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Abstract

In the Boundary Labeling problem, we are given a
set of n points, referred to as sites, inside an axis-
parallel rectangle R, and a set of n pairwise disjoint
rectangular labels that are attached to R from the
outside. The task is to connect the sites to the labels
by non-intersecting polygonal paths, so-called leaders.

In this paper, we study the Two-Sided Boundary
Labeling with Adjacent Sides problem, with labels ly-
ing on two adjacent sides of the enclosing rectangle.
We restrict ourselves to rectilinear leaders with at
most one bend. We present a polynomial-time algo-
rithm that computes a crossing-free leader layout if
one exists. So far, such an algorithm has only been
known for the simpler cases that labels lie on one side
or on two opposite sides of R (where a crossing-free
solution always exists).

1 Introduction

Label placement is an important problem in cartog-
raphy and, more generally, information visualization.
Features such as points, lines, and regions in maps,
diagrams, and technical drawings often have to be la-
beled so that users understand better what they see.
The general label-placement problem is NP-hard [6],
which explains why labeling a map manually is a te-
dious task that has been estimated to take 50% of
total map production time [5].

Boundary labeling can be seen as a graph-drawing
problem where the class of graphs to be drawn is re-
stricted to matchings.

Problem statement. Following Bekos et al. [2],
we define the Boundary Labeling problem as fol-
lows. We are given an axis-parallel rectangle R =
[0,W ] × [0, H], which is called the enclosing rectan-
gle, a set P = {p1, . . . , pn} ⊂ R of n points, called
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sites, within the rectangle R, and a set L of m ≤ n
axis-parallel rectangles `1, . . . , `m, called labels, that
lie in the complement of R and touch the boundary
of R. No two labels overlap. We denote an instance
of the problem by the triplet (R,L, P ). A solution
to the problem is a set of m curves c1, . . . , cm, called
leaders, that connect sites to labels such that the lead-
ers a) produce a matching between the labels and (a
subset of) the sites, b) are contained inside R, and
c) touch the associated labels on the boundary of R.

A solution is planar if the leaders do not intersect.
Note that we do not prescribe which site connects to
which label. The endpoint of a leader at a label is
called a port. We distinguish two incarnations of the
Boundary Labeling problem: either the position
of the ports on the boundary of R is fixed and part of
the input, or the ports slide, i.e., their exact location
is not prescribed.

We restrict our solutions to po-leaders, that is,
starting at a site, the first line segment of a leader
is parallel (p) to the side of R containing the label it
leads to, and the second line segment is orthogonal (o)
to that side. Bekos et al. [1, Fig. 12] observed that not
every instance (with m = n) admits a planar solution
with po-leaders where all sites are labeled.

Previous work. For po-labeling, Bekos et al. [2] gave
a simple quadratic-time algorithm for the one-sided
case that, in a first pass, produces a labeling of mini-
mum total leader length by matching sites and ports
from bottom to top. In a second pass, their algorithm
removes all intersections without increasing the total
leader length. This result was improved by Benkert
et al. [3] who gave an O(n log n)-time algorithm for
the same objective function and an O(n3)-time algo-
rithm for a very general class of objective functions,
including, for example, bend minimization. They ex-
tend the latter result to the two-sided case (with la-
bels on opposite sides of R), resulting in an O(n8)-
time algorithm. For the special case of leader-length
minimization, Bekos et al. [2] gave a simple dynamic
program running in O(n2) time. All these algorithms
work both for fixed and sliding ports.

Our contribution. We investigate the problem
Two-Sided Boundary Labeling with Adjacent
Sides where all labels lie on two adjacent sides of R,
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for example, on the top and right side. Note that
point data often comes in a coordinate system; then
it is natural to have labels on adjacent sides (for exam-
ple, opposite the coordinate axes). We argue that this
problem is more difficult than the case where labels
lie on opposite sides, which has been studied before:
with labels on opposite sides, (a) there is always a so-
lution where all sites are labeled (if m = n) and (b) a
feasible solution can be obtained by considering two
instances of the one-sided case.

Our result is an algorithm that, given an instance
with n labels and n sites, decides whether a planar
solution exists where all sites are labeled and, if yes,
computes a layout of the leaders (see Section 3). We
use dynamic programming to “guess” a partition of
the sites into the two sets that are connected to the
leaders on the top side and on the right side. The
algorithm runs in O(n2) time and uses O(n) space.

