Solving Optimization Problems on Orthogonal
Ray Graphs

Steven Chaplick!, Philipp Kindermann?, Fabian Lipp?, Alexander Wolff?

! Institut fiir Mathematik, TU Berlin, Germany
chaplick@math.tu-berlin.de
2 Lehrstuhl fiir Informatik I, Universitit Wiirzburg, Germany
http://wwwl.informatik.uni-wuerzburg.de/en/staff/

1 Introduction

In this paper, we consider specialized subclasses of the intersection graphs of rays
(or half-lines) in the plane. These were introduced by Kostocha and Negettil [5].
Formally, a graph G = (V| E) is said to be a ray graph when each vertex v € V
can be represented by a ray r, = (py,d,) originating from the point p, and
continuing endlessly in direction d,, such that uv is an edge if and only if r,, and 7,
intersect. The class of ray graphs is easily seen as a subclass of segment graphs,
that is, the intersection graphs of line segments in the plane. More specifically,
ray graphs are a subclass of unit segment graphs, that is, the intersection graphs
of line segments in the plane where every line segment has the same length.

We study orthogonal ray graphs where the directions of the rays are restricted
to be axis-parallel. Formally, a graph G = (V, E) is an orthogonal ray graph
(ORG) if and only if:

(i) each vertex v can be represented by a ray r, in the plane originating from
point p, = (Zy,Yy), its anchor, and continuing endlessly in the direction
dy € {1, },+, =1},

(ii) no point p, lies on a ray 7, with u # v (in other words, no two anchors lie
on the same horizontal or vertical line),

(iii) wv is an edge if and only if the ray originating from p, continuing in the
direction d, intersects with the ray originating from p, and continuing in
direction d,.

For an ORG G, we refer to such a collection {r, | v € V(G)} as an ORG-model
of G. We will often identify a vertex v with its ray r, and use v to refer to 7,
as well. Correspondingly, we use V also for the set of rays, and subdivide it into
the sets V4, V|, V_, and V_, of rays pointing 1, |, <=, —, respectively; we call
the rays in these sets upwards, downwards, left, and right rays, respectively. We
also use Vier = V4 U V) and Vhor = Ve U V.. Additionally we order the rays
pointing in one direction by length: For i,j € V; we say that ¢ is longer than j
if y; < y; (analogously defined for V|, V_, and V_,).

ORGs were introduced by Shrestha et al. [7] in connection with defect toler-
ance schemes for nano-programmable logic arrays [6/9]. We further distinguish

2 S. Chaplick et al.

10122
lle—g—7e | 6
C 1 4 2
1AL A 2
9= ° 0% :3 1 1 4 1 4 2
. ey p s<loe ! J 4
)
8 4 3« . 36— | 1,3
6 ® ® ¢ ¢
(a) ORG: Ci2 (b) 3DORG: Cs (c) 2DORG: C4

Fig.1: The longest cycles in the different ORG models.

two subclasses of orthogonal ray graphs. The first is 2D-orthogonal ray graphs
(2DORGSs) where, w.l.o.g., we restrict the directions of the rays to be 1 or —.
2DORGs were introduced by Shretha et al. []]). Additionally, we refer to an
ORG-model with two directions as a 2DORG-model. Similarly, 3D-orthogonal
ray graphs (3DORGs) are ORGs where, w.l.0.g., we restrict the directions of the
rays to be T, —, or +—, and we refer to an ORG-model with three directions as
a 3DORG-model.

Observation 1 The following induced cycles are forbidden in ORGSs:

(i) C; (i > 4) is a minimal forbidden induced subgraph for 2DORG. This has
been shown by Shreshta et al. [§].
(1) C; (j > 6) is a minimal forbidden induced subgraph for 3DORG.
(iii) Cx (k > 12) is a minimal forbidden induced subgraph for ORG. This has
been proved explicitly by Shrestha et al. [§] and implicitly by Kostochka and
Nesetril [5].

Note that these values are tight, that is, induced cycles of smaller lengths are
representable; see Fig.

2 Edge-Asteroids

An edge-asteroid, introduced by Feder et al. [I], is a set of edges {eg, €1, ..., e}
such that, for eachi = 0,1,. .., 2k, there is a path containing e; and €;11(mod 2x+1)
that avoids the neighbors of the end-vertices of €; 151 1(mod 2k+1)- Shreshta et
al. [8] have shown the following property of 2DORGs.

Theorem 1 ([8]). A bipartite graph is 2DORG if and only if its complement is
a circular arc graph.

Feder et al. [I] have proven the following theorem via the equivalence between
2DORGs and posets with height 2 and interval dimension 2.

Theorem 2 ([1]). A bipartite graph G is the complement of a circular arc graph
if and only if it contains no induced cycles of length at least 6 and no edge-
asteroids.

Solving Optimization Problems on Orthogonal Ray Graphs 3

19 [E

Fig. 2: The structure of a 3DORG-model with two independent edges.

Two edges uv, u'v’ are independent when there is no edge zy for x € {u, v},
y € {u/,v'}. A set of edges is called independent when all pairs of edges in the
set are independent. For an edge uv, its neighborhood N (uv) is the union of the
neighborhoods of its endpoints, that is, N(uv) = N(u) U N(v). We now make
some observations regarding independent sets of edges.

Observation 2 In a 8DORG-model R of a connected graph G, every set E*
of independent edges is linearly ordered e1 < e < ... < e by the left-to-right
order of the vertical rays. Moreover, for every i € {2,...,k — 1}, G\ N(e;) is
not connected.

Proof. This is easy to see since every path from e; to e; must pass through the
neighborhood of every e; (i € {2,...,k —1}). O

Observation 3 Let G be a SDORG with an independent pair of edges uv,u'v’
such that G\ N(uv) and G\ N(u'v") are both connected. Then, every 3DORG
representation of G must correspond to one of the two structures depicted in
Fig. [] where there can be no ray strictly contained in the shaded regions.

These observations lead to the following corollary.

Corollary 1. If a graph G contains an independent triple of edges {e1,ez,e3},
where G\ N(e;) is connected for every i € {1,2,3}, then G is not a 3DORG.

With Corollary [T we can show that nearly all of the minimal forbidden
induced subgraphs of 2DORGs are also not 3DORG graphs. There are only a few
graphs which need to be considered separately. In particular, C is a SDORG, Cg
(and longer cycles) are not 3DORG, and there are two infinite families from the
forbidden characterization of 2DORG which do not have a “bad” independent
triple of edges. The base cases for these infinite families are depicted in Fig. 3
We denote the first family by G and the second family by G2.

Definition 1. Consider a 3DORG drawing of a graph with vertex set V. Then,
Vier denotes the vertices represented by vertical rays and Vior denotes the vertices
represented by horizontal rays.

Definition 2. Consider a 3DORG drawing of a graph. Then, the x-coordinates
imply an ordering of the vertical rays. Let a,b be vertices represented by vertical
rays. Then, a < b states that the ray of a is left of b’s ray.

4 S. Chaplick et al.

Observation 4 Let G = (V, E) a graph, uwv € E and G’ = (V', E') = G\ N (uw).
If G’ is connected the following statement holds for every SDORG drawing of G
(w.l.o.g. u € Vier): for all a € V., either a < u or u < a holds. In other words:
all vertices in V' represented by vertical rays have to be on the same side of u.

Proof. Assume there is a 3DORG drawing in which this does not hold, that
is, there are two vertices a,c € V. with @ < u < ¢. Then every path from a
to ¢ must involve a neighbor of u or v; see Fig. . This is a contradiction as

G\ N(uv) is connected. O

Observation 5 Let a,b, ¢ ne vertical rays with a < b < ¢ and let z be a common
neighbor of a and c that is not adjacent to b. Then, every neighbor of b is adjacent
to a orc.

