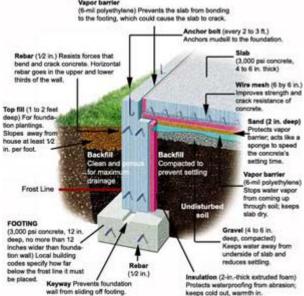
- n sites in general position
- labels on the boundary
- ports are fixed or sliding

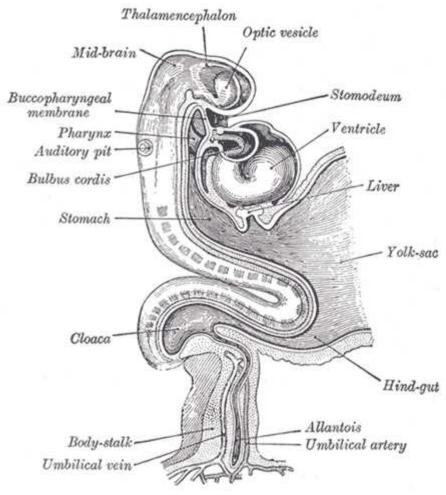
Find a site-label matching with crossing-free leaders.

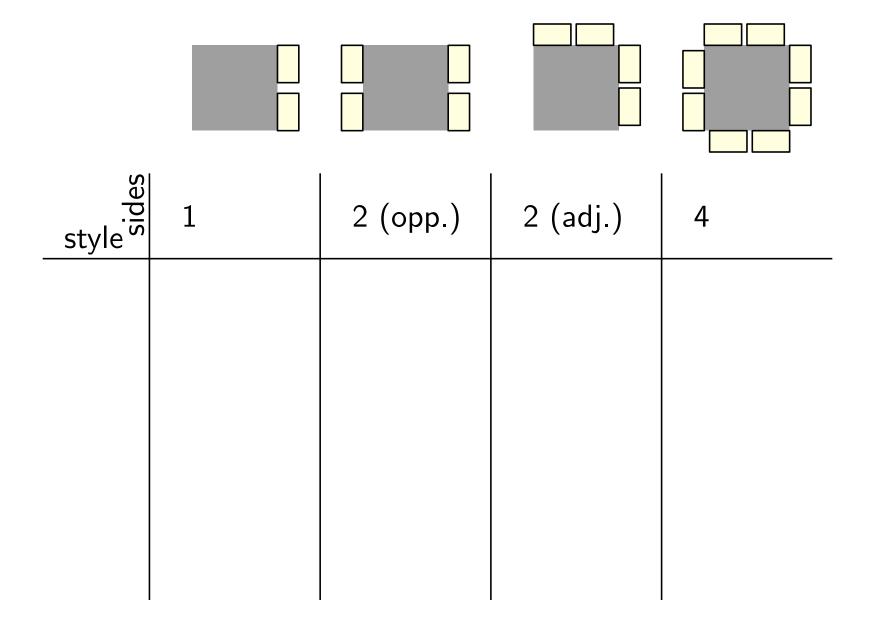


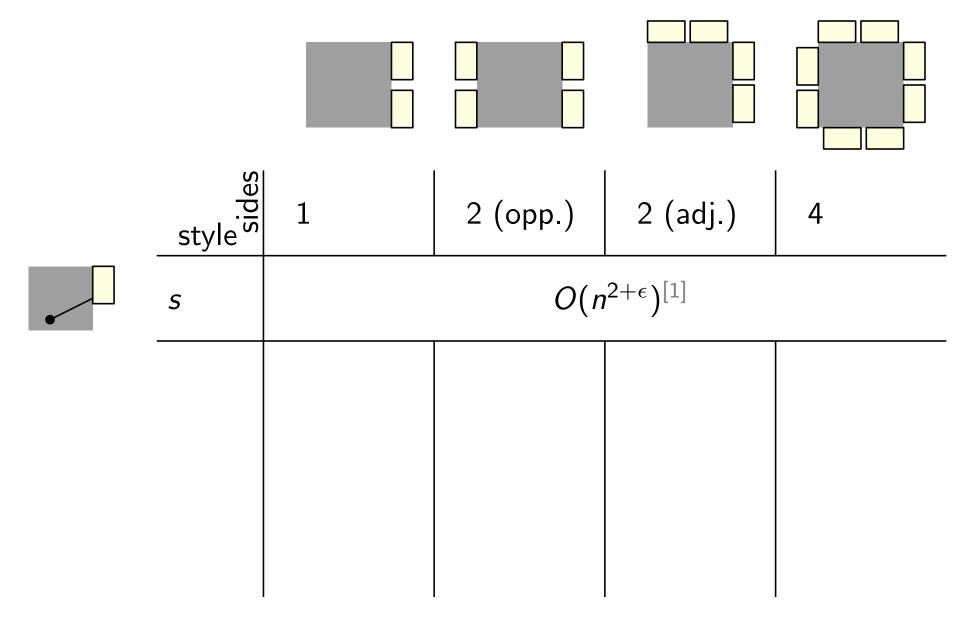




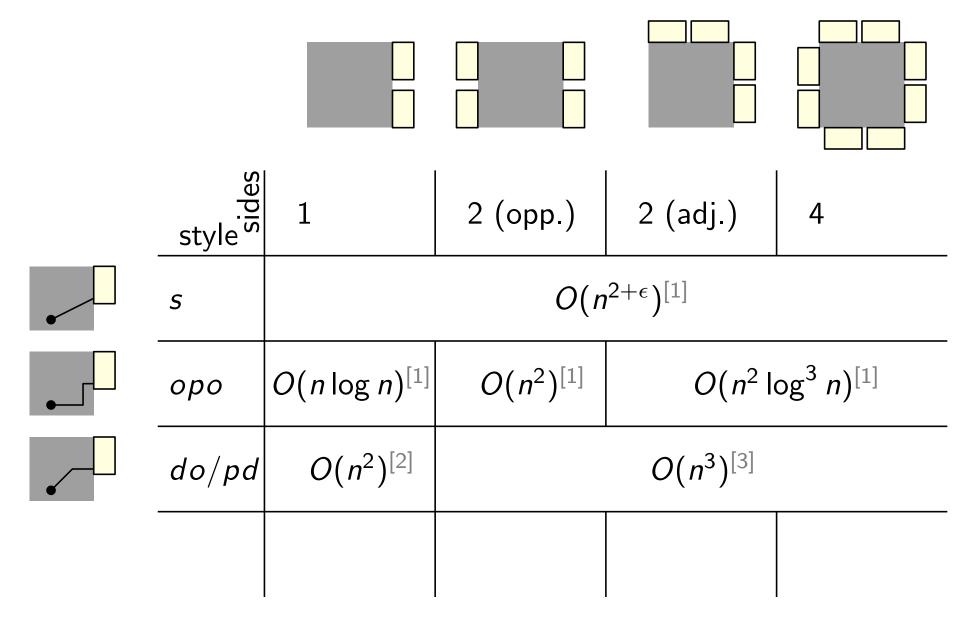




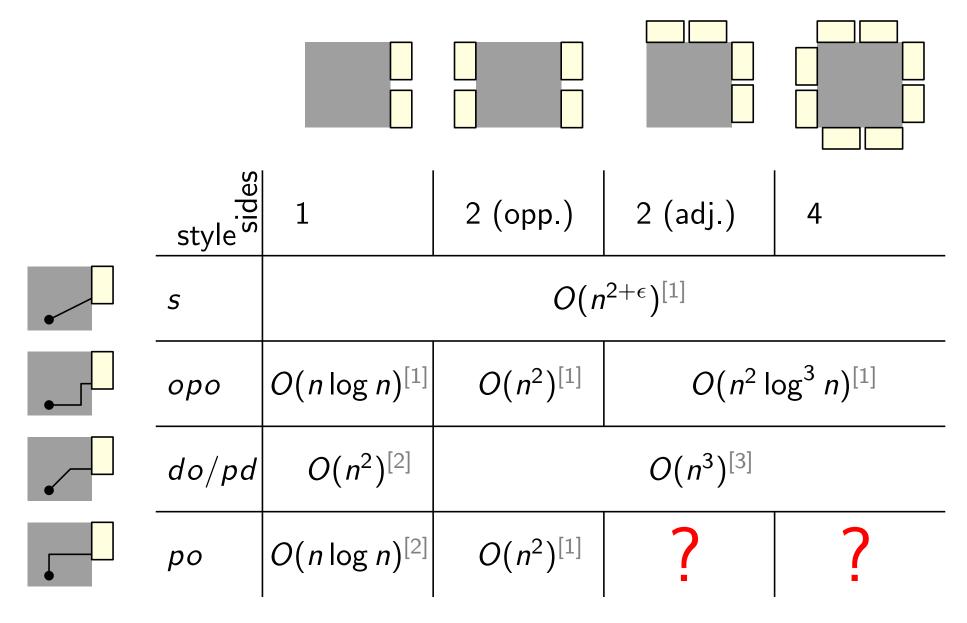


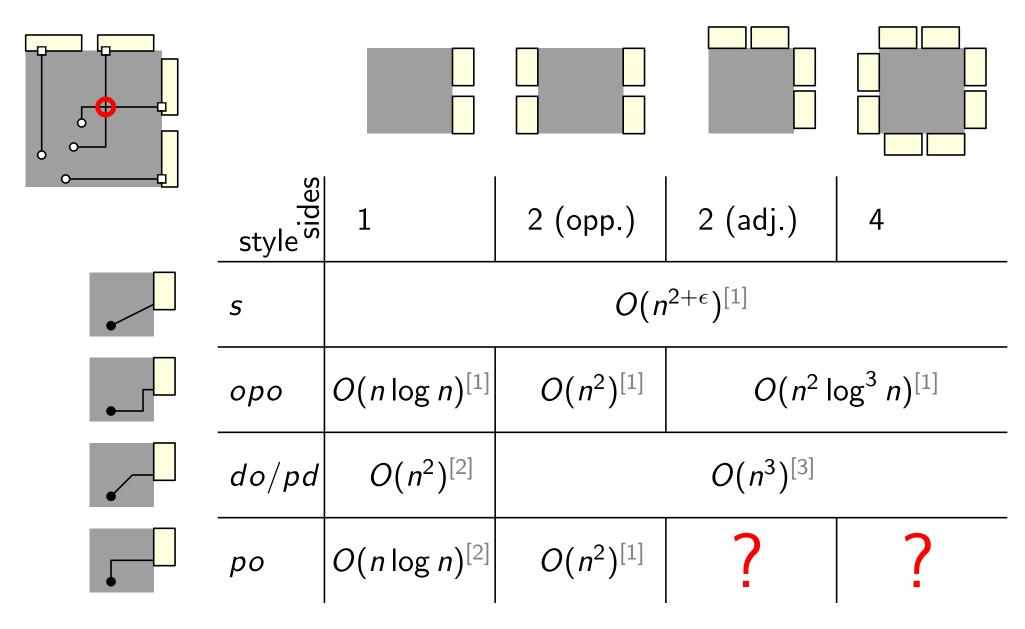


