Computational Geometry

Lecture 12: Seidel's Triangulation Algorithm

Part I: General Idea

Philipp Kindermann

Winter Semester 2020

Polygon $P = \langle p_1, \dots, p_n \rangle$ (list of vertices in cw order)


```
Polygon P = \langle p_1, \dots, p_n \rangle
(list of vertices in cw order)
```

Triangulation of *P*

Polygon $P = \langle p_1, \dots, p_n \rangle$ (list of vertices in cw order)

Triangulation of *P*

i.e., a partition of *P* into triangles by *diagonals* (segments of type $\overline{p_i p_j} \subset P$)

i.e., a partition of *P* into triangles by diagonals (segments of type

1. Trapezoidize interior of *P*.

2. Draw diagonals inside trapezoids.

Polygon $P = \langle p_1, \ldots, p_n \rangle$ (list of vertices in cw order)

Triangulation of *P*

i.e., a partition of *P* into triangles by diagonals (segments of type $\overline{p_ip_i} \subset P)$

1. Trapezoidize interior of *P*.

2. Draw diagonals inside trapezoids.

Polygon $P = \langle p_1, \ldots, p_n \rangle$ (list of vertices in cw order)

Triangulation of *P*

i.e., a partition of *P* into triangles by diagonals (segments of type $\overline{p_ip_i} \subset P)$

Approach:

1. Trapezoidize interior of *P*.

2. Draw diagonals inside trapezoids.

Polygon $P = \langle p_1, \ldots, p_n \rangle$ (list of vertices in cw order)

Triangulation of *P*

i.e., a partition of *P* into triangles by diagonals (segments of type $\overline{p_ip_i} \subset P)$

Approach:

1. Trapezoidize interior of *P*.

2. Draw diagonals inside trapezoids.

Polygon $P = \langle p_1, \ldots, p_n \rangle$ (list of vertices in cw order)

Triangulation of *P*

i.e., a partition of *P* into triangles by diagonals (segments of type $\overline{p_ip_i} \subset P)$

Approach:

1. Trapezoidize interior of *P*.

2. Draw diagonals inside trapezoids.

Polygon $P = \langle p_1, \ldots, p_n \rangle$ (list of vertices in cw order)

Triangulation of *P*

i.e., a partition of *P* into triangles by diagonals (segments of type

1. Trapezoidize interior of *P*.

2. Draw diagonals inside trapezoids.

Given: Polygon $P = \langle p_1, \dots, p_n \rangle$ (list of vertices in cw order)

Find: Triangulation of *P*

i.e., a partition of *P* into triangles by *diagonals* (segments of type $\overline{p_i p_j} \subset P$)

Approach:

Running time:

- 1. Trapezoidize interior of *P*.
- 2. Draw diagonals inside trapezoids.
- 3. Triangulate *y*-monotone subpolygons.

Lemma 1. Given a trapezoidation, a polygon can be triangulated in linear time.

Let *S* be a set of *n* non-crossing segments

Let *S* be a set of *n* non-crossing segments **WANTED**:

Let *S* be a set of *n* non-crossing segments **WANTED:** – trapezoidation $\mathcal{T}(S)$ of *S*

Let *S* be a set of *n* non-crossing segments

WANTED: – trapezoidation $\mathcal{T}(S)$ of *S*

– point-location data structure Q(S)

Let *S* be a set of *n* non-crossing segments **WANTED:** – trapezoidation $\mathcal{T}(S)$ of *S* – point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:

Let *S* be a set of *n* non-crossing segments **WANTED:** – trapezoidation $\mathcal{T}(S)$ of *S* – point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:

Trapezoidation (set *S* of *n* non-crossing line segments)

Let *S* be a set of *n* non-crossing segments **WANTED:** – trapezoidation $\mathcal{T}(S)$ of *S* – point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:

Trapezoidation (set *S* of *n* non-crossing line segments) $\langle s_1, s_2, \ldots, s_n \rangle \leftarrow$ random ordering of *S*

Let *S* be a set of *n* non-crossing segments **WANTED:** – trapezoidation $\mathcal{T}(S)$ of *S* – point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:

Trapezoidation (set *S* of *n* non-crossing line segments) $\langle s_1, s_2, \ldots, s_n \rangle \leftarrow$ random ordering of *S* $S_0 \leftarrow \emptyset$

Let *S* be a set of *n* non-crossing segments **WANTED:** – trapezoidation $\mathcal{T}(S)$ of *S* – point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:

Trapezoidation (set *S* of *n* non-crossing line segments) $\langle s_1, s_2, \ldots, s_n \rangle \leftarrow$ random ordering of *S* $S_0 \leftarrow \emptyset$ **for** *i* = 1 **to** *n* **do**
Let *S* be a set of *n* non-crossing segments **WANTED:** – trapezoidation $\mathcal{T}(S)$ of *S* – point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:

Trapezoidation (set *S* of *n* non-crossing line segments) $\langle s_1, s_2, \dots, s_n \rangle \leftarrow$ random ordering of *S* $S_0 \leftarrow \emptyset$ **for** i = 1 **to** *n* **do** $| S_i \leftarrow S_{i-1} \cup \{s_i\}$

Let *S* be a set of *n* non-crossing segments **WANTED:** – trapezoidation $\mathcal{T}(S)$ of *S* – point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:

Trapezoidation (set *S* of *n* non-crossing line segments) $\langle s_1, s_2, \dots, s_n \rangle \leftarrow$ random ordering of *S* $S_0 \leftarrow \emptyset$ **for** i = 1 **to** *n* **do** $\begin{vmatrix} S_i \leftarrow S_{i-1} \cup \{s_i\} \\ \text{use } \mathcal{T}(S_{i-1}) \text{ and } \mathcal{Q}(S_{i-1}) \text{ to construct } \mathcal{T}(S_i) \text{ and } \mathcal{Q}(S_i) \end{vmatrix}$

Let *S* be a set of *n* non-crossing segments **WANTED:** – trapezoidation $\mathcal{T}(S)$ of *S* – point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:

Trapezoidation (set *S* of *n* non-crossing line segments) $\langle s_1, s_2, \dots, s_n \rangle \leftarrow$ random ordering of *S* $S_0 \leftarrow \emptyset$ **for** i = 1 **to** *n* **do** $\begin{bmatrix} S_i \leftarrow S_{i-1} \cup \{s_i\} \\ \text{use } \mathcal{T}(S_{i-1}) \text{ and } \mathcal{Q}(S_{i-1}) \text{ to construct } \mathcal{T}(S_i) \text{ and } \mathcal{Q}(S_i) \end{bmatrix}$