Equivalent statement: If a and ¢ have a common neighbor that is not adjacent
to b, and b has a neighbor which is adjacent neither to a nor to c, then there is
no 3DORG drawing for this graph with a < b < c.

Proof. Up to the direction of z, there is only one 3DORG drawing of a, b, ¢ and
z; see Fig. 5l In this drawing, b inside the area spanned by a, ¢ and z. Thus,
every horizontal ray that intersects b also has to intersect a or c. a

The infinite families G! = (G} = (V,1, E}))pen and G2 = (G2 = (V.2, E?))nen
are given by the following sets for n > 3, where [k] = {1,2,...,k} [8]. The graphs
are depicted in Fig. [6}

Vo ={ai,bi,ci d; | i € [n]} Vi =A{aidilie[n—1}uU
{bi,ci | i € [n]}U{z,y}
jeli-1yu El={(ca)licn],jeli-2}u
ci,bj) | i € [n],j € [iJ}U {(ci,b;) i€ [n],j€i]}u
je€ (di,a;) |i€[n—1],j €[]}V
je (di,bj)|ten—1],j€i—1]} U
(

{
[i —2]}u {
{ Y, bn)v (xa Cl)}

Fig. 3: Edge-asteroids without “bad” independent triples of edges. For the red
edges uv, the graph G \ N(uv) is connected, that is, we can use Observation

Solving Optimization Problems on Orthogonal Ray Graphs 5

a u._...¢

Fig. 4: Nllustration of Observation

Lemma 1. The graphs in the families G' and G? cannot be represented by an
3DORG drawing.

Proof. In the following, we give a detailed proof for the graphs in G'. We can
use a similar argument for G2.

Assume there is a 3DORG drawing of G for any n > 3. W.l.o.g., let a;,b; €
Vhor and ¢;,d; € Vier for 1 < i < n. Applying Observation [4] for the edge dib,,
we can infer that the rays for vertices {¢1,...cn—1,da,...,d,} are on one side
dy, w.l.o.g., the right side. The ray for ¢, also lies to the right of d;—otherwisem
the horizontal ray b,,_1 connecting ¢,, and ¢,—1 would be adjacent to d;). Hence,
dy is the leftmost vertical ray.

We show ¢; < d; for every n > i > 1 by induction: As d; and ¢, have b,
as a common neighbor and d,, has neighbor a,,, Observation [5| claims that d; <
d, < ¢, cannot be the ordering of the rays. Because d; is the leftmost ray, ¢,
has to be left of d,, that is, ¢, < d,. In the inductive step, by Observation
using b;_; as the common neighbor of ¢; and ¢;_1, and a; as neighbor of d;, it
follows that ¢; < d; < ¢;—1 is a forbidden ordering. Since, by induction, ¢; < d;,
it follows that ¢;—1 < d;. Further, the ordering d;_1 < ¢;—1 < d; is forbidden, as
a;_1 is a common neighbor of d;_; and d;, and b;_; is a neighbor of ¢;_1. Thus,
we conclude ¢;_1 < d;_1. From this induction argument, we can deduce ¢; < d,
which is a contradiction to d; being the leftmost vertical ray. a

Fig.5: Illustration of Observation |5} The ray for z is drawn without arrows
because the direction does not matter.

6 S. Chaplick et al.

C1 ap bn Y

Fig. 6: Drawing of the graph families G! (left picture) and G? (right picture) [8].

3 Maximum Independent Set and Minimum Independent
Dominating Set

In this section, we consider the problems MAXIMUM-WEIGHT INDEPENDENT
SET (MIS) and MINIMUM-WEIGHT INDEPENDENT DOMINATING SET (IDS).
First, we show that MIS can be solved for 2DORG in O(nlogn) time, using an
algorithm of Felsner et al. [2] for MAXIMUM-WEIGHT CLIQUE (MC) on trapezoid
graphs. Then, we present an algorithm that solves MAXIMUM-WEIGHT INDE-
PENDENT SET for 3DORGs in O(n?) time. Using this algorithm as a subroutine,
we can solve MIS on 4DORGs in O(n*) time. With similar ingredients, we can
solve MIS on the class of SegRay graphs (which is incomparable to the class of
4DORGS). Finally, we turn to IDS.

Theorem 3 ([2]). MC on trapezoid graphs with given representation can be
solved in O(nlogn) time and O(n) space.

Corollary 2. MAXIMUM-WEIGHT INDEPENDENT SET on 2DORGs with given
representation can be solved in O(nlogn) time and O(n) space.

Proof. Let G be a graph with a 2DORG representation. The complement G
is a trapezoid graph and its trapezoid representation can be computed in O(n)
time. Any maximum (weighted) independent set in G corresponds to a maxi-
mum (weighted) clique in G. Felsner et al. [2] showed that MC can be solved in
O(nlogn) time and linear space using the trapezoid representation. O

Using the algorithm of Felsner et al. [2] as a subroutine, we can solve MIS on
3DORGS simply as follows. We “guess” the vertical ray r; with the bottommost
anchor p; in a fixed optimal solution V*. This ray subdivides the plane into three

Solving Optimization Problems on Orthogonal Ray Graphs 7

Algorithm 1: Compute values in table T}[4, j]

1 Sort vertical rays by x-coordinate: v1,...,vx from left to right
2 fori=1to k do

3 c+0

4 for j =i+ 1 to k do

5 if v; shorter than v; then

6 ‘ c+—c+1

7 else if v; longer than v; then

8 | Ty[i,j] ¢

regions; see Fig. [8¢ the halfplane H[i] below p; and the quarterplanes Quwl[i]
and Qne[i] to the left and right of r;, respectively. Since our partition is based on
the bottommost vertical ray r; in V*, Hg[i] does not contain the anchor of any
vertical ray in V*. Instead, all horizontal rays in Hgli] are part of V*. Since we
assumed that r; is in V*, no ray with anchor in Qpy[i] can point to the right and
no ray in Qpe[i] can point to the left. Hence, V* consists of the solutions of the
two independent 2DORG instances (V3 UV) NQuw[i] and (V4 UV,)NQre[i] and
of all horizontal rays in Hj[i]. Therefore, knowing the bottommost ray in V*,
we can compute V* in O(nlogn) time. We can find the bottommost ray simply
by testing each of the at most n candidates in Vi, which yields a running time
of O(n?logn). We now show how to reduce this to O(n?) time.

Theorem 4. MAXIMUM-WEIGHT INDEPENDENT SET on 8DORGSs with given
representation can be solved in O(n?) time and O(n?) space.

Proof. Let G = (V,E) be a graph with a 3DORG representation. We use a
dynamic program to find a maximum independent set S. In the following, we
describe the version for maximum cardinality, but the algorithm can easily be
adapted to maximize the weight of the independent set. We refer to a maximum
independent set as a MIS.

For two vertical rays 4,7 € Ve, with j being longer than i, we define the
following values (see Fig. [7): T}[7, §] is the number of vertical rays between ¢ and
Jj that are shorter than . T,_[i, j] is the number of horizontal rays k directed left
with z < z; and y; < yx < ;. Accordingly, 7', [¢, j] is the number of horizontal
rays k directed right with z;, > z; and y; < yr < ;.

Algorithms [I| and [2| show how the tables T3[i, j] and T.[i, j] are populated
in O(n?) time. Clearly, T, [i, j] can be filled up in the same manner.