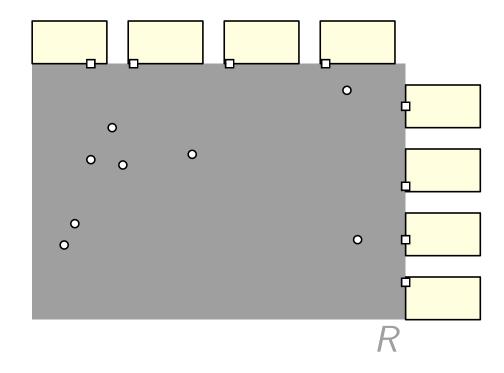
style style	1	2 (opp.)	2 (adj.)	4		
<i>S</i>	$O(n^{2+\epsilon})^{[1]}$					
opo	$O(n\log n)^{[1]}$	$O(n^2)^{[1]}$	$O(n^2 \log^3 n)^{[1]}$			



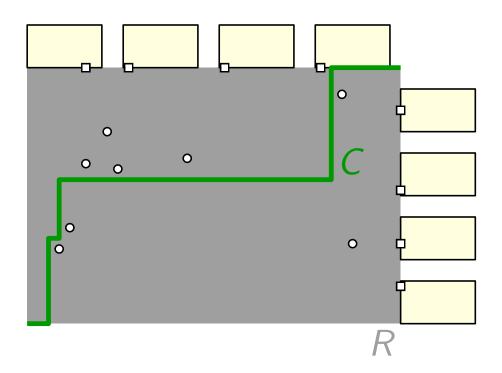
style style	1	2 (opp.)	2 (adj.)	4	
<i>S</i>	$O(n^{2+\epsilon})^{[1]}$				
оро	$O(n\log n)^{[1]}$	$O(n^2)^{[1]}$	$O(n^2 \log^3 n)^{[1]}$		
do/pd	$O(n^2)^{[2]}$	$O(n^3)^{[3]}$			
