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Lemma 1. Given a trapezoidation, a polygon can be triangulated
in linear time.
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– point location takes O(log i) expected time
– threading si+1 takes O(1) expected time

Idea: Exploit polygon structure!
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Lemma 5. S as before, R ⊆ S random subset, r := |R|.
Let I be the number of intersections between
rays of T (R) and segments in S \ R. Then
E[I] ≤ 4(n− r), where the expectation is over all
size-r subsets of S.



14 - 9

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Lemma 5. S as before, R ⊆ S random subset, r := |R|.
Let I be the number of intersections between
rays of T (R) and segments in S \ R. Then
E[I] ≤ 4(n− r), where the expectation is over all
size-r subsets of S.



14 - 10

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)



14 - 11

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:



14 - 12

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.



14 - 13

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.



14 - 14

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).



14 - 15

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).



14 - 16

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).



14 - 17

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

N(h) := dn/ log(h) ne



14 - 18

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

Lemma 4. Let 1 ≤ j ≤ k ≤ n and q ∈ R2. Suppose location
of q in Q(Sj) is known, then q can be located in
Q(Sk) in expected time 5(Hk − Hj) ∈ O(log k/j).

N(h) := dn/ log(h) ne



14 - 19

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)



N(h) := dn/ log(h) ne



14 - 20

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) =

N(h) := dn/ log(h) ne



14 - 21

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

N(h) := dn/ log(h) ne



14 - 22

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

N(h) := dn/ log(h) ne



14 - 23

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

N(h) := dn/ log(h) ne



14 - 24

Time Complexity
Step 1: Random permutation

Step 2: Setting up T1, Q1, and π(v)

Step 3: Phases 1 to log? n

Step 3.2: Walking the polygon

O(n)

O(n)

(log? n) ·
Lemma 5⇒ O(n)

Step 3.1: Inserting si = viwi using QN(h−1)
– threading cost:
– locating cost:

Step 4: Inserting si (for N(log? n) < i ≤ n) using QN(log? n)

– threading cost:
– locating cost:

Lem. 2⇒ expected O(1) per segm.
Know the location of vi in QN(h−1).
Lem. 4⇒ expected location cost
O(log(i/N(h− 1))) ⊆O(log(h) n)

·N(h) = O(n)

N(h) := dn/ log(h) ne

Lemma 2. For i = 1, . . . , n, the expected number of rays of
T (Si−1) that are intersected by si is at most 4.
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The Results
Theorem.

� We can build T (S) and Q(S) in O(n log?n)
expected time.

� The expected size of Q(S) is O(n).
� The expected time for locating a point in
T (S) via Q(S) is O(log n).

Let S be the edge set of a polygon, |S| = n.
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Theorem.

� We can build T (S) and Q(S) in
O(n log?n + k log n) expected time.

� The expected size of Q(S) is O(n).
� The expected time for locating a point in
T (S) via Q(S) is O(log n).

Let S be the edge set of a plane straight-line
graph with k connected components, |S| = n.
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