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Abstract

Given two planar graphs that are defined on the same set of vertices, a RAC
simultaneous drawing is a drawing of the two graphs where each graph is drawn
planar, no two edges overlap, and edges of one graph can cross edges of the other
graph only at right angles. In the geometric version of the problem, vertices are
drawn as points and edges as straight-line segments. It is known, however, that
even pairs of very simple classes of planar graphs (such as wheels and matchings)
do not always admit a geometric RAC simultaneous drawing.

In order to enlarge the class of graphs that admit RAC simultaneous drawings,
we allow edges to have bends. We prove that any pair of planar graphs admits a
RAC simultaneous drawing with at most six bends per edge. For more restricted
classes of planar graphs (e.g., matchings, paths, cycles, outerplanar graphs, and
subhamiltonian graphs), we significantly reduce the required number of bends per
edge. All our drawings use quadratic area.
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1 Introduction

A simultaneous embedding of two planar graphs embeds each graph in a planar way—
using the same vertex positions for both embeddings. Edges of one graph are allowed
to intersect edges of the other graph. There are two versions of the problem: In the first
version, called Simultaneous Embedding with Fixed Edges (SEFE), edges that occur
in both graphs must be embedded in the same way in both graphs (and hence, cannot
be crossed by any other edge). In the second version, called Simultaneous Embed-
ding, these edges can be drawn differently for each of the graphs. Both versions of
the problem have a geometric variant where edges must be drawn using straight-line
segments.

Simultaneous embedding problems have been extensively investigated over the last
few years, starting with the work of Brass et al. [10] on simultaneous straight-line
drawing problems. Blisius et al. [8] recently surveyed the area. For example, it is
possible to decide in linear time whether a pair of graphs admits a SEFE or not, if the
common graph is biconnected [2]] or has a fixed planar embedding [1]]. Further, SEFE
can be decided in polynomial time if each connected component of the common graph
is biconnected or subcubic [28]], or outerplanar with cutvertices of degree at most 3 [9].

When actually drawing these simultaneous embeddings, a natural choice is to use
straight-line segments. In general, it is NP-hard to decide whether two planar graphs
admit a geometric simultaneous embedding [[16]. This negative results also holds even
if one of the input graphs is a matching [[12]. Only very few graphs can be drawn in this
way, and some existing results require exponential area. For instance, there exist a tree
and a path which cannot be drawn simultaneously with straight-line segments [3[], and
the algorithm for simultaneously drawing a tree and a matching [[12] does not provide
a polynomial area bound.

For the case of edges with bends (that is, polygonal edges), Haeupler et al. [19]
showed that a drawing with no bends in one of the input graphs and at most as many
bends per edge as the number of common vertices in the other input graph can be
found if the common graph is biconnected. Erten and Kobourov [[15] showed that three
bends per edge and quadratic area suffice for any pair of planar graphs (without fixed
edges), and that one bend per edge suffices for pairs of trees. Kammer [24] reduced the
required number of bends per edge to two for the general case of planar graphs. Grilli
et al. [18]] proved that every SEFE embedding of two graphs admits a drawing with no
bends per common edge and at most nine bends per exclusive edge. If the common
graph is biconnected, they can reduce the number of bends per exclusive edge to three.
In the aforementioned results, however, the crossing angles can be very small.

In this paper, we suggest a new approach that overcomes the aforementioned prob-
lems. We insist that crossings occur at right angles, thereby “taming” them. We do
this while drawing all vertices and all bends on an integer grid of size O(n) x O(n)
for any n-vertex graph, and we can still draw any pair of planar graphs simultaneously.
We do not consider the problem of fixed edges. In a way, our results give a measure
for the geometric complexity of simultaneous embeddability for various pairs of graph
classes, some of which can be combined more easily (that is, with fewer bends) and
some not as easily (that is, with more bends).

More formally, let G; = (V, E1) and G5 = (V, E5) be two planar graphs defined
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Table 1. A short summary of our results

Graph classes Number of bends Ref.
planar + planar 6+6 Thm.
subhamiltonian + subhamiltonian 444 Cor. |1
outerplanar + outerplanar 3+3 Thm. [2
cycle + cycle 1+1 Thm. |3
caterpillar + cycle 1+1 Thm. 4]
four matchings 1+14+1+1 Thm. [3|
tree + matching 140 Thm. (6}
wheel + matching 2+0 Thm.[7
outerpath + matching 241 Thm. [§]

on the same vertex set. We say that G; and G admit a RAC simultaneous drawing (or,
RACSIM drawing for short), if we can place the vertices on the plane such that:

(i) each edge is drawn as a polyline,
(ii) each graph is drawn planar,
(iii) there are no edge overlaps, and
(iv) crossings between edges in E; and E» occur at right angles.

Argyriou et al. [4] introduced and studied the geometric version of the RACSIM
drawing problem. In particular, they proved that any pair of a cycle and a matching
admits a geometric RACSIM drawing on an integer grid of quadratic size, while there
exists a pair of a wheel and a cycle that does not admit a geometric RACSIM drawing.
The problem that we study was left as an open problem.

Closely related to the RACSIM drawing problem is the problem of simultaneously
drawing a (primal) embedded graph and its dual, so that the primal-dual edge crossings
form right angles. Brightwell and Scheinermann [11]] proved that this problem always
admits a solution, if the input graph is triconnected planar. Erten and Kobourov [[14]
presented an O(n)-time algorithm that computes simultaneous drawings of a tricon-
nected planar graph and its dual on an integer grid of size O(n) x O(n), where n is the
total number of vertices in the graph and its dual; their drawings, however, can have
non-right angle crossings.