ро	$O(n\log n)^{[2]}$	$O(n^2)^{[1]}$			





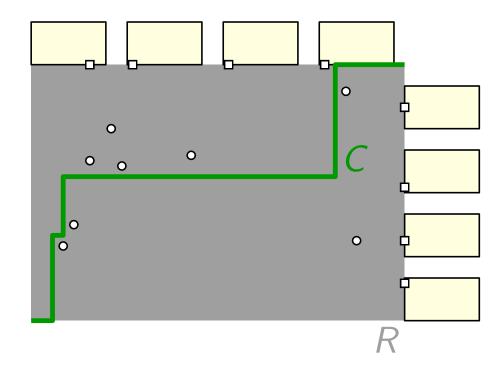


xy-separating curve C



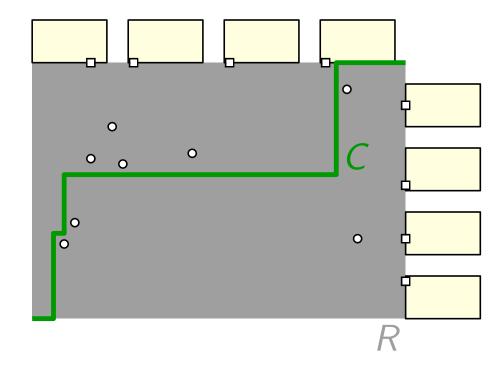
xy-separating curve C

xy-monotone



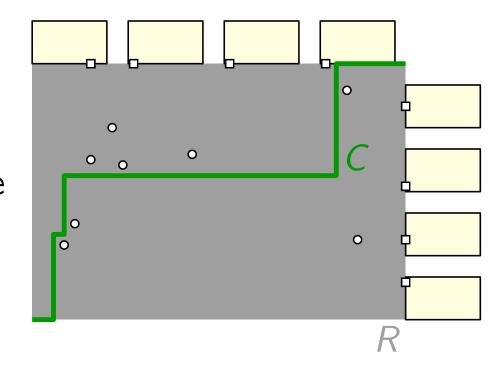
xy-separating curve C

- xy-monotone
- rectilinear



xy-separating curve C

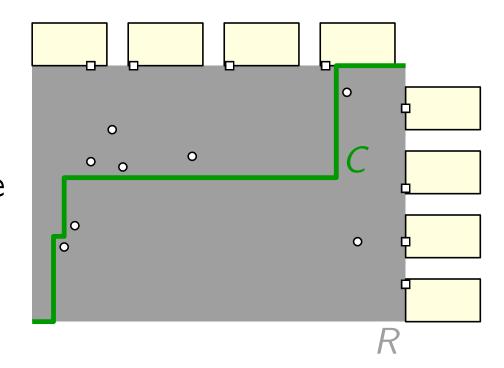
- xy-monotone
- rectilinear
- connects the top-right to the bottom-left corner of R