Total cost of one step:

Let *S* be a set of *n* non-crossing segments **WANTED:** – trapezoidation $\mathcal{T}(S)$ of *S* – point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:

Trapezoidation (set *S* of *n* non-crossing line segments) $\langle s_1, s_2, \dots, s_n \rangle \leftarrow$ random ordering of *S* $S_0 \leftarrow \emptyset$ **for** i = 1 **to** *n* **do** $\begin{bmatrix} S_i \leftarrow S_{i-1} \cup \{s_i\} \\ \text{use } \mathcal{T}(S_{i-1}) \text{ and } \mathcal{Q}(S_{i-1}) \text{ to construct } \mathcal{T}(S_i) \text{ and } \mathcal{Q}(S_i) \end{bmatrix}$

Total cost of one step: – location time

Let *S* be a set of *n* non-crossing segments **WANTED:** – trapezoidation $\mathcal{T}(S)$ of *S* – point-location data structure $\mathcal{Q}(S)$

Our construction is randomized-incremental:

Trapezoidation (set *S* of *n* non-crossing line segments) $\langle s_1, s_2, \ldots, s_n \rangle \leftarrow$ random ordering of *S* $S_0 \leftarrow \emptyset$ **for** i = 1 **to** *n* **do** $\begin{bmatrix} S_i \leftarrow S_{i-1} \cup \{s_i\} \\ \text{use } \mathcal{T}(S_{i-1}) \text{ and } \mathcal{Q}(S_{i-1}) \text{ to construct } \mathcal{T}(S_i) \text{ and } \mathcal{Q}(S_i) \end{bmatrix}$

Total cost of one step: – location time – "threading" (updating) time

Computational Geometry

Lecture 12: Seidel's Triangulation Algorithm

Part II: Location & Threading Time

Philipp Kindermann

Winter Semester 2020

We assume general position (no two points have the same *y*-coordinate).

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

We assume general position (no two points have the same *y*-coordinate).

We assume general position (no two points have the same *y*-coordinate). Use lexicographic order!

We assume general position (no two points have the same *y*-coordinate). Use lexicographic order!

We assume general position (no two points have the same *y*-coordinate).

We assume general position (no two points have the same *y*-coordinate). Use lexicographic order!

We assume general position (no two points have the same *y*-coordinate). Use lexicographic order!

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof. For $s \in S_i$, let deg $(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For $s \in S_i$, let deg $(s, \mathcal{T}(S_i)) = \#$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s.

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For
$$s \in S_i$$
, let $deg(s, \mathcal{T}(S_i)) = #$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s .

5 - 14

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For
$$s \in S_i$$
, let $deg(s, \mathcal{T}(S_i)) = #$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s .

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i =$

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

S

For
$$s \in S_i$$
, let $deg(s, \mathcal{T}(S_i)) = #$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s .

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

S

For
$$s \in S_i$$
, let $deg(s, \mathcal{T}(S_i)) = #$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s .

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$ # rays in $\mathcal{T}(S_i) \leq$

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

S

For
$$s \in S_i$$
, let $deg(s, \mathcal{T}(S_i)) = #$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s .

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$ # rays in $\mathcal{T}(S_i) \leq$

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

S

For
$$s \in S_i$$
, let $deg(s, \mathcal{T}(S_i)) = #$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s .

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$ # rays in $\mathcal{T}(S_i) \le 4i$

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For
$$s \in S_i$$
, let $deg(s, \mathcal{T}(S_i)) = #$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s .

S

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$ # rays in $\mathcal{T}(S_i) \le 4i$ $\Rightarrow \sum_{s \in S_i} \deg(s, \mathcal{T}(S_i)) \le s$

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For
$$s \in S_i$$
, let $deg(s, \mathcal{T}(S_i)) = #$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s .

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$ # rays in $\mathcal{T}(S_i) \le 4i$ $\Rightarrow \sum_{s \in S_i} \deg(s, \mathcal{T}(S_i)) \le 4i$

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For
$$s \in S_i$$
, let $deg(s, \mathcal{T}(S_i)) = #$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s .

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$ # rays in $\mathcal{T}(S_i) \le 4i$ $\Rightarrow \sum_{s \in S_i} \deg(s, \mathcal{T}(S_i)) \le 4i$ Ordering of S_i random \Rightarrow

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For
$$s \in S_i$$
, let $deg(s, \mathcal{T}(S_i)) = #$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s .

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$ # rays in $\mathcal{T}(S_i) \leq 4i$ $\Rightarrow \sum_{s \in S_i} \deg(s, \mathcal{T}(S_i)) \leq 4i$ Ordering of S_i random $\Rightarrow E[\deg(s_i, \mathcal{T}(S_i))] \leq 1$

We assume general position *Use lexicographic order!* (no two points have the same *y*-coordinate).

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Proof.

For
$$s \in S_i$$
, let $deg(s, \mathcal{T}(S_i)) = #$ rays of $\mathcal{T}(S_i)$ that hit the relative interior of s .

rays of $\mathcal{T}(S_{i-1})$ intersected by $s_i = \deg(s_i, \mathcal{T}(S_i))$ # rays in $\mathcal{T}(S_i) \leq 4i$ $\Rightarrow \sum_{s \in S_i} \deg(s, \mathcal{T}(S_i)) \leq 4i$ Ordering of S_i random $\Rightarrow E[\deg(s_i, \mathcal{T}(S_i))] \leq 4$

Recall: $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta($)

Recall: $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$

Recall:

$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$ More precisely, $\ln n < H_n < 1 + \ln n$ for n > 1.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Proof. Let $T_i(q)$ be the length of the search path of q in $Q(S_i)$

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Proof. Let $T_i(q)$ be the length of the search path of q in $Q(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q
Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Proof. Let $T_i(q)$ be the length of the search path of q in $Q(S_i)$ Let $t_i(q)$ be the trapezoid in $\mathcal{T}(S_i)$ that contains q $t_i(q) = t_{i-1}(q) \Rightarrow T(S_i) = T(S_{i-1})$

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Recall:

1:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

6 - 9

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Theorem. Let *S* be a set of *n* non-crossing line segments.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Theorem. Let *S* be a set of *n* non-crossing line segments. • We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log n)$ expected time.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Theorem. Let S be a set of n non-crossing line segments.
■ We can build T(S) and Q(S) in O(n log n) expected time.
■ The expected size of Q(S) is O(n).

