
1

Philipp Kindermann Winter Semester 2020

Lecture 12:
Seidel’s Triangulation Algorithm

Part I:
General Idea

Computational Geometry

2 - 1

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

(list of vertices in cw order)

2 - 2

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P

(list of vertices in cw order)

2 - 3

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

(list of vertices in cw order)

2 - 4

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

(list of vertices in cw order)

2 - 5

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.

(list of vertices in cw order)

2 - 6

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.

(list of vertices in cw order)

2 - 7

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

(list of vertices in cw order)

2 - 8

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

(list of vertices in cw order)

2 - 9

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

(list of vertices in cw order)

2 - 10

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

(list of vertices in cw order)

2 - 11

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

(list of vertices in cw order)

2 - 12

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

(list of vertices in cw order)

2 - 13

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

(list of vertices in cw order)

2 - 14

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

(list of vertices in cw order)

2 - 15

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

(list of vertices in cw order)

2 - 16

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

(list of vertices in cw order)

2 - 17

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

(list of vertices in cw order)

2 - 18

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

(list of vertices in cw order)

2 - 19

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

Running time:

(list of vertices in cw order)

2 - 20

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

Running time:

O(n log n)

(list of vertices in cw order)

2 - 21

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons.

O(n)

Running time:

O(n log n)

(list of vertices in cw order)

2 - 22

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons. O(n)

O(n)

Running time:

O(n log n)

(list of vertices in cw order)

2 - 23

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons. O(n)

O(n)

Running time:

O(n log n)

(list of vertices in cw order)

2 - 24

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons. O(n)

O(n)

Running time:

O(n log n)

O(n log n)

(list of vertices in cw order)

2 - 25

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons. O(n)

O(n)

Running time:

O(n log n)

O(n log n)

(list of vertices in cw order)

2 - 26

Triangulating a Polygon
Given: Polygon P = 〈p1, . . . , pn〉

Find: Triangulation of P
i.e., a partition of P into triangles by
diagonals (segments of type
pi pj ⊂ P)

Approach:

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.
3. Triangulate y-monotone subpolygons. O(n)

O(n)

Running time:

O(n log n)

O(n log n)

(list of vertices in cw order)

Lemma 1. Given a trapezoidation, a polygon can be triangulated
in linear time.

3 - 1

General Idea
Let S be a set of n non-crossing segments

3 - 2

General Idea
Let S be a set of n non-crossing segments

WANTED:

3 - 3

General Idea
Let S be a set of n non-crossing segments

– trapezoidation T (S) of S
– point-location data structure Q(S)

WANTED:

3 - 4

General Idea
Let S be a set of n non-crossing segments

– trapezoidation T (S) of S
– point-location data structure Q(S)

WANTED:

3 - 5

General Idea
Let S be a set of n non-crossing segments

– trapezoidation T (S) of S
– point-location data structure Q(S)

Our construction is randomized-incremental:

WANTED:

3 - 6

General Idea
Let S be a set of n non-crossing segments

– trapezoidation T (S) of S
– point-location data structure Q(S)

Our construction is randomized-incremental:

Trapezoidation (set S of n non-crossing line segments)
〈s1, s2, . . . , sn〉 ← random ordering of S
S0 ← ∅
for i = 1 to n do

Si ← Si−1 ∪ {si}
use T (Si−1) and Q(Si−1) to construct T (Si) and Q(Si)

WANTED:

3 - 7

General Idea
Let S be a set of n non-crossing segments

– trapezoidation T (S) of S
– point-location data structure Q(S)

Our construction is randomized-incremental:

Trapezoidation (set S of n non-crossing line segments)
〈s1, s2, . . . , sn〉 ← random ordering of S
S0 ← ∅
for i = 1 to n do

Si ← Si−1 ∪ {si}
use T (Si−1) and Q(Si−1) to construct T (Si) and Q(Si)

WANTED:

3 - 8

General Idea
Let S be a set of n non-crossing segments

– trapezoidation T (S) of S
– point-location data structure Q(S)

Our construction is randomized-incremental:

Trapezoidation (set S of n non-crossing line segments)
〈s1, s2, . . . , sn〉 ← random ordering of S
S0 ← ∅
for i = 1 to n do

Si ← Si−1 ∪ {si}
use T (Si−1) and Q(Si−1) to construct T (Si) and Q(Si)

WANTED:

3 - 9

General Idea
Let S be a set of n non-crossing segments

– trapezoidation T (S) of S
– point-location data structure Q(S)

Our construction is randomized-incremental:

Trapezoidation (set S of n non-crossing line segments)
〈s1, s2, . . . , sn〉 ← random ordering of S
S0 ← ∅
for i = 1 to n do

Si ← Si−1 ∪ {si}
use T (Si−1) and Q(Si−1) to construct T (Si) and Q(Si)

WANTED:

3 - 10

General Idea
Let S be a set of n non-crossing segments

– trapezoidation T (S) of S
– point-location data structure Q(S)

Our construction is randomized-incremental:

Trapezoidation (set S of n non-crossing line segments)
〈s1, s2, . . . , sn〉 ← random ordering of S
S0 ← ∅
for i = 1 to n do