xy-separating curve C

- xy-monotone
- rectilinear
- connects the top-right to the bottom-left corner of R

xy-separated solution

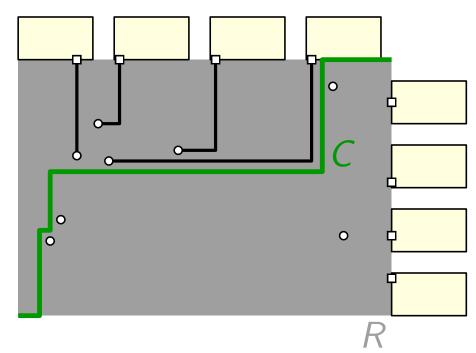


xy-separating curve *C*

- xy-monotone
- rectilinear
- connects the top-right to the bottom-left corner of R

xy-separated solution

top sites and leaders lie above C



xy-separating curve C

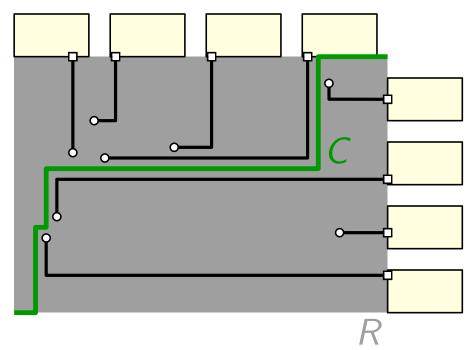
- xy-monotone
- rectilinear
- connects the top-right to the bottom-left corner of R

xy-separated solution

- top sites and leaders lie above C
- right sites and leaders lie below C

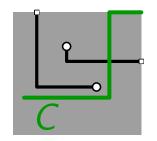
xy-separating curve C

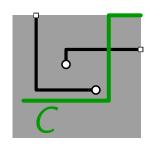
- xy-monotone
- rectilinear
- connects the top-right to the bottom-left corner of R

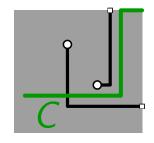


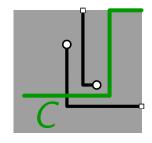
xy-separated solution

- top sites and leaders lie above C
- right sites and leaders lie below C
- does not contain any of the following patterns



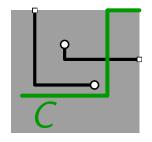


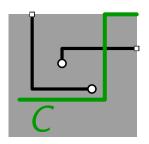


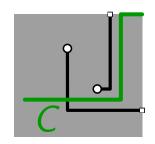


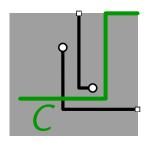
xy-separated solution

does not contain any of the following patterns



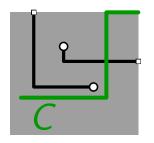


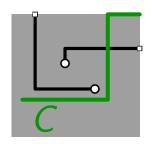


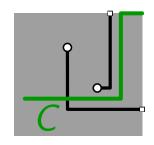


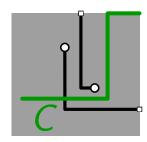
xy-separated solution

does not contain any of the following patterns





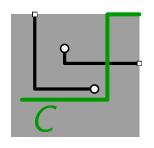


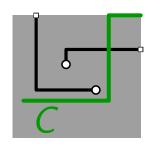


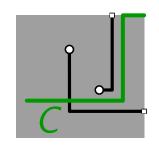
Planar solution $\Rightarrow xy$ -separated planar solution