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Theorem.	Let <i>S</i> be a set of <i>n</i> non-crossing line segments.
	• We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log n)$
	expected time.
	The expected size of $Q(S)$ is $O(n)$.
	The expected time for locating a point in
	$\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Theorem.	Let <i>S</i> be a set of <i>n</i> non-crossing line segments.
	• We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log n)$
	expected time.
	The expected size of $Q(S)$ is $O(n)$.
	The expected time for locating a point in
	$\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

Recall:

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n} \in \Theta(\log n)$$

More precisely, $\ln n < H_n < 1 + \ln n$ for $n > 1$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Theorem.	Let <i>S</i> be a set of <i>n</i> non-crossing line segments.
	• We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log n)$
	expected time.
	The expected size of $Q(S)$ is $O(n)$.
	The expected time for locating a point in
	$\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

Aim: Speed-up construction for simple polygons.

Computational Geometry

Lecture 12: Seidel's Triangulation Algorithm

Part III: New Approach

Philipp Kindermann

Winter Semester 2020

Observe:

- e: in $\mathcal{Q}(S_i)$,
 - point location takes $O(\log i)$ expected time
 - threading s_{i+1} takes O(1) expected time

Observe:

in $\mathcal{Q}(S_i)$,

– point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time

Idea:Exploit polygon structure!

Observe:

in $\mathcal{Q}(S_i)$,

– point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time

Idea:

Observe:

- in $\mathcal{Q}(S_i)$,
 - point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time

Idea:

Observe:

- in $\mathcal{Q}(S_i)$,
 - point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time

Idea:

Observe:

- in $\mathcal{Q}(S_i)$,
 - point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time

Idea:

Observe:

in $\mathcal{Q}(S_i)$,

– point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time

Idea:

Observe:

in $\mathcal{Q}(S_i)$,

– point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time

Idea:

Observe:

- in $\mathcal{Q}(S_i)$,
 - point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time

Idea:

Observe:

- in $\mathcal{Q}(S_i)$,
 - point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time

Idea:

Observe: in $Q(S_i)$,

- point location takes $O(\log i)$ expected time - threading s_{i+1} takes O(1) expected time

Idea:Exploit polygon structure!Locate once, then follow polygon.

Problem: This way, we lose the random structure!

Observe:

in $Q(S_i)$, – point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time

Idea:Exploit polygon structure!Locate once, then follow polygon.

Problem: This way, we lose the random structure! \Rightarrow threading becomes more expensive

Observe:

in $Q(S_i)$, – point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time

Idea:Exploit polygon structure!Locate once, then follow polygon.

Problem: This way, we lose the random structure!

 \Rightarrow threading becomes more expensive

$$\Rightarrow \Theta(n^2)$$
-time algorithm :-(

Observe:

- in $Q(S_i)$, – point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time
- Idea:Exploit polygon structure!Locate once, then follow polygon.
- **Problem:** This way, we lose the random structure! $\stackrel{\clubsuit}{\Rightarrow}$ threading becomes more expensive $\Rightarrow \Theta(n^2)$ -time algorithm :-(

Solution:

Observe:

- in $Q(S_i)$, – point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time
- Idea:Exploit polygon structure!Locate once, then follow polygon.
- **Problem:** This way, we lose the random structure! \Rightarrow threading becomes more expensive
 - $\Rightarrow \Theta(n^2)$ -time algorithm :-(
- **Solution:** Insert segments in random order

Observe:

- in $Q(S_i)$, – point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time
- Idea:Exploit polygon structure!Locate once, then follow polygon.
- **Problem:** This way, we lose the random structure! \Rightarrow threading becomes more expensive
 - $\Rightarrow \Theta(n^2)$ -time algorithm :-(

Solution:

insert segments in random order
 every now and then, locate *all* polygon vertices in the current trapezoidation

Observe:

- in $Q(S_i)$, – point location takes $O(\log i)$ expected time – threading s_{i+1} takes O(1) expected time
- Idea:Exploit polygon structure!Locate once, then follow polygon.
- **Problem:** This way, we lose the random structure! \Rightarrow threading becomes more expensive
 - $\Rightarrow \Theta(n^2)$ -time algorithm :-(

Solution:

insert segments in random order
 every now and then, locate *all* polygon vertices in the current trapezoidation *by walking along the polygon!*
Questions:

9 - 1

Questions: How much does the intermediate location information help later?

- **Questions:** How much does the intermediate location information help later?
 - How expensive is it to walk along the polygon in the current trapezoidation?

Questions: How much does the intermediate location information help later?

How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time

Questions: How much does the intermediate location information help later?

How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Questions: How much does the intermediate location information help later?

How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O($

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Questions: How much does the intermediate location information help later?

How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

Lemma 3. For any query point *q*, the expected length of the search path of *q* in $Q(S_n)$ is at most $5H_n \in O(\log n)$.

Questions: How much does the intermediate location information help later?

How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

Lemma 5. *S* as before, $R \subseteq S$ random subset, r := |R|.

Questions: How much does the intermediate location information help later?

How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

Lemma 5. *S* as before, $R \subseteq S$ random subset, r := |R|. Let *I* be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \setminus R$.

Questions: How much does the intermediate location information help later?

How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

Lemma 5. *S* as before, $R \subseteq S$ random subset, r := |R|. Let *I* be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \setminus R$. Then $E[I] \leq \ldots$, where the expectation is over all size-*r* subsets of *S*.

Questions: How much does the intermediate location information boln later? Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

Lemma 5. *S* as before, $R \subseteq S$ random subset, r := |R|. Let *I* be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \setminus R$. Then $E[I] \leq \ldots$, where the expectation is over all size-*r* subsets of *S*.

Questions: How much does the intermediate location information boln lator? Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

Lemma 5. *S* as before, $R \subseteq S$ random subset, r := |R|. Let *I* be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \setminus R$. Then $E[I] \leq 4(n - r)$, where the expectation is over all size-*r* subsets of *S*.

Questions: How much does the intermediate location information help later?

How expensive is it to walk along the polygon in the current trapezoidation?

Lemma 4. Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of q in $\mathcal{Q}(S_j)$ is known, then q can be located in $\mathcal{Q}(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$.