For one vertical ray j € Vier, we define the following values (see Fig. :
Thw[j] is the maximum cardinality of a set of left and upwards rays that start
left of j and do not intersect each other. T,c[j] is the maximum cardinality of
a set of right and upwards rays that start right of 7 and do not intersect each
other. T[4] is the number of horizontal rays that lie below j.

Obviously, Ts[j] can be computed in linear time for a given ray j € Vie.
The value Ty [j] (and equally Tyc[j]) requires a more difficult approach. We

8 S. Chaplick et al.

Algorithm 2: Compute values in table T_[i, j]

1 Sort all rays by y-coordinate: v1, ..., v, from bottom to top

2 for j =1tondo

3 if v; is vertical then

4 c+0

5 fori=j+1tondo

6 if v; is horizontal directed left and starts left of v; then
7 ‘ c—c+1

8 else if v; is vertical and left of v; then

9 | Teli,j] +c

Algorithm 3: Compute MIS of a 3DORG instance
1 Compute tables Ti, T and T, Thw and The, and Ts.

2 Using Equation (1)), find the longest vertical ray j and hence an indep. set S
3 if |Vhor| > |S| then S + Vior
4 return S

show an algorithm that populates the table Ty [j] for all j € Vie from left
to right in total time O(n?). To get the value T,y [j], we distinguish two cases:
(A) there is no vertical ray left of j, (B) there is at least one vertical ray left of
j. In case we can select all horizontal rays left of j that are directed to the
left. In case we guess the longest vertical ray that is left of j, denoted by
1. The maximum number of independent rays left of j including 7 as the second
longest ray can now easily be computed from the values stored before (again,
see Fig. . Note that no vertical rays in the bottom area can be selected (as
they would be longer than) and no horizontal rays in the top right area can
be selected (as they would intersect ¢ or 7). The following formula describes the
computation of Tyy[J].

Towli] = l.Ien‘r;‘X (Tow[i] + T4[i, §] + T [i, 5]) + 1
i left of j and ;,ﬁrorter than j

We now use the same technique to guess the longest vertical ray in the MIS,
denoted by j. The selection of this longest vertical ray partitions the plane into
three areas, see Fig. |8l Note that no vertical rays in the bottom area can be
selected, and no horizontal rays in the top left or right area can intersect j.
Hence, we can use the precomputed values for Thy[j], Thelj], and Ts[j] to get
the cardinality of a maximum independent set S:

18] = max (T[] + Tucls] + T<[i]) + 1 M)

The complete algorithm for finding the MIS is summarized in Algorithm
As described for every single step of the algorithm, the total runtime is in O(n?).

Solving Optimization Problems on Orthogonal Ray Graphs 9

S AN
e
an[i] 7
—e . i
T4[i, 5]
>
______________ P
—
—

Fig. 7: The value of T, [j] is composed of three parts. For computing Ty [J], we
“guess” the second longest ray 4 to the left of ray j. This subdivides Qnw[j] into
three regions that can be solved independently.

The tables for the dynamic program use O(n?) space. Finally, we check whether
the set of all horizontal rays is larger than the set found before. a

Theorem 5. MAXIMUM-WEIGHT INDEPENDENT SET 4DORGSs with given rep-
resentation can be solved in O(n*) time and O(n?) space.

Proof. Let G = (V, E) a graph with a 4DORG representation. In the following,
we describe the version for maximum cardinality, but the algorithm can easily
be adapted to maximize the weight of the independent set. The idea is to guess
the longest rays ¢ € V._ and j € V., that are included in the MIS S. This
selection splits up the instance into two 3DORG representations, see Fig. [0 resp.
(depending on the position of ¢ and j). Algorithm [4]gives a formal description
of our approach. The rays are partitioned into the sets Vy, ..., Vg by the position
of their anchor point.

In the first case (see Fig. E[) we filter the rays depending on their direction
and association to one of the regions. For the upper 3DORG instance (consisting
of the sets Va, Vi, Vo, and V) we have the following restrictions: We cannot
select any rays directed downwards as they would intersect ¢ or j. We cannot
select any rays directed right from V), as they would be longer than j. Likewise,
we cannot select any rays directed left from Vi as they would be longer than
1. Finally, we cannot select vertical rays in Vp as they would intersect i or j.
The restrictions for the lower instance are similiar. We split up the horizontal
rays in Vp: rays directed to the right are asigned to the upper instance, those
directed to the left are assigned to the lower instance. After that, we solve the
upper and lower instance independently in O(n?) time using the algorithm from
Theorem [4 and join them. This yields the MIS with respect to the chosen rays
7 and j.

10 S. Chaplick et al.

'S
r—>
— —
T 4] J Thels]
*—
>)
—
__________________ _.__________________
—0
~—
T=j] —
-
—e

Fig.8: The longest vertical ray j in a MIS decomposes the plane into three
regions that can be solved independently.

In the second case (see Fig. we filter the rays from Vyu, Vo, Vg, and Vg
in a similiar way and solve MIS for two independent 3DORG instances. After
that, we add all vertical rays from Vp as they cannot intersect each other and
any ray of the 3SDORG instances.

In Algorithm {] we assume that we always select at least one ray directed to
the left and one ray directed to the right for our MIS. Therefore, we finally need
to check if there is a better solution that avoids one of them or does not use
horizontal rays at all.

The total runtime is in O(n*) as we need to solve the 3DORG instances
for every pair of rays i,j. Filtering the rays to get the instances only needs
linear time. We only need a constant amount of space to store the so far largest
independent set S. So we only need O(n?) space in total like in Theorem O

Theorem 6. MAXIMUM-WEIGHT INDEPENDENT SET on SegRay graphs with
given representation can be solved in O(n®) time and O(n?) space.

Proof. For SegRay graphs we use a similiar dynamic programming approach
as in Theorem {4 We compute a two-dimensional table T'[i, k] where ¢ and k
are vertical rays and i is left of k. The entry Ti, k] describes the maximum
number of independent vertices that are completely contained in the rectangle
{(z,y) € R? | 2; < < 2, and y > max{y;,yx}}. We also allow —oo for i resp.
oo for k to describe rectangles that are not bounded by a ray to the left resp. to
the right.

Solving Optimization Problems on Orthogonal Ray Graphs 11

Fig.9: z; > x;. Green: upper 3dorg-instance, red: lower 3dorg-instance. TODO.
W.l.o.g. we assume that ¢ is above j.

Fig.10: z; < z;. TODO

12 S. Chaplick et al.

Algorithm 4: Compute MIS of a 4DORG instance

15«0
2 foreach i € V_ do
3 foreach j € V_, do
4 if z; < x; then // see Fig. |§|
5 Vupper — (VA N (V<— U VT)) @] (VB \ V¢) @] (VC n (V—> @] VT)) U (VD n V—»)
6 Viower — (VEN (Vo UV))U(VE\VH)U (Ven (Vo UV)U(VbNV)
7 Supper < MIS(Vipper)
8 Slower — MIS(‘/lower)
9 S" = Supper U Stower U {7,5}
10 else // see Fig.
11 Vipper — (Van (Ve U V) U (Ve N (VS5 U VL))
12 Viower < (VEN (V- UV,))U (Ve N (V5 UVY))
13 Supper — MIS(Vupper)
14 Slower — MIS(‘/lower)
15 S = Supper U Stower U {4,571 U (Vb N (V2 U VL))
16 if |9’| > |S| then
17 | S5
18 return S

We start computing T'[i, k] for neighbouring vertical rays ¢ and k by counting
the number of horizontal segments between them. After that, we increase the
interval between ¢ and k step by step to fill the table. To compute the value
T[i, k] we try all candidates j for the longest ray in the considered rectangle.
The selection of j decomposes the rectangle into three regions (see Fig. .
To get the maximum number of independent vertices for a given j we need
to add the previously computed values T, j] and T[j, k] with the number of
horizontal segments below the anchor of j. We can compute this number for all
feasible selections of j in linear time using a loop that runs through all vertices
from the bottom to the top. We also have to consider the special case where we
don’t pick any vertical rays between i and k. We choose T[i, k] as the maximum
of these values.

