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Abstract. In the Boundary Labeling problem, we are given a set of n points,
referred to as sites, inside an axis-parallel rectangle R, and a set of n pairwise
disjoint rectangular labels that are attached to R from the outside. The task is
to connect the sites to the labels by non-intersecting rectilinear paths, so-called
leaders, with at most one bend.
In this paper, we study the problem Two-Sided Boundary Labeling with Adja-
cent Sides, where labels lie on two adjacent sides of the enclosing rectangle. We
present a polynomial-time algorithm that computes a crossing-free leader layout
if one exists. So far, such an algorithm has only been known for the cases that la-
bels lie on one side or on two opposite sides of R (where a crossing-free solution
always exists). For the more difficult case where labels lie on adjacent sides, we
show how to compute crossing-free leader layouts that maximize the number of
labeled points or minimize the total leader length.

1 Introduction

Label placement is an important problem in cartography and, more generally, informa-
tion visualization. Features such as points, lines, and regions in maps, diagrams, and
technical drawings often have to be labeled so that users understand better what they
see. Even very restricted versions of the label-placement problem are NP-hard [14],
which explains why labeling a map manually is a tedious task that has been estimated
to take 50% of total map production time [15]. The ACM Computational Geometry
Impact Task Force report [6] identified label placement as an important research area.
The point-labeling problem in particular has received considerable attention, from prac-
titioners and theoreticians alike. The latter have proposed approximation algorithms for
various objectives (label number versus label size), label shapes (such as axis-parallel
rectangles or disks), and label-placement models (so-called fixed-position models ver-
sus slider models).
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(a) original labeling of kinder-
gartens in Karlsruhe, Germany
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(b) opo-labeling computed by
the algorithm of Bekos et al. [4]
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(c) po-labeling using the same
ports as (b)

Fig. 1: A real-world example of boundary labeling with adjacent sides (taken from [4]).
For better readability, we have simplified the label texts.

The traditional label-placement models for point labeling insist that a label is placed
such that a point on its boundary coincides with the point to be labeled, the site. This
can make it impossible to label all sites with labels of sufficient size if some sites are
very close together. For this reason, Freeman et al. [8] and Zoraster [19] advocated the
use of leaders, (usually short) line segments that connect sites to labels. In order to
make sure that the background image or map remains visible even in the presence of
large labels, Bekos et al. [4] took a more radical approach. They introduced models and
algorithms for boundary labeling, where all labels are placed beyond the boundary of
the map and are connected to the sites by straight-line or rectilinear leaders (see Fig. 1).

Problem statement. Following Bekos et al. [4], we define the BOUNDARY LABELING
problem as follows. We are given an axis-parallel rectangleR = [0,W ]× [0, H], which
is called the enclosing rectangle, a set P ⊂ R of n points p1, . . . , pn, called sites, within
the rectangle R, and a set L of m ≤ n axis-parallel rectangles `1, . . . , `m, called labels,
that lie in the complement ofR and touch the boundary ofR. No two labels overlap. We
denote an instance of the problem by the triplet (R,L, P ). A solution to the problem
is a set of m curves c1, . . . , cm, called leaders, that connect sites to labels such that
the leaders a) produce a matching between the labels and (a subset of) the sites, b) are
contained inside R, and c) touch the associated labels on the boundary of R.

A solution is planar if the leaders do not intersect. We call an instance solvable if a
planar solution exists. Note that we do not prescribe which site connects to which label.
The endpoint of a curve at a label is called a port. We distinguish two versions of the
BOUNDARY LABELING problem: either the position of the ports on the boundary of R
is fixed and part of the input, or the ports slide, i.e., their exact location is not prescribed.

We restrict our solutions to po-leaders, that is, starting at a site, the first line segment
of a leader is parallel (p) to the side of R containing the label it leads to, and the second
line segment is orthogonal (o) to that side; see Fig. 1c. (Fig. 1b shows a labeling with
so-called opo-leaders, which were investigated by Bekos et al. [4]). Bekos et al. [3,
Fig. 12] observed that not every instance (with m = n) admits a planar solution with
po-leaders where all sites are labeled.
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Previous and related work. For po-labeling, Bekos et al. [4] gave a simple quadratic-
time algorithm for the one-sided case that, in a first pass, produces a labeling of min-
imum total leader length by matching sites and ports from bottom to top. In a second
pass, their algorithm removes all intersections without increasing the total leader length.
This result was improved by Benkert et al. [5] who gave an O(n log n)-time algorithm
for the same objective function and an O(n3)-time algorithm for a very general class of
objective functions, including, for example, bend minimization. They extend the latter
result to the two-sided case (with labels on opposite sides of R), resulting in an O(n8)-
time algorithm. For the special two-sided case of leader-length minimization, Bekos et
al. [4] gave a simple dynamic program running in O(n2) time. All these algorithms
work both for fixed and sliding ports.