Our contribution: Our main result is that any pair of planar graphs admits a RAC-
S1M drawing with at most six bends per edge. For pairs of subhamiltonian graphs and
pairs of outerplanar graphs, we can reduce the required number of bends per edge to
four and three, respectively; see Section[2] (Recall that a subhamiltonian graph is a
subgraph of a planar Hamiltonian graph.) Then, we turn our attention to pairs of more
restricted graph classes where we can guarantee RACSIM drawings with one bend per
edge or two bends per edge; see Sections |3| and |4} respectively. Table [I| summarizes
our results. Note that all our algorithms run in linear time, with the exception of the
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algorithm for an outerpath and a matching (see Theorem [§)) that runs in O(nlogn)
time. The produced drawings fit on integer grids of quadratic size. The main approach
of all our algorithms is to find linear orders on the vertices of the two graphs and then
to compute the exact coordinates of the vertices of both graphs based on these orders.
Although the produce drawings may contain non-rectilinear edge-segments (referred to
as slanted segments, for short), all crossings in our drawings appear between horizontal
and vertical edge segments.

2 RACSIM Drawings of general graphs

In this section, we study general planar graphs and show how to efficiently construct
RAcCS1M drawings with few bends per edge in quadratic area. We prove that two planar
graphs on a common set of vertices admit a RACSIM drawing with six bends per edge
(Theorem [I). For pairs of subhamiltonian graphs, we lower the required number of
bends per edge to 4 (Corollary[I)) and for pairs of outerplanar graphs to 3 (Theorem [2).
Note that the class of subhamiltonian graphs is equivalent to the class of 2-page book-
embeddable graphs, and the class of outerplanar graphs is equivalent to the class of
1-page book-embeddable graphs [[7].

Central to our approach is an algorithm by Kaufmann and Wiese [25] that embeds
any planar graph such that vertices are mapped to points on a horizontal line (so-called
spine) and each edge crosses the spine at most once; see Figure Clearly, if one
replaces each spine crossing with a dummy vertex, then a linear order of the (original
and dummy) vertices is obtained with the property that every edge is either completely
above or completely below the spine. In order to determine the exact locations of the
vertices of the two given graphs in our problem, we basically employ the linear order
induced by the first graph to compute the z-coordinates and the linear order induced
by the second graph to compute the corresponding y-coordinates. (Note that the afore-
mentioned approach has been used for simultaneous drawing problems before [15].)
Then, we draw the edges of both graphs, so that all edges-crossing(i) appear in the
interior of the smallest axis-aligned rectangle containing all vertices, and (ii) are re-
stricted between vertical and horizontal edge-segments, that is, slanted edge-segments
are crossing-free.

Theorem 1 Two planar graphs on a common set of n vertices admit a RACSIM draw-
ing on an integer grid of size (14n — 26) x (14n — 26) with six bends per edge. The
drawing can be computed in O(n) time.

Proof: Let G, = (V, Ey) and Gy = (V, E) be the given planar graphs. For m = 1,2,
let ,,, be an embedding of G,,, according to the algorithm of Kaufmann and Wiese [[25]].
As already stated, we subdivide all edges of G,,, that cross the spine in &,,,, by introduc-
ing a single dummy vertex for each such edge at the point where it crosses the spine.
LetG,, = (V.,E!.) = (VUV,, A, U B,,) be the resulting graph, where V,,, is the
set of dummy vertices of G/, A, is the set of edges that are drawn completely above
the spine and B,, is the set of edges that are drawn completely below the spine. Let
also &/ be the embedding of G/

m m*
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In the following, we show how to determine the z-coordinates of the vertices in V7';
the y-coordinates of the vertices in Vj are determined analogously. Let n) be the
number of vertices in V{ and let vy — vy — -+ — Ut be the linear order of the
vertices of V; along the spine in £]. We place v; in the leftmost available column.
Between any two consecutive vertices v; and V41, We reserve several columns for the
bends of the edges incident to v; and v; 4, in the following order; see Figure[Tb}

(i) a column for the first bend on all edges leaving v; in As;
(ii) a column for each edge (v;,v;) € E{ with j > i;
(iii) a column for each edge (v, v;11) € Ef with k < 4;
(iv) a column for the last bend on all edges entering v;41 in Bs.

Note that we can save some columns among those reserved for (ii) and (iii), because
an edge in A; and an edge in By can use the same column for their bend. With the
aforementioned procedure we fully specify the z-coordinates of the vertices in V7;
the y-coordinates of the vertices in V3 are determined analogously. Let, now, R be the
smallest axis-aligned rectangle that contains all vertices of the common vertex set of G;
and G/, (refer to the gray-colored rectangle of Figure . Then, the y-coordinates of
the dummy vertices of V' and the z-coordinates of the dummy vertices of V, —that so
far have not been determined by our algorithm—can be arbitrarily selected, as long as
the corresponding vertices are inside R.

We proceed to describe how to draw the edges of graph G; with at most four bends
per edge such that all edge segments of G; in R are either vertical or of y-length ex-
actly 1; see Figure The edges of graph Go are drawn analogously. First, we draw
the edges (v;,v;) € Ay with ¢ < j in a nested order: When we draw the edge (v;, v;),
there is no edge (vg,v;) € A; with k < i and [ > j that has not already been drawn.
Recall that the first column to the right and the first column to the left of every ver-
tex is reserved for the edges in F1; hence, we assume that they are already used. We
draw (v;, v;) with at most four bends as follows. We start with a slanted segment inci-
dent to v; that has its other endpoint in the row above v; and in the first unused column
that does not lie to the left of v;. We follow with a vertical segment to the top that
leaves R. We add a horizontal segment above R. In the last unused column that does
not lie to the right of v;, we add a vertical segment that ends one row above v;. We
close the edge with a slanted segment that has its endpoint in v;. We draw the edges
in B; symmetrically with the horizontal segment below R.

Note that this algorithm always uses the top and the bottom port of a vertex v, if
there is at least one edge incident to v in A; and B, respectively. Since there is exactly
one edge incident to each dummy vertex in A; and Bj, respectively, the edges incident
to a dummy vertex only use the top and the bottom port. We create a drawing of G
and G with at most 6 bends per edge by removing (or, more precisely, by smoothing
out) the dummy vertices from the drawing.