Lemma 5. *S* as before, $R \subseteq S$ random subset, r := |R|. Let *I* be the number of intersections between rays of $\mathcal{T}(R)$ and segments in $S \setminus R$. Then $E[I] \leq 4(n - r)$, where the expectation is over all size-*r* subsets of *S*.

Computational Geometry

Lecture 12: Seidel's Triangulation Algorithm

Part IV: The Algorithm

Philipp Kindermann

Winter Semester 2020

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^2} =$$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^2} = 2^{2^2}$$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} =$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} =$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} =$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} =$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} =$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2;$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2; \quad \log^{(4)} 2^{2^{2^2}} = 2^2$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2; \quad \log^{(4)} 2^{2^{2^2}} = 1$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

For $n > 0$, let $\log^* n := \max\{i \mid \log^{(i)} n \ge 1\}.$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2; \quad \log^{(4)} 2^{2^{2^2}} = 1$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

For $n > 0$, let $\log^* n := \max\{i \mid \log^{(i)} n \ge 1\}.$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2; \quad \log^{(4)} 2^{2^{2^2}} = 1 \implies \log^{\star} 2^{2^{2^2}} = 2^{2^2}$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

For $n > 0$, let $\log^* n := \max\{i \mid \log^{(i)} n \ge 1\}.$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2; \quad \log^{(4)} 2^{2^{2^2}} = 1 \implies \log^* 2^{2^{2^2}} = 4$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

For $n > 0$, let $\log^* n := \max\{i \mid \log^{(i)} n \ge 1\}.$

Examples.
$$\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$$

 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2; \quad \log^{(4)} 2^{2^{2^2}} = 1 \Rightarrow \log^{\star} 2^{2^{2^2}} = 4$

Input: 2 ^{2^{2^{2²}} Result: 2 003 529 930 406 846 464 979 072 351 560 255 750 447 825 475 569 751 419 265 016 % 973 710 894 059 556 311 453 089 506 130 880 933 348 101 038 234 342 907 263 %}	Open code ↔ More digits 1 × 10 ⁸⁰ a	tation: I number of atoms in the universe toms
181 822 949 382 118 812 668 869 506 364 761 547 029 165 041 871 916 351 587 \. 966 347 219 442 930 927 982 084 309 104 855 990 570 159 318 959 639 524 863 \. 372 367 203 002 916 969 592 156 108 764 948 889 254 090 805 911 457 037 675 \. 208 500 206 671 563 702 366 126 359 747 144 807 111 774 815 880 914 135 742 \. 720 967 190 151 836 282 560 618 091 458 852 699 826 141 425 030 123 391 Decimal approximation: 2 00352993040684646497907235156025575044782547556975 × 10 ¹⁹⁷²⁸	$\mathbf{x}\{i \mid 1$	$\log^{(i)} n \ge 1\}.$
Number length: 19729 decimal digits		
$\log^{(2)} 2^{2^{2^{2}}} = \log_{2} \log_{2^{2^{2}}} \log^{(3)} 2^{2^{2^{2}}} = 2; \log^{(2)} \log^{(2)} 2^{2^{2^{2}}} = 2; \log^{(2)} 2^{2^{2^{2^{2}}}} = 2; \log^{(2)} 2^{2^{2^{2^{2}}}} = 2; \log^{(2)} 2^{2^{2^{2^{2}$	$(1) 2^{2^2} = 2^2$ $(4) 2^{2^2} = 1 =$	$55,536$ \downarrow $\Rightarrow \log^{\star} 2^{2^{2^2}} = 4$

Input: 2 ^{2^{2²}}	Open code 🕣	Input interpretation: estimated number of atoms in the universe
Result: 2 003 529 930 406 846 464 979 072 351 560 255 750 447 825 475 569 751 419 265 016 % 973 710 894 059 556 311 453 089 506 130 880 933 348 101 038 234 342 907 263 % 181 822 949 382 118 812 668 869 506 364 761 547 029 165 041 871 916 351 587 % 966 347 219 442 930 927 982 084 309 104 855 990 570 159 318 959 639 524 863 % 372 367 203 002 916 969 592 156 108 764 948 889 254 090 805 911 457 037 675 % 208 500 206 671 563 702 366 126 359 747 144 807 111 774 815 880 914 135 742 % 720 967 190 151 836 282 560 618 091 458 852 699 826 141 425 030 123 391		Result: 1×10^{80} atoms
		Input interpretation: 2 ^{2^{2^{2²}}}
Decimal approximation: 2.00352993040684646497907235156025575044782547556975 × 10 ¹⁹⁷²⁸	More digits	Result: 2×10 ¹⁹⁶⁴⁸ per atom
Number length: 19729 decimal digits		
$\log^{(2)} 2^{2^{2^{2}}} = \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2$	$^{(1)}2^{2^{2^2}}$	$=2^{2}$ $(5,536)$
$\log^{(3)} 2^{2^2} = 2; \log^{-1} 2;$	$^{(4)} 2^{2^{2^2}}$	$=1 \Rightarrow \log^{\star} 2^{2^{2^2}} = 4$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

For $n > 0$, let $\log^* n := \max\{i \mid \log^{(i)} n \ge 1\}$.
For $0 \le h \le \log^* n$, let $N(h) := \lceil n / \log^{(h)} n \rceil$.
Examples. $\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$
 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^2} = \log_2 \log^{(1)} 2^{2^2} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2; \quad \log^{(4)} 2^{2^2} = 1 \implies \log^* 2^{2^2} = 4$

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

For $n > 0$, let $\log^* n := \max\{i \mid \log^{(i)} n \ge 1\}$.
For $0 \le h \le \log^* n$, let $N(h) := \lceil n/\log^{(h)} n \rceil$.
Examples. $\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$
 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2; \quad \log^{(4)} 2^{2^{2^2}} = 1 \implies \log^* 2^{2^{2^2}} = 4$
 $N(0) = 1$
Logs All Over the Place

Definition. Let the *i*-th iterated logarithm of n be defined by

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

For $n > 0$, let $\log^* n := \max\{i \mid \log^{(i)} n \ge 1\}$.
For $0 \le h \le \log^* n$, let $N(h) := \lceil n / \log^{(h)} n \rceil$.
Examples. $\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$
 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^2} = \log_2 \log^{(1)} 2^{2^2} = 2^2$
 $\log^{(3)} 2^{2^2} = 2; \quad \log^{(4)} 2^{2^2} = 1 \implies \log^* 2^{2^2} = 4$
 $N(0) = 1, N(1) = \lceil n / \log n \rceil$