Hence, we need linear time for each entry in the table and thereby O(n?)
time to fill the whole table, which obviously needs O(n?) space. After the table
is populated, the size of a MIS is stored in T'[—oo, oc]. O

Next we present an efficient algorithm for the problem MINIMUM-WEIGHT
INDEPENDENT DOMINATING SET on 3DORG graphs.

Theorem 7. MINIMUM-WEIGHT INDEPENDENT DOMINATING SET on 3DORGs
with given representation can be solved in O(n®) time and O(n?) space.

Proof. For sake of simplicity, we show how to solve the unweighted version of
the problem. However, our algorithm can be used to solve the weighted version

Solving Optimization Problems on Orthogonal Ray Graphs 13

I N N
T[i, j] J T(j, k]
) k
______________ ._____________.
—o
— o
——o
——e T_[i,j k]
____________________________ .

Fig.11: The value of Ti, k] can be computed by guessing the longest vertical
ray j between ¢ and k. This decomposes the area in three regions, which can be
solved independently.

by simply changing the number of rays to the sum of their weights. We refer to
a minimum independent dominating set as an IDS.

Let G = (V, E) be a graph with a 3DORG representation. We use a similar
dynamic programming approach as in Theorem [4l We guess the longest vertical
ray j € Vier of the IDS. The selection of this longest vertical ray partitions the
plane into three areas, and the rays into four types; see Fig. Since the hori-
zontal rays in the bottom area lie completely below j, they cannot be dominated
by a vertical ray and have to lie in the IDS (refer to the blue rays). Because
of the independence constraint, the rays that intersect another ray that lies in
the IDS cannot lie in the IDS themselves (refer to the gray dotted rays). The
top left and top right area define two subproblems of IDS that can be solved
independently (refer to the black solid rays). However, there can be vertical rays
whose anchor lies below j and that are not dominated by a horizontal ray in the
bottom area (refer to the black dashed rays); we call these rays uncovered. The
uncovered rays have to be dominated by a solution to the subproblems in the
top left and top right area.

Hence, a solution to the top left area looks for an IDS of left and vertical rays
in this area that also dominates all uncovered rays. We do not have to consider
all of them, though. To this end, observe that any left ray in the top left area
that dominates the rightmost uncovered ray i that lies left of j dominates all
uncovered rays. Thus, we only have to look for a solution to the top left area
that also dominates ¢. The same argument can be applied to the top right region
with the leftmost uncovered ray k that lies right of j.

14 S. Chaplick et al.

A~ A A AN A E N
1 ! 1 .
1 ! 1 :
1 [} | .
1 ! | o
1 ! 1 -
1 : 1 :
| KA E
| ' | ot .
|| | A ’
1 1 5
! T [, i U Thelg, K]
: ® : o : J
| | T ’
1 ') T
i | L Co
N 1 e :
errennns nl : ° 1
1 : : :
----- I
< ¢ o .
< ® N
! :
 Ts[j] e—— >
¢ :
o S >

A
«

Fig.12: The longest vertical ray j in a MIDS decomposes the plane into three
regions with four types of rays: blue rays have to lie in the MIDS, gray dotted
rays are dominated by blue rays, black rays are not dominated by blue rays, but
black dashed rays cannot lie in the MIDS.

Let j € Vier be a vertical ray. We define T [j] as the number of horizontal
rays that lie below j. For any ¢ € Vie, with ; < 2; and y; < y;, we define Ty (4, ¢]
as the minimum cardinality of a set of left and vertical rays that start left of 7,
do not intersect each other, intersect ¢, and intersect all other left and vertical
rays that start left of j. Analogously, for any k£ € Vier with z; < x;, and y, < yj,
we define T[4, 4] as the minimum cardinality of a set of right and vertical rays
that start right of j, do not intersect each other, intersect k, and intersect all
other right and vertical rays that start right of j.

Note that, at the top level, there is a unique rightmost (leftmost) uncovered
ray l; (r;) that lies left (right) of j. Hence, the cardinality of an IDS is:

max (Tawld, j] + Tuelg, 5] + Ts[4]) + 1 (2)

We proceed by showing how to calculate a table entry Tyhw[j,¢]. Again, we
guess the longest vertical ray k with x; < z; and yx > y;. This partitions Quw 7]
into three regions; see Fig. First, in the (red) region horizontally between &
and j and above the anchor of k, all horizontal rays are dominated by &k or j
and cannot lie in the IDS. Thus, all vertical rays in this area have to lie in the
IDS. We denote the number of these rays by T4 [k, j]. Second, in the (blue) region
vertically between k and j and left of j, no vertical rays lie in the IDS, since they

Solving Optimization Problems on Orthogonal Ray Graphs 15

A AN AN 4 EA Y AN
'l k T E t=1i | |k j
—— o : —— |
| Tk, : | Tk, 1]
—Fe ® ' E —Fe E ® '
L . | Blkal L N AL
. ® : . @
1 1
— o . ' — o .
T [k, j] : ; Te-[k, 5]
1 1
’) : ®
o o
(a) Case 1: xp < 3 < x; (b) Case 2: z; < zk

Fig. 13: For computing T,w[7,], we guess the longest ray k to the left of ray j.
This subdivides Qnw[j] into three regions that can be solved independently.

are longer than k. Since there cannot be any vertical rays that intersect this
region, all left rays have to lie in the IDS; the right rays are dominated by j. We
denote the number of these rays by T, [k, j]. Finally, the vertical and left rays in
the (green) region top left of the anchor of k form an independent subproblem
together with the rightmost uncovered ray [that lies left of k. The solution of
this subproblem corresponds to the table entry Ty [k, {].

However, the subproblem corresponding to Ty [J, ¢} might be infeasible. First,
if there is an uncovered ray r with z; < z, < z;, then the IDS contains no
horizontal ray that intersects r, since the (red) region right of k allows only
vertical rays; a contradiction. Thus, assume that all uncovered rays lie left of k.
We distinguish between two cases.

Case 1: x, < z; < z;; see Fig. In this case, there has to be a left ray
in the (blue) area below k that intersects 4; otherwise, 7 is uncovered, which
contradicts the assumption.

Case 2: x; < xy; see Fig. [I3D] In this case, i is either dominated by a left ray
in the (blue) area below k, or by a left ray in the (green) area left of k. In the
latter case, it can be that | = 4, that is, ¢ is the rightmost uncovered ray.

It remains to describe the case that the IDS contains no vertical ray k with
zp < z; and y, > y;. In this case, all left rays in the quadrant Q,[j] lie in the
IDS. However, this only yields an IDS if these left rays intersect ¢ and all vertical
rays in Quu[j]

Because of the numerous cases and the necessity to check whether the choice
of the next longest segment k yields an independent dominating set, we restrain
from giving the detailed recursion formula. By using the same approach as in
the proof of Theorem |4} we can populate the tables T and T} in O(n?) time.