By construction, all edge segments of EF; inside R are either vertical segments or
slanted segments of y-length 1. Symmetrically, all segments of F inside R are either
horizontal segments or slanted segments of z-length 1. Thus, the slanted segments
cannot intersect. Furthermore, all crossings inside R occur between a horizontal and a
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(a) A drawing of a planar graph by Kaufmann (b) Reserving additional columns between
and Wiese [25]] two vertices
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(c) The graph in (a) drawn by our algorithm (d) The RACSIM drawing of two planar
with at most six bends per edge. graphs by our algorithm

Figure 1. A RACSIM drawing of two planar graphs. The edges that cross the spine are drawn
dashed; the dummy vertices on these edges are drawn as squares.

vertical segment, and thus form right angles. Also, there are no segments in E that lie
to the left or to the right of R, and there are no segments in F5 that lie above or below R.
Hence, there are no crossings outside R, which guarantees that the constructed drawing
of G, and G- is a RACSIM drawing.

We now count the columns used by the drawing. For the leftmost and the rightmost
vertex, we reserve one additional column for its incident edges in F»; for the remaining
vertices, we reserve two such columns. For each edge in E;, we need up to three
columns: one for each endpoint of the slanted segment at each vertex and one for the
vertical segment that crosses the spine, if it exists. Note that at least one edge per vertex
does not need a slanted segment. For each edge in 5, we need at most one column for
the vertical segment to the side of R. Since there are at most 3n — 6 edges, we need at
most 3n —2+ 3+ (3n —6) —n+3n — 6 = 14n — 26 columns. By symmetry, we need
the same number of rows.

The algorithm of Kaufmann and Wiese that computes a drawing with at most 3
bends per edge runs in O(n) time. We can compute the nested order of the edges in
linear time from the embedding, as the circular order of the edges around a vertex gives
a hierarchical order on the edges that describes the nested order of the edges. Thus, our
algorithm also runs in O(n) total time. O
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We can improve the result of Theorem [I] for subhamiltonian graphs, which admit
2-page book embeddings, in which no edges cross the spine [7]. Since such edges
are the only ones that need six bends, we can reduce the number of bends per edge
to four. Further, the number of columns and rows are reduced by one per edge. This
is summarized in the following corollary. Note, however, that it is NP-hard to decide
whether a given planar graph is subhamiltonian, even for maximal planar graphs [29].
A 2-page book embedding can be found in linear time, if the ordering of the vertices
along the spine is given [20]. However, several graphs are (sub)hamiltonian, for ex-
ample 4-connected planar graphs [27], planar graphs without separating triangles [23]],
Halin graphs [[13]], planar graphs with maximum degree 3 or 4 [22|5].

Corollary 1 Two subhamiltonian graphs on a common set of n vertices admit a RAC-
SIM drawing on an integer grid of size (11n — 32) x (11n — 32) with four bends per
edge. The algorithm runs in O(n) time if the subhamiltonian cycles of both graphs are
given.

In order to get a RACSIM drawing of two outerplanar graphs, we use a decomposi-
tion of each of the graphs into two forests. The following lemma shows that we can do
this in linear time.

Lemma 1 Every outerplanar graph can be decomposed into two forests. This decom-
position can be computed in linear time.

Proof: It follows by Nash-Williams’ formula [26]] that every outerplanar graph has ar-
boricity 2, that is, it can be decomposed into two forests. To prove the linear running
time, we first assume biconnectivity and augment the input graph to a maximal outer-
planar graph. Now, if we add a new vertex that is incident to all vertices of the graph,
the result is a maximal planar graph which can be decomposed into three trees [17], so
that one of them is a star incident to the newly added vertex. Hence, the removal of
this vertex yields a decomposition into two trees. The desired decomposition into two
forests follows from the removal of the edges added to augment the graph to maximal
outerplanar. For an input outerplanar graph that is not biconnected, we have to com-
pute the aforementioned decomposition for each of its biconnected components, which
form a tree (so-called BC-tree) and therefore do not affect the structure of the overall
decomposition, that is, it still consists of two forests. Since both the decomposition of
a maximal planar graph into three trees and the computation of the biconnected com-
ponents of the input outerplanar graph can be done in linear time, it follows that overall
the decomposition can done in linear time. O

With this lemma, we can further improve the required number of bends per edge
to three for outerplanar graphs. (Recall that all outerplanar graphs are 1-page book
embeddable.) We will use the order of the vertices on the spine of a 1-page book em-
bedding to compute a 2-page book embedding, in which every edge uses a rectilinear
port at one of its endpoints and thus omits one of its bends.

Theorem 2 Two outerplanar graphs on a common set of n vertices admit a RACSIM
drawing on an integer grid of size (Tn — 10) x (7n — 10) with three bends per edge.
The drawing can be computed in O(n) time.



JGAA, 0(0) 0-0 (0) 7

Proof: Let O = (V, Eq) and Oy = (V, E5) be the given outerplanar graphs. We will
embed O; and O, on two pages with one forest per page.

To do so, we first create 1-page book embeddings for O, and O using the linear
time algorithm of Heath [21]. This implies the orders of the vertices of both graphs
along the spine. It follows by Corollary [T|that, by using the algorithm described in the
proof of Theorem we can create a RACSIM drawing of O; and O, with at most four
bends per edge. We will now show how to adjust the algorithm to reduce the number
of bends by one.

Let A; and B; be the two forests O is decomposed into according to Lemma
We will draw the edges of A; above the spine and the edges B; below the spine.
By rooting the trees in A; in arbitrary vertices, we can direct each edge such that
every vertex has exactly one incoming edge. Recall that, in the drawing produced in
Theorem ] one edge per vertex can use its top port. We adjust the algorithm such that
every directed edge (v, w) enters vertex w from its top port. To do so, we draw the
edge as follows. We start with a slanted segment of y-length exactly 1. We follow with
a vertical segment to the top. We proceed with a horizontal segment that ends directly
above w and finish the edge with a vertical segment that enters w from the top port. We
use the same approach for the edges in Bj, using the bottom port. We treat the second
outerplanar graph O analogously.