Logs All Over the Place

Definition. Let the *i*-th iterated logarithm of n be defined by

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

For $n > 0$, let $\log^* n := \max\{i \mid \log^{(i)} n \ge 1\}$.
For $0 \le h \le \log^* n$, let $N(h) := \lceil n / \log^{(h)} n \rceil$.
Examples. $\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$
 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^2} = \log_2 \log^{(1)} 2^{2^2} = 2^2$
 $\log^{(3)} 2^{2^2} = 2; \quad \log^{(4)} 2^{2^2} = 1 \implies \log^* 2^{2^2} = 4$
 $N(0) = 1, N(1) = \lceil n / \log n \rceil, \ldots$

Logs All Over the Place

Definition. Let the *i*-th iterated logarithm of n be defined by

$$\log^{(i)} n := \begin{cases} n & \text{if } i = 0, \\ \log_2(\log^{(i-1)} n) & \text{if } i > 0. \end{cases}$$

For $n > 0$, let $\log^* n := \max\{i \mid \log^{(i)} n \ge 1\}$.
For $0 \le h \le \log^* n$, let $N(h) := \lceil n / \log^{(h)} n \rceil$.
Examples. $\log^{(0)} 2^{2^{2^2}} = 2^{2^{2^2}}$
 $\log^{(1)} 2^{2^{2^2}} = \log_2 2^{2^{2^2}} = 2^{2^2}$
 $\log^{(2)} 2^{2^{2^2}} = \log_2 \log^{(1)} 2^{2^{2^2}} = 2^2$
 $\log^{(3)} 2^{2^{2^2}} = 2; \quad \log^{(4)} 2^{2^{2^2}} = 1 \implies \log^* 2^{2^{2^2}} = 4$
 $N(0) = 1, N(1) = \lceil n / \log n \rceil, N(\log^* n) > n/2.$

PolygonTrapezoidation ((edges along) simple polygon *P*)

PolygonTrapezoidation ((edges along) simple polygon *P*) 1. $\langle s_1, s_2, ..., s_n \rangle$:= random ordering of the edges of *P*

PolygonTrapezoidation ((edges along) simple polygon *P*)

- 1. $\langle s_1, s_2, \ldots, s_n \rangle$:= random ordering of the edges of *P*
- 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$.

PolygonTrapezoidation ((edges along) simple polygon *P*)

- 1. $\langle s_1, s_2, \ldots, s_n \rangle$:= random ordering of the edges of *P*
- 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ ptr to the leaf of \mathcal{Q}_1 that contains v.

PolygonTrapezoidation ((edges along) simple polygon *P*) $\langle s_1, s_2, \ldots, s_n \rangle :=$ random ordering of the edges of P 1. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. 2. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ ptr to the leaf of Q_1 that contains v. for h = 1 to $\log^* n$ do // phase h 3.1 3.2

PolygonTrapezoidation ((edges along) simple polygon *P*) $\langle s_1, s_2, \ldots, s_n \rangle :=$ random ordering of the edges of P 1. 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ ptr to the leaf of Q_1 that contains v. for h = 1 to $\log^* n$ do // phase h for i = N(h-1) + 1 to N(h) do 3.1 3.2

PolygonTrapezoidation ((edges along) simple polygon *P*) $\langle s_1, s_2, \ldots, s_n \rangle :=$ random ordering of the edges of P 1. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. 2. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ ptr to the leaf of Q_1 that contains v. for h = 1 to $\log^* n$ do // phase h for i = N(h-1) + 1 to N(h) do 3.1 insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$) 3.2

PolygonTrapezoidation ((edges along) simple polygon *P*) 1. $\langle s_1, s_2, ..., s_n \rangle :=$ random ordering of the edges of *P* 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ ptr to the leaf of \mathcal{Q}_1 that contains *v*. **for** h = 1 **to** $\log^* n$ **do** // phase *h* 3.1 **for** i = N(h-1) + 1 **to** N(h) **do** $\[insert s_i = v_i w_i \text{ in } \mathcal{T}_{i-1} \text{ using } \pi(v_i) \text{ (node in } \mathcal{Q}_{N(h-1)}) \text{ walk along$ *P* $through <math>\mathcal{T}_{N(h)}$:

PolygonTrapezoidation ((edges along) simple polygon *P*) $\langle s_1, s_2, \ldots, s_n \rangle :=$ random ordering of the edges of P 1. 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ ptr to the leaf of Q_1 that contains v. for h = 1 to $\log^* n$ do // phase h for i = N(h-1) + 1 to N(h) do 3.1 insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$) walk along *P* through $\mathcal{T}_{N(h)}$: 3.2 foreach vertex v do

PolygonTrapezoidation ((edges along) simple polygon *P*) $\langle s_1, s_2, \ldots, s_n \rangle :=$ random ordering of the edges of P 1. 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ ptr to the leaf of Q_1 that contains v. for h = 1 to $\log^* n$ do // phase h for i = N(h-1) + 1 to N(h) do 3.1 insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$) walk along *P* through $\mathcal{T}_{N(h)}$: 3.2 foreach vertex v do $\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v

PolygonTrapezoidation ((edges along) simple polygon *P*) $\langle s_1, s_2, \ldots, s_n \rangle :=$ random ordering of the edges of P 1. 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ ptr to the leaf of Q_1 that contains v. for h = 1 to $\log^* n$ do // phase h for i = N(h-1) + 1 to N(h) do 3.1 insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$) walk along *P* through $\mathcal{T}_{N(h)}$: 3.2 foreach vertex v do $\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v $= \pi(v) \leftarrow$ the node in $\mathcal{Q}_{N(h)}$ corresponding to Δ

PolygonTrapezoidation ((edges along) simple polygon *P*) $\langle s_1, s_2, \ldots, s_n \rangle :=$ random ordering of the edges of P 1. 2. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ ptr to the leaf of Q_1 that contains v. for h = 1 to $\log^* n$ do // phase h for i = N(h-1) + 1 to N(h) do 3.1 insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$) walk along *P* through $\mathcal{T}_{N(h)}$: 3.2 foreach vertex v do $\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v $\pi(v) \leftarrow$ the node in $\mathcal{Q}_{N(h)}$ corresponding to Δ for $i = N(\log^* n) + 1$ to n do 4.