Si ← Si−1 ∪ {si}
use T (Si−1) and Q(Si−1) to construct T (Si) and Q(Si)

WANTED:

3 - 11

General Idea
Let S be a set of n non-crossing segments

– trapezoidation T (S) of S
– point-location data structure Q(S)

Our construction is randomized-incremental:

Trapezoidation (set S of n non-crossing line segments)
〈s1, s2, . . . , sn〉 ← random ordering of S
S0 ← ∅
for i = 1 to n do

Si ← Si−1 ∪ {si}
use T (Si−1) and Q(Si−1) to construct T (Si) and Q(Si)

WANTED:

3 - 12

General Idea
Let S be a set of n non-crossing segments

– trapezoidation T (S) of S
– point-location data structure Q(S)

Our construction is randomized-incremental:

Trapezoidation (set S of n non-crossing line segments)
〈s1, s2, . . . , sn〉 ← random ordering of S
S0 ← ∅
for i = 1 to n do

Si ← Si−1 ∪ {si}
use T (Si−1) and Q(Si−1) to construct T (Si) and Q(Si)

Total cost of one step:

WANTED:

3 - 13

General Idea
Let S be a set of n non-crossing segments

– trapezoidation T (S) of S
– point-location data structure Q(S)

Our construction is randomized-incremental:

Trapezoidation (set S of n non-crossing line segments)
〈s1, s2, . . . , sn〉 ← random ordering of S
S0 ← ∅
for i = 1 to n do

Si ← Si−1 ∪ {si}
use T (Si−1) and Q(Si−1) to construct T (Si) and Q(Si)

Total cost of one step: – location time

WANTED:

3 - 14

General Idea
Let S be a set of n non-crossing segments

– trapezoidation T (S) of S
– point-location data structure Q(S)

Our construction is randomized-incremental:

Trapezoidation (set S of n non-crossing line segments)
〈s1, s2, . . . , sn〉 ← random ordering of S
S0 ← ∅
for i = 1 to n do

Si ← Si−1 ∪ {si}
use T (Si−1) and Q(Si−1) to construct T (Si) and Q(Si)

Total cost of one step: – location time
– “threading” (updating) time

WANTED:

4

Philipp Kindermann Winter Semester 2020

Lecture 12:
Seidel’s Triangulation Algorithm

Part II:
Location & Threading Time

Computational Geometry

5 - 1

Threading Time
We assume general position
(no two points have the same y-coordinate).

5 - 2

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

5 - 3

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

T (Si−1)

5 - 4

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

T (Si−1)

D(Si−1)

5 - 5

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

T (Si−1)

D(Si−1)

si

5 - 6

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

T (Si−1)

D(Si−1)

si

5 - 7

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

T (Si−1)

D(Si−1)

T (Si)

si si

5 - 8

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

T (Si−1)

risi

D(Si−1)

D(Si−1)

D(Si)

si si

si

T (Si)

si si

5 - 9

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

T (Si−1)

risi

D(Si−1)

D(Si−1)

D(Si)

si si

si

T (Si)

si si

5 - 10

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!
Lemma 2. For i = 1, . . . , n, the expected number of rays of

T (Si−1) that are intersected by si is at most 4.

5 - 11

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

Proof.

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

5 - 12

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

Proof. For s ∈ Si, let deg(s, T (Si)) = # rays of T (Si)
that hit the relative interior of s.

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

5 - 13

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

Proof. For s ∈ Si, let deg(s, T (Si)) = # rays of T (Si)
that hit the relative interior of s.

s

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

5 - 14

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

Proof. For s ∈ Si, let deg(s, T (Si)) = # rays of T (Si)
that hit the relative interior of s.

s

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

5 - 15

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

Proof. For s ∈ Si, let deg(s, T (Si)) = # rays of T (Si)
that hit the relative interior of s.

rays of T (Si−1) intersected by si =
s

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

5 - 16

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

Proof. For s ∈ Si, let deg(s, T (Si)) = # rays of T (Si)
that hit the relative interior of s.

rays of T (Si−1) intersected by si = deg(si, T (Si))
s

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

5 - 17

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

Proof. For s ∈ Si, let deg(s, T (Si)) = # rays of T (Si)
that hit the relative interior of s.

rays of T (Si−1) intersected by si = deg(si, T (Si))

rays in T (Si) ≤
s

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

5 - 18

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

Proof. For s ∈ Si, let deg(s, T (Si)) = # rays of T (Si)
that hit the relative interior of s.

rays of T (Si−1) intersected by si = deg(si, T (Si))

rays in T (Si) ≤
s

s

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

5 - 19

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

Proof. For s ∈ Si, let deg(s, T (Si)) = # rays of T (Si)
that hit the relative interior of s.

rays of T (Si−1) intersected by si = deg(si, T (Si))

rays in T (Si) ≤ 4i
s

s

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

5 - 20

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

Proof. For s ∈ Si, let deg(s, T (Si)) = # rays of T (Si)
that hit the relative interior of s.

