Computational Geometry

Lecture 12:
Seidel’s Triangulation Algorithm

Part I:
General Idea

Philipp Kindermann Winter Semester 2020

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pipj C P)

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pipj C P)
Approach:

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pipj C P)
Approach:

1. Trapezoidize interior of P.

Triangulating a Polygon

Given: Polygon P = (p1,...,Pn)
| (list of vertices in cw order)
Find:
/ i.e., a partition of P into triangles by
\

Triangulation of P
diagonals (segments of type
pipj C P)

Approach:

1. Trapezoidize interior of P.

Triangulating a Polygon

Given: Polygon P = (p1,...,Pn)
| (list of vertices in cw order)
Find:
/ i.e., a partition of P into triangles by
\

Triangulation of P
diagonals (segments of type
pipj C P)

Approach:

1. Trapezoidize interior of P.

2. Draw diagonals inside trapezoids.

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pipj C P)
Approach:

1. Trapezoidize interior of P.

2. Draw diagonals inside trapezoids.

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

- 10

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

-11

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

-12

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

- 13

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

-14

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

- 15

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

- 16

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

-17

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach:
1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

- 18

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pipj C P)

1. Trapezoidize interior of P.
2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

Approach: Running time:

- 19

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pipj C P)
Approach: Running time:
1. Trapezoidize interior of P. O(nlogn)

2. Draw diagonals inside trapezoids.

3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach: Running time:

1. Trapezoidize interior of P. O(nlogn)

2. Draw diagonals inside trapezoids. O(n)

3. Triangulate y-monotone subpolygons.

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach: Running time:

1. Trapezoidize interior of P. O(nlogn)

2. Draw diagonals inside trapezoids. O(n)

3. Triangulate y-monotone subpolygons. O(1)

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach: Running time:

1. Trapezoidize interior of P. O(nlogn)

2. Draw diagonals inside trapezoids. O(n)

3. Triangulate y-monotone subpolygons. O(1)

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

3. Triangulate y-monotone subpolygons. O(#

pip; C P)
Approach: Running time:

1. Trapezoidize interior of P. O(nlogn)

2. Draw diagonals inside trapezoids. O(n)

)

)

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach: Running time:
1. Trapezoidize interior of P. O(nlogn
2. Draw diagonals inside trapezoids. O(n

)
)
3. Triangulate y-monotone subpolygons. O(1)
)

Triangulating a Polygon

Given: Polygon P = (p1,...,pPn)

(list of vertices in cw order)

Find: Triangulation of P

i.e., a partition of P into triangles by
diagonals (segments of type

pip; C P)
Approach: Running time:
1. Trapezoidize interior of P. O(nlogn
2. Draw diagonals inside trapezoids. O(n

)
)
3. Triangulate y-monotone subpolygons. O(1)
)

Lemma 1. Given a trapezoidation, a polygon can be triangulated
in linear time.

General Idea

Let S be a set of n non-crossing segments

General Idea

Let S be a set of n non-crossing segments
WANTED:

General Idea

Let S be a set of n non-crossing segments
WANTED: - trapezoidation 7 (S) of S

General Idea

Let S be a set of n non-crossing segments

WANTED: - trapezoidation 7 (S) of S
— point-location data structure Q(S)

General Idea

Let S be a set of n non-crossing segments

WANTED: - trapezoidation 7 (S) of S
— point-location data structure Q(S)

Our construction is randomized-incremental:

General Idea

Let S be a set of n non-crossing segments

WANTED: - trapezoidation 7 (S) of S
— point-location data structure Q(S)

Our construction is randomized-incremental:

General Idea

Let S be a set of n non-crossing segments

WANTED: - trapezoidation 7 (S) of S
— point-location data structure Q(S)

Our construction is randomized-incremental:

‘Trapezoidation (set S of n non-crossing line segments)

(s1,82,...,5z) < random ordering of S

General Idea

Let S be a set of n non-crossing segments

WANTED: - trapezoidation 7 (S) of S
— point-location data structure Q(S)

Our construction is randomized-incremental:

‘Trapezoidation (set S of n non-crossing line segments)