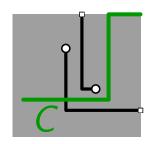
xy-separated solution

does not contain any of the following patterns

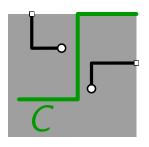


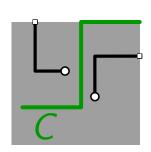


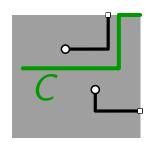


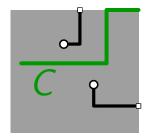


Planar solution $\Rightarrow xy$ -separated planar solution



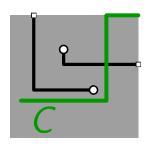


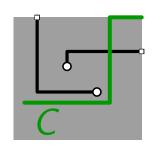


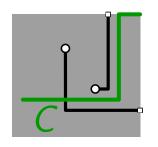


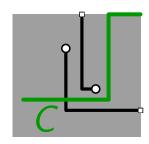
xy-separated solution

does not contain any of the following patterns

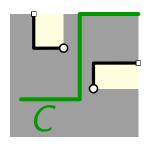


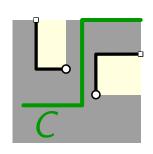


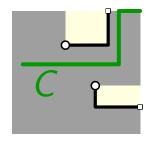


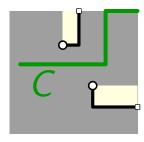


Planar solution $\Rightarrow xy$ -separated planar solution





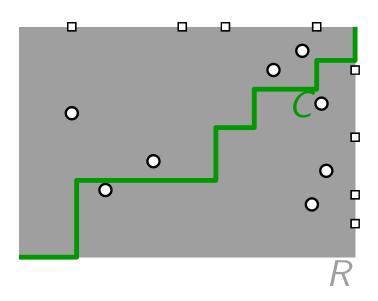




Eliminate local crossings

The Strip Condition

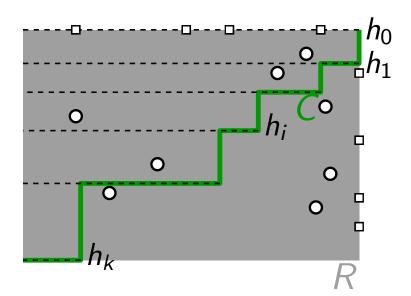
Given: *xy*-monotone curve *C*



The Strip Condition

Given: *xy*-monotone curve *C*

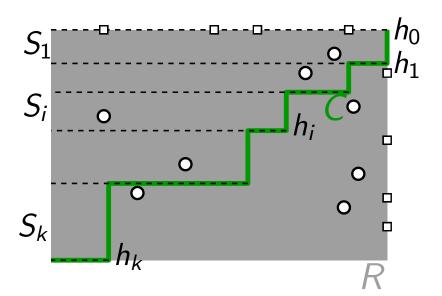
 h_0, \ldots, h_k : horizontal segments of C extended to the left



The Strip Condition

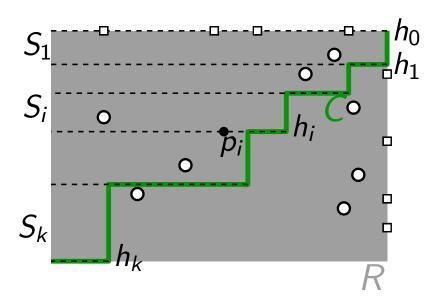
Given: *xy*-monotone curve *C*

- h_0, \ldots, h_k : horizontal segments of C extended to the left
- \circ S_1, \ldots, S_k : strips of R partitioned by h_0, \ldots, h_k



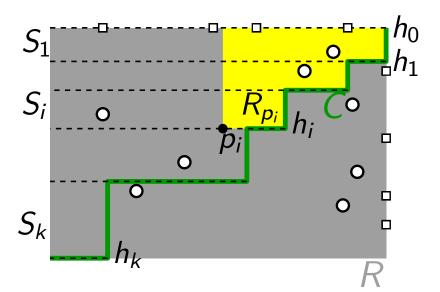
Given: *xy*-monotone curve *C*

- h_0, \ldots, h_k : horizontal segments of C extended to the left
- \circ S_1, \ldots, S_k : strips of R partitioned by h_0, \ldots, h_k
- $oldsymbol{o}$ p_i : any point on $h_i \setminus C$



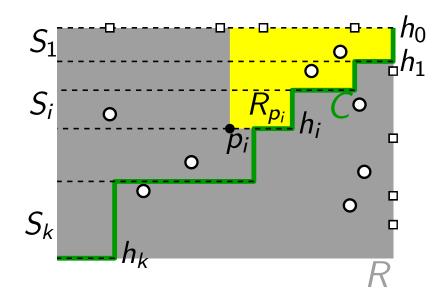
Given: *xy*-monotone curve *C*

- h_0, \ldots, h_k : horizontal segments of C extended to the left
- \circ S_1, \ldots, S_k : strips of R partitioned by h_0, \ldots, h_k
- $oldsymbol{o}$ p_i : any point on $h_i \setminus C$
- \circ R_{p_i} : polygon spanned by p_i , h_i and C



Given: *xy*-monotone curve *C*

- h_0, \ldots, h_k : horizontal segments of C extended to the left
- \circ S_1, \ldots, S_k : strips of R partitioned by h_0, \ldots, h_k
- $oldsymbol{o}$ p_i : any point on $h_i \setminus C$
- \circ R_{p_i} : polygon spanned by p_i , h_i and C
- \circ R_{p_i} is valid: number of sites \geq number of ports

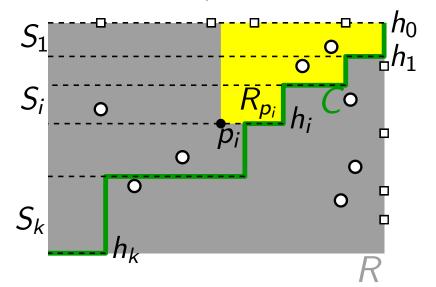


Given: xy-monotone curve C

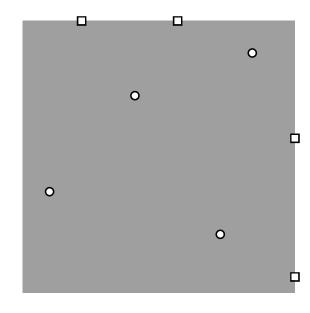
- h_0, \ldots, h_k : horizontal segments of C extended to the left
- \circ S_1, \ldots, S_k : strips of R partitioned by h_0, \ldots, h_k
- $oldsymbol{o}$ p_i : any point on $h_i \setminus C$
- \circ R_{p_i} : polygon spanned by p_i , h_i and C
- \circ R_{p_i} is valid: number of sites \geq number of ports