rays of T (Si−1) intersected by si = deg(si, T (Si))

rays in T (Si) ≤ 4i

⇒ ∑s∈Si
deg(s, T (Si)) ≤

s

s

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

5 - 21

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

Proof. For s ∈ Si, let deg(s, T (Si)) = # rays of T (Si)
that hit the relative interior of s.

rays of T (Si−1) intersected by si = deg(si, T (Si))

rays in T (Si) ≤ 4i

⇒ ∑s∈Si
deg(s, T (Si)) ≤ 4i

s

s

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

5 - 22

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

Proof. For s ∈ Si, let deg(s, T (Si)) = # rays of T (Si)
that hit the relative interior of s.

rays of T (Si−1) intersected by si = deg(si, T (Si))

rays in T (Si) ≤ 4i

⇒ ∑s∈Si
deg(s, T (Si)) ≤ 4i

Ordering of Si random⇒

s

s

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

5 - 23

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

Proof. For s ∈ Si, let deg(s, T (Si)) = # rays of T (Si)
that hit the relative interior of s.

rays of T (Si−1) intersected by si = deg(si, T (Si))

rays in T (Si) ≤ 4i

⇒ ∑s∈Si
deg(s, T (Si)) ≤ 4i

Ordering of Si random⇒E[deg(si, T (Si))] ≤

s

s

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

5 - 24

Threading Time
We assume general position
(no two points have the same y-coordinate).

Use lexicographic order!

Proof. For s ∈ Si, let deg(s, T (Si)) = # rays of T (Si)
that hit the relative interior of s.

rays of T (Si−1) intersected by si = deg(si, T (Si))

rays in T (Si) ≤ 4i

⇒ ∑s∈Si
deg(s, T (Si)) ≤ 4i

Ordering of Si random⇒E[deg(si, T (Si))] ≤ 4 �

s

s

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

6 - 1

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()

6 - 2

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

6 - 3

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

6 - 4

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 5

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Proof. Let Ti(q) be the length of the search path of q in Q(Si)

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 6

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Proof. Let Ti(q) be the length of the search path of q in Q(Si)
Let ti(q) be the trapezoid in T (Si) that contains q

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 7

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Proof. Let Ti(q) be the length of the search path of q in Q(Si)
Let ti(q) be the trapezoid in T (Si) that contains q
ti(q) = ti−1(q)⇒ T(Si) = T(Si−1)

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 8

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Proof. Let Ti(q) be the length of the search path of q in Q(Si)
Let ti(q) be the trapezoid in T (Si) that contains q
ti(q) = ti−1(q)⇒ T(Si) = T(Si−1)
ti(q) 6= ti−1(q)⇒ T(Si) = T(Si−1) + . . .

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 9

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Proof. Let Ti(q) be the length of the search path of q in Q(Si)
Let ti(q) be the trapezoid in T (Si) that contains q
ti(q) = ti−1(q)⇒ T(Si) = T(Si−1)
ti(q) 6= ti−1(q)⇒ T(Si) = T(Si−1) + . . .

si

1:

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 10

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Proof. Let Ti(q) be the length of the search path of q in Q(Si)
Let ti(q) be the trapezoid in T (Si) that contains q
ti(q) = ti−1(q)⇒ T(Si) = T(Si−1)
ti(q) 6= ti−1(q)⇒ T(Si) = T(Si−1) + . . .

si si

1: 1:

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 11

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Proof. Let Ti(q) be the length of the search path of q in Q(Si)
Let ti(q) be the trapezoid in T (Si) that contains q
ti(q) = ti−1(q)⇒ T(Si) = T(Si−1)
ti(q) 6= ti−1(q)⇒ T(Si) = T(Si−1) + . . .

si si si

1: 1: 1:

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 12

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Proof. Let Ti(q) be the length of the search path of q in Q(Si)
Let ti(q) be the trapezoid in T (Si) that contains q
ti(q) = ti−1(q)⇒ T(Si) = T(Si−1)
ti(q) 6= ti−1(q)⇒ T(Si) = T(Si−1) + . . .

si si si

si1: 1: 1: 1:

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 13

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Proof. Let Ti(q) be the length of the search path of q in Q(Si)
Let ti(q) be the trapezoid in T (Si) that contains q
ti(q) = ti−1(q)⇒ T(Si) = T(Si−1)
ti(q) 6= ti−1(q)⇒ T(Si) = T(Si−1) + . . .

si si si

si
si

1: 1: 1: 1:

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 14

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Proof. Let Ti(q) be the length of the search path of q in Q(Si)
Let ti(q) be the trapezoid in T (Si) that contains q
ti(q) = ti−1(q)⇒ T(Si) = T(Si−1)
ti(q) 6= ti−1(q)⇒ T(Si) = T(Si−1) + . . .

si si si

si
si

1: 1: 1: 1: 2:

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 15

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Proof. Let Ti(q) be the length of the search path of q in Q(Si)
Let ti(q) be the trapezoid in T (Si) that contains q
ti(q) = ti−1(q)⇒ T(Si) = T(Si−1)
ti(q) 6= ti−1(q)⇒ T(Si) = T(Si−1) + . . .

si si si

si
si

1: 1: 1: 1: 2:

1
i

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 16

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Proof. Let Ti(q) be the length of the search path of q in Q(Si)
Let ti(q) be the trapezoid in T (Si) that contains q
ti(q) = ti−1(q)⇒ T(Si) = T(Si−1)
ti(q) 6= ti−1(q)⇒ T(Si) = T(Si−1) + . . .

si si si

si
si

1: 1: 1: 1: 2:

1
i

1
i

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 17

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Proof. Let Ti(q) be the length of the search path of q in Q(Si)
Let ti(q) be the trapezoid in T (Si) that contains q
ti(q) = ti−1(q)⇒ T(Si) = T(Si−1)
ti(q) 6= ti−1(q)⇒ T(Si) = T(Si−1) + . . .

si si si

si
si

1: 1: 1: 1: 2:

1
i

1
i

1
i

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 18

Location Time
Recall: Hn := 1 + 1

2 + · · ·+ 1
n ∈ Θ()log n

More precisely, ln n < Hn < 1 + ln n for n > 1.

Proof. Let Ti(q) be the length of the search path of q in Q(Si)
Let ti(q) be the trapezoid in T (Si) that contains q
ti(q) = ti−1(q)⇒ T(Si) = T(Si−1)
ti(q) 6= ti−1(q)⇒ T(Si) = T(Si−1) + . . .

si si si

si
si

1: 1: 1: 1: 2:

1
i

1
i

1
i

1
i

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

6 - 19

Location Time

Theorem. Let S be a set of n non-crossing line segments.

Recall: Hn := 1 + 1
2 + · · ·+ 1

n ∈ Θ()log n
More precisely, ln n < Hn < 1 + ln n for n > 1.

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

� We can build T (S) and Q(S) in O(n log n)
expected time.

� The expected size of Q(S) is O(n).
� The expected time for locating a point in
T (S) via Q(S) is O(log n).

6 - 20

Location Time

Theorem. Let S be a set of n non-crossing line segments.

Recall: Hn := 1 + 1
2 + · · ·+ 1

n ∈ Θ()log n
More precisely, ln n < Hn < 1 + ln n for n > 1.

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

� We can build T (S) and Q(S) in O(n log n)
expected time.

� The expected size of Q(S) is O(n).
� The expected time for locating a point in
T (S) via Q(S) is O(log n).

6 - 21

Location Time

Theorem. Let S be a set of n non-crossing line segments.

Recall: Hn := 1 + 1
2 + · · ·+ 1

n ∈ Θ()log n
More precisely, ln n < Hn < 1 + ln n for n > 1.

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

� We can build T (S) and Q(S) in O(n log n)
expected time.

� The expected size of Q(S) is O(n).
� The expected time for locating a point in
T (S) via Q(S) is O(log n).

6 - 22

Location Time

Theorem. Let S be a set of n non-crossing line segments.

Recall: Hn := 1 + 1
2 + · · ·+ 1

n ∈ Θ()log n
More precisely, ln n < Hn < 1 + ln n for n > 1.

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

� We can build T (S) and Q(S) in O(n log n)
expected time.

� The expected size of Q(S) is O(n).
� The expected time for locating a point in
T (S) via Q(S) is O(log n).

6 - 23

Location Time

Theorem. Let S be a set of n non-crossing line segments.

Recall: Hn := 1 + 1
2 + · · ·+ 1

n ∈ Θ()log n
More precisely, ln n < Hn < 1 + ln n for n > 1.

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

� We can build T (S) and Q(S) in O(n log n)
expected time.

� The expected size of Q(S) is O(n).
� The expected time for locating a point in
T (S) via Q(S) is O(log n).

6 - 24

Location Time

Theorem. Let S be a set of n non-crossing line segments.

Recall: Hn := 1 + 1
2 + · · ·+ 1

n ∈ Θ()log n
More precisely, ln n < Hn < 1 + ln n for n > 1.

Aim: Speed-up construction for simple polygons.

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

� We can build T (S) and Q(S) in O(n log n)
expected time.

� The expected size of Q(S) is O(n).
� The expected time for locating a point in
T (S) via Q(S) is O(log n).

7

Philipp Kindermann Winter Semester 2020

Lecture 12:
Seidel’s Triangulation Algorithm

Part III:
New Approach

Computational Geometry

8 - 1

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

8 - 2

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!

8 - 3

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

8 - 4

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

8 - 5

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

8 - 6

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

8 - 7

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

8 - 8

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

8 - 9

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

8 - 10

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

P

8 - 11

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

Problem: This way, we lose the random structure!

P

8 - 12

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
⇒ threading becomes more expensive

P

8 - 13

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
⇒ threading becomes more expensive
⇒ Θ(n2)-time algorithm :-(

P

8 - 14

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
⇒ threading becomes more expensive
⇒ Θ(n2)-time algorithm :-(

Solution:

P

8 - 15

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
⇒ threading becomes more expensive
⇒ Θ(n2)-time algorithm :-(

Solution: � insert segments in random order

P

8 - 16

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
⇒ threading becomes more expensive
⇒ Θ(n2)-time algorithm :-(

Solution: � insert segments in random order
� every now and then, locate all polygon

vertices in the current trapezoidation

P

8 - 17

New Approach
Observe: in Q(Si),

– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
⇒ threading becomes more expensive
⇒ Θ(n2)-time algorithm :-(

Solution: � insert segments in random order
� every now and then, locate all polygon

vertices in the current trapezoidation
by walking along the polygon!