(s1,82,...,5z) < random ordering of S
So— D

General Idea

Let S be a set of n non-crossing segments

WANTED: - trapezoidation 7 (S) of S
— point-location data structure Q(S)

Our construction is randomized-incremental:

‘Trapezoidation (set S of n non-crossing line segments)

(s1,82,...,5z) < random ordering of S
S0 D
fori =1tondo

3-10

General Idea

Let S be a set of n non-crossing segments

WANTED: - trapezoidation 7 (S) of S
— point-location data structure Q(S)

Our construction is randomized-incremental:

‘Trapezoidation (set S of n non-crossing line segments)

(s1,82,...,5z) < random ordering of S
S0 D
fori =1tondo

General Idea

Let S be a set of n non-crossing segments

WANTED: - trapezoidation 7 (S) of S
— point-location data structure Q(S)

Our construction is randomized-incremental:

‘Trapezoidation (set S of n non-crossing line segments)

(s1,82,...,5z) < random ordering of S
| S0 D
fori=1tondo

S < Sz 1 U {Sz}
use 7(S;—1) and Q(S;_1) to construct 7 (S;) and O(S;):

General Idea

Let S be a set of n non-crossing segments

WANTED: - trapezoidation 7 (S) of S
— point-location data structure Q(S)

Our construction is randomized-incremental:

‘Trapezoidation (set S of n non-crossing line segments)

(s1,82,...,5z) < random ordering of S
| S0 D
fori=1tondo

S < Sz 1 U {Sz}
use 7(S;—1) and Q(S;_1) to construct 7 (S;) and O(S;):

Total cost of one step:

3-13

General Idea

Let S be a set of n non-crossing segments

WANTED: - trapezoidation 7 (S) of S
— point-location data structure Q(S)

Our construction is randomized-incremental:

‘Trapezoidation (set S of n non-crossing line segments)

(s1,82,...,5z) < random ordering of S
| S0 D
fori=1tondo
L S5i < Si—1 U{s;} i
use 7(S;—1) and Q(S;_1) to construct 7 (S;) and O(S;):

Total cost of one step: — location time

General Idea

Let S be a set of n non-crossing segments

WANTED: - trapezoidation 7 (S) of S
— point-location data structure Q(S)

Our construction is randomized-incremental:

Trapezoidation (set S of n non-crossing line segments)

(s1,82,...,5z) < random ordering of S
S0 D
for: =1ton do
L S5i < Si—1 U{s;}
use 7 (S;_1) and Q(S;_1) to construct 7 (S;) and Q(S;)

Total cost of one step: — location time
— “threading” (updating) time

Computational Geometry

Lecture 12:
Seidel’s Triangulation Algorithm

Part II.
Location & Threading Time

Philipp Kindermann Winter Semester 2020

Threading Time

We assume general position
(no two points have the same y-coordinate).

Threading Time

.- Use ...
We assume general position € lexjg, .

(no two points have the same y-coordinate).

Threading Time

.- Use ...
We assume general position € lexjg, .

(no two points have the same y-coordinate).

T(Si—1)

N

Threading Time

.- Use ...
We assume general position € lexjg, .

(no two points have the same y-coordinate).

T(Si—1)

Threading Time

.- Use ...
We assume general position € lexjg, .

(no two points have the same y-coordinate).

Threading Time

.- Use ...
We assume general position € lexjg, .

(no two points have the same y-coordinate).

Threading Time

.. Use 7,.,.
We assume general position € lexjq,

. .]’ZZ .
(no two points have the same y-coordinate). Phic Ordeyy

Threading Time

.. Use 7,.,.
We assume general position € lexzp,

. .]’ZZ .
(no two points have the same y-coordinate). Phic Ordeyy

Threading Time

.. Use 7,.,.
We assume general position € lexzp,

. .]’ZZ .
(no two points have the same y-coordinate). Phic Ordeyy

Threading Time

We assume general position Use [eﬂcz'cocg}m ,
(no two points have the same y-coordinate). Phic Ordeyy

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Threading Time

We assume general position Use [€ch'c03m ,
(no two points have the same y-coordinate). Phic Ordeyy

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Proof.