Leaders that contain a diagonal part have been studied by Benkert et al. [5] and by
Bekos et al. [2]. Recently, Nöllenburg et al. [16] have investigated a dynamic scenario
for the one-sided case, Gemsa et al. [9] have used multi-layer boundary labeling to label
panorama images, and Fink et al. [7] have boundary labeled focus regions, for example,
in interactive on-line maps.

∆

�

Fig. 2: Length-
minimal solutions
may have crossings.

At its core, the boundary label problem asks for a non-
intersecting perfect (or maximum) matching on a bipartite graph.
Note that an instance may have a planar solution, although all of
its leader-length minimal matchings have crossings. In fact, the
ratio between a length-minimal solution and a length-minimal
crossing-free matching can be arbitrarily bad; see Fig. 2. When
connecting points and sites with straight-line segments, the min-
imum Euclidean matching is necessarily crossing-free. For this
case an O(n2+ε)-time O(n1+ε)-space algorithm exists [1]. The
minimum-length solution using rectilinear paths with an un-
bounded number of bends in the presence of obstacles is NP-
hard, but there is a 2-approximation [18].

Boundary labeling can also be seen as a graph-drawing problem where the class of
graphs to be drawn is restricted to matchings. The restriction concerning the positions
of the graph vertices (that is, sites and ports) has been studied for less restricted graph
classes under the name point-set embeddability (PSE), usually following the straight-
line drawing convention for edges [10]. More recently, PSE has also been combined
with the ortho-geodesic drawing convention [12], which generalizes po-labeling by al-
lowing edges to make more than one bend. The case where the mapping between ports
and sites is given has been studied in VLSI layout [17].

Our contribution. We investigate the problem TWO-SIDED BOUNDARY LABELING
WITH ADJACENT SIDES where all labels lie on two adjacent sides of R, for example,
on the top and right side. Note that point data often comes in a coordinate system; then
it is natural to have labels on adjacent sides (for example, opposite the coordinate axes).
We argue that this problem is more difficult than the case where labels lie on opposite
sides, which has been studied before: with labels on opposite sides, (a) there is always
a solution where all sites are labeled (if m = n) and (b) a feasible solution can be
obtained by considering two instances of the one-sided case.
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Our main result is an algorithm that, given an instance with n labels and n sites,
decides whether a planar solution exists where all sites are labeled and, if yes, computes
a layout of the leaders (see Section 3). Our algorithm uses dynamic programming to
“guess” a partition of the sites into the two sets that are connected to the leaders on the
top side and on the right side. The algorithm runs in O(n2) time and uses O(n) space.

Notation. We call the labels that lie on the right (top) side of R right (top) labels.
The type of a label refers to the side of R on which it is located. The type of a leader
(or a site) is simply the type of its label. We assume that no two sites lie on the same
horizontal or vertical line, and no site lies on a horizontal or vertical line through a port
or an edge of a label.

For a solution L of a boundary labeling problem, we define several measures that
will be used to compare different solutions. We denote the total length of all leaders inL
by length(L). Moreover, we denote by |L|x the total length of all horizontal segments
of leaders that connect a right label to a site. Similarly, we denote by |L|y the total
length of the vertical segments of leaders that connect top labels to sites. Note that in
general, it is not true that |L|x + |L|y = length(L).

We denote the (uniquely defined) leader connecting a site p to a port t of a label `
by λ(p, t). We denote the bend of the leader λ(p, t) by bend(p, t). In the case of fixed
ports, we identify ports with labels and simply write λ(p, `) and bend(p, `), resp.