P

9 - 1

The Two Main New Technical Ingredients
Questions:

9 - 2

The Two Main New Technical Ingredients
Questions: � How much does the intermediate location

information help later?

9 - 3

The Two Main New Technical Ingredients
Questions: � How much does the intermediate location

information help later?
� How expensive is it to walk along the

polygon in the current trapezoidation?

9 - 4

The Two Main New Technical Ingredients

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

Questions: � How much does the intermediate location
information help later?

� How expensive is it to walk along the
polygon in the current trapezoidation?

9 - 5

The Two Main New Technical Ingredients

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

Questions: � How much does the intermediate location
information help later?

� How expensive is it to walk along the
polygon in the current trapezoidation?

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

9 - 6

The Two Main New Technical Ingredients

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

Questions: � How much does the intermediate location
information help later?

� How expensive is it to walk along the
polygon in the current trapezoidation?

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

9 - 7

The Two Main New Technical Ingredients

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

Questions: � How much does the intermediate location
information help later?

� How expensive is it to walk along the
polygon in the current trapezoidation?

Lemma 3. For any query point q, the expected length
of the search path of q in Q(Sn) is at most
5Hn ∈ O(log n).

9 - 8

The Two Main New Technical Ingredients

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

Questions: � How much does the intermediate location
information help later?

� How expensive is it to walk along the
polygon in the current trapezoidation?

Lemma 5. S as before, R ⊆ S random subset, r := |R|.
Let I be the number of intersections between
rays of T (R) and segments in S \ R. Then
E[I] ≤ 4(n− r), where the expectation is over all
size-r subsets of S.

9 - 9

The Two Main New Technical Ingredients

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

Questions: � How much does the intermediate location
information help later?

� How expensive is it to walk along the
polygon in the current trapezoidation?

Lemma 5. S as before, R ⊆ S random subset, r := |R|.
Let I be the number of intersections between
rays of T (R) and segments in S \ R. Then
E[I] ≤ 4(n− r), where the expectation is over all
size-r subsets of S.

9 - 10

The Two Main New Technical Ingredients

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

Questions: � How much does the intermediate location
information help later?

� How expensive is it to walk along the
polygon in the current trapezoidation?

Lemma 5. S as before, R ⊆ S random subset, r := |R|.
Let I be the number of intersections between
rays of T (R) and segments in S \ R. Then
E[I] ≤ 4(n− r), where the expectation is over all
size-r subsets of S.

9 - 11

The Two Main New Technical Ingredients

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

Questions: � How much does the intermediate location
information help later?

� How expensive is it to walk along the
polygon in the current trapezoidation?

Lemma 5. S as before, R ⊆ S random subset, r := |R|.
Let I be the number of intersections between
rays of T (R) and segments in S \ R. Then
E[I] ≤ 4(n− r), where the expectation is over all
size-r subsets of S.

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

9 - 12

The Two Main New Technical Ingredients

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

Questions: � How much does the intermediate location
information help later?

� How expensive is it to walk along the
polygon in the current trapezoidation?

Lemma 5. S as before, R ⊆ S random subset, r := |R|.
Let I be the number of intersections between
rays of T (R) and segments in S \ R. Then
E[I] ≤ 4(n− r), where the expectation is over all
size-r subsets of S.

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

9 - 13

The Two Main New Technical Ingredients

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

Questions: � How much does the intermediate location
information help later?

� How expensive is it to walk along the
polygon in the current trapezoidation?

Lemma 5. S as before, R ⊆ S random subset, r := |R|.
Let I be the number of intersections between
rays of T (R) and segments in S \ R. Then
E[I] ≤ 4(n− r), where the expectation is over all
size-r subsets of S.

10

Philipp Kindermann Winter Semester 2020

Lecture 12:
Seidel’s Triangulation Algorithm

Part IV:
The Algorithm

Computational Geometry

11 - 1

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

11 - 2

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

Examples. log(0) 2222
=

11 - 3

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

Examples. log(0) 2222
= 2222

11 - 4

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

Examples. log(0) 2222
= 2222

log(1) 2222
=

11 - 5

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

Examples. log(0) 2222
= 2222

log(1) 2222
= log2 2222

=

11 - 6

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

11 - 7

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
=

11 - 8

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= log2 log(1) 2222

=

11 - 9

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

11 - 10

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
=

11 - 11

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2;

11 - 12

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2; log(4) 2222

=

11 - 13

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2; log(4) 2222

= 1

11 - 14

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

For n > 0, let log? n := max{i | log(i) n ≥ 1}.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2; log(4) 2222

= 1

11 - 15

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

For n > 0, let log? n := max{i | log(i) n ≥ 1}.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2; log(4) 2222

= 1 ⇒ log? 2222
=

11 - 16

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

For n > 0, let log? n := max{i | log(i) n ≥ 1}.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2; log(4) 2222

= 1 ⇒ log? 2222
= 4

11 - 17

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

For n > 0, let log? n := max{i | log(i) n ≥ 1}.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2; log(4) 2222

= 1 ⇒ log? 2222
= 4

65,536

11 - 18

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

For n > 0, let log? n := max{i | log(i) n ≥ 1}.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2; log(4) 2222

= 1 ⇒ log? 2222
= 4

65,536

11 - 19

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

For n > 0, let log? n := max{i | log(i) n ≥ 1}.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2; log(4) 2222

= 1 ⇒ log? 2222
= 4

65,536

11 - 20

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

For n > 0, let log? n := max{i | log(i) n ≥ 1}.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2; log(4) 2222

= 1 ⇒ log? 2222
= 4

65,536

11 - 21

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

For n > 0, let log? n := max{i | log(i) n ≥ 1}.