Condition. strip condition of S_i is satisfied

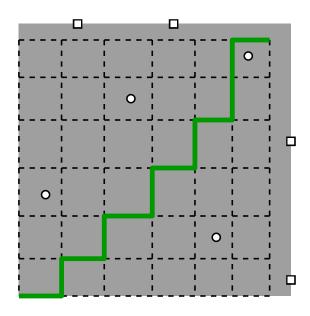
$$\Leftrightarrow \exists p_i \in h_i \setminus C : R_{p_i} \text{ is valid.}$$



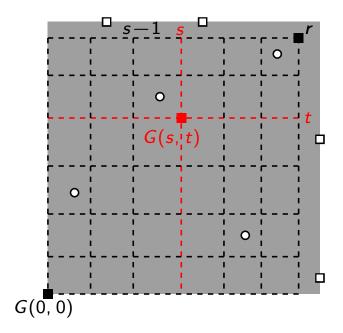
Find an xy-separating curve C
 that satisfies the strip conditions.



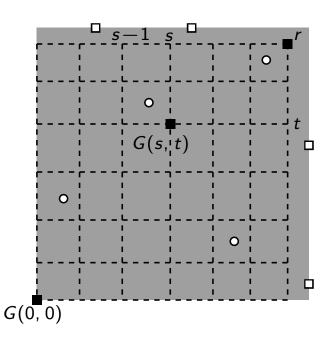
- Find an xy-separating curve C
 that satisfies the strip conditions.
- Consider the dual of the grid induced by sites and ports



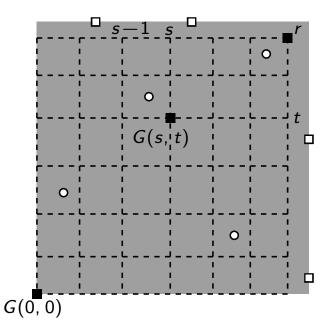
- Find an xy-separating curve C
 that satisfies the strip conditions.
- Consider the dual of the grid induced by sites and ports
- Oefine grid points G(s, t) and top-right corner r



Dynamic Program: Compute table T[(s, t), u].



Dynamic Program: Compute table T[(s, t), u]. T[(s, t), u] = true $\Leftrightarrow \exists xy\text{-monotone chain } C$:

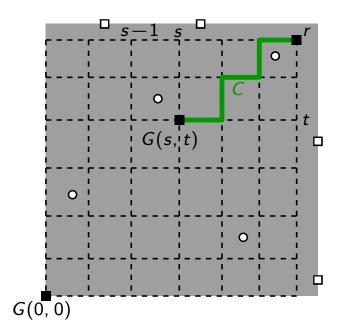


Dynamic Program:

Compute table T[(s, t), u].

T[(s, t), u] =true

- $\Leftrightarrow \exists xy$ -monotone chain C:
 - \circ C starts at r and ends at G(s, t)

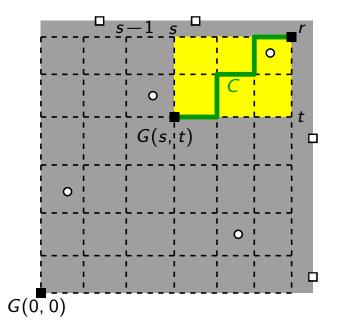


Dynamic Program:

Compute table T[(s, t), u].

$$T[(s, t), u] =$$
true

- $\Leftrightarrow \exists xy$ -monotone chain C:
 - \circ C starts at r and ends at G(s, t)
 - u sites above C

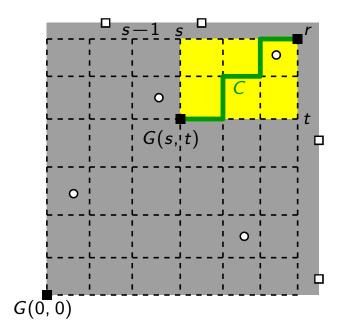


Dynamic Program:

Compute table T[(s, t), u].

T[(s, t), u] =true

- $\Leftrightarrow \exists xy$ -monotone chain C:
 - \circ C starts at r and ends at G(s, t)
 - u sites above C
 - strip conditions are satisfied

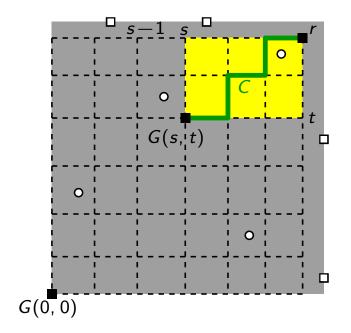


Dynamic Program:

Compute table T[(s, t), u].