16 S. Chaplick et al.

Note that the rightmost uncovered ray [depends only on ¢, j and k; hence, we
have only have to compare look at one entry of Ty for each k. Assuming that
we have precomputed a table U[k, j] that contains the rightmost uncovered ray in
the (blue) area vertically between k and j and left of j, we can find the rightmost
uncovered ray for the next recursion step in constant time by comparing the
x-coordinate of ¢ (if it is uncovered) with the z-coordinate of U[k, j].

To populate the table U, we once sort all vertical rays non-increasingly by
their z-coordinate, and then all left rays non-increasingly by the z-coordinate of
their anchor. Now, in order to compute a table entry Ulk, j], we walk through
the two sorted lists in parallel. Every time we encounter a vertical ray r that
lies in the (blue) area vertically between k and j and left of j, we look at the
horizontal rays in this area by walking through the other list until we encounter
the left-most left ray whose anchor lies right of r, and we maintain the highest
y-coordinate of these left rays. Then, we can check whether r is intersected by a
left ray by just comparing the y-coordinates. As soon as we find an uncovered ray,
we save it in the table; otherwise, we save nil. Clearly, we have to traverse the list
of vertical rays and the list of left rays once per table entry, so we require O(n?)
time to populate the table.

Hence, we can populate the table T,y [4,] in O(n?) time. The table Tyelj, k]
can be populated analogously in O(n?) time. Since T can be computed in
O(n?) time analogously to T, we can find an IDS using Equation [2 in O(n?)
time and O(n?) space.

O

4 Feedback Vertex Set

For a graph G = (V, E), a subset V' of V is called a feedback vertex set if G\ V' is
acyclic, i.e., if G\ V' is a forest. In the MINIMUM-WEIGHT FEEDBACK VERTEX
SET (FVS) problem one is given a weighted graph G and asked to determine a
feedback vertex set with minimum weight. Note that finding a minimum feedback
vertex set is equivalent to finding a maximum induced forest. FVS is among the
first problems shown to be NP-complete by Karp [3].

Kloks et al. [4] recently showed how to solve unweighted FVS efficiently on
chordal bipartite graphs, but they don’t provide any explicit time bound. It is
unclear whether their algorithm can be generalized to the weighted case. The
chordal bipartite graphs are the bipartite graphs without induced k-cycles for
k > 6. They are known to be a superclass of 2DORG, but do not contain 3DORG
due to Cg being a 3SDORG.

In this section, we show that the FVS problem is efficiently solvable on ORGs.
We begin by providing an O(n”) algorithm for a generalization of MINIMUM-
WEIGHT FEEDBACK VERTEX SET on 2DORG.

Theorem 8. The MINIMUM-WEIGHT FEEDBACK VERTEX SET problem can be
solved in polynomial time on 4DORGS.

Solving Optimization Problems on Orthogonal Ray Graphs 17

As is often the case regarding the FVS problem, for our algorithms it is
more convenient to discuss induced forests rather than feedback vertex sets.
Our algorithms also easily generalize to the weighted case, but, for simplicity,
we discuss the cardinality case.

We will solve the following generalization of the maximum induced forest
problem on 2DORGs, then reduce the 3DORG case to it, and finally reduce the
4DORG to the 3DORG case.

Problem 1. Generalized 2DORG Maximum Induced Forest.

Input: A set of upward rays U, a set of rightward rays R, and a set W of
downward and leftward rays.

Output: A subset F' of UU R such that the intersection graph of FUW is acyclic
and F' is maximum.

The technique we use is similar to our approach for the MAXIMUM-WEIGHT
INDEPENDENT SET problem. Note that a maximum induced forest F' of a ORG
G always contains at least one vertical ray since a cycle requires at least two
vertical rays. With this in mind we recursively describe the maximum induced
forests F' of an ORG G with respect to the longest vertical ray i in F' together
with some other related rays.

We summarize our dynamic programming approaches to produce a maximum
induced forest F' as follows. For a 2DORG G, F' can be decomposed into dis-
connected forests by considering its longest upward ray v and u’s two “highest”
neighbours. For a 3DORG G, F is described by considering the three longest
upward rays in F' together with two neighbours of the middle ray. This set of up
to 5 rays in F' partition F' into two generalized 2DORG subproblems on the left
and right of the middle ray. The 4DORG case is similarly described by up to
three pairs of “overlapping” upward and downward rays and up to 5 neighbours
of the middle pair of rays. This set of up to 11 initial rays decompose F' into
maximum induced forests of two generalized 3DORG subproblems on the left
and right of the middle pair.

4.1 2DORG

For a 2DORG G with upward rays U and rightward rays R, we describe the
recursive structure of every maximum induced forest of G so that a maximum
induced forest in G may be determined via dynamic programming. Consider a
maximum induced forest F' in G. We recursively decompose F’ into a collection of
maximum subforests on disjoint induced subgraphs of G. From this discussion we
will see that a maximum induced forest of G can be constructed by considering
maximum induced forests of O(n®) induced subgraphs of G. This will further
allow us to compute a maximum induced forest of G in O(n") time via dynamic
programming.

We begin by decomposing F' with respect to its longest upward ray i. To
do this, we consider three cases regarding the neighbours of ¢ which belong to
F. Namely, (1) when ¢ has no neighbours in F, (2) one neighbour p in F, and

18 S. Chaplick et al.

(3) at least two neighbours p,q in F. In the third case, we consider p and ¢ to
be the highest and second highest neighbours of i respectively. These cases are
depicted in Fig. and discussed as follows. While considering these cases we
will see that two additional cases need to be considered (these are discussed as
(4) and (5) below).

i i i

U S; U, S5 U; S; i)
2 q
S R,
R, R, R,

Fig. 14: The cases of the initial recurrence for FVS on 2DORG when including
the ray ¢ in F. From left-to-right when the ray ¢ has: no neighbours in F', one
neighbour in F'| and at least two neighbours in F.

(1) N(i)NF = (. Consider the three rectangular regions as depicted in the first
drawing of the figure: the green region (U;: the upper-left quarter-plane with i
as its right boundary), the red region (Rp: the lower half-plane whose upper
boundary is the y-coordinate of i), and the blue region (S;: the upper-right
quarter-plane with ¢ as its left boundary). Since ¢ has no neighbours, F' does
not contain any rightward rays originating in Uy, i.e., F' contains all upward
rays from U;. Also, since ¢ is the longest upward ray in F', no upward ray from
Ry belongs to F, i.e., F' contains all rightward rays in R;. Furthermore, no ray
in F originates outside of S; and intersects S;. Thus, the remainder of F' is a
maximum induced forest using rays strictly contained within S;. In particular,
F decomposes into {i}, all upward rays in Uy, all rightward rays in R;, and a
maximum induced forest from Sj.

(2) N(i) N F = {p}. Here F similarly decomposes into three regions Us, Ry,
and S5 (as depicted in the second drawing of the figure). Notice that p intersects
the region Us, but this does not prevent any upward ray in Us from belonging
to F, i.e., all upward rays in U, belong to F' regardless of the presence of p.
Additionally, the region R; is as in (1) and we again have all rightward rays
from R; in F. Now the remainder of F' consists of rays contained in the blue
region S;. Notice that F' cannot simply contain any maximum induced forest
from S since such a forest could create a cycle with p (i.e., we must include p as a
part of S3). Thus, F' decomposes into {7, p}, the upward rays in Us, the rightward
rays from Rj, and a maximum induced forest from Ss subject to not introducing
a cycle with p. We call such a ray p which passes through a region a crossing ray.