Notation. We call the labels that lie on the right
(top) side of R right (top) labels. The type of a label
refers to the side of R on which it is located. The type
of a leader (or a site) is simply the type of its label. We
assume that no two sites lie on the same horizontal or
vertical line, and no site lies on a horizontal or vertical
line through a port or an edge of a label.

For a solution L of a boundary labeling problem, we
define the total length of all leaders in L by length(L).

2 Structure of Planar Solutions

In this section, we attack our problem presenting a
series of structural results of increasing strength. For
simplicity, we assume fixed ports. For sliding ports,
we can simply fix all ports to the bottom-left corner of
their corresponding labels. First we show that we can
split a planar two-sided solution into two one-sided
solutions by constructing an xy-monotone, rectilin-
ear curve from the top-right to the bottom-left corner
of R. Afterwards, we provide a necessary and suffi-
cient criterion to decide whether for a given separation
there exists a planar solution. This will form the ba-
sis of our dynamic programming algorithm, which we
present in the next section.

Definition 1 We call an xy-monotone, rectilinear
curve connecting the top-right to the bottom-left cor-
ner of R an xy-separating curve. We say that a planar
solution to Two-Sided Boundary Labeling with
Adjacent Sides is xy-separated if and only if there
exists an xy-separating curve C such that
a) the top sites and all their leaders lie on or above C
b) the right sites and all their leaders lie below C.

It is not hard to see that a planar solution is not xy-
separated if there exists a site p that is labeled to the
right side and a site q that is labeled to the top side

with x(p) < x(q) and y(p) > y(q). There are exactly
four patterns in a possible planar solution that satisfy
this condition. Moreover, these patterns are the only
ones that can violate xy-separability.

Lemma 1 A planar solution is xy-separated iff it
does not contain any of the following patterns P1–P4

r

p

C q

(P1)

p
r

qC

(P2)

C

q
r

p

(P3)

p
q

rC

(P4)

Next, we claim that any planar solution can be
transformed into an xy-separated planar solution.
Our proof shows that each of the four patterns of
Lemma 1 can be resolved by rerouting leaders such
that no crossings arise and the leader length decreases.
We cannot present the proof due to space constraints.

Proposition 1 If there exists a planar solution L to
Two-Sided Boundary Labeling with Adjacent
Sides, then there exists an xy-separated planar solu-
tion L′ with length(L′) ≤ length(L).

Since every solvable instance of Two-Sided Bound-
ary Labeling with Adjacent Sides admits an xy-
separated planar solution, it suffices to search for such
a solution. Moreover, an xy-separated planar solution
that minimizes the total leader length is a solution of
minimum length. In Lemma 2 we provide a neces-
sary and sufficient criterion to decide whether, for a
given xy-monotone curve C, there is a planar solu-
tion that is separated by C. We denote the region
of R above C by RT and the region of R below C
by RR. For each horizontal segment of C consider
the horizontal line through the segment. We denote
the parts of these lines within R by h1, . . . , hk, re-
spectively. Further let h0 be the top edge of R. The
line segments h1, . . . , hk partition RT into k strips,
which we denote by S1, . . . , Sk from top to bottom,
such that each strip Si is bounded by hi from below
for i = 1, . . . , k; see Fig. 1a. Additionally, we de-
fine S0 to be the empty strip that coincides with h0.
Note that this strip cannot contain any site of P . For
any point p on one of the horizontal lines hi, we de-
fine the rectangle Rp, spanned by the top-right corner
of R and p. We define Rp such that it is closed but
does not contain its top-left corner. In particular, we
consider the port of a top label as contained in Rp,
only if it is not the upper left corner.

A rectangle Rp is valid if the number of sites of P
above C that belong to Rp is at least as large as the
number of ports on the top side of Rp. The central
idea is that the sites of P inside a valid rectangle Rp

can be connected to labels on the top side of the valid
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Fig. 1: The strip condition. a) The horizontal seg-
ments of C partition the strips S0, S1, . . . , Sk. b) Con-
structing a planar labeling from a sequence of valid
rectangles.

rectangle by leaders that are completely contained in-
side the rectangle. We are now ready to present the
strip condition.