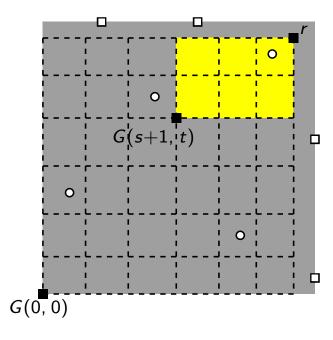
$$T[(s, t), u] =$$
true

- $\Leftrightarrow \exists xy$ -monotone chain C:
 - \circ C starts at r and ends at G(s, t)
 - u sites above C
 - strip conditions are satisfied

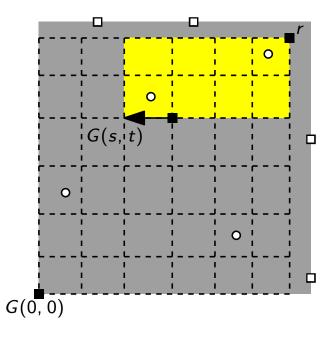


Instance solvable $\Leftrightarrow T[(0,0), u] = \text{true for some } u$.

Assume T[(s+1, t), u] = true.



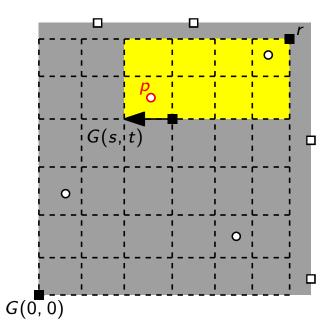
Assume T[(s+1, t), u] = true. Go from s+1 to s.



Assume T[(s+1, t), u] = true.

Go from s + 1 to s.

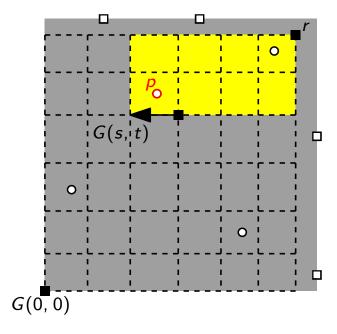
Case 1: site event



Assume T[(s+1,t), u] = true.

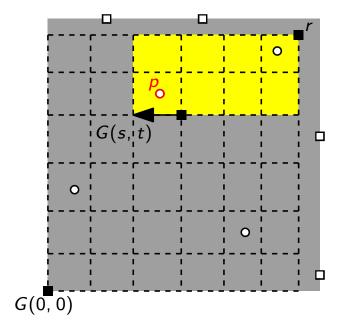
Go from s + 1 to s.

Case 1: site event $y(p) > G_v(t)$



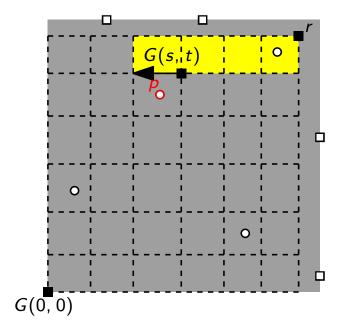
Assume T[(s+1, t), u] = true. Go from s+1 to s.

Case 1: site event $y(p) > G_y(t)$ $\Rightarrow T[(s, t), u + 1] = \text{true}.$



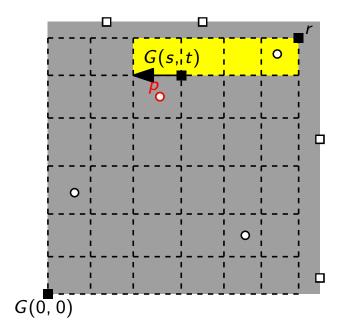
Assume T[(s+1, t), u] = true. Go from s+1 to s.

Case 1: site event $y(p) > G_y(t)$ $\Rightarrow T[(s,t), u+1] = \text{true}.$ $y(p) < G_y(t)$



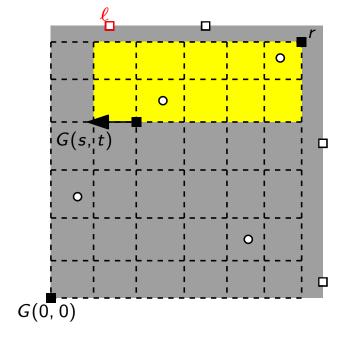
Assume T[(s+1, t), u] = true. Go from s+1 to s.

Case 1: site event $y(p) > G_y(t)$ $\Rightarrow T[(s, t), u + 1] = \text{true}.$ $y(p) < G_y(t)$ $\Rightarrow T[(s, t), u] = \text{true}.$



Assume T[(s+1, t), u] = true. Go from s+1 to s.

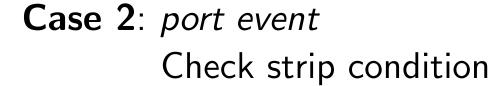
Case 1: site event $y(p) > G_y(t)$ $\Rightarrow T[(s, t), u + 1] = \text{true}.$ $y(p) < G_y(t)$ $\Rightarrow T[(s, t), u] = \text{true}.$

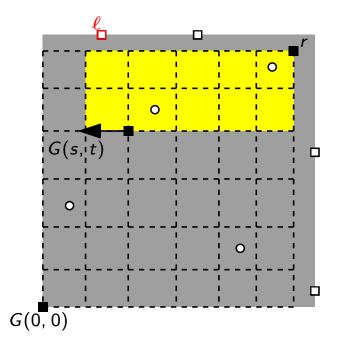


Case 2: port event

Assume T[(s+1, t), u] = true. Go from s+1 to s.