(3) IN(i) N F| > 2. Let p and g be the highest rightward rays adjacent to i in I’
where p, > ¢,. Now I’ decomposes into five regions Us, S3, S1, R1, and Ry with
respect to 4, p, and ¢ as depicted in the third drawing of the figure. The region

Solving Optimization Problems on Orthogonal Ray Graphs 19

R, is as before and again F' includes all rightward rays from it. However, the
left and right sides of ¢ are now split into the regions above ¢ and below ¢. In
particular, on the left of i and above ¢ is Us in which F' can only have upward
rays since this is above the highest rightward ray of 7. Also, on the right of ¢
and below ¢ is the region Ry and F' cannot contain any upward rays from Ro
otherwise such a ray would form a 4-cycle with 4, p, and ¢. Thus, F' contains
all rightward rays from Rp. Now, similar to the region Sy from (2), we observe
that F' contains a maximum induced forest F’ from S3 subject to F’ including
the crossing ray p. Finally, the region S, may also contain both upward and
rightward rays from F. However, rays in this region may be involved in cycles
in G with any of 7, p, or ¢. In particular, F' contains a maximum induced forest
F" from S; subject to including the “top” rays p and ¢ and the right-bounding
ray 4. Thus, in this case, F' consists of {i,p, ¢} together with the rightward rays
from R; and Ry, the upward rays from Us, and the maximum induced forests
F' from S5 and F” from S;.

The above discussion of the initial cases has provided us with further subcases
which need to be explored (namely, the S and S regions). Notice that, S7 and Sy
are special cases of S3. In particular, they correspond to allowing the crossing
ray p and bottom ray ¢ of S3 to be optional. With this in mind we first examine
the structure of F inside S3. This discussion will produce more general S-like
subproblems and they will be discussed afterwards.

(4) Decomposing F inside S-type regions. The S-type regions are parameterized
by a required left-side upward ray [, and optionally by a bottom rightward ray
b and a crossing rightward ray ¢ (as depicted in the first drawing of Fig. . As
in the initial case, I’ will always have at least one upward ray contained within
S3 since a single upward ray from S3 together with [, b, ¢ and all rightward rays
from S3 cannot form a cycle. Thus, we again enumerate the cases regarding the
longest ray ¢ in F' from this region and when 4 has zero, one, or at least two
neighbours in F'. These cases are given by the other seven drawings of the figure
and described in (4.1), (4.2), and (4.3) as follows.

(4.1) N(i) N F = (. This case follows similarly to (1) and is drawn second in
the figure. The differences here are that: the region U, is now described by two
upward rays forming its left and right boundary, and the boundary of region Rj3
is described by [, b, and i (note that the crossing ray does not play a role here).
Namely, F is {l,c,b,i} together with the upward rays from Uy, the rightward
rays from R3, and a maximum induced forest from S;.

(4.2) N(i)NF = {p}. This case follows similarly to (2) with the differences as in
(4.1). The third and fourth drawings in the figure depict the two cases regarding
whether p is equal to c. Notice that Us is to Uy as Us is to U;. In particular,
Us simply has an additional rightward ray which intersects it. Again, this ray
does not prevent F' from including all upward rays from Us, and Us is described
by the two upward rays forming its left and right boundary. Additionally, Ry

20 S. Chaplick et al.

l / i l i l i
S3 U4 S] U5 SZ U5 SZ
p y254
6 R, C R, C 7
b b b b
(@) () © (d)
l i / i / i / i
S, R, i1 S; Rs i1 S, R, {1 S, R, i
C
R; ¢ R, R, R,
b b b b
(e) (® (® (h)

Fig. 15: The cases when recursing on an S3 type subproblem regarding including
the ray i in F. (a) The initial state, (b) N(i) N F = 0, (c-d) N(i) N F = {p},
and (e-h) [IN())NF| > 2.

is simply the special case of R3 where the crossing ray c is absent. Thus, F is
{l,¢,b,p,i} together with the upward rays from Us, the rightward rays from R3
(or R4), and a maximum induced forest from Sy subject to the inclusion of the
crossing ray p.

(4.8) IN(i) N F| > 2. This case follows similarly to (3), where we again select p
and ¢ to be the highest neighbours of . This results in four subcases regarding
whether ¢ is distinct from p and ¢ (these are shown as the four drawings in the
lower row of the figure).

The red region (labelled R3 or R4 depending on the whether ¢ crosses through
it) is as before and again F' includes all rightward rays from it. The boundary of
this region is described by [(on the left), ¢ (on the top), and b on the bottom.
The left-side and right-side of ¢ are now split into the green region (Ug), the
red region (R or Rs), the upper-right blue region (S3), and the lower-left blue
region (S or S3).

Notice that the upper-right blue region is exactly as in (3) and as such we
also label it S5 and note that, as before, F' includes a maximum induced forest
from S3 subject to the inclusion of the crossing ray p.

The green region (Us) is described by two upward rays (I and i) and a bottom
ray g. As usual, F' includes all upward rays from Ug since Ug is above ¢ and left
of i. The red region (Ry or R5 depending on whether ¢ crosses through it) is
described by its left-side upward ray 4 and its top ray ¢. As in (3), this region
(and the space below it) does not include upward rays due to ¢, p, and ¢ being
in F. Thus, F contains all rightward rays from it.

Finally, for the lower-left blue region (5’2 or S5 depending on whether ¢
crosses through it), we note that it is again as in (3) except that is now has a left
boundary ray [and possible crossing ray c¢. Thus, F' is composed of {l,,b, ¢, p, q}

Solving Optimization Problems on Orthogonal Ray Graphs 21

together with the upward rays from Ug, the rightward rays from the red regions
(R2, R3, Ry, or R5), a maxium induced forest from S5 subject to the inclusion of
the crossing ray p and maybe ¢, and a maximum induced forest from Sy maybe
subject to the inclusion of c.

(5) Decomposing F inside S -type regions. The S'—type regions are parameterized
by a required right-side upward ray r, and required top rays t and ¢’ together with
an optional left-side upward ray [, and an optional crossing ray c (as depicted
in the first drawing of Fig. . Notice that, 51 and Sg are special cases of Sg
We again enumerate the cases regardmg the longest ray ¢ in F' from this region
and the neighbours of 7 in F. However, ¢ cannot have more than one neighbour
in F since all of its neighbours are also neighbours of 7, i.e., any two neighbours
of i together with r would form a 4-cycle. Thus, it is possible that F' contains
no upward ray from this region. This provides three cases in total to consider.
Namely, (5.1) when F has no upward ray, and when the longest upward ray from
this region in F has (5.2) zero or (5.3) one neighbour.

(5.1) F has no upward ray in this region. In this case we claim that F' contains
all rightward rays in the region (labelled Rg in the second drawing of the figure).
In particular, since Rg contains no upward rays, the neighbourhood of each
rightward ray p is a subset of the neighbourhoods of both ¢ and ¢'. However,
t’ and ¢ can only have one common neighbour in F (namely, 7). Thus, the
neighbourhood of each p in F' is guaranteed to be precisely r, and as such from
this region F includes {I,r,t,t’,c} and all rightward rays.

(5.2) The longest ray i in F' from this region has no neighbours in F. This case
follows similarly to (4.1) and is drawn third in the figure. Similar to Uy, the
region Uy is bounded by [, ¢, and additionally the ray ¢’ describes its maximum
y-coordinate. Again, F' contains all upward rays from this region. In the region
R; F will include all rightward rays for the same reason that F' includes all
rightward rays from Rg as in (5.1). Finally, in the region Sy we see two top rays
t and t', a right-side upward ray r, and the left-side upward ray ¢. Thus, F is
composed of {l,i,7,t,t',c}, all upward rays from Uz, all rightward rays from Ry,
and a maximum induced forest from Sy subject to {i,¢,t,r}.