Since every port of a vertex is only used once, the drawing has no overlaps. We
now analyze the number of columns used. For every vertex except for the leftmost
and rightmost, we again reserve two additional columns for the edges in F; for the
remaining two vertices, we reserve one additional column. However, the edges in Fq
now only need one column for the bend of the single slanted segment. For every edge
in F3, we need up to one column for the vertical segment to the side of R. Since there
are at most 2n — 4 edges, our drawing needs 3n — 24+ 2n —44+2n—4 = 7n — 10
columns. Analogously, we can show that the algorithm needs 7n — 10 rows. Since the
decomposition can be computed in O(n) time, our algorithm also requires O(n) time.

O

3 RACSIM Drawings with one bend per edge

In this section, we study simple classes of planar graphs and show how to efficiently
construct RACSIM drawings with one bend per edge in quadratic area. In particular, we
prove that two cycles or four matchings on a common set of n vertices admit a RACSIM
drawing on an integer grid of size 2n x 2n; see Theorems [3| and [3] respectively. If
the input to our problem is a caterpillar and a cycle, then we can compute a RACSIM
drawing with one bend per edge on an integer grid of size (2n—1) X 2n; see Theorem@
For a tree and a cycle, we can construct a RACSIM drawing with one bend per tree
edge and no bends in the matching edges on an integer grid of size n x (n — 1); see
Theorem [6l

Lemma 2 Tiwo paths on a common set of n vertices admit a RACSIM drawing on an
integer grid of size 2n x 2n with one bend per edge. The drawing can be computed in
O(n) time.
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(a) Two paths: P; (solid) and P> (dashed) (b) Two cycles: C1 (solid) and Ca(dashed).
The closing edges are drawn bold.

Figure 2. RACSIM drawings with one bend per edge

Proof: Let P, = (V, E1) and P, = (V, E3) be the two input paths. Following stan-
dard practices from the literature (see, for example, Brass et al. [10]), we draw P;
x-monotone and Py y-monotone. This ensures that the drawing of both paths will be
planar. We will now describe how to compute the exact coordinates of the vertices and
how to draw the edges of P; and P, such that all crossings are at right angles and,
more importantly, no edge segments overlap.

For m = 1,2 and any vertex v € V, let m,,, (v) be the position of v in P,,,. Then, v
is drawn at the point p(v) = (2m1(v) — 1,2m2(v) — 1); see Figure[2a] It remains to
determine, for each edge e = (v, v’), where it bends. First, assume that e € F and e
is directed from its left endpoint, say v, to its right endpoint, say v’. Then, we place the
bend at p(v') — (2,sgn(y(v') — y(v))). Second, assume that e € F5 and e is directed
from its bottom endpoint, say v, to its top endpoint, say v’. Then, we place the bend
at p(v) — (sgn(a(v') — 2(v)),2).

Clearly, the area required by the drawing is (2n — 1) x (2n — 1). An edge of P,
leaves its left endpoint vertically and enter its right endpoint with a slanted segment
of z-length 1 and y-length 2. Similarly, an edge of P» leaves its bottom endpoint
horizontally and enters its top endpoint with a slanted segment of z-length 2 and y-
length 1. Hence, the slanted segments cannot be involved in crossings or overlaps.
Since P; and Ps are x- and y-monotone, respectively, it follows that all crossings must
involve a vertical edge segment of P; and a horizontal edge segment of P,, which
clearly yields right angles at the crossing points. O

We say that an edge uses the bottom/left/right/top port of a vertex if it enters the
vertex from the bottom/left/right/top.

Theorem 3 Two cycles on a common set of n vertices admit a RACSIM drawing on
an integer grid of size 2n X 2n with at most one bend per edge. The drawing can be
computed in O(n) time.
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Proof: Let C; = (V, E1) and C2 = (V, E») be the two input cycles, and let v € V
be an arbitrary vertex. We temporarily delete one edge (v,w;) € E; from C; and one
edge (v, ws) € Fy from Cy (refer to the bold-drawn edges of Figure . This results
into two paths P; = (v,...,wq) and Py = (v,...,ws). We employ the algorithm
desribed in Lemma 2] to construct a RACSIM drawing of P; and P, on an integer grid
of size (2n — 1) x (2n — 1). Since v is the first vertex in both paths, it is placed at the
bottom-left corner of the bounding box containing the drawing. Since w; and w- are
the last vertices in P; and Ps, respectively, wy is placed on the right side, and ws on the
top side of the bounding box. By construction, the bottom port of w; and the left port
of wq are both unoccupied. Hence, the edges (v, w;) and (v, w2) that form C; and Cy
can be drawn with a single bend at points (2n — 1,0) and (0, 2n — 1), respectively;
see Figure 2b] Since both edges are in the exterior of the bounding box containing the
drawing, none of them is involved in crossings. On the other hand, the total area of the
drawing gets larger by a single unit in each dimension. U

Theorem 4 A caterpillar and a cycle on a common set of n vertices admit a RACSIM
drawing on an integer grid of size (2n — 1) X 2n with one bend per edge. The drawing
can be computed in O(n) time.

Proof: We denote by A = (V, E4) the caterpillar and by C = (V, E¢) the cycle. A
caterpillar can be decomposed into a path, called spine, and a set of leaves connected
to the path, called legs. Let vq,vs,...,v, be the vertex set of A ordered as follows;
see Figure [3} Starting from an endpoint of the spine of A, we traverse the spine such
that we first visit all legs incident to a spine vertex before moving on to the next spine
vertex. This order defines the x-order of the vertices in the output drawing.

As in the proof of Theorem[3] we temporarily delete an edge of C incident to v (see
the bold dashed edge in Figure and obtain a path which we denote by P = (V, Ep).
For any vertex v € V, let w(v) be the position of v in P. The map = determines
the y-order of the vertices in our drawing. For ¢ = 1,2, ..., n, we draw vertex v; at
point p(v;) = (2¢ — 1, 2m(v;) — 1). It remains to determine, for each edge e = (v,v’),
where it bends. First, assume that e € Ep and e is directed from its bottom endpoint,
say v, to its top endpoint, say v’ (see the thin dashed edges in Figure . Then, we
place the bend at p(v) + (sgn(z(v') — z(v)), 2). Second, assume that e € E 4 and e is
directed from its left endpoint, say v, to its right endpoint, say v’ (see the solid edges
in Figure[3). Then, we place the bend at (z(v'), y(v) + sgn(y(v') — y(v)).

