Computational Geometry

Lecture 12:
Seidel’s Triangulation Algorithm

Part I:
General Idea

Philipp Kindermann Winter Semester 2020



Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)




Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P




Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pipj C P)




Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pipj C P)
Approach:




Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pipj C P)
Approach:

1. Trapezoidize interior of P.




Triangulating a Polygon

Given: Polygon P = (p1,...,Pn)
| (list of vertices in cw order)
Find:
/ i.e., a partition of P into triangles by
\

Triangulation of P
diagonals (segments of type
pipj C P)

Approach:

1. Trapezoidize interior of P.




Triangulating a Polygon

Given: Polygon P = (p1,...,Pn)
| (list of vertices in cw order)
Find:
/ i.e., a partition of P into triangles by
\

Triangulation of P
diagonals (segments of type
pipj C P)

Approach:

1. Trapezoidize interior of P.

2. Draw diagonals inside trapezoids.




Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pipj C P)
Approach:

1. Trapezoidize interior of P.

2. Draw diagonals inside trapezoids.




Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.




Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

- 10



Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

-11



Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

-12



Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

- 13



Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

-14



Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

- 15



Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

- 16



Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

-17



Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

- 18



Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pipj C P)

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

Approach: Running time:

- 19



Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pipj C P)
Approach: Running time:
1. Trapezoidize interior of P. O(nlogn)

2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.




Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach: Running time:

1. Trapezoidize interior of P. O(nlogn)

2. Draw diagonals inside trapezoids. O(n)

3. Triangulate y-monotone subpolygons.




Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach: Running time:

1. Trapezoidize interior of P. O(nlogn)

2. Draw diagonals inside trapezoids. O(n)

3. Triangulate y-monotone subpolygons. O(1)




Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach: Running time:

1. Trapezoidize interior of P. O(nlogn)

2. Draw diagonals inside trapezoids. O(n)

3. Triangulate y-monotone subpolygons. O(1)




Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

3. Triangulate y-monotone subpolygons. O(#

pip; C P)
Approach: Running time:

1. Trapezoidize interior of P. O(nlogn)

2. Draw diagonals inside trapezoids. O(n)

)

)



Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach: Running time:
1. Trapezoidize interior of P. O(nlogn
2. Draw diagonals inside trapezoids. O(n

)
)
3. Triangulate y-monotone subpolygons. O(1)
)



Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach: Running time:
1. Trapezoidize interior of P. O(nlogn
2. Draw diagonals inside trapezoids. O(n

)
)
3. Triangulate y-monotone subpolygons. O(1)
)

Lemma 1. Given a trapezoidation, a polygon can be triangulated
in linear time.
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WANTED: - trapezoidation 7 (S) of S
— point-location data structure Q(S)

Our construction is randomized-incremental:

Trapezoidation (set S of n non-crossing line segments)

(s1,82,...,5z) < random ordering of S
S0 D
for: =1ton do
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Recall:

H, ::1+%—|—---+%€@(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

(¥

Lemma 3.

>

For any query point g, the expected length
of the search path of g in Q(S;,) is at most
5H, € O(logn).

J

)
Theorem.

\

Let S be a set of n non-crossing line segments.
B We can build 7 (S) and Q(S) in O(nlogn)
expected time.
B The expected size of Q(S) is O(n).
B The expected time for locating a point in

T(S) via Q(S) is O(logn).

Aim:

Speed-up construction for simple polygons.



Computational Geometry

Lecture 12:
Seidel’s Triangulation Algorithm

Part 111
New Approach

Philipp Kindermann Winter Semester 2020



New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time



New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!



New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.



New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon. \



New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon. O/\)



New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon. {C\]



New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon. ;\



New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.



New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.



New Approach

Observe:

Idea:

in Q(SZ) ,
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Exploit polygon structure!
Locate once, then follow polygon.

- 10



New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure! P
Locate once, then follow polygon.

Problem: This way, we lose the random structure!



New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure! P
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
= threading becomes more expensive




New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure! P
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
= threading becomes more expensive

= @(n?)-time algorithm :~(




New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure! P
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
= threading becomes more expensive

= @(n?)-time algorithm :~(

Solution:



New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure! P
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
= threading becomes more expensive

= @(n?)-time algorithm :~(

Solution: W insert segments in random order



New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure! P
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
= threading becomes more expensive

= @(n?)-time algorithm :~(

Solution: M insert segments in random order

B every now and then, locate all polygon
vertices in the current trapezoidation



New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure! P
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
= threading becomes more expensive

= @(n?)-time algorithm :~(

Solution: W insert segments in random order

B every now and then, locate all polygon
vertices in the current trapezoidation

by walking along the polygon!
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Definition. Let the i-th iterated logarithm of n be defined by
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& log, (log"" "V n) ifi > 0.

For n > 0, let log™ n := max{i | log(i) n>1;4.

0g =
Z.og(l) 2222 = log, 2222 — 2%

I.og(z) 02" _ log, log(l) 02" 2

Z-og(B) 2222 = 2; log(4) 2222 =1 = log" 2222 =

11-15



11-16

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | le:()/
& log, (log"" "V n) ifi > 0.

For n > 0, let log™ n := max{i | log(i) n>1;4.

Examples. log —

= log,
I.og(z) 02" _ log, log(l) 02" 2

log'®) 02" _ ; log® 22" =1 = log*2

2222 _ 222




11-17

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | le:()/
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n of n be defined by
iti =0,

it i > 0.

D > 1}.

073710894 059556 311453 089506 130880933 348 101 038 234 342907 263~
181822949382118812668 869506364 761547029 165041 871916351587
066347219442930927 982 084309 104855990570 159318959 639524 863 -
372367203002916969592 156 108 764948 889 254090 805911457037 675 { .

2003529930406 846 464979 072351560255 750447825475569751 419265016 )

208500206671563702366 126359747 144807111 774815880914 135742
720967190151836282560 618091458852699 826 141425030123391

2.00352993040684646497907235156025575044782547556975. .. x 1019728

19729 decimal digits
-T O - T O4L

log(z) 02" _ log, log( )2222 =22 |
2; log™ LA RN log* 2

[—
e,
Gq/\
>
N
N
N
N
|
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2 1] 1 1
2 estimated number of atoms in the universe

2003529930406 846 464979 072351560255 750447825475569751 419265016 1. lDSD atoms
073710894 059556 311453 089506 130880933 348 101 038 234 342907 263~
181822949382118812668 869506364 761547029 165041 871916351587
066347219442930927 982 084309 104855990570 159318959 639524 863 -
372367203002916969592 156 108 764 948 889 254 090805911457 037 675~ .
208500206671563702366 126359747 144807111 774815880914 135742
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2 1] 1 1
2 estimated number of atoms in the universe

2003529930406 846 464979 072351560255 750447825475569751 419265016 1. lDSD atoms
073710894 059556 311453 089506 130880933 348 101 038 234 342907 263~
181822949382118812668 869506364 761547029 165041 871916351587
066347219442930927 982 084309 104855990570 159318959 639524 863 -
372367203002916969592 156 108 764 948 889 254 090805911457 037 675~
208500206671563702366 126359747 144807111 774815880914 135742
720967190151836282560 618091458852699 826 141425030123391 92

2.00352993040684646497907235156025575044782547556975. .. x 1019728

2. 101964 per atom
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log(z) 02" _ log, log( )2222 =22 |
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Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n°: n | le:O/
& log, (log"" "V n) ifi > 0.

For n > 0, let log™ n := max{i | _og(i) n>1;4.
For 0 < h <log*n,let N(h) := [n/ log(h) nl.

Examples. log —

= log,
Z.og(z) 02" _ log, log(l) 02" 2

log'®) 02" _ ; log® 22" =1 = log*2

2222 _ 222
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Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

Examples.

10 (i)n°: n | le:O,
& log, (log"" "V n) ifi > 0.

For n > 0, let log™ n := max{i | _og(i) n>1;4.
For 0 < h <log*n,let N(h) := [n/ log(h) nl.

0g =

Z.og(l) 2222 = log, 2222 — 2%

Z.og(z) 02" _ log, log(l) 02" 2

log® 22 =2, log@2? —1 = log*2? —4

N(0) =1, N(1) = [n/logn], N(log*n) > n/2.
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The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P

2. Compute 77 and Q; for {s1}.
foreach v € P do 7t(v) < ptr to the leaf of Q; that contains v.
for h = 1tolog*n do

3.1 fori=N(h—1)+1to N(h) do
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The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P

2. Compute 77 and Q; for {s1}.
foreach v € P do 7t(v) < ptr to the leaf of Q; that contains v.
for h = 1tolog*n do

3.1 fori=N(h—1)+1to N(h) do

L insert s; = v;w; in T;_1 using 7(v;)

39 walk along P through Ty

foreach vertex v do
L A < the trapezoid in Ty, that contains v

7t(v) < the node in Qpy) corresponding to A

4. fori= N(log"n)+1tondo
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The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P

2. Compute 77 and Q; for {s1}.
foreach v € P do 7t(v) < ptr to the leaf of Q; that contains v.
for h = 1tolog*n do

3.1 fori=N(h—1)+1to N(h) do

L insert s; = v;w; in T;_1 using 7(v;)

39 walk along P through Ty

foreach vertex v do
L A < the trapezoid in Ty, that contains v

7t(v) < the node in Qpy) corresponding to A

4. fori= N(log"n)+1tondo
L insert s; = v;w; in T;_1 using 7(v;)

return (7, Q)
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size-r subsets of S.
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Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.
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Lemma4. Let1 <j<k<nandg € R% Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).
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of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).
Step 4: Inserting s; (for N(log™ n) < i < n) using Qg )
— threading cost:Lem. 2 = O(1)
— locating cost: Lem. 4 = O(logn/N(log=n)) = O(1)

>n/2
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Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using QN(h—l)
— threading cost:Lem. 2 = expected O(1) per segnq.
Lemma4. Let1 <j <k <nandg € R? Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).

Step 4: Inserting s; (for N(log™ n) < i < n) using Qg )

— threading cost:Lem. 2 = O(1) 0n) =

— locating cost: Lem. 4 = O(logn/N(log=n)) = O(1)
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Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using QN(h—l)
— threading cost:Lem. 2 = expected O(1) per segnq.
Lemma4. Let1 <j <k <nandg € R? Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).

Step 4: Inserting s; (for N(log* n) < i < n) using Qnpuegrsy O(71)

— threading cost:Lem. 2 = O(1) O(n) :j
— locating cost: Lem. 4 = O(logn/N(log=n)) = O(1)
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Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per seg
— locating cost: Know the location of v; in QN e |

N = O(n)

Lem. 4 = expected location cost

O (log i/ N=))) O (log™ n)

Step 4: Inserting s; (for N(log* n) < i < n) using Qnpuegrsy O(71)

— threading cost:Lem. 2 = O(1) O(n) _j
— locating cost: Lem. 4 = O(logn/N(log™n)) = O(1) N

\F/
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Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per seg
— locating cost: Know the location of v; in Qg1

. N(##) = O(n)
Lem. 4 = expected location cost
O(log(i/ ) O (log") n)
Step 4: Inserting s; (for N(log* n) < i < n) using Qnpuegrsy O(71)
— threading cost:Lem. 2 = O(1) O(n) :j
— locating cost: Lem. 4 = O(logn/N(log=n)) = O(1)

>n/2 O(nlog™ n)
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‘Theorem. Let S be the edge set of a polygon, |S| = n.

B We can build 7(S) and Q(S) in O(nlog™n)
expected time.

B The expected size of Q(S) is O(n).

B The expected time for locating a point in

T(S) via Q(S) is O(logn).

.

‘Theorem. Let S be the edge set of a plane straight-line
graph with k connected components, |S| = n.

B We can build 7(S) and Q(S) in
O(nlog™n + klogn) expected time.

B The expected size of Q(S) is O(n).

B The expected time for locating a point in

T(S) via Q(S) is O(logn).
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