Case 1: site event $y(p) > G_y(t)$ $\Rightarrow T[(s, t), u + 1] = \text{true}.$ $y(p) < G_y(t)$ $\Rightarrow T[(s, t), u] = \text{true}.$





Assume T[(s+1,t), u] = true.

Go from s + 1 to s.

Case 1: site event

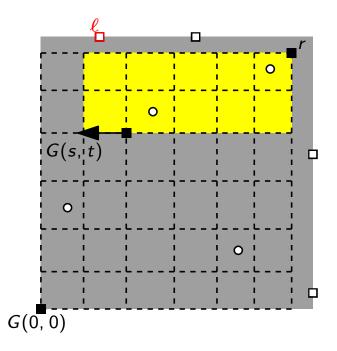
$$y(p) > G_y(t)$$

 $\Rightarrow T[(s,t), u+1] = \text{true.}$
 $y(p) < G_y(t)$
 $\Rightarrow T[(s,t), u] = \text{true.}$

Case 2: port event

Check strip condition

satisfied
$$\Rightarrow T[(s, t), u] = \text{true}$$



• Three table entries $\Rightarrow O(n^3)$ steps

- Three table entries $\Rightarrow O(n^3)$ steps
- $O(n^2)$ preprocessing \Rightarrow check strip condition in O(1) time

- Three table entries $\Rightarrow O(n^3)$ steps
- $O(n^2)$ preprocessing \Rightarrow check strip condition in O(1) time $O(n^3)$ time, $O(n^3)$ space

- Three table entries $\Rightarrow O(n^3)$ steps
- $O(n^2)$ preprocessing \Rightarrow check strip condition in O(1) time $O(n^3)$ time, $O(n^3)$ space
- Entries of T depend only on previous row and column

- Three table entries $\Rightarrow O(n^3)$ steps
- $O(n^2)$ preprocessing \Rightarrow check strip condition in O(1) time $\to O(n^3)$ time, $O(n^3)$ space
- Entries of T depend only on previous row and column
- Use algorithm of [Hirschberg, 1975] to backtrack a solution

- Three table entries $\Rightarrow O(n^3)$ steps
- $O(n^2)$ preprocessing \Rightarrow check strip condition in O(1) time $O(n^3)$ time, $O(n^3)$ space
- \bigcirc Entries of T depend only on previous row and column
- Use algorithm of [Hirschberg, 1975] to backtrack a solution
 - $\rightarrow O(n^3)$ time, $O(n^2)$ space

- Three table entries $\Rightarrow O(n^3)$ steps
- $O(n^2)$ preprocessing \Rightarrow check strip condition in O(1) time $O(n^3)$ time, $O(n^3)$ space
- Entries of T depend only on previous row and column
- Use algorithm of [Hirschberg, 1975] to backtrack a solution

$$\rightarrow O(n^3)$$
 time, $O(n^2)$ space

- Valid values of u form an interval
 - \Rightarrow We only need to save the boundaries of u

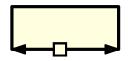
- Three table entries $\Rightarrow O(n^3)$ steps
- $O(n^2)$ preprocessing \Rightarrow check strip condition in O(1) time $O(n^3)$ time, $O(n^3)$ space
- Entries of T depend only on previous row and column
- Use algorithm of [Hirschberg, 1975] to backtrack a solution

$$\rightarrow O(n^3)$$
 time, $O(n^2)$ space

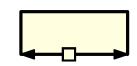
- Valid values of u form an interval
 - \Rightarrow We only need to save the boundaries of u

$$ightarrow O(n^2)$$
 time, $O(n)$ space

• Sliding Ports: $O(n^2)$ time, O(n) space



Sliding Ports: $O(n^2)$ time, O(n) space

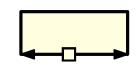


• Maximize number of labeled sites: $O(n^3 \log n)$ time, O(n) space

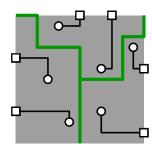
Sliding Ports: $O(n^2)$ time, O(n) space

- Maximize number of labeled sites: $O(n^3 \log n)$ time, O(n) space
- Leader-length minimization: $O(n^8 \log n)$ time, $O(n^6)$ space

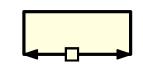
Sliding Ports: $O(n^2)$ time, O(n) space



- Maximize number of labeled sites: $O(n^3 \log n)$ time, O(n) space
- Leader-length minimization: $O(n^8 \log n)$ time, $O(n^6)$ space
- Three-Sided Boundary Labeling: $O(n^5)$ time, O(n) space



Sliding Ports: $O(n^2)$ time, O(n) space



- Maximize number of labeled sites: $O(n^3 \log n)$ time, O(n) space
- Leader-length minimization: $O(n^8 \log n)$ time, $O(n^6)$ space
- Three-Sided Boundary Labeling: $O(n^5)$ time, O(n) space

• Four-Sided Boundary Labeling: $O(n^{10})$ time, O(n) space