2 Structure of Planar Solutions

In this section, we attack our problem presenting a series of structural results of increas-
ing strength. For simplicity, we assume fixed ports. For sliding ports, we can simply fix
all ports to the bottom-left corner of their corresponding labels (see the full version of
this paper [13]). First we show that we can split a planar two-sided solution into two
one-sided solutions by constructing an xy-monotone, rectilinear curve from the top-
right to the bottom-left corner of R; see Fig. 4. Afterwards, we provide a necessary
and sufficient criterion to decide whether for a given separation there exists a planar
solution. This will form the basis of our dynamic programming algorithm, which we
present in Section 3.

Lemma 1. Consider a solution L for (R,L, P ) and let P ′ ⊆ P be sites of the same
type. Let L′ ⊆ L be the set of labels of the sites in P ′. Let K ⊆ R be a rectangle that
contains all bends of the leaders of P ′. If the leaders of P \P ′ do not intersect K, then
we can rewire P ′ andL′ such that the resulting solutionL′ has the following properties:
(i) all intersections in K are removed, (ii) there are no new intersections of leaders
outside of K, (iii) |L′|x = |L|x, |L′|y = |L|y , and (iv) length(L′) ≤ length(L).

Proof. Without loss of generality, we assume that P ′ contains top sites; the other cases
are symmetric. We first prove that, no matter how we change the assignment between P ′

and L′, new intersection points can arise only in K. Then we show how to establish the
claimed solution.
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Fig. 3: Illustration of the proof of Lemma 1.

Claim. Let `, `′ ∈ L′ and p, p′ ∈ P ′ such that ` labels p and `′ labels p′. Changing the
matching by rerouting p to `′ and p′ to ` does not introduce new intersections outside
of K.

Let K ′ ⊆ K be the rectangle spanned by bend(p, `) and bend(p′, `′). When rerouting,
we replace λ(p, `) ∪ λ(p′, `′) restricted to the boundary of K ′ by its complement with
respect to the boundary ofK ′; see Fig. 3a for an example. Thus, any changes concerning
the leaders occur only in K ′. The statement of the claim follows.

Since any rewiring can be seen as a sequence of pairwise reroutings, the above claim
shows that we can rewire L′ and P ′ arbitrarily without running the risk of creating new
conflicts outside of K. In order to resolve the conflicts inside K, we use the length-
minimization algorithm for one-sided boundary labeling by Benkert et al. [5], with the
sites and ports outside K projected onto the boundary of K. Thus, after finitely many
such steps, we find a solution L′ that satisfies properties (i)–(iv) in the statement of the
lemma. ut

Definition 1. We call an xy-monotone, rectilinear curve connecting the top-right to the
bottom-left corner ofR an xy-separating curve; see Fig. 4. We say that a planar solution
to TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES is xy-separated if
and only if there exists an xy-separating curve C such that
a) the top sites and their leaders lie on or above C, and
b) the right sites and their leaders lie below C.

It is not hard to see that a planar solution is not xy-separated if there exists a site p
that is labeled to the right side and a site q that is labeled to the top side with x(p) < x(q)
and y(p) > y(q). There are exactly four patterns in a possible planar solution that satisfy
this condition; see Fig. 5. We claim that these patterns are the only ones that violate xy-
separability (for the proof, refer to the full version of the paper [13]).

Lemma 2. A planar solution is xy-separated if and only if it does not contain any of
the patterns P1–P4 in Fig. 5.

Observe that patterns P1 and P2 can be transformed into patterns P4 and P3, re-
spectively, by mirroring the instance diagonally. Next, we prove constructively that, by
rerouting pairs of leaders, any planar solution can be transformed into an xy-separated
planar solution.
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Fig. 4: An xy-separating
curve of a planar solution.

Fig. 5: A planar solution that contains any of the above
four patterns P1–P4 is not xy-separated.

Proposition 1. If there exists a planar solution L to TWO-SIDED BOUNDARY LA-
BELING WITH ADJACENT SIDES, then there exists an xy-separated planar solution L′
with length(L′) ≤ length(L), |L′|x ≤ |L|x, and |L′|y ≤ |L|y .

Proof. Let L be a planar solution of minimum total leader length. We show that L is
xy-separated. Assume, for the sake of contradiction, that L is not xy-separated. Then,
by Lemma 2, L contains one of the patterns P1–P4. Without loss of generality, we can
assume that the pattern is of type P3 or P4. Otherwise, we mirror the instance diagonally.

Let p be a right site (with port r) and let q be a top site (with port t) such that (p, q)
forms a pattern of type P3 or P4. Among all such patterns, pick one where p is rightmost.
Among all these patterns, pick one where q is bottommost. Let A be the rectangle
spanned by p and t; see Fig. 6. Let A′ be the rectangle spanned by bend(q, t) and p.
Let B be the rectangle spanned by q and r. Let B′ be the rectangle spanned by q
and bend(p, r). Then we claim the following:

(i) Sites in the interiors of A and A′ are connected to the top.
(ii) Sites in the interiors of B and B′ are connected to the right.

Property (i) is due to the choice of p as the rightmost site involved in such a pattern.
Similarly, property (ii) is due to the choice of q as the bottommost site that forms a
pattern with p. This settles our claim.

Our goal is to change the labeling by rerouting p to t and q to r, which decreases
the total leader length, but may introduce crossings. We then use Lemma 1 to remove
the crossings without increasing the total leader length. Let L′′ be the labeling obtained
fromL by rerouting p to t and q to r. We have |L′′|y ≤ |L|y−(y(p)−y(q)) and |L′′|x =
|L|x− (x(q)−x(p)). Moreover, length(L′′) ≤ length(L)−2(y(p)−y(q)), as at least
twice the vertical distance between p and q is saved; see Fig. 6. Since the original
labeling was planar, crossings may only arise on the horizontal segment of λ(p, t) and
on the vertical segment of λ(q, r).

By properties (i) and (ii), all leaders that cross the new leader λ(p, t) have their
bends inside A′, and all leaders that cross the new leader λ(q, r) have their bends in-
side B′. Thus, we can apply Lemma 1 to the rectangles A′ and B′ to resolve all new
crossings. The resulting solution L′ is planar and has length less than length(L). This
is a contradiction to the choice of L. ut

Since every solvable instance of TWO-SIDED BOUNDARY LABELING WITH AD-
JACENT SIDES admits an xy-separated planar solution, it suffices to search for such
a solution. Moreover, an xy-separated planar solution that minimizes the total leader
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Fig. 6: Types (top = ↑ / right =→)
of the sites inside rectangles A,
A′, B, and B′. Fat edges: result
after rerouting.

Fig. 7: The strip condition. a) The horizon-
tal segments of C partition RT into the strips
S0, S1, . . . , Sk. b) Constructing a planar labeling
from a sequence of valid rectangles.

length has minimum leader length among all planar solutions. In Lemma 3 we pro-
vide a necessary and sufficient criterion to decide whether, for a given xy-monotone
curve C, there is a planar solution that is separated by C. We denote the region of R
above C by RT and the region of R below C by RR. These regions are relatively open
at C. For each horizontal segment of C consider the horizontal line through the seg-
ment. We denote the part of these lines within R by h1, . . . , hk, respectively. Further,
let h0 be the top edge of R. The line segments h1, . . . , hk partition RT into k strips,
which we denote by S1, . . . , Sk from top to bottom, such that strip Si is bounded by hi
from below for i = 1, . . . , k; see Fig. 6a. Additionally, we define S0 to be the empty
strip that coincides with h0. Note that this strip cannot contain any site of P . For any
point p on one of the horizontal lines hi, we define the rectangle Rp, spanned by p and
the top-right corner of R. We define Rp such that it is closed but does not contain its
top-left corner. In particular, we consider the port of a top label as contained in Rp,
except if it is the upper left corner of Rp.

A rectangle Rp is valid if the number of sites of P above C that belong to Rp is at
least as large as the number of ports on the top side of Rp. The central idea is that the
sites of P inside a valid rectangle Rp can be connected to labels on the top side of the
valid rectangle by leaders that are completely contained inside the rectangle.

We now prove that, for a given xy-separating curve C, there exists a planar solution
in RT for the top labels if and only if C satisfies the following strip condition for
each strip S0, . . . , Sk in RT. The strip condition of strip Si is satisfied if there exists a
point p ∈ hi ∩RT such that Rp is valid. We call a region S ⊆ R balanced if it contains
the same numbers of sites and ports.

Lemma 3. Let C be an xy-separating curve and let PT = P ∩ RT. There is a planar
solution that uses all top labels of R to label the sites in PT such that all leaders are
in RT if and only if S0, . . . , Sk satisfy the strip condition.

Proof. To show that the conditions are necessary, letL be a planar solution for which all
top leaders are aboveC. Consider strip Si, which is bounded from below by line hi, 0 ≤
i ≤ k. If there is no site of PT below hi, rectangle Rp is clearly valid, where p is
the intersection of hi with the left side of R , and thus the strip condition is satisfied.
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Hence, assume that there is a site p ∈ PT that is labeled by a top label, and is in strip Sj

with j > i; see Fig. 6a. Then, the vertical segment of this leader crosses hi in RT.
Let p′ denote the rightmost such crossing of a leader of a site in PT with hi. We claim
that Rp′ is valid. To see this, observe that all sites of PT top-right of p′ are contained
in Rp′ . Since no leader may cross the vertical segments defining p′, the number of sites
in Rp′ ∩RT is balanced, i.e., Rp′ is valid.

Conversely, we show that if the conditions are satisfied, then a corresponding planar
solution exists. Let Sk be the last strip that contains sites of PT. For i = 0, . . . , k, let p′i
denote the rightmost point of hi ∩ RT such that Rp′i

is valid. We define pi to be the
point on hi ∩RT with x-coordinate minj≤i{x(p′j)}. Note that Rpi is a valid rectangle,
as, by definition, Rpi contains some valid rectangle Rp′j

with x(p′j) = x(pi). Also by
definition, the sequence p0, p1, . . . , pk has decreasing x-coordinates, i.e., Rpk

⊆ · · · ⊆
Rp1
⊆ Rp0

; see Fig. 6b.
We prove inductively that, for i = 0, . . . , k, there is a planar labeling Li that

matches the labels on the top side of Rpi
to points contained in Rpi

such that there
exists an xy-monotone curve Ci from the top-left to the bottom-right corner of Rpi

that
separates the labeled sites from the unlabeled sites without intersecting any leaders.
Then Lk is the claimed labeling.

For i = 0, L0 = ∅ is a planar solution. Consider a strip Si with 0 < i ≤ k; see
Fig. 6b. By the induction hypothesis, we have a curve Ci−1 and a planar labeling Li−1,
which matches the labels on the top side of Rpi−1

to the sites in Rpi−1
above Ci−1.

In order to extend Li−1 to a planar solution Li, we additionally need to match the
remaining labels on the top side of Rpi

and construct a corresponding curve Ci. Let Pi

denote the set of unlabeled sites inRpi . By the validity of Rpi , this number is at least as
large as the number of unused ports at the top side of Rpi . We match these ports from
top to bottom to the topmost sites of Pi; the result is the claimed planar labeling Li. The
ordering ensures that no two of the new leaders cross. Moreover, no leader crosses the
curveCi−1, and hence such leaders cannot cross leaders inLi−1. It remains to construct
the curve Ci. For this, we start at the top-left corner of Rpi

and move down vertically,
until we have passed all labeled sites. We then move right until we either hit Ci−1 or the
right side ofR. In the former case, we follow Ci−1 until we arrive at the right side ofR.
Finally, we move down until we arrive at the bottom-right corner of Rpi

. Note that all
labeled sites are above Ci, unlabeled sites are below Ci, and no leader is crossed by Ci.
This is true since we first move below the new leaders and then follow the previous
curve Ci−1. ut

A symmetric strip condition (with vertical strips) can be obtained for the right re-
gion RR of a partitioned instance. The characterization is completely symmetric.

3 The Algorithm

Now we describe how to find an xy-separating curveC that satisfies the strip conditions.
For that purpose we only consider xy-separating curves that lie on the dual of the grid
induced by the sites and ports of the given instance. When traversing this grid from grid
point to grid point, we either pass a site (site event) or a port (port event). By passing
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a site, we decide if the site is connected to the top or to the right side. Clearly, there
is an exponential number of possible xy-monotone traversals through the grid. In the
following, we describe a dynamic program that finds an xy-separating curve in O(n3)
time.

Let there bemR ports on the right side ofR andmT ports on the top side ofR, then
the grid has size [n+mT + 1]× [n+mR + 1]. We define the grid points as G(x, y),
0 ≤ x ≤ n + mT + 1, 0 ≤ y ≤ n + mR + 1 with G(0, 0) being the bottom-left
and r := G(n + mT + 1, n + mR + 1) being the top-right corner of R. Further, we
define Gx(s) := x(G(s, 0)) and Gy(t) := y(G(0, t)).

t

rs

pC

p

C

s−1

Fig. 8: Possible step of the
dynamic program, where p
enters the rectangle spanned
by r and G(s− 1, t).