For 0 ≤ h ≤ log? n, let N(h) := dn/ log(h) ne.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2; log(4) 2222

= 1 ⇒ log? 2222
= 4

11 - 22

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

For n > 0, let log? n := max{i | log(i) n ≥ 1}.

For 0 ≤ h ≤ log? n, let N(h) := dn/ log(h) ne.

N(0) = 1

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2; log(4) 2222

= 1 ⇒ log? 2222
= 4

11 - 23

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

For n > 0, let log? n := max{i | log(i) n ≥ 1}.

For 0 ≤ h ≤ log? n, let N(h) := dn/ log(h) ne.

N(0) = 1, N(1) = dn/ log ne

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2; log(4) 2222

= 1 ⇒ log? 2222
= 4

11 - 24

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

For n > 0, let log? n := max{i | log(i) n ≥ 1}.

For 0 ≤ h ≤ log? n, let N(h) := dn/ log(h) ne.

N(0) = 1, N(1) = dn/ log ne , . . .

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2; log(4) 2222

= 1 ⇒ log? 2222
= 4

11 - 25

Logs All Over the Place
Definition. Let the i-th iterated logarithm of n be defined by

log(i) n :=
{

n if i = 0,
log2(log(i−1) n) if i > 0.

For n > 0, let log? n := max{i | log(i) n ≥ 1}.

For 0 ≤ h ≤ log? n, let N(h) := dn/ log(h) ne.

N(0) = 1, N(1) = dn/ log ne , N(log? n) > n/2.

Examples. log(0) 2222
= 2222

log(1) 2222
= 222

log2 2222
=

log(2) 2222
= 22log2 log(1) 2222

=

log(3) 2222
= 2; log(4) 2222

= 1 ⇒ log? 2222
= 4

12 - 1

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

12 - 2

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)
〈s1, s2, . . . , sn〉 := random ordering of the edges of P1.

12 - 3

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)
〈s1, s2, . . . , sn〉 := random ordering of the edges of P
Compute T1 and Q1 for {s1}.

1.
2.

12 - 4

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)
〈s1, s2, . . . , sn〉 := random ordering of the edges of P
Compute T1 and Q1 for {s1}.

1.
2.

foreach v ∈ P do π(v)← ptr to the leaf of Q1 that contains v.

12 - 5

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)
〈s1, s2, . . . , sn〉 := random ordering of the edges of P
Compute T1 and Q1 for {s1}.

for h = 1 to log? n do
for i = N(h− 1) + 1 to N(h) do

insert si = viwi in Ti−1 using π(vi) (node in QN(h−1))

walk along P through TN(h):
foreach vertex v do

∆← the trapezoid in TN(h) that contains v
π(v)← the node in QN(h) corresponding to ∆

for i = N(log? n) + 1 to n do
insert si = viwi in Ti−1 using π(vi) (node in QN(log? n))

return (Tn,Qn)

1.
2.

4.

3.1

3.2

// phase h
foreach v ∈ P do π(v)← ptr to the leaf of Q1 that contains v.

12 - 6

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)
〈s1, s2, . . . , sn〉 := random ordering of the edges of P
Compute T1 and Q1 for {s1}.

for h = 1 to log? n do
for i = N(h− 1) + 1 to N(h) do

insert si = viwi in Ti−1 using π(vi) (node in QN(h−1))

walk along P through TN(h):
foreach vertex v do

∆← the trapezoid in TN(h) that contains v
π(v)← the node in QN(h) corresponding to ∆

for i = N(log? n) + 1 to n do
insert si = viwi in Ti−1 using π(vi) (node in QN(log? n))

return (Tn,Qn)

1.
2.

4.

3.1

3.2

// phase h
foreach v ∈ P do π(v)← ptr to the leaf of Q1 that contains v.

12 - 7

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)
〈s1, s2, . . . , sn〉 := random ordering of the edges of P
Compute T1 and Q1 for {s1}.

for h = 1 to log? n do
for i = N(h− 1) + 1 to N(h) do

insert si = viwi in Ti−1 using π(vi) (node in QN(h−1))

walk along P through TN(h):
foreach vertex v do

∆← the trapezoid in TN(h) that contains v
π(v)← the node in QN(h) corresponding to ∆

for i = N(log? n) + 1 to n do
insert si = viwi in Ti−1 using π(vi) (node in QN(log? n))

return (Tn,Qn)

1.
2.

4.

3.1

3.2

// phase h
foreach v ∈ P do π(v)← ptr to the leaf of Q1 that contains v.