Threading Time

We assume general position Use /Eﬂcz'cocg}m ,
(no two points have the same y-coordinate). Phic Ordeyy

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Proof. Fors € S;, let deg(s, T(S;)) = # rays of T (S;)
that hit the relative interior of s.

Threading Time

We assume general position Use Zé’ﬂcz'cocg}m ,
(no two points have the same y-coordinate). Phic Ordeyy

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Proof. Fors € S;, let deg(s, T (S;)) = # rays of T (S;)
| that hit the relative interior of s.

Threading Time

We assume general position Use Zé’ﬂcz'cocg}m ,
(no two points have the same y-coordinate). Phic Ordeyy

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Proof. Fors € S;, let deg(s, T(S;)) = # rays of T (S;)
that hit the relative interior of s.

Threading Time

We assume general position Use [Eﬂcz'mgm ,
(no two points have the same y-coordinate). Phic Ordeyy

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Proof. Fors € S;, let deg(s, T(S;)) = # rays of T (S;)
that hit the relative interior of s.

rays of 7 (S;_1) intersected by s; =

Threading Time

We assume general position
(no two points have the same y-coordinate).

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Proof. Fors € S;, let deg(s, T(S;)) = # rays of T (S;)
that hit the relative interior of s.

rays of T (S;_1) intersected by s; = deg(s;, 7 (S;))

Threading Time

We assume general position
(no two points have the same y-coordinate).

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Proof. Fors € S;, let deg(s, T(S;)) = # rays of T (S;)
that hit the relative interior of s.

rays of T (S;_1) intersected by s; = deg(s;, 7 (S;))
rays in 7 (S;) <

Threading Time

We assume general position
(no two points have the same y-coordinate).

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Proof. Fors € S;, let deg(s, T(S;)) = # rays of T (S;)
that hit the relative interior of s.

rays of T (S;_1) intersected by s; = deg(s;, 7 (S;))
rays in 7 (S;) < /
S

Threading Time

We assume general position
(no two points have the same y-coordinate).

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Proof. Fors € S;, let deg(s, T(S;)) = # rays of T (S;)
that hit the relative interior of s.

rays of T (S;_1) intersected by s; = deg(s;, 7 (S;))
raysin T(S;) < 4i /
S

Threading Time

We assume general position
(no two points have the same y-coordinate).

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Proof. Fors € S;, let deg(s, T(S;)) = # rays of T (S;)
that hit the relative interior of s.

rays of T (S;_1) intersected by s; = deg(s;, 7 (S;))

raysin T(S;) < 4i
= Lses, deg(s, T(Si)) < /S

Threading Time

We assume general position
(no two points have the same y-coordinate).

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Proof. Fors € S;, let deg(s, T(S;)) = # rays of T (S;)
that hit the relative interior of s.

rays of T (S;_1) intersected by s; = deg(s;, 7 (S;))

raysin T(S;) < 4i
= Lses, deg(s, T(5:)) < 4i /S

Threading Time

We assume general position Use lexie, .
(no two points have the same y-coordinate).

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Proof. Fors € S;, let deg(s, T(S;)) = # rays of T (S;)
that hit the relative interior of s.

rays of T (S;_1) intersected by s; = deg(s;, 7 (S;))

raysin T(S;) < 4i
= Lses, deg(s, T(5:)) < 4i /S

Ordering of S; random =

Threading Time

We assume general position Use lexie, .
(no two points have the same y-coordinate).

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Proof. Fors € S;, let deg(s, T(S;)) = # rays of T (S;)
that hit the relative interior of s.

rays of T (S;_1) intersected by s; = deg(s;, 7 (S;))
raysin T(S;) < 4i

= Yses, deg(s, T(S;)) < 4i /S

Ordering of S; random = E|deg(s;, T (S;))] <

Threading Time

We assume general position Use lexie, .
(no two points have the same y-coordinate).