The approach described above ensures that PP is drawn y-monotone, hence planar.
The spine of A is drawn z-monotone. The legs of a spine vertex of A are drawn to
the right of their parent spine vertex and to the left of the next vertex along the spine.
Hence, A is drawn planar as well. The slanted segments of A are of y-length 1, while
the slanted segments of P are of z-length 1. Thus, they cannot be involved in crossings,
which implies that all crossings form right angles.

It remains to draw the edge e in E¢ \ Ep. Recall that e is incident to v1, which lies
at the bottom-left corner of the bounding box containing our drawing. Let v; be the
other endpoint of e. Since m(v;) = n, vertex v; lies at the top side of the bounding box.
As the top port of v; is not used, we can draw the first segment of e vertical, bending
at (1,2n); see the bold dashed edge in Figure[3]
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Figure 3. A RACSIM drawing of a caterpillar (solid; its spine is drawn bold) and a cycle (dashed)

Clearly, the total area required by the drawing is (2n — 1) x 2n. O

Theorem 5 Four matchings on a common set of n vertices admit a RACSIM drawing
on an integer grid of size 2n X 2n with at most one bend per edge. The drawing can be
computed in O(n) time.

Proof: Let M; = (V, El), My = (‘/7 EQ), Mz = (‘/Y, Eg) and My = (‘/, E4)
be the input matchings. Without loss of generality, we assume that all matchings are
perfect; otherwise, we augment them to perfect matchings. Let M o = (V,E1 U E»)
and M3 4 = (V, EsUE}). Since M1 and M, are defined on the same vertex set, M 5
is a 2-regular graph. Thus, each connected component of M 5 corresponds to a cycle
of even length which alternates between edges of M and M; see Figure[d The same
holds for M3 4. We will determine the z-coordinates of the vertices from M 5, and
the y-coordinates from M3 4.

We start with choosing an arbitrary vertex v € V. Let C be the cycle of M
containing vertex v. We determine the z-coordinates of the vertices of C by travers-
ing C in some direction, starting from vertex v. For each vertex u in C, let 7 (u)
be the discovery time of u according to this traversal, with 7 (v) = 0. Then, we
set z(u) = 271 (u) + 1. Next, we determine the y-coordinates of the vertices of all cy-
cles Cq,...,Cy of M3 4 that have at least one vertex with a determined z-coordinate,
ordered as follows. Fori = 1,...,k, let a; be the anchor of C;, that is, the vertex with
the smallest determined x-coordinate of all vertices in C;. Then, z(a1) < ... < x(ag).
In what follows, we start with the first cycle C; of the computed order and determine
the y-coordinates of its vertices. To do so, we traverse C; in some direction, starting
from its anchor vertex a;. For each vertex u in Cy, let mo(u) be the discovery time
of w according to this traversal, with mo(a;) = 0. Then, we set y(u) = 2ma(u) + 1.
We proceed analogously with the remaining cycles C;, i = 2, ..., k, setting 7ma(a;) =
maxyec,_, m2(u) + 1.

Now, there are no vertices with only one determined z-coordinate. However, there
might exist vertices with only one determined y-coordinate. If this is the case, we re-
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Figure 4. A RACSIM drawing of four matchings M; (solid-plain), M3 (solid-bold),
M3 (dashed-plain) and M (dashed-bold)

peat the aforementioned procedure to determine the x-coordinates of the vertices of all
cycles of M o \ C that have at least one vertex with a determined y-coordinate, but
without determined x-coordinates. If there are no vertices with only one determined
coordinate left, either all coordinates are determined, or we restart this procedure with
another arbitrary vertex that has no determined coordinates. Thus, our algorithm guar-
antees that the z- and y-coordinate of all vertices are eventually determined.

Note that, for each cycle in M o, there is exactly one edge e = (v, v’), called
closing edge, with w1 (v") > 71 (v) + 1. Analogously, for each cycle in M3 4, there is
exactly one closing edge e = (u, ') with ma(u’) > mo(u) + 1.

It remains to determine, for each edge e = (v,v’), where it bends. First, assume
that e € E; U EF» and e is directed from its left endpoint, say v, to its right endpoint,
say v'. If e is not a closing edge, we place the bend at (x(v') — 2,y(v") — sgn(y(v') —
y(v)). Otherwise, we place the bend at (z(v’),y(v) — 1). Second, assume that e €
E5 U E, and e is directed from its bottom endpoint, say v, to its top endpoint, say v'.
If e is not a closing edge, we place the bend at (z(v') — sgn(xz(v') — x(v)), z(v') — 2).
Otherwise, we place the bend at (z(v) — 1,y(v")); see Figure

Our choice of coordinates guarantees that the z-coordinates of the cycles of M o
and the y-coordinates of the cycles of M3 4 form disjoint intervals. Thus, the area
below a cycle of M 2 and the area to the left of a cycle of M3 4 are free from vertices.
Hence, the slanted segments of the closing edges cannot have a crossing that violates
the RAC restriction. The total area required by the drawings is 2n X 2n. U

Theorem 6 A tree and a matching on a common set of n vertices admit a RACSIM
drawing on an integer grid of size n x (n — 1) with one bend per tree-edge, and no
bends in the edges of the matching. The drawing can be computed in O(n) time.

Proof: We use an algorithm inspired by the algorithm for drawing a geometric simul-
taneous embedding of a tree and a matching by Cabello et al. [[12]]; see Figure 5] for an
example drawing. First, we root the tree in an arbitrary leaf, getting a directed tree 7.
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Figure 5. A RACSIM drawing of a tree (solid) and a matching (dashed)

We will get the z-coordinates of the vertices from a particular post-order of this di-
rected tree, that is, all children of a vertex are placed to its left, and disjoint subtrees are
placed in disjoint z-intervals. We augment the input matching to a perfect matching M
by adding dummy edges. After the algorithm is finished, these dummy edges can be
safely removed to get a drawing of the input matching.

Each edge of M is drawn horizontally at a unique odd y-coordinate between 1
and n — 1. The coordinates are determined as follows. In every step, our algorithm
picks an edge and puts it either into the fop group, or into the bottom group. Within
the top group, the edges are assigned to odd rows, from top to bottom, starting from
row n — 2 if n is odd, or n — 1 otherwise. In the bottom group, the edges are assigned
also to odd rows, but from bottom to top, starting from row 1. That way, a matching
edge is always assigned to an odd row between 1 and n — 1. Once this procedure has
picked an edge, the edge and its enpoints are called placed.

Our algorithm starts by putting the matching edge containing the root of the tree
in the top group and then proceeds as follows. We partition the edges of the tree into
a set of subtrees, called ropes, by removing the edges between two placed vertices. If
there exists a subtree with three placed vertices, we call the vertex that lies on the three
paths between these placed vertices a splitter. If the algorithm encounters a splitter, it
selects the matching edge incident to the splitter, and places it next. Since a splitter is
necessarily unplaced, that edge can always be picked. Otherwise, the algorithm finds
an unplaced vertex that has a tree edge to a placed vertex, and adds its matching edge
to the top group. This creates at most one splitter, since one of the placed vertices is
adjacent to a vertex that was already placed.

It has been shown by Cabello et al. [12]] that placing a vertex creates at most one
splitter, and that placing a splitter does not create a new one. In every step of the
algorithm, we place two vertices. The first one is either a splitter, or adjacent to a placed
vertex; thus, it cannot create a new splitter. Hence, when we place a new matching
edge, there will be at most one splitter in the graph.
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We now describe how to determine whether to add a matching edge that contains
a splitter to the top, or the bottom group. Assume that vertex v is a splitter. Since we
start with drawing the root, every vertex lies in a subtree that has its local root placed.
Let Ty (v), ..., Tk (v) be the subtrees rooted in the children of v. Then, v is a splitter if
and only if there are two subtrees T;(v) and Tj(v) with at least one placed vertex, one
of which has been placed in the last step. Without loss of generality, let w € T;(v) be
this vertex. If w was added to the top group, we add v to the bottom group; otherwise,
we add it to the top group. Thus, the vertices of all trees T;(v) with [ # ¢ will be placed
on the same side (with respect to the y-coordinate) of v.

Now, we describe how to determine the z-coordinates of the vertices. To that end,
for each non-leaf vertex, we will compute an order for the subtrees that are rooted
in the children of this vertex. This order determines the disjoint intervals on the x-
coordinates that the vertices in these subtrees will use. Let v be a vertex that is placed in
an induction step. We traverse the path from v to the root of the rope it lies in. For every
vertex u on this path, we determine the order of the subtrees of its children as follows.
Let T (u), . .., Ti(u) be the subtrees rooted in the children of u, with v € Tj (u). If v
is the only placed successor of vertex u, then we assign the order (71 (u)) < ... <
x(Ty(u)) on the z-coordinates of the subtrees; otherwise, an order has already been
determined. When the algorithm is done, we know the order of the subtrees for every
vertex on this path, and particularly the x-interval the subtree rooted in v lies in. We
assign the highest x-coordinate of this interval to v.

Now, we show how to draw the edges. Let (u,v) be a directed edge of 7. We
draw (u,v) with one slanted segment of y-length exactly 1 at vertex u, and a vertical
segment at vertex v. Since we draw the edges of the matching horizontally without
bends, and since the slanted segments are drawn between two consecutive horizontal
grid lines, there can only be crossings between vertical segments of the tree and hori-
zontal segments of the matching. Thus, all crossings between the tree and the matching
are at right angles.

It remains to show that the drawing of the tree is itself planar. Since the drawing
of the tree consists of vertical segments and slanted segments of y-length 1, any inter-
section has to be between a slanted and a vertical segment. Let v be a vertex of the
tree. We will show that the outgoing edges of v do not induce a crossing. Since the
subtree rooted in v is assigned an x-interval that contains no vertices that do not lie in
its subtree, crossing can only occur between edges of this subtree. Consider the step of
the algorithm in which v is placed.

First, assume that v was is not a splitter. If no successor of v has been placed so
far, then all successors of v will be placed on the same side of v, with respect to the
y-coordinate, and therefore not induce a crossing. Otherwise, let 77 (v), ..., Tk (v) be
the subtrees rooted in the children of v. By construction, all placed successors of v
are located in the same subtree T} (v), and Ti(v) is placed to the left of the other
subtrees rooted in a child of v. Thus, no edge incident to v is drawn inside the x-
interval assigned to T;(v), 2 < i < k. The vertices in the other subtrees are yet to be
placed, so they will all be on the same side of v, with respect to the y-coordinate, and
therefore not induce a crossing.

Now, assume that v is a splitter. Then, there is a vertex u that was placed in the pre-
vious step and lies in the same rope as v. Further, there is one subtree T3 (v) rooted in a
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child of v in which at least one vertex has been placed before u. By construction, T} (v)
is placed to the left of the other subtrees rooted in a child of v. Recall that v is placed
in the group opposite of u. Thus, » and all unplaced successors of v lie on the same
side of v and therefore will not induce a crossing. This concludes the proof.

Finally, we will prove the area and running time bounds. We place each match-
ing edge in a unique odd row between 1 and (n — 1). Thus, our drawing needs at
most (n — 1) rows. In every column, we place exactly one vertex, so the drawing
needs n columns. As for the running time, the algorithm to place the vertices clearly
requires only constant running time per vertex, with the exception of traversing the tree
upwards to determine the x-order of the subtrees. For that, however, we traverse every
edge only once, since we stop at the first placed vertex. Thus, the running time of the
algorithm is O(n). O

4 RACSIM Drawings with two bends per edge

In this section, we study slightly more complex classes of planar graphs, and show how
to efficiently construct RACSIM drawings with two bends per edge in quadratic area. In
particular, we prove that a wheel and a matching on a common set of n vertices admit
a RACSIM drawing on an integer grid of size (1.5n — 1) x (n + 2) with two bends
per edge and no bends, respectively; see Theorem [/| If the input to our problem is an
outerpath—that is, an outerplanar graph whose weak dual is a path—and a matching,
then a RACSIM drawing with two bends per edge and no bends, respectively, is also
possible on an integer grid of size (3n — 2) x (3n — 2); see Theorem|g]

Theorem 7 A wheel and a matching on a common set of n vertices admit a RACSIM
drawing on an integer grid of size (1.5n — 1) x (n + 2) with two bends per edge and
no bends, respectively. The drawing can be computed in O(n) time.

Proof: We denote the wheel by W = (V, Eyy) and the matching by M = (V, Epq).
A wheel can be decomposed into a cycle, called rim, a center vertex, and a set of
edges that connect the center to the rim, called spikes. Let V' = {v1,v2,...,0,},
such that vy is the center of W and C = (vo,vs, ..., v, v2) is the rim of V. Thus,
Eyw = {(vi,vit1) | i = 1,...,n — 1} U {(vp,v2)} U {(v1,v;) | i = 2,...,n}.
Let M’ = (V, E ) be the matching M without the edge incident to v;.

We first compute the z-coordinates of the vertices, such that C — {(vy,,v2)} is z-
monotone (if drawn with straight-line edges); see Figure [6] for an illustration. More

precisely, for i = 2,...,n we set 2(v;) = 2i — 3. The y-coordinates of the ver-
tices are computed based on the matching M’, as follows. Let Erq = {e1,... €}
be the matching edges with vy incident to e;. For ¢ = 1,...,k, we assign the y-

coordinate 27 — 1 to the endpoints of e;. Next, we assign the y-coordinate 2k + 1 to
the vertices incident to the rim without a matching edge in M’. Finally, the center v,
of W is located at point (1, 2k + 3).

It remains to determine, for each edge e € Eyy, where it bends, as M’ is drawn
bendless. First, let e = (v1,v;), ¢ = 3,...,n be a spike. Then, we place the bend
at (z(v;),2k + 2). Since both v, and vo are located in column 1, we can save the
bend of the spike (v1,v2). Second, let e = (v;,vi41), ¢ = 2,...,n — 1 be an
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Figure 6. A RACSIM drawing of a wheel (solid; its rim is drawn bold) and a matching (dashed)

edge of the rim C. If y(v;+1) > y(v;), we place the bend at (z(vit1),y(v;) + 1).
If y(vi—1) > y(vi) > y(vit1), we place the bend at (z(vit1), y(vi) — 1). If y(v;) >
y(vi—1),y(viy1), the bottom port at v; is already used. Thus, we draw the edge with
two bends at (z(v;y1),y(v;) — 1) and (z(vi11),y(viy1) + 1). Finally, let e = (v, v2)
be the remaining edge of the rim. Then, we place the bend at (2n — 2,0).

Our approach ensures that C — {(v,,, v2) } is drawn z-monotone, hence planar. The
last edge (vy,,v2) of C is drawn outside of the bounding box containing the vertices;
thus, it is crossing-free. Further, the spikes are not involved in crossings with the rim,
as they are outside of the bounding box containing the rim edges. Hence, W is drawn
planar. On the other hand, all edges of M’ are drawn as horizontal, non-overlapping
line segments. Thus, M’ is drawn planar as well. The slanted segments of W—(v,,, v3)
are of y-length 1. So, they cannot be crossed by the edges of M’. As the edge (v,,, v2)
is not involved in crossings, it follows that all crossings between WV and M’ form right
angles.

Finally, we have to insert the matching edge (vi,v;) in Exq \ E'y,. Since v;
is not incident to a matching edge in M/, it is placed above all matching edges.
Then, (vi,v;) € W does not cross a matching edge, so we can use this edge as a
double edge.

We will now prove the area bound of the drawing algorithm. To that end, we remove
all columns that contain neither a vertex, nor a bend. First, we count the rows used.
Since we remove the matching edge incident to vy, the matching M’ has k <n/2 —1
matching edges. We place the bottommost vertex in row 1 and the topmost vertex, that
is, vertex vy, in row 2k+3. We add one extra bend in row 0 for the edge (v,,, v2). Thus,
our drawing uses 2k + 3 + 1 < n + 2 rows. Next, we count the columns used. The
vertices va, . . ., vy, are each placed in their own column. Every spike has exactly one
bend in the column of a vertex. An edge (v;, v;+1) of rim W has exactly one bend in a
vertex column, except for the case that y(v;) > y(v;—1),y(vi+1), in which it needs an
extra bend between v; and v; 1,4 = 1,...,n—1. Clearly, there can be at most n/2 — 1
vertices satisfying this condition. Since the edge (v,,, v2) uses an extra column to the
right of v,,, our drawing uses (n — 1) + (n/2 — 1) + 1 = 1.5n — 1 columns. O



16 M. A. Bekos et al. RACSIM Drawing of Planar Graphs with Few Bends
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(a) A non-planar drawing (b) A RACSIM drawing

Figure 7. Two drawings of the same outerpath and matching. In both figures, the outerpath is
drawn solid, the upper and the lower path are drawn bold, the spine of the spanning caterpillar is
drawn very bold and the matching is drawn dashed.

Theorem 8 An outerpath and a matching on a common set of n vertices admit a RAC-
SIM drawing on an integer grid of size (3n — 2) x (2n — 1) with two bends per edge
and one bend, respectively. The drawing can be computed in O(nlogn) time.

Proof: We denote by Z = (V, Ez) the outerpath and by M = (V, E() the match-
ing. Recall that an outerpath is a biconnected outerplanar graph whose weak dual
is a path of length at least two; see Figure Let V = {v1,v2,...,v,} such that
(v1,va,...,vy,v1) is the outerface of Z.

We start by augmenting Z to a maximal outerpath Z’ = (V| Ez/) by triangulat-
ing its bounded faces. As Z’ is internally-triangulated, it contains exactly two ver-
tices of degree two, each of which belongs to a face that corresponds to an endpoint
of the dual-path. Assume, without loss of generality, that deg(v1) = deg(v;) = 2
for some j with 2 < j < n; see v; and vy in Figure We call the path P, =
(Vu, Ey) = (v1,v2,...,v;) the upper path of Z', and the path P, = (V;, Ey) =
(Vj+1,Vj42, ..., Vy) the lower path of Z’. Observe that V' = V,, U V. Further, if we
remove F,, U Ey from Ez/, then the resulting graph is a caterpillar C that spans V" and
whose spine alternates between vertices of V,, and V.

We first compute the left-to-right order of the vertices of caterpillar C = (V¢, E¢)
as described by the algorithm supporting Theorem] Then, the z-coordinate of the i-th
vertex in this order is 3¢ — 2,7 = 1,2, ..., n; see Figure

In order to compute the y-coordinates of the vertices, we first partition M into three
matchings My = (‘/Kﬁa EEK)’ Moy = (‘/uua Euu) and My, = (Vu£7 Eu[) as follows.
Let (v,v") € Enq. Then,

(i) (v,v") € By ifv,v" €V,
(ii) (v,v") € Eyy ifv,v" € V,,

(iii) (v,v") € Eyifv eV, andv' € V,.
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Since V = V,, U V,, itholds that Exq = Ey U Ey,, U Ey. In the resulting layout, the
edges in Eyy will be drawn below the edges in F,,¢, which in turn will be drawn below
the ones of F,,,,; see Figure Thus, they will not cross each other.

Let myg = |E¢e| and Egp = {e1, ..., em,, }. We draw the edges from bottom to top,
starting from row 1. Fori = 1,...,myg, lete; = (v;,v}) with z(v;) < z(v}). Then, we
set y(v;) = 4i — 1 and y(v}) = 4i — 3. Edge e; is drawn with a bend at (z(v;), y(v})).
Our approach ensures that there are no crossings between edges of My, as they are
drawn in different horizontal strips of the drawing. Similarly, we draw the edges in E,,,,
from top to bottom, starting from row 2n — 1. Let my,,, = |Ey.|- By construction, the
topmost vertex of Vy is drawn in the row 4myy — 1, and the bottommost vertex of V,,,,
is drawn in the row 2n + 1 — 4m,,,,. The vertices of V,,, will be drawn between these
rows; see Figure [7b]

In order to draw the edges in F,,, we process the vertices of the set V,,, from
left to right and assign y-coordinates to both endpoints of the incident matching edge.
Let mye = |Eye| and Eyp = {é1,...,ém,,}. Fork = 1,...,pu, let é = (wg, w},)
and assume without loss of generality that 2(w;) < z(wj},) and z(w1) < ... < z(w,).
We place the vertices in V; from bottom to top and the vertices in V,, N V,,, from top
to bottom. If wy € V,,, we assign the y-coordinate 4myy — 1 4 3k to wy, and the y-
coordinate 2n + 1 — 4my,, to wy,; if wy, € V, we switch the y-coordinates. Edge ¢y, is
drawn with a bend at (z(wy), y(wy,)). Further, every edge é; € E,¢ with [ > k has its
endpoints to the right of wy, and in the horizontal strip defined by the lines y = y(wg)
and y = y(wj,). Hence, it will not be involved in crossings with (wy,w;). This
guarantees that M is drawn planar.

It remains to determine, for each edge e = (v,v’) € Z’, where it bends. Without
loss of generality, let e be directed from its left endpoint, say v, to its right endpoint,
say v'. First, assume that e € E, U E, belongs to the outercycle. Then, we place
its bends at (z(v') — 2,y(v)) and (z(v') — 2,y(v") — sgn(y(v’) — y(v))). Second,
assume that e € FE¢ belongs to the inner caterpillar. Then, we place its bends at
(2(v/) — L, y(v) + sgn(y(v) — y(v'))) and (2(v') — 1,y(v') — sgn(y(') - y(v))).

Since P,, and Py are drawn z-monotone, both are drawn planar. Following similar
arguments as in the proof of Theorem [ we can show that C is drawn planar as well.
Since C is drawn between P, and Py, it follows that Z’ is drawn planar, as desired.
It now remains to prove that all (potential) crossings between Z’ and M only involve
rectilinear edge segments of Z’, as M consists exclusively of rectilinear segments. As
all slanted segments of Z’ are of y-length 1, no horizontal segment of M can cross
them. The same holds for vertical segments of M,,,, U My, as they are drawn above
and below P, and P, respectively. The only possible non-rectilinear crossings are
between a vertical segment of a matching edge (u, v) € E,s and a long slanted segment
of C incident to a spine vertex w. This crossing can only occur if w lies to the left of
the vertical segment of (u,v). By construction, w is never drawn between v and v,
with respect to the y-coordinate. Thus, such crossings cannot occur, which implies all
crossings between Z’ and M form right angles.

By the choice of the coordinates, the area requirement of our algorithm is (3n—2) x
(2n — 1). Since we have to sort the edges in E,,; by the z-coordinates of the incident
vertices, our algorithm runs in O(n logn) time. To complete the proof of this theorem,
observe that the extra edges that we introduced while augmenting Z to Z’ can be safely
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removed from the constructed layout without affecting either the crossing angles or the
area of the layout. O

5

Conclusions and Open Problems

In this paper, we have studied RAC simultaneous drawings with few bends per edge.
We proved that two planar graphs always admit a RAC simultaneous drawing with at
most six bends per edge. For more restricted classes of graphs, we drastically improved
the number of bends per edge. All of these drawings are within quadratic area. The
results presented in this paper raise several questions that remain open, such as the
following.

1.

Is it possible to reduce the number of bends per edge for the classes of graphs
that we presented in this paper?

What additional non-trivial classes of graphs admit a RACSIM drawing with
better-than-general number of bends?

As a variant of the problem, it might be possible to reduce the required number
of bends per edge by relaxing the strict constraint that edge intersections are
at right-angles and instead ask for drawings that have close to optimal crossing
resolution.

The computational complexity of the general problem remains open: Given two
or more planar graphs on the same set of vertices and a non-negative integer k,
is there a RACSIM drawing in which each graph is drawn with at most &£ bends
per edge and the crossings are all at right angles?

Is it possible to achieve sub-quadratic area for special subclasses of planar graphs
if we increase the number of bends?
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