An entry in the table of our dynamic program is de-
scribed by three values. The first two values are s and t,
which give the position of the current search for the
curve C. The interpretation is that the entry encodes the
possible xy-monotone curves from r to pC := G(s, t);
see Fig. 8. The remaining value u denotes the number of
sites above C in the rectangle spanned by r and pC . Note
that it suffices to store u, as the number of sites below
the curve C can directly be derived from u and all sites
that are contained in the rectangle spanned by r and pC .
We denote the first values describing the positions of the
curves by the vector c = (s, t). Our goal is to compute
a table T [c, u] such that T [c, u] = true if and only if
there exists an xy-separating curve C such that the fol-
lowing conditions hold. (i) Curve C starts at r and ends at pC . (ii) Inside the rectangle
spanned by r and pC , there are u sites of P above C. (iii) For each strip in the two
regions RT and RR defined by C the strip condition holds.

It follows from these conditions, Proposition 1 and Lemma 3 that the instance ad-
mits a planar solution if and only if T [(0, 0), u]=true, for some u. Let us now proceed
to describe how to compute the table. Initially, we set c = (n+mT + 1, n+mR + 1).
We initialize the first entry T [c, 0] = true. The remaining entries are initialized with
false.

Let c := (s, t) be the current grid point we checked as endpoint for C. Based on the
table T [c, ·] we then compute the entries T [c−∆c, ·] where the vector ∆c = (∆s,∆t)
is either (0, 1) or (1, 0). We classify such steps, depending on whether we cross a site
or a port. We give a full description for ∆c = (1, 0), i.e, we decrease s by 1. The other
case is completely symmetric. Assume T [c, u] = true. We distinguish two cases,
based on whether we cross a site or a port.

Case 1: Going from s to s − 1 is a site event, i.e., there is a site p with Gx(s) >
x(p) > Gx(s − 1). Note that by our assumption of general position and the definition
of the coordinates, the site p is unique. If y(p) > Gy(t), then p enters the rectangle
spanned by G(s− 1, t) and r, and it is located above C; see Fig. 8. We thus set T [c−
∆c, u + 1] = true. Otherwise we set T [c − ∆c, u] = true. Note that the strip
conditions remain satisfied since we do not decrease the number of sites in any region.

Case 2: Going from s to s− 1 is a port event, i.e., there is a label ` on the top side,
whose port is between Gx(s − 1) and Gx(s). Thus, the region above C contains one
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more label. We therefore check the strip condition for the strip above the horizontal line
through G(s− 1, t). If it is satisfied, we set T [c−∆c, u] = true.

If T [c, u] = false, there is no xy-separating curve that satisfies the conditions
given above, so the it suffices to only look at the true table entries. This immediately
gives us a polynomial-time algorithm for TWO-SIDED BOUNDARY LABELING WITH
ADJACENT SIDES. The running time crucially relies on the number of strip conditions
that need to be checked. We show that after a O(n2) preprocessing phase, such queries
can be answered in O(1) time.

To implement the test of the strip conditions, we use a table BT, which stores in
the position BT[s, t] how large a deficit of top sites to the right can be compensated
by sites above and to the left of G(s, t). That is, BT[s, t] is the maximum value k such
that there exists a rectangle KBT[s,t] with lower right corner G(s, t) whose top side
is bounded by the top side of R, and that contains k more sites in its interior, than it
has ports on its top side. To compute this matrix, we use a simple dynamic program,
which calculates the entries ofBT by going from the left to the right side. Once we have
computed this matrix, it is possible to query the strip condition in the dynamic program
that computes T in O(1) time. The table can be clearly filled out in O(n2) time. A
similar matrix BR can be computed for the vertical strips. Altogether, this yields an
algorithm for TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES that runs
inO(n3) time and usesO(n3) space. However, the entries of each row and column of T
depend only on the previous row and column, which allows us to reduce the storage
requirement to O(n2). Using Hirschberg’s algorithm [11], we can still backtrack the
dynamic program and find a solution corresponding to an entry in the last cell in the
same running time. The detailed approach on how to calculate and use the tables BT

and BR is given in the full version of the paper [13].