(5.3) The longest ray i in F from this region has one neighbour p in F. This
case follows similarly to (4.2) and (5.1). The fourth, fifth, and sixth drawings
in the figure depict the cases regarding whether p is equal to ¢ or ¢’ (further
cases are omitted due to redundancy). As usual, F' contains all upward rays
from the left side of ¢ (the green regions: U; or Ug), and all rightward rays from
the region below ¢ (the red regions: R; or Rg). Moreover, at most three rays are
needed to describe these regions. Finally, in the blue region (S”g or 5’3) we see the
same S type subproblem we have encountered before. Thus, F' is composed of
{l,i,p,r t,t', c}, all upward rays from the green region, all rightward rays from
the red region, and a maximum induced forest from the blue region subject to

{i,t,t',r,p}.

22 S. Chaplick et al.

I r : I r ' l i_r»t’ l i_r»t’ ! i_r»t' ! i_r»t'
" 1 1 - 1 - 1 - 1 = t'.p
S3 Ry U;| S, Us| S; Us| S; U;| S
cp 14
[& [& R7 [& Rg R7 C R7 C
(a) (b) () (d) (© ®

Fig. 16: The cases when considering the longest ray i in an 5’5—type subproblem
with right-boundary r and optional left-boundary [, crossing ray ¢, and top
rays t,t’. (a) The initial state, (b) F' has no upward ray in this region. (c-f)
The ray ¢ has (¢) no neighbors in F, (d) one neighbor p in F and p = ¢, (e) one
neighbor p in F' and p # ¢ and p # t/, and (f) one neighbor p in F and p =¢'.

The Dynamic Programming Algorithm. Notice that throughout the above dis-
cussion we have shown that a maximum induced forest can be described by enu-
merating all regions of the following types: Uy, ..., Us, R1, ..., Rs, S1, S2, S3,
Sy, Sy, and Ss. It is easy to see that these can all be built with a bottom up
approach by considering the “small” regions first. We do not provide the explicit
algorithm as it is a somewhat tedious and uninteresting exercise to extract it
from the above discussion. However, it is easy to see that it will have a poly-
nomial running time since each subproblem is described by at most 5 rays. We
provide a more precise analysis in the next paragraph.

Complezity Considerations. Notice that, the U and R type subproblems are all
parameterized by at most 4 rays, i.e., there are at most O(n*) of these subprob-
lems. Additionally, to answer a U or R subproblem simply involves counting the
upward or rightward rays (respectively) in the corresponding region, i.e., all such
subproblems can be answered in O(n°) time. The S and S type subproblems are
parameterized by at most 3 rays and at most 5 rays (respectively). Furthermore,
to solve such a subproblems involves considering solutions to O(n3) and O(n?)
“smaller” subproblems respectively, i.e., computing these tables takes O(n®) and
O(n") time (respectively). Thus, the total time to compute all entries in our
tables is O(n7), i.e., a maximum induced forest (or FVS) of a 2DORG can be
computed in O(n”) time.

Augmentation to handle the Genearlized 2DORG mazimum induced forest prob-
lem. Notice that our treatment of the cases in the above discussion can be easily
modified to handle any forest F’ of downward and leftward rays which is re-
quired to be a subforest of F. In particular, we still follow the same process
of recursively building the subproblems by considering the longest upward ray
and its highest two neighbours. The presence of the elements of F’ will limit the
possible choices for ¢ and its neighbours in a similar way that we have already
seen with the S subproblems. Additionally, in the regions labelled U and R, we
can no longer simply take all upward or rightward rays and need to take extra
care to find a maximum set without forming cycles with elements of F’.

Solving Optimization Problems on Orthogonal Ray Graphs 23

4.2 3DORG

Consider a maximum induced forest F' in a 3DORG G with upward rays U,
leftward rays L, and rightward rays R. The basic idea is that when F' contains at
least three upward rays, we can use the three longest upward rays to decompose
F into two 2DORG subforests. Furthermore, when F' contains less than three
upward rays, we can easily construct it by brute force. Specifically, if F' contains
only one upward ray ¢ then it also contains all of the horizontal rays, i.e., F' =
{i} U RU L. Furthermore, if F' contains exactly two upward rays (4, j), then it
contains at most one horizontal ray intersecting both ¢ and j and all horizontal
rays which do not intersect both i and j. Thus, these initial cases of maximum
induced forests with at most two upward rays are trivially measured in O(n)
and O(n3) time respectively. It remains to consider the case when there are at
least three upward rays in F.

Consider the three longest upward rays ¢, j, k in F where i, < j, < k;. The
subcases are distinguished by the neighbours of the middle ray j. Notice that, j
can have at most one neighbour in common with ¢ and at most one neighbour
in common with k. We further distinguish the case when j is the shortest ray or
otherwise. The subcases are depicted in Fig. [17] and enumerate as follows.

Fig.17: The cases when the maximal induced forest contains at least three up-
ward rays.

(1) j is shorter than i and k. These cases are given in the top row of the figure
and further subcased depending on the neighbourhood of j as follows.

(1.1) j has no neighbours in F. F partitions into three regions: the dark blue
region S} on left of j, the blue region Sy on right of j, and the red region H;
below j. Since 4, j, and k are the longest upward rays in F', there are no upward
rays in Hq. However, F' cannot simply contain all horizontal rays from H; since
1 and k£ may end up with two common neighbours. Thus, F' restricted to H;
is simply one horizontal ray h which intersects both i and k together with all
horizontal rays which intersect at most one of ¢ and k. It is easy to see that F

24 S. Chaplick et al.

will further contain a maximum induced forest F’ from Sy consisting of upward
and rightward rays subject to the inclusion of k. Similarly, F' will contain a
maximum induced forest F” from S} consisting of upward and leftward rays
subject to the inclusion of i. In particular, F' consists of {3, j, k, h} together with
F" and F".

(1.2) j has a neighbour in common with k in F, but j has no common neighbour
with 1. F again partitions into three regions: the dark blue region S§ on left of
j, the blue region S5 on right of j, and the red region H; below j. The region Hy
is as in (1.1). The difference here is that S§ now has the rightward ray p which
intersects it. In particular F' contains a maximum induced forest from Sg using
upward and leftward rays and subject to the inclusion of the rightward ray p
and the upward ray 1.

(1.8) j has a neighbour in common with i and k in F. This consists of two
subcases. Namely, when there is a single horizontal ray p adjacent to all three,
and when there are two separate rays p adjacent to j and k£ and ¢ adjacent to i
and j. These are depicted in the third and forth drawings of the figure. Essentially
they have the same structure. Notice that below j there are three red regions
L, Hy, and R. In particular, since 7 and k are already connected above j, they
cannot have a common neighbour below j. Thus, F' contains the leftward rays
from L, rightward rays from R, and all horizontal rays from Hs.

(2) (wlog) i is shorter than j and k. These cases are depicted in the lower row of
the figure. We omit the case when j has no common neighbour with either i or
k as this is the same as (1.1). We distinguished according to: when j and k have
a common neighbour but j and ¢ do not have a common neighbour (first two
cases); and when both ¢ and j, and j and k have common neighbours (second
two cases). Here we again obtain a trivial subproblem below the “shortest” of
our longest rays (i.e., this is now 4 instead of j), and two generalized 2DORG
subproblems. This follows similarly to (1.2) and (1.3).