PolygonTrapezoidation ((edges along) simple polygon *P*) $\langle s_1, s_2, \ldots, s_n \rangle :=$ random ordering of the edges of P 1. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. 2. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ ptr to the leaf of Q_1 that contains v. for h = 1 to $\log^* n$ do // phase h for i = N(h-1) + 1 to N(h) do 3.1 insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$) walk along *P* through $\mathcal{T}_{N(h)}$: 3.2 foreach vertex v do $\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v $\pi(v) \leftarrow$ the node in $\mathcal{Q}_{N(h)}$ corresponding to Δ for $i = N(\log^* n) + 1$ to n do 4. insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(\log^* n)}$)

PolygonTrapezoidation ((edges along) simple polygon *P*) $\langle s_1, s_2, \ldots, s_n \rangle :=$ random ordering of the edges of P 1. Compute \mathcal{T}_1 and \mathcal{Q}_1 for $\{s_1\}$. 2. **foreach** $v \in P$ **do** $\pi(v) \leftarrow$ ptr to the leaf of Q_1 that contains v. for h = 1 to $\log^* n$ do // phase h for i = N(h-1) + 1 to N(h) do 3.1 insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(h-1)}$) walk along *P* through $\mathcal{T}_{N(h)}$: 3.2 foreach vertex v do $\Delta \leftarrow$ the trapezoid in $\mathcal{T}_{N(h)}$ that contains v $\pi(v) \leftarrow$ the node in $\mathcal{Q}_{N(h)}$ corresponding to Δ for $i = N(\log^* n) + 1$ to n do 4. insert $s_i = v_i w_i$ in \mathcal{T}_{i-1} using $\pi(v_i)$ (node in $\mathcal{Q}_{N(\log^* n)}$) return $(\mathcal{T}_n, \mathcal{Q}_n)$

Computational Geometry

Lecture 12: Seidel's Triangulation Algorithm

Part V: Time Complexity

Philipp Kindermann

Winter Semester 2020

Step 1: Random permutation

Step 1: Random permutation

Step 1: Random permutation

O(n)

Step 2: Setting up T_1 , Q_1 , and $\pi(v)$

Step 1: Random permutation

Step 2: Setting up T_1 , Q_1 , and $\pi(v)$

Step 1: Random permutation Step 2: Setting up T_1 , Q_1 , and $\pi(v)$

Step 3: Phases 1 to $\log^* n$

Step 1: Random permutation Step 2: Setting up T_1 , Q_1 , and $\pi(v)$ Step 3: Phases 1 to $\log^* n$ O(n)O(n) $(\log^* n) \cdot$

Step 1: Random permutation

Step 2: Setting up T_1 , Q_1 , and $\pi(v)$

Step 3: Phases 1 to $\log^* n$

Step 3.2: Walking the polygon

```
O(n)O(n)(\log^* n) \cdot
```


Step 1: Random permutation		O(n)
Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$		O(n)
Step 3: Phases 1 to $\log^* n$		$(\log^{\star} n)$ ·
Step 3.2: Walking the polygon	Lemma $5 \Rightarrow$	O(n)

Step 1: Random permutationO(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ O(n)Step 3: Phases 1 to $\log^* n$ $(\log^* n) \cdot$ Step 3.2: Walking the polygonLemma 5 \Rightarrow Step 3.1: Inserting $s_i = v_i w_i$ using $\mathcal{Q}_{N(h-1)}$

Step 1: Random permutationO(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ O(n)Step 3: Phases 1 to $\log^* n$ $(\log^* n) \cdot$ Step 3.2: Walking the polygonLemma $5 \Rightarrow$ Step 3.1: Inserting $s_i = v_i w_i$ using $\mathcal{Q}_{N(h-1)}$ - threading cost:- locating cost:

Step 1: Random permutationO(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ O(n)Step 3: Phases 1 to $\log^* n$ $(\log^* n) \cdot$ Step 3.2: Walking the polygonLemma $5 \Rightarrow$ Step 3.1: Inserting $s_i = v_i w_i$ using $\mathcal{Q}_{N(h-1)}$ - threading cost:- locating cost:

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Step 1: Random permutationO(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ O(n)Step 3: Phases 1 to $\log^* n$ $(\log^* n) \cdot$ Step 3.2: Walking the polygonLemma $5 \Rightarrow$ Step 3.1: Inserting $s_i = v_i w_i$ using $\mathcal{Q}_{N(h-1)}$ O(n)- threading cost:Lem. 2 \Rightarrow expected O(1) per segm.- locating cost:

Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Step 1: Random permutationO(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ O(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ O(n)Step 3: Phases 1 to $\log^* n$ $(\log^* n) \cdot$ Step 3.2: Walking the polygonLemma $5 \Rightarrow$ Step 3.1: Inserting $s_i = v_i w_i$ using $\mathcal{Q}_{N(h-1)}$ O(n)- threading cost:Lem. 2 \Rightarrow expected O(1) per segm.- locating cost: Know the location of v_i in $\mathcal{Q}_{N(h-1)}$.

Step 1: Random permutation O(n)O(n)Step 2: Setting up T_1 , Q_1 , and $\pi(v)$ $(\log^* n)$. Step 3: Phases 1 to $\log^* n$ Lemma $5 \Rightarrow$ Step 3.2: Walking the polygon O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ – threading cost:Lem. 2 \Rightarrow expected O(1) per segm. – locating cost: Know the location of v_i in $Q_{N(h-1)}$. Lem. 4 \Rightarrow expected location cost

Step 1: Random permutation O(n)O(n)Step 2: Setting up T_1 , Q_1 , and $\pi(v)$ $(\log^{\star} n)$ · Step 3: Phases 1 to $\log^* n$ Lemma $5 \Rightarrow$ Step 3.2: Walking the polygon O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ – threading cost:Lem. 2 \Rightarrow expected O(1) per segm. – locating cost: Know the location of v_i in $Q_{N(h-1)}$. Lem. 4 \Rightarrow expected location cost $O(\log(i/N(h-1))) \subseteq$

14 - 17 Time Complexity $N(h) := \lceil n / \log^{(h)} n \rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ $(\log^{\star} n)$. Step 3: Phases 1 to $\log^* n$ Step 3.2: Walking the polygon Lemma $5 \Rightarrow$ O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ – threading cost:Lem. 2 \Rightarrow expected O(1) per segm. – locating cost: Know the location of v_i in $Q_{N(h-1)}$. Lem. 4 \Rightarrow expected location cost $O(\log(i/N(h-1))) \subseteq$