Condition 1 The strip condition of strip Si is satis-
fied if there exists a point pi ∈ hi ∩RT, such that Rpi

is valid.

We now prove that, for a given xy-montone curve C
going from the top-right corner to the bottom-left cor-
ner of R, there exists a planar solution in RT for the
top labels if and only if C satisfies the strip condition
for all strips S0, . . . , Sk in RT.

Lemma 2 Let C be an xy-monotone curve from the
top-right corner of R to the bottom-left corner of R.
Let P ′ ⊆ P be the sites that are in RT. There is a
planar solution that uses all top labels of R to label
sites in P ′ in such a way that all leaders are in RT if
and only if each horizontal strip Si, as defined above,
satisfies the strip condition.

Proof. To show that the conditions are necessary,
let L be a planar solution for which all top leaders
are above C. Consider strip Si, which is bounded
from below by line hi, 0 ≤ i ≤ k. If there is no site
of P ′ below hi, rectangle Rp is clearly valid, where p
is the intersection of hi with the left side of R , and
thus the strip condition is satisfied. Hence, assume
that there is a site p ∈ P ′ that is labeled by a top
label, and is in strip Sj with j > i; see Fig. 1a. Then,
the vertical segment of this leader crosses hi in RT.
Let p′ denote the rightmost such crossing of a leader
of a site in P ′ with hi. We claim that Rp′ is valid. To
see this, observe that all sites of P ′ top-right of p′ are
contained in Rp′ . Since no leader may cross the verti-
cal segments defining p′, the region Rp′ ∩RT contains
the same number of sites as Rp′ contains ports on its
top side, i.e., Rp′ is valid.

Conversely, we show that if the conditions are sat-
isfied, then a corresponding planar solution exists.
For i = 0, . . . , k − 1, let p′i denote the rightmost
point of hi ∩ RT, such that Rp′

i
is valid. We de-

fine pi to be the point on hi∩RT, whose x-coordinate

is minj≤i{x(p′j)}. Note that Rpi
is a valid rectangle,

as, by definition, it completely contains some valid
rectangle Rp′

j
with x(p′j) = x(pi). Also by definition

the sequence formed by the points pi has decreasing x-
coordinates, i.e., the Rpi grow to the left; see Fig. 1b.

We can prove inductively that, for each i = 0, . . . , k,
there is a planar labeling Li that matches the labels
on the top side of Rpi

to sites contained in Rpi
, in such

a way that there exists an xy-monotone curve Ci from
the upper-left corner of Rpi

to its lower right corner
that separates the labeled sites from the unlabeled
sites without intersecting any leaders. Then Lk is the
claimed labeling. �

A similar strip condition (with vertical strips) can
be obtained for the right region RR of a partitioned
instance. The characterization is completely symmet-
ric.

3 The Algorithm

Now we describe how to find an xy-monotone chain C
that satisfies the strip conditions. For that purpose
we only consider xy-monotone chains that lie on the
dual of the grid induced by the sites and ports of the
given instance. When traversing this grid from grid
point to grid point, we either pass a site (site event)
or a port (port event). By passing a site, we decide if
the site is connected to the top or to the right side.
In the following, we describe a dynamic program that
finds an xy-separating chain in O(n3) time.

Let there be mR ports on the right side of R and mT

ports on the top side of R, then the grid has size
[n + mT + 2] × [n + mR + 2]. We define the grid
points as G(x, y), with G(0, 0) being the bottom-left
and r := G(n+mT+2, n+mR+2) being the top-right
corner of R. Further, we define Gx(s) := x(G(s, 0))
and Gy(t) := y(G(0, t)).

t
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p
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Fig. 2: Step of the dy-
namic program where p en-
ters the rectangle spanned
by r and G(s− 1, t).