Dynamic Programming and Complezity Considerations. Notice that we enumer-
ate up to three longest rays and up to two of their neighbours. In each non-trivial
case of the enumeration, we obtain one trivial subproblem (i.e., “below” the
) and two generalized 2DORG subproblems. In particular, using the approach
from the previous section, we can find a maximum induced forest in a 3DORG
G in polynomial time.

4.3 4DORG

Consider a maximum induced forest F' in a 4DORG G with upward rays U,
downward rays D, leftward rays L, and rightward rays R. We describe how
F' partitions into a set of up to 11 rays and two maximum 3DORG subforests
anchored from disjoint regions of the plane, i.e., by enumerating all possible sets
of 11 rays (plus some additional considerations) and applying our 3DORG FVS

Solving Optimization Problems on Orthogonal Ray Graphs 25

algorithm on the appropriate disjoint regions, we can solve FVS on 4DORG in
polynomial time.

The idea here is based on overlapping pairs of upward/downward rays in F.
Specifically, an upward ray 7 and a downward ray i’ are an overlapping pair
when the y-coordinate of i is less than the y-coordinate of j. We further call
an overlapping pair (7,i") close when no vertical ray between ¢ and i’ forms an
overlapping pair with either 7 or 7'

We consider up to three disjoint close overlapping pairs in F' and show how
F' decomposes into 3SDORG maximum forests in each of the cases. The first
two cases (when F' has no overlapping pairs or just “one” overlapping pair) are
discussed as (1) and (2) and depicted in Fig. We then discuss the case when
F has “two” overlapping pairs (see (3)), and finally when F' has at least three
disjoint overlapping pairs (see (4)).

(1) F has no overlapping pairs. Consider the longest upward ray « and longest
downward ray d. These two rays decompose F' into two 3DORG subproblems and
one trivial subproblem (as depicted in the first drawing of Fig. . Specifically,
one 3DORG subproblem Ty is the half-plane above the y-coordinate of u, and
the other subproblem T is the half-plane below the y-coordinate of d. Note that
these two half-planes are disjoint and F’ will include all horizontal rays from the
space H between them.

Fig. 18: The cases when F' has no overlapping pairs and when F'\ {i,i'} has no
overlapping pairs.

(2) F contains an overlapping pair (i,i') such that F'\ {i,i'} has no overlapping
pairs. Consider the longest upward ray w and longest downward ray d in F \
{i,7'}. Once again this partitions the plane into three regions Ty, Tp, and H
based on u and d (see Fig. [L8)). However, i and ¢’ may intersect all three regions.
Notice that a path from 4 to ¢’ in F' will be strictly contained in one of these
regions. This provides three cases which cover all possibilities. Namely, when 4
and i’ are disconnected in F restricted to: Ty and H, Ty and T, and H and Tp.
In our dynamic programming algorithm this can easily be simulated by adding
a “dummy” horizontal ray p intersecting both ¢ and 7', but disjoint from the two

26 S. Chaplick et al.

regions in which they are meant to be disconnectecﬂ The different cases for this
dummy ray are also depicted in the figure.

(3) F contains two disjoint overlapping pairs (i,3'), (j, §') such that F\{i,,j,7'}
has no overlapping pairs. Consider the longest upward ray v and longest down-
ward ray d in F'\ {4,4'} and again partition the plane into three regions Ty, Tp,
and H based on u and d (see Fig. [19). As in (2), 4,i’,j, and j” can occur in all
three regions. Thus, we again need to specialize our subproblems depending on
whether there is path connecting a pair a,b € {i,7,4,j'} in either Ty or Tp.
Notice that any such path may be simulated by using at most three rays. For
example, in the second, third, and forth drawings of the figure we depict the dif-
ferent cases of recursing on Ty when there is a path from ¢ to j' in Tp (the black
rays in Tp are used to simulate the possible paths connecting 7 and j'). Ulti-
mately, this provides a constant number of subproblems.

i V]

Fig. 19: Figure supporting (3).

(4) F contains three disjoint overlapping pairs (i,i'), (4,7, (k, k") where (j,7")
18 the middle overlapping pair. As before, we take these pairs to be close over-
lapping pairs.

Notice that every neighbour of either j (or j') must be a neighbour of at
least one of {4,4, k,k’'}. In particular, since F' contains {3,4', 7,5, k,k'}, it can
contain at most 5 elements from N (5)UN(j'). Two examples when no additional
neighbours can be added to j or j' without creating a cycle are given in Fig. .
The basic idea here is that with 5 neighbours the set of three overlapping pairs
becomes connected and, as such, any further neighbour of a ray in the middle
pair would create a cycle.

Thus, together with the three overlapping pairs F' can contain up to 5 neigh-
bours of the middle pair. In particular, since no other rays can intersect the
middle overlapping pair, the remainder becomes two 3DORG subproblems T,
and Tr (as depicted in the figure). However, as in (2), these subproblems are not
yet guaranteed to be independent. We must further indicate whether each pair
of neighbours of j and ;' are connected in T or T},. This follows similarly to our

3 We do not include the ray p when considering the region in which ¢ and i’ are not
required to be disconnected.

Solving Optimization Problems on Orthogonal Ray Graphs 27

approach in (3) by choosing up to three dummy rays for the pair of neighbours
which are meant to be connected.

So, in the algorithm, we simply try all such combinations of up to 11 rays
together with where the neighbours connect to each other and recursively com-
pute the maximum.

Fig. 20: Two cases of three overlapping pairs where the middle pair has 4 and 5
neighbours and any additional neighbour of j or 5/ would form a cycle.

Correctness and Complexity This completes the proof of Theorem

References

1. Tomas Feder, Pavol Hell, and Jing Huang. List homomorphisms and circular arc
graphs. Combinatorica, 19(4):487-505, 1999.

2. Stefan Felsner, Rudolf Miiller, and Lorenz Wernisch. Trapezoid graphs and gener-
alizations, geometry and algorithms. Discrete Appl. Math., 74(1):13-32, 1997. |§|

3. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller, James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer
Computations, IBM Res. Symp. Series, pages 85-103. Springer, 1972. [If]

4. Ton Kloks, Ching-Hao Liu, and Sheung-Hung Poon. Feedback vertex set on chordal
bipartite graphs. http://arxiv.org/abs/1104.3915, 2012.

5. A.V. Kostochka and J. Nesetfil. Coloring relatives of intervals on the plane, I:
Chromatic number versus girth. Furop. J. Combin., 19(1):103-110, 1998.

6. Wenjing Rao, Alex Orailoglu, and Ramesh Karri. Logic mapping in crossbar-based
nanoarchitectures. IEEE Des. Test, 26(1):68-77, 2009.

7. Anish Man Singh Shrestha, Satoshi Tayu, and Shuichi Ueno. Orthogonal ray
graphs and nano-pla design. In IEEE Int. Symp. Circuits Syst. (ISCAS’09), pages
2930-2933, 2009. [1]

8. Anish Man Singh Shrestha, Satoshi Tayu, and Shuichi Ueno. On orthogonal ray
graphs. Discrete Appl. Math., 158(15):1650-1659, 2010. 2] [4 [6]

9. M. B. Tahoori. A mapping algorithm for defect-tolerance of reconfigurable nano-
architectures. In Proc. IEEE/ACM Int. Conf. Computer-Aided Design (CAD’05),
pages 668-672, 2005. [I]

	Solving Optimization Problems on Orthogonal Ray Graphs
	Introduction
	Edge-Asteroids
	Maximum Independent Set and Minimum Independent Dominating Set
	Feedback Vertex Set
	2DORG
	3DORG
	4DORG