12 - 8

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)
〈s1, s2, . . . , sn〉 := random ordering of the edges of P
Compute T1 and Q1 for {s1}.

for h = 1 to log? n do
for i = N(h− 1) + 1 to N(h) do

insert si = viwi in Ti−1 using π(vi) (node in QN(h−1))

walk along P through TN(h):
foreach vertex v do

∆← the trapezoid in TN(h) that contains v
π(v)← the node in QN(h) corresponding to ∆

for i = N(log? n) + 1 to n do
insert si = viwi in Ti−1 using π(vi) (node in QN(log? n))

return (Tn,Qn)

1.
2.

4.

3.1

3.2

// phase h
foreach v ∈ P do π(v)← ptr to the leaf of Q1 that contains v.

12 - 9

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)
〈s1, s2, . . . , sn〉 := random ordering of the edges of P
Compute T1 and Q1 for {s1}.

for h = 1 to log? n do
for i = N(h− 1) + 1 to N(h) do

insert si = viwi in Ti−1 using π(vi) (node in QN(h−1))

walk along P through TN(h):
foreach vertex v do

∆← the trapezoid in TN(h) that contains v
π(v)← the node in QN(h) corresponding to ∆

for i = N(log? n) + 1 to n do
insert si = viwi in Ti−1 using π(vi) (node in QN(log? n))

return (Tn,Qn)

1.
2.

4.

3.1

3.2

// phase h
foreach v ∈ P do π(v)← ptr to the leaf of Q1 that contains v.

12 - 10

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)
〈s1, s2, . . . , sn〉 := random ordering of the edges of P
Compute T1 and Q1 for {s1}.

for h = 1 to log? n do
for i = N(h− 1) + 1 to N(h) do

insert si = viwi in Ti−1 using π(vi) (node in QN(h−1))

walk along P through TN(h):
foreach vertex v do

∆← the trapezoid in TN(h) that contains v
π(v)← the node in QN(h) corresponding to ∆

for i = N(log? n) + 1 to n do
insert si = viwi in Ti−1 using π(vi) (node in QN(log? n))

return (Tn,Qn)

1.
2.

4.

3.1

3.2

// phase h
foreach v ∈ P do π(v)← ptr to the leaf of Q1 that contains v.

12 - 11

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)
〈s1, s2, . . . , sn〉 := random ordering of the edges of P
Compute T1 and Q1 for {s1}.

for h = 1 to log? n do
for i = N(h− 1) + 1 to N(h) do

insert si = viwi in Ti−1 using π(vi) (node in QN(h−1))

walk along P through TN(h):
foreach vertex v do

∆← the trapezoid in TN(h) that contains v
π(v)← the node in QN(h) corresponding to ∆

for i = N(log? n) + 1 to n do
insert si = viwi in Ti−1 using π(vi) (node in QN(log? n))

return (Tn,Qn)

1.
2.

4.

3.1

3.2

// phase h
foreach v ∈ P do π(v)← ptr to the leaf of Q1 that contains v.

12 - 12

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)
〈s1, s2, . . . , sn〉 := random ordering of the edges of P
Compute T1 and Q1 for {s1}.

for h = 1 to log? n do
for i = N(h− 1) + 1 to N(h) do

insert si = viwi in Ti−1 using π(vi) (node in QN(h−1))

walk along P through TN(h):
foreach vertex v do

∆← the trapezoid in TN(h) that contains v
π(v)← the node in QN(h) corresponding to ∆

for i = N(log? n) + 1 to n do
insert si = viwi in Ti−1 using π(vi) (node in QN(log? n))

return (Tn,Qn)

1.
2.

4.

3.1

3.2

// phase h
foreach v ∈ P do π(v)← ptr to the leaf of Q1 that contains v.

12 - 13

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)
〈s1, s2, . . . , sn〉 := random ordering of the edges of P
Compute T1 and Q1 for {s1}.

for h = 1 to log? n do
for i = N(h− 1) + 1 to N(h) do

insert si = viwi in Ti−1 using π(vi) (node in QN(h−1))

walk along P through TN(h):
foreach vertex v do

∆← the trapezoid in TN(h) that contains v
π(v)← the node in QN(h) corresponding to ∆

for i = N(log? n) + 1 to n do
insert si = viwi in Ti−1 using π(vi) (node in QN(log? n))

return (Tn,Qn)

1.
2.

4.

3.1

3.2

// phase h
foreach v ∈ P do π(v)← ptr to the leaf of Q1 that contains v.

12 - 14

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)
〈s1, s2, . . . , sn〉 := random ordering of the edges of P
Compute T1 and Q1 for {s1}.

for h = 1 to log? n do
for i = N(h− 1) + 1 to N(h) do

insert si = viwi in Ti−1 using π(vi) (node in QN(h−1))

walk along P through TN(h):
foreach vertex v do

∆← the trapezoid in TN(h) that contains v
π(v)← the node in QN(h) corresponding to ∆

for i = N(log? n) + 1 to n do
insert si = viwi in Ti−1 using π(vi) (node in QN(log? n))

return (Tn,Qn)

1.
2.

4.