An entry in the ta-
ble of our dynamic
program is described
by three values. The
first two values are s
and t, which give the
position of the cur-
rent search for the
curve C. The in-
terpretation is that
the entry encodes the
possible xy-monotone curves from r to pC := G(s, t);
see Fig. 2. The remaining value u denotes the num-
ber of sites above C in the rectangle spanned by r
and pC . Note that it suffices to store u, as the num-
ber of sites below the curve C can directly be derived
from u and all sites that are contained in the rect-
angle spanned by r and pC . We denote the first val-
ues describing the positions of the curves by the vec-
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tor c = (s, t). Our goal is to compute a table T [c, u],
such that T [c, u] = true if and only if there exists an
xy-monotone chain C, such that the following condi-
tions hold. (i) Curve C starts at r and ends at pC .
(ii) Inside the rectangle spanned by r and pC , there
are u sites of P above C. (iii) For each strip in the two
regions RT and RR defined by C the strip condition
holds.

It follows from these conditions, Proposition 1 and
Lemma 2 that the instance admits a planar solution
if and only if T [(0, 0), u] = true for some u.

Let us now proceed to describe how to compute the
table. Initially, we set c = (n + mT + 2, n + mR + 2).
We initialize the first entry T [c, 0] with true. The
remaining entries are initialized with false.

Let c := (s, t) be the current grid point we checked
as endpoint for C. Based on the table T [c, ·] we
then compute the entries T [c−∆c, ·] where the vec-
tor ∆c = (∆s,∆t) is chosen in such a way that ex-
actly one of both entries ∆s,∆t ∈ {0, 1} has value 1.
We classify such steps, depending on whether we
cross a site or a port. We give a full description
for ∆c = (1, 0), i.e, we decrease s by 1. The other
case is completely symmetric. Assume T [c, u] = true.
We distinguish two cases, based on whether we cross
a site or a port.

Case 1: Going from s to s − 1 is a site event,
i.e., there is a site p with Gx(s) > x(p) > Gx(s − 1).
Note that, by our general position assumption and by
the definition of the coordinates, the site p is unique.
If y(p) > Gy(t), then p enters the rectangle spanned
by G(s−1, t) and r, and it is located above C. We thus
set T [c−∆c, u + 1] = true. Otherwise we set T [c−
∆c, u] = true. Note that the strip conditions remain
satisfied since we do not decrease the number of sites
in any region.

Case 2: Going from s to s − 1 is a port event,
i.e., there is a label ` on the top side, whose port
is between Gx(s − 1) and Gx(s). Thus, the region
above C contains one more label. We therefore check
the strip condition for the strip above the horizontal
line through G(s− 1, t). If it is satisfied, we set T [c−
∆c, u] = true.

This immediately gives us a polynomial-time algo-
rithm for Two-Sided Boundary Labeling with
Adjacent Sides. The running time crucially relies
on the number of strip conditions that need to be
checked. We show that after a O(n2) preprocessing
phase, such queries can be answered in O(1) time.

To implement the test of the strip conditions, we
use a table BT, which stores in the position BT[s, t]
how large a deficit of top sites to the right can be
compensated by sites above and to the left of G(s, t).
To compute this matrix, we use a simple dynamic pro-
gram, which calculates the entries of BT by going from
the left to the right side. Once we have computed this
matrix, it is possible to query the strip condition in the

dynamic program that computes T in O(1) time. The
table can be clearly filled out in O(n2) time. A simi-
lar matrix BR can be computed for the vertical strips.
Altogether, this yields an algorithm for Two-Sided
Boundary Labeling with Adjacent Sides that
runs in O(n3) time and uses O(n3) space. However,
the entries of each row and column of T depend only
on the previous row and column, which allows us
to reduce the storage requirement to O(n2). Using
Hirschberg’s algorithm [4], we can still backtrack the
dynamic program and find a solution corresponding
to an entry in the last cell in the same running time.

Theorem 3 Two-Sided Boundary Labeling
with Adjacent Sides can be solved in O(n3) time
using O(n2) space.

In order to increase the performance of our algorithm,
we can reduce the dimension of the table T by 1. For
any search position c, the possible values of u, for
which T [c, u] =true form an interval. Thus, we only
need to store the boundaries of the u-interval. Fur-
ther, we can compute the tables BT and BR back-
wards, i.e., in the direction of the dynamic program,
by precomputing the entries of BT and BR on the
top and right side. Using Hirschberg’s algorithm, this
reduces the running time to O(n2) and the space to
O(n).

Theorem 4 Two-Sided Boundary Labeling
with Adjacent Sides can be solved in O(n2) time
using O(n) space.
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