Time Complexity $N(h) := \lceil n / \log^{(h)} n \rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ $(\log^* n)$ · Step 3: Phases 1 to $\log^* n$ Step 3.2: Walking the polygon Lemma $5 \Rightarrow$ O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ – threading cost:Lem. 2 \Rightarrow expected O(1) per segm. – locating cost: Know the location of v_i in $Q_{N(h-1)}$. Lem. 4 \Rightarrow expected location cost $O(\log(i/N(h-1))) \odot O(\log^{(h)} n)$
Time Complexity

Step 1: Random permutation O(n)O(n)Step 2: Setting up T_1 , Q_1 , and $\pi(v)$ $(\log^* n)$ · Step 3: Phases 1 to $\log^* n$ Step 3.2: Walking the polygon Lemma $5 \Rightarrow$ (n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ – threading cost:Lem. 2 \Rightarrow expected O(1) per segm – locating cost: Know the location of v_i in $Q_{N(h-1)}$. Lem. 4 \Rightarrow expected location cost $O(\log(i/N(h-1))) \subseteq O(\log^{(h)} n)$

 $N(h) := \lceil n / \log^{(h)} n \rceil$

Time Complexity $N(h) := \lceil n / \log^{(h)} n \rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up T_1 , Q_1 , and $\pi(v)$ $(\log^* n)$ · Step 3: Phases 1 to $\log^* n$ Step 3.2: Walking the polygon Lemma $5 \Rightarrow$ (n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ - threading cost:Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segm - locating cost: Know the location of v_i in $\mathcal{Q}_{N(h-1)}$: N(h) =Lem. 4 \Rightarrow expected location cost $O(\log(i/N(h-1))) \bigcirc (\log^{(h)} n)$

14 - 21 Time Complexity $N(h) := \lceil n / \log^{(h)} n \rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up T_1 , Q_1 , and $\pi(v)$ $(\log^* n)$. Step 3: Phases 1 to $\log^* n$ Step 3.2: Walking the polygon Lemma $5 \Rightarrow$ O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ – threading cost:Lem. 2 \Rightarrow expected O(1) per segment - locating cost: Know the location of v_i in $\mathcal{Q}_{N(h-1)}$: N(h) = O(n)Lem. 4 \Rightarrow expected location cost $O(\log(i/N(h-1))) \bigcirc (\log^{(h)} n)$

Time Complexity $N(h) := \lceil n / \log^{(h)} n \rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up T_1 , Q_1 , and $\pi(v)$ $(\log^* n)$ · Step 3: Phases 1 to $\log^* n$ Lemma $5 \Rightarrow$ Step 3.2: Walking the polygon O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ - threading cost:Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segm. - locating cost: Know the location of v_i in $\mathcal{Q}_{N(h-1)}$: N(h) = O(n)Lem. 4 \Rightarrow expected location cost $O(\log(i/N(h-1))) \bigcirc (\log^{(h)} n)$

Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $\mathcal{Q}_{N(\log^* n)}$

14 - 23 Time Complexity $N(h) := \lceil n / \log^{(h)} n \rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ $(\log^* n)$. Step 3: Phases 1 to $\log^* n$ Lemma $5 \Rightarrow$ Step 3.2: Walking the polygon O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ - threading cost:Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segm. - locating cost: Know the location of v_i in $\mathcal{Q}_{N(h-1)}$: N(h) = O(n)Lem. 4 \Rightarrow expected location cost $O(\log(i/N(h-1))) \bigcirc (\log^{(h)} n)$

Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $Q_{N(\log^* n)}$

- threading cost:
- locating cost:

14 - 24 Time Complexity $N(h) := \lceil n / \log^{(h)} n \rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ $(\log^* n)$. Step 3: Phases 1 to $\log^* n$ Lemma $5 \Rightarrow$ Step 3.2: Walking the polygon O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ - threading cost:Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segm. – locating cost: Know the location of v_i in $Q_{N(h-1)}$. Lemma 2. For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $\mathcal{Q}_{N(\log^* n)}$

- threading cost:
- locating cost:

14 - 25 Time Complexity $N(h) := \lceil n / \log^{(h)} n \rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ $(\log^* n)$. Step 3: Phases 1 to $\log^* n$ Lemma $5 \Rightarrow$ Step 3.2: Walking the polygon O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ - threading cost:Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segm. - locating cost: Know the location of v_i in $Q_{N(h-1)}$. **Lemma 2.** For i = 1, ..., n, the expected number of rays of $\mathcal{T}(S_{i-1})$ that are intersected by s_i is at most 4.

Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $\mathcal{Q}_{N(\log^* n)}$

- threading cost:Lem. $2 \Rightarrow O(1)$
- locating cost:

14 - 26 Time Complexity $N(h) := \lceil n / \log^{(h)} n \rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up T_1 , Q_1 , and $\pi(v)$ $(\log^* n)$. Step 3: Phases 1 to $\log^* n$ Step 3.2: Walking the polygon Lemma $5 \Rightarrow$ O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ - threading cost:Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segm. **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of *q* in $Q(S_i)$ is known, then *q* can be located in $Q(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$. Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $\mathcal{Q}_{N(\log^* n)}$

- threading cost:Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow$

14 - 27 Time Complexity $N(h) := \lceil n / \log^{(h)} n \rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up T_1 , Q_1 , and $\pi(v)$ $(\log^* n)$ · Step 3: Phases 1 to $\log^* n$ Step 3.2: Walking the polygon Lemma $5 \Rightarrow$ O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ - threading cost:Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segm. **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of *q* in $Q(S_i)$ is known, then *q* can be located in $Q(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$. Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $\mathcal{Q}_{N(\log^* n)}$

- threading cost:Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. 4 $\Rightarrow O(\log n / N(\log^* n)) =$

14 - 28Time Complexity $N(h) := \lceil n / \log^{(h)} n \rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up T_1 , Q_1 , and $\pi(v)$ $(\log^* n)$ · Step 3: Phases 1 to $\log^* n$ Step 3.2: Walking the polygon Lemma $5 \Rightarrow$ O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ - threading cost:Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segm. **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of *q* in $Q(S_i)$ is known, then *q* can be located in $Q(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$. Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $\mathcal{Q}_{N(\log^* n)}$

- threading cost:Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. 4 $\Rightarrow O(\log n / N(\log^* n)) =$