Theorem 1. TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES can be
solved in O(n3) time using O(n2) space.

In order to increase the performance of our algorithm, we can reduce the number of
dimensions of the table T by 1. As a first step, we show that for any search position c,
the possible values of u, for which T [c, u] =true form an interval.

Lemma 4. Let T [c, u] = T [c, u′] = true with u ≤ u′. Then T [c, u′′] = true
for u ≤ u′′ ≤ u′.

Proof. Let C be the curve corresponding to the entry T [c, u]. That is C connects r
to pC such that u sites in the rectangle spanned by pC and r are above C, and the
strip conditions (both above and below C) are satisfied. Similarly, let C ′ be the curve
corresponding to T [c, u′].

Since u and u′ differ, there is a rightmost site p, such that p is belowC and aboveC ′.
Let v and v′ be the grid points of C and C ′ that are immediately to the left of p. Note
that v is above v′ since C is above p and C ′ is below it. Consider the C ′′, which starts
at r and followsC until v, then it moves down vertically to v′, and from their followsC ′

to p. Obviously C ′′ is an xy-separating curve, and it has above it the same sites as C ′,
except for p, which is below it. Thus there are u′′ = u′ − 1 sites above C ′′ in the
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rectangle spanned by p and r. If all strips defined by C ′′ satisfy the strip condition, then
this implies T [c, u′′] = true.

To see that the strip conditions are indeed satisfied, consider a horizontal strip S′′

defined by C ′′. Let S be the lowest horizontal strip defined by C that is not below the
lower boundary of S′′. We know that S fulfills the strip condition, which is witnessed
by some valid rectangle K. We can enlarge this rectangle vertically such that it touches
the lower boundary of S′′. The enlarged rectangle contains at least as many sites above
C ′′ as there were above C in K. Hence it is a valid rectangle and the strip condition for
S′′ holds. An analogous statement holds for the vertical strips since C ′′ is above C ′ at
every x-coordinate. ut

Thus, we only need to store the boundaries of the u-interval. Further, we can com-
pute the tables BT and BR backwards, i.e., in the direction of the dynamic program, by
precomputing the entries of BT and BR on the top and right side, respectively. Using
Hirschberg’s algorithm, this reduces the running time to O(n2) and the space to O(n).
The detailed description is given in the full version of the paper [13].

Theorem 2. TWO-SIDED BOUNDARY LABELING WITH ADJACENT SIDES can be
solved in O(n2) time using O(n) space.

4 Conclusion

In this paper, we have studied the problem of testing whether an instance of TWO-
SIDED BOUNDARY LABELING WITH ADJACENT SIDES admits a planar solution. We
have given the first efficient algorithm for this problem, running in O(n2) time.

The presented algorithm can also be used to solve a variety of different extensions of
the problem. In the full version of the paper [13], we show how to generalize from fixed
to sliding ports without increasing the asymptotic running time. Further, we show how
to maximize the number of labeled sites such that the solution is planar in O(n3 log n)
time and we give an extension to the algorithm that minimizes the total leader length
in O(n8 log n) time.

With some additional work, the presented approach can also be used to solve THREE-
SIDED and FOUR-SIDED BOUNDARY LABELING in polynomial time. Namely, it can
be shown that if a solution to the four-sided problem exists, there exists one that has
a central point z such that xy-monotone curves from z to the four corners of the rect-
angle R partition the solution without intersecting any leaders. To compute such a par-
titioned solution, assume we are given, for each side s of the rectangle R, the leader
whose segment orthogonal to s is maximum among all leaders of side s. These ex-
tremal leaders essentially partition the instance into four smaller instances of ADJA-
CENT TWO-SIDED BOUNDARY LABELING, one for each corner. These instances can
be processed independently. There are O(n8) choices for these extremal leaders, try-
ing all of them thus yields a running time of O(n10) and space consumption O(n).
For THREE-SIDED BOUNDARY LABELING, the running time is O(n8), but can be
improved to O(n4) by guessing only the extremal leader of the middle side of the rect-
angle. Also, except for the length minimization, all presented extensions carry over. A
proof is given in the full version of the paper [13]. It remains open whether a minimum
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length solution of THREE- and FOUR-SIDED BOUNDARY LABELING can be computed
in polynomial time.
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