3.1

3.2

// phase h
foreach v ∈ P do π(v)← ptr to the leaf of Q1 that contains v.

13

Philipp Kindermann Winter Semester 2020

Lecture 12:
Seidel’s Triangulation Algorithm

Part V:
Time Complexity

Computational Geometry

14 - 1

Time Complexity
Step 1: Random permutation

14 - 2

Time Complexity
Step 1: Random permutation O(n)

14 - 3

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

O(n)

14 - 4

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

O(n)

O(n)

14 - 5

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

O(n)

O(n)

14 - 6

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

O(n)

O(n)

(log? n) ·

14 - 7

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·

14 - 8

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒

Lemma 5. S as before, R ⊆ S random subset, r := |R|.
Let I be the number of intersections between
rays of T (R) and segments in S \ R. Then
E[I] ≤ 4(n− r), where the expectation is over all
size-r subsets of S.

14 - 9

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Lemma 5. S as before, R ⊆ S random subset, r := |R|.
Let I be the number of intersections between
rays of T (R) and segments in S \ R. Then
E[I] ≤ 4(n− r), where the expectation is over all
size-r subsets of S.

14 - 10

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)

14 - 11

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

14 - 12

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

14 - 13

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

14 - 14

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).

14 - 15

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

14 - 16

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

14 - 17

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

N(h) := dn/ log(h) ne

14 - 18

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

N(h) := dn/ log(h) ne

14 - 19

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)



N(h) := dn/ log(h) ne

14 - 20

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) =

N(h) := dn/ log(h) ne

14 - 21

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

N(h) := dn/ log(h) ne

14 - 22

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

N(h) := dn/ log(h) ne

14 - 23

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

N(h) := dn/ log(h) ne

14 - 24

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

N(h) := dn/ log(h) ne

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

14 - 25

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

Lem. 2⇒ O(1)

N(h) := dn/ log(h) ne

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.

14 - 26

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

Lem. 4⇒
Lem. 2⇒ O(1)

N(h) := dn/ log(h) ne

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

14 - 27

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

Lem. 4⇒O(log n/N(log? n)) =
Lem. 2⇒ O(1)

N(h) := dn/ log(h) ne

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

14 - 28

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

Lem. 4⇒O(log n/N(log? n)) =
Lem. 2⇒ O(1)

︸ ︷︷ ︸

N(h) := dn/ log(h) ne

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

14 - 29

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

Lem. 4⇒O(log n/N(log? n)) =
Lem. 2⇒ O(1)

︸ ︷︷ ︸
> n/2

N(h) := dn/ log(h) ne

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

14 - 30

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

Lem. 4⇒O(log n/N(log? n)) = O(1)
Lem. 2⇒ O(1)

︸ ︷︷ ︸
> n/2

N(h) := dn/ log(h) ne

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

14 - 31

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

Lem. 4⇒O(log n/N(log? n)) = O(1)

}
Lem. 2⇒ O(1)

︸ ︷︷ ︸
> n/2

N(h) := dn/ log(h) ne

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

14 - 32

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

Lem. 4⇒O(log n/N(log? n)) = O(1)

}
Lem. 2⇒ O(1) ·O(n) =︸ ︷︷ ︸

> n/2

N(h) := dn/ log(h) ne

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

14 - 33

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

O(n)

Lem. 4⇒O(log n/N(log? n)) = O(1)

}
Lem. 2⇒ O(1) ·O(n) =︸ ︷︷ ︸

> n/2

N(h) := dn/ log(h) ne

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

14 - 34

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

O(n)

Lem. 4⇒O(log n/N(log? n)) = O(1)

}
Lem. 2⇒ O(1) ·O(n) =︸ ︷︷ ︸

> n/2

N(h) := dn/ log(h) ne

14 - 35

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

O(n)

Lem. 4⇒O(log n/N(log? n)) = O(1)

}
Lem. 2⇒ O(1) ·O(n) =

O(n log? n)
︸ ︷︷ ︸
> n/2

N(h) := dn/ log(h) ne

15 - 1

The Results
Theorem.

� We can build T (S) and Q(S) in O(n log?n)
expected time.

� The expected size of Q(S) is O(n).
� The expected time for locating a point in
T (S) via Q(S) is O(log n).

Let S be the edge set of a polygon, |S| = n.

15 - 2

The Results
Theorem.

� We can build T (S) and Q(S) in O(n log?n)
expected time.

� The expected size of Q(S) is O(n).
� The expected time for locating a point in
T (S) via Q(S) is O(log n).

Let S be the edge set of a polygon, |S| = n.

Theorem.

� We can build T (S) and Q(S) in
O(n log?n + k log n) expected time.

� The expected size of Q(S) is O(n).
� The expected time for locating a point in
T (S) via Q(S) is O(log n).

Let S be the edge set of a plane straight-line
graph with k connected components, |S| = n.

	General Idea
	Triangulating a Polygon
	General Idea

	Location & Threading Time
	Threading Time
	Location Time

	Location & Threading Time
	The Two Main New Technical Ingredients

	The Algorithm
	Logs All Over the Place

	The Algorithm
	Time Complexity
	Time Complexity
	The Results