Time Complexity $N(h) := \lceil n / \log^{(h)} n \rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up T_1 , Q_1 , and $\pi(v)$ $(\log^* n)$ · Step 3: Phases 1 to $\log^* n$ Lemma $5 \Rightarrow$ Step 3.2: Walking the polygon O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ - threading cost:Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segm **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of *q* in $Q(S_i)$ is known, then *q* can be located in $Q(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$. Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $\mathcal{Q}_{N(\log^* n)}$

- threading cost:Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. $4 \Rightarrow O(\log n / N(\log^* n)) =$

Time Complexity $N(h) := \lceil n / \log^{(h)} n \rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up T_1 , Q_1 , and $\pi(v)$ $(\log^* n)$ · Step 3: Phases 1 to $\log^* n$ Lemma $5 \Rightarrow$ Step 3.2: Walking the polygon O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ - threading cost:Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segm **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of *q* in $Q(S_i)$ is known, then *q* can be located in $Q(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$. Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $\mathcal{Q}_{N(\log^* n)}$

- threading cost:Lem. $2 \Rightarrow O(1)$
- locating cost: Lem. 4 $\Rightarrow O(\log n / N(\log^* n)) = O(1)$

Time Complexity $N(h) := \lceil n / \log^{(h)} n \rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ $(\log^* n)$. Step 3: Phases 1 to $\log^* n$ Lemma $5 \Rightarrow$ Step 3.2: Walking the polygon O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ - threading cost:Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segment **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of *q* in $Q(S_i)$ is known, then *q* can be located in $Q(S_k)$ in expected time $5(H_k - H_i) \in O(\log k/i)$. Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $\mathcal{Q}_{N(\log^* n)}$ – threading cost:Lem. $2 \Rightarrow O(1)$

- locating cost: Lem. $4 \Rightarrow O(\log n / (\log^* n)) = O(1)$

Time Complexity $N(h) := \lfloor n / \log^{(h)} n \rfloor$ Step 1: Random permutation O(n)O(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ $(\log^* n)$ · Step 3: Phases 1 to $\log^* n$ Step 3.2: Walking the polygon Lemma $5 \Rightarrow$ O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ – threading cost:Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segment **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of *q* in $Q(S_i)$ is known, then *q* can be located in $Q(S_k)$ in expected time $5(H_k - H_j) \in O(\log k/j)$. Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $Q_{N(\log^* n)}$ – threading cost:Lem. $2 \Rightarrow O(1)$ - threading cost:Lem. 2 \Rightarrow O(1)- locating cost: Lem. 4 \Rightarrow $O(\log n / N(\log^* n)) = O(1)$ O(n) =

Time Complexity $N(h) := \lfloor n / \log^{(h)} n \rfloor$ Step 1: Random permutation O(n)O(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ $(\log^* n)$ · Step 3: Phases 1 to $\log^* n$ Step 3.2: Walking the polygon Lemma $5 \Rightarrow$ O(n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ – threading cost:Lem. 2 \Rightarrow expected $\overline{O(1)}$ per segment **Lemma 4.** Let $1 \le j \le k \le n$ and $q \in \mathbb{R}^2$. Suppose location of *q* in $Q(S_i)$ is known, then *q* can be located in $Q(S_k)$ in expected time $5(H_k - H_i) \in O(\log k/j)$. Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $\mathcal{Q}_{N(\log^* n)}$ O(n)- urreading cost:Lem. 2 \Rightarrow O(1)- locating cost: Lem. 4 \Rightarrow $O(\log n / N(\log^* n)) = O(1) \left\{ \cdot O(n) = \int_{-\infty}^{\infty} O(n) = O(1) \right\}$

14 - 33

Time Complexity $N(h) := \lfloor n / \log^{(h)} n \rfloor$ Step 1: Random permutation O(n)O(n)Step 2: Setting up T_1 , Q_1 , and $\pi(v)$ $(\log^* n)$ · Step 3: Phases 1 to $\log^* n$ Step 3.2: Walking the polygon Lemma $5 \Rightarrow$ (n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ – threading cost:Lem. 2 \Rightarrow expected O(1) per segment - locating cost: Know the location of v_i in $\mathcal{Q}_{N(h-1)}$: N(h) = O(n)Lem. 4 \Rightarrow expected location cost $O(\log(i/N(h-1))) \bigcirc (\log^{(h)} n)$ Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $\mathcal{Q}_{N(\log^* n)}$ – threading cost:Lem. $2 \Rightarrow O(1)$ $\cdot O(n)$

- locating cost: Lem. $4 \Rightarrow O(\log n / (\log^* n)) = O(1)$

14 - 34

14 - 35 Time Complexity $N(h) := \left\lceil n / \log^{(h)} n \right\rceil$ Step 1: Random permutation O(n)O(n)Step 2: Setting up \mathcal{T}_1 , \mathcal{Q}_1 , and $\pi(v)$ $(\log^* n)$. Step 3: Phases 1 to $\log^* n$ Lemma $5 \Rightarrow$ Step 3.2: Walking the polygon (n)Step 3.1: Inserting $s_i = v_i w_i$ using $Q_{N(h-1)}$ – threading cost:Lem. 2 \Rightarrow expected O(1) per segm - locating cost: Know the location of v_i in $\mathcal{Q}_{N(h-1)}$: N(h) = O(n)Lem. 4 \Rightarrow expected location cost $O(\log(i/N(h-1))) \bigcirc (\log^{(h)} n)$ Step 4: Inserting s_i (for $N(\log^* n) < i \le n$) using $\mathcal{Q}_{N(\log^* n)}$ – threading cost:Lem. $2 \Rightarrow O(1)$ $\cdot O(n)$ - locating cost: Lem. 4 $\Rightarrow O(\log n / \frac{N(\log^* n)}{N(\log^* n)}) = O(1)$

 $n\log^2$

The Results

Theorem. Let *S* be the edge set of a polygon, |S| = n.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log^* n)$ expected time.
- The expected size of Q(S) is O(n).
 - The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

The Results

Theorem. Let *S* be the edge set of a polygon, |S| = n.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log^* n)$ expected time.
- The expected size of Q(S) is O(n).
 - The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.

Theorem. Let *S* be the edge set of a plane straight-line graph with *k* connected components, |S| = n.

- We can build $\mathcal{T}(S)$ and $\mathcal{Q}(S)$ in $O(n \log^* n + k \log n)$ expected time.
- The expected size of Q(S) is O(n).
- The expected time for locating a point in $\mathcal{T}(S)$ via $\mathcal{Q}(S)$ is $O(\log n)$.