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Proof. Fors € S;, let deg(s, T(S;)) = # rays of T (S;)
that hit the relative interior of s.

rays of 7 (S;_1) intersected by s; = deg(s;, 7 (S;))
raysin T(S;) < 4i

= Yses, deg(s, T(S;)) < 4i /S
Ordering of S; random = E|deg(s;, T (S;))] <4

Location Time

Recall: Hn::1+%+---+%e@(

Location Time

Recall: Hy:=1+3+ -+ + € O(logn)

Location Time

Recall: Hy:=1+3+ -+ + € O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

Location Time

>

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.
‘Lemma 3. For any query point g, the expected length

of the search path of g in Q(S;,) is at most
5H, € O(logn).

Location Time

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

>

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
5H, € O(logn).

“Proof. Let T;(q) be the length of the search path of g in Q(é

Location Time

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

4)

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
5H, € O(logn).

Proof. Let T;(g) be the length of the search path of g in Q(S;)

Let t;(q) be the trapezoid in 7 (S;) that contains g

(¥

Location Time

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

4)

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
5H, € O(logn).

Proof. Let T;(g) be the length of the search path of g in Q(S;)

Let t;(q) be the trapezoid in 7 (S;) that contains g

ti(q) = ti-1(q) = T(S;) = T(S5i-1)

(¥

Location Time

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

>

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
] 5H, € O(logn). ;
Proof. Let T;(g) be the length of the search path of g in Q(S;)
Let t;(q) be the trapezoid in 7 (S;) that contains g
ti(q) = ti-1(q) = T(5i) = T(Si-1)
ti(q) # tiea(q) = T(Si) = T(Si—1) + ...

Location Time

>

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.
‘Lemma 3. For any query point g, the expected length

(¥

of the search path of g in Q(S;,) is at most
5H, € O(logn).

Proof. Let T;(g) be the length of the search path of g in Q(é

Let t;(q) be the trapezoid in 7 (S;) that contains g
ti(q) = ti—1(9) = T(S;) = T(5;-1)
ti(q) # ti-1(q) = T(Si) = T(Si—1) +- ..

O i
5i

i)

Location Time

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

4)

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
5H, € O(logn). ;

Proof. Let T;(g) be the length of the search path of g in Q(S;)

Let t;(q) be the trapezoid in 7 (S;) that contains g

ti(q) = ti-1(q) = T(5i) = T(Si-1)

ti(q) # tiea(q) = T(Si) = T(Si—1) + ...

1:

WO

5i

(¥

Location Time

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

4)

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
5H, € O(logn). ;

Proof. Let T;(g) be the length of the search path of g in Q(S;)

Let t;(q) be the trapezoid in 7 (S;) that contains g

ti(q) = ti-1(q) = T(5i) = T(Si-1)

ti(q) # tiea(q) = T(Si) = T(Si—1) + ...

1: 1:

WOW W

5i

(¥

1:

Location Time

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

4)

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
5H, € O(logn). ;

Proof. Let T;(g) be the length of the search path of g in Q(S;)

Let t;(q) be the trapezoid in 7 (S;) that contains g

ti(q) = ti-1(q) = T(5i) = T(Si-1)

ti(q) # tiea(q) = T(Si) = T(Si—1) + ...

1: 1: 1:

WoH W W

5i

(¥

1:

Location Time

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

4)

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
5H, € O(logn). ;
Proof. Let T;(g) be the length of the search path of g in Q(S;)
Let t;(q) be the trapezoid in 7 (S;) that contains g
ti(q) = ti-1(q) = T(5i) = T(Si-1)
ti(q) # tiea(q) = T(Si) = T(Si—1) + ...

1: 1: 1: 1:

WH W W F

5i

(¥

Location Time

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

4)

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
5H, € O(logn). ;
Proof. Let T;(g) be the length of the search path of g in Q(S;)
Let t;(q) be the trapezoid in 7 (S;) that contains g
ti(q) = ti-1(q) = T(5i) = T(Si-1)
ti(q) # tiea(q) = T(Si) = T(Si—1) + ...

1: 1: 1: 1: 2:

WH W W F

5i

(¥

Location Time

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

>

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
] 5H, € O(logn). ;
Proof. Let T;(g) be the length of the search path of g in Q(S;)
Let t;(q) be the trapezoid in 7T (S;) that contains g
ti(q) = ti-1(q) = T(5i) = T(Si-1)
ti(g) # tiea(q) = T(Si) = T(Si—1) + ...
1: 1: 1: 1: 2:

Location Time

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

>

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
] 5H, € O(logn). ;
Proof. Let T;(g) be the length of the search path of g in Q(S;)
Let t;(q) be the trapezoid in 7T (S;) that contains g
ti(q) = ti-1(q) = T(5i) = T(Si-1)
ti(g) # tioa(q) = T(Si) = T(Si—1) + ...
1: 1: 1: 2:

oW W OWF

5i

—_
2
LY
~. =

Location Time

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
5H, € O(logn).

>

Proof. Let T;(g) be the length of the search path of g in Q(S;)
Let t;(q) be the trapezoid in 7T (S;) that contains g
ti(q) = ti-1(q) = T(S;) = T(5;-1)

= T(S;)) =T(S;_1) +...

ti(q) # ti—1(q)
1:

SRS

5i

—_
2
LY
~. =

.| =

1:

y

1: 2:

] E

Location Time

\

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.
‘Lemma 3. For any query point g, the expected length

of the search path of g in Q(S;,) is at most
5H, € O(logn).

“Proof. Let T;(q) be the length of the search path of g in Q(§
Let t;(q) be the trapezoid in 7T (S;) that contains g

ti(q) = ti-1(q) = T(S;) = T(5;-1)

ti(q) # tia(q) = T(Si) = T(Si—1) + - ..
1:

1: 1: 2:

1wl ek

5i

~. =
.| =
=~ =

- 18

i)

Location Time

Recall: Hy ::1+%+---+% € O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

6 - 20

Location Time

Recall: H, ::1+%—|—---—|—% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

>

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
5H, € O(logn).

A J

‘Theorem. Let S be a set of n non-crossing line segments. |
B We can build 7 (S) and Q(S) in O(nlogn)
expected time.

Location Time

Recall: H, ::1+%—|—---+% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

>

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
5H, € O(logn).

A J
\

‘Theorem. Let S be a set of n non-crossing line segments.

B We can build 7 (S) and Q(S) in O(nlogn)
expected time.

B The expected size of Q(S) is O(n).

Location Time

J

Recall: H, ::1+%+---+% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.
Lemma 3. For any query point g, the expected length \
of the search path of g in Q(S;,) is at most
5H, € O(logn).
‘Theorem. Let S be a set of n non-crossing line segments.)

B We can build 7 (S) and Q(S) in O(nlogn)

expected time.
The expected size of Q(S) is O(n).
I'he expected time for locating a point in

T(S) via Q(S) is O(logn).

Location Time

J

Recall: H, ::1+%+---+% c O(logn)
More precisely, Inn < H, <1+1Inn forn > 1.
Lemma 3. For any query point g, the expected length \
of the search path of g in Q(S;,) is at most
5H, € O(logn).
‘Theorem. Let S be a set of n non-crossing line segments.)

B We can build 7 (S) and Q(S) in O(nlogn)

expected time.
The expected size of Q(S) is O(n).
I'he expected time for locating a point in

T(S) via Q(S) is O(logn).

Location Time

Recall:

H, ::1+%—|—---+%€@(logn)
More precisely, Inn < H, <1+1Inn forn > 1.

(¥

Lemma 3.

>

For any query point g, the expected length
of the search path of g in Q(S;,) is at most
5H, € O(logn).

J

)
Theorem.

\

Let S be a set of n non-crossing line segments.
B We can build 7 (S) and Q(S) in O(nlogn)
expected time.
B The expected size of Q(S) is O(n).
B The expected time for locating a point in

T(S) via Q(S) is O(logn).

Aim:

Speed-up construction for simple polygons.

Computational Geometry

Lecture 12:
Seidel’s Triangulation Algorithm

Part 111
New Approach

Philipp Kindermann Winter Semester 2020

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon. \

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon. O/\)

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon. {C\]

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon. ;\

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure!
Locate once, then follow polygon.

New Approach

Observe:

Idea:

in Q(SZ) ,
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Exploit polygon structure!
Locate once, then follow polygon.

- 10

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure! P
Locate once, then follow polygon.

Problem: This way, we lose the random structure!

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure! P
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
= threading becomes more expensive

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure! P
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
= threading becomes more expensive

= @(n?)-time algorithm :~(

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure! P
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
= threading becomes more expensive

= @(n?)-time algorithm :~(

Solution:

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure! P
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
= threading becomes more expensive

= @(n?)-time algorithm :~(

Solution: W insert segments in random order

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure! P
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
= threading becomes more expensive

= @(n?)-time algorithm :~(

Solution: M insert segments in random order

B every now and then, locate all polygon
vertices in the current trapezoidation

New Approach

Observe: in Q(S;),
— point location takes O(logi) expected time
— threading s; 1 takes O(1) expected time

Idea: Exploit polygon structure! P
Locate once, then follow polygon.

Problem: This way, we lose the random structure!
= threading becomes more expensive

= @(n?)-time algorithm :~(

Solution: W insert segments in random order

B every now and then, locate all polygon
vertices in the current trapezoidation

by walking along the polygon!

9-1

The Two Main New Technical Ingredients

Questions:

The Two Main New Technical Ingredient;

Questions: ®m How much does the intermediate location
information help later?

9-3

The Two Main New Technical Ingredients

Questions: ®m How much does the intermediate location
information help later?

B How expensive is it to walk along the
polygon in the current trapezoidation?

9-4

The Two Main New Technical Ingredients

Questions: ®m How much does the intermediate location
information help later?

B How expensive is it to walk along the
polygon in the current trapezoidation?

\

Lemmad4. Let1 < j<k<nandgq € R? Suppose location
of g in Q(S;) is known, then g can be located in
Q(Sy) in expected time

9-5

The Two Main New Technical Ingredients

Questions: ® How much does the intermediate location

information help later?

B How expensive is it to walk along the
polygon in the current trapezoidation?

\

Lemmad4. Let1 < j<k<nandgq € R? Suppose location
of g in Q(S;) is known, then g can be located in
Q(Sy) in expected time

Lemma 3. For any query point g, the expected length

of the search path of g in Q(S;,) is at most
5H, € O(logn).

9-6

The Two Main New Technical Ingredients

Questions: ®m How much does the intermediate location
information help later?

B How expensive is it to walk along the
polygon in the current trapezoidation?

\

Lemmad4. Let1 < j<k<nandgq € R? Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O().

A J

Lemma 3. For any query point g, the expected length
of the search path of g in Q(S;,) is at most
5H, € O(logn).

O -

7

The Two Main New Technical Ingredients

Questions: ® How much does the intermediate location

information help later?

B How expensive is it to walk along the
polygon in the current trapezoidation?

\

[Lemma 4. letl <j<k<mnandg e RZ. Suppose location
of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy; — H;) € O(logk/j).

Lemma 3. For any query point g, the expected length

of the search path of g in Q(S;,) is at most
5H, € O(logn).

9-8

The Two Main New Technical Ingredients

Questions: ® How much does the intermediate location
information help later?

B How expensive is it to walk along the
polygon in the current trapezoidation?

\

Lemma 4. Let1 < j<k<nandgq € R? Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j)

A J

‘Lemma 5. S as before, R C S random subset, 7 := IR].

9-9

The Two Main New Technical Ingredients

Questions: ® How much does the intermediate location
information help later?

B How expensive is it to walk along the
polygon in the current trapezoidation?

\

/Lemma 4. letl <j<k<mnandg e RZ. Suppose location
of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j)

J

(¥

‘Lemma 5. S as before, R C S random subset, r := R]|.
Let I be the number of intersections between

rays of 7 (R) and segments in S \ R.

9-10

The Two Main New Technical Ingredients

Questions: ® How much does the intermediate location
information help later?

B How expensive is it to walk along the
polygon in the current trapezoidation?

\

Lemma 4. Let1 < j<k<nandgq € R? Suppose location
of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j)

J

‘Lemma 5. S as before, R C S random subset, r := R]|.

Let I be the number of intersections between
rays of 7 (R) and segments in S \ R. Then

Ell] < , where the expectation is over all

size-r subsets of S.)

9-11

The Two Main New Technical Ingredients

Questions: ® How much does the intermediate location

Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

tJUl)’éU.ll IIT CITC CUILIrcCIiIc LlCl_tJCL.:Ul\AClLlUll‘.

\

/Lemma 4. letl <j<k<mnandg e RZ. Suppose location
of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j)

J

‘Lemma 5. S as before, R C S random subset, r := R]|.

Let I be the number of intersections between
rays of 7 (R) and segments in S \ R. Then

Ell] < , where the expectation is over all

size-r subsets of S.)

9-12

The Two Main New Technical Ingredients

Questions: ® How much does the intermediate location

Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

tJUl)’éU.ll IIT CITC CUILIrcCIiIc LlCl_tJCL.:Ul\AClLlUll‘.

\

/Lemma 4. letl <j<k<mnandg e RZ. Suppose location
of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j)

J

‘Lemma 5. S as before, R C S random subset, r := R]|.

Let I be the number of intersections between
rays of 7 (R) and segments in S \ R. Then

E|I] < 4(n —r), where the expectation is over all

size-r subsets of S.)

9-13

The Two Main New Technical Ingredients

Questions: ® How much does the intermediate location
information help later?

B How expensive is it to walk along the
polygon in the current trapezoidation?

\

Lemma 4. Let1 < j<k<nandgq € R? Suppose location
of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j)

J

‘Lemma 5. S as before, R C S random subset, r := R]|.

Let I be the number of intersections between
rays of 7 (R) and segments in S \ R. Then

E|I] < 4(n —r), where the expectation is over all
size-r subsets of S.)

Computational Geometry

Lecture 12:
Seidel’s Triangulation Algorithm

Part IV:
The Algorithm

Philipp Kindermann Winter Semester 2020

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | leZO/
& log, (log"" "V n) ifi > 0.

11 -

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | leZO/
& log, (log"" "V n) ifi > 0.

2
Examples. log(o) 22" —

11 -

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | leZO/
& log, (log"" "V n) ifi > 0.

2 2
Examples. log(o) 02" — 2°

11 -

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | leZO/
& log, (log"" "V n) ifi > 0.

11 -

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | leZO/
& log, (log"" "V n) ifi > 0.

11 -

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | leZO/
& log, (log"" "V n) ifi > 0.

11 -

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | leZO/
& log, (log"" "V n) ifi > 0.

Examples. log —

11 -

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

log(i) na=4 ~
log, (log"" "V n) ifi > 0.

Examples.

2222 _ 222

(1) 5227

= log,
= log, log

if1 =0,

11 -

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | leIO/
& log, (log"" "V n) ifi > 0.

Examples. log —

= log,
I.og(z) 2222 = log, log(l) 2222 — D2

2222 _ 222

11 -

11 - 10

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | le:()/
& log, (log"" "V n) ifi > 0.

(O) 2222 — 2222

Examples. log
Z.og(l) 2222 = log, 2222 — 2%
I.og(z) 02" _ log, log(l) 02" 2
Z.og(3) 2222 =

11-11

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | le:()/
& log, (log"" "V n) ifi > 0.

2 2
Examples. I.og(o) 22° — 22

2
= log, 22" = 92°

2
I.og(z) 02" _ log, log(l) 22" =22
2
Z.og(?’) 22" =2,

11-12

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | le:()/
& log, (log"" "V n) ifi > 0.

2 2
Examples. I.og(o) 22° — 22

2
= log, 22" = 92°

I.og(z) 02" _ log, log(l) 02" 2

02

Z.og(?’) 2222 = 2; log(4)2 =

11-13

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | le:()/
& log, (log"" "V n) ifi > 0.

2 2
Examples. I.og(o) 22° — 22

2
= log, 22" = 92°

I.og(z) 02" _ log, log(l) 02" 2
Z.og(?’) 2222 = 2; log(4) 2222 =1

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | le:()/
& log, (log"" "V n) ifi > 0.

For n > 0, let log™ n := max{i | log(i) n>1;4.

Examples. log —

= log,
I.og(z) 2222 = log, log(l) 2222 — D2

2%

Z.og(?’) 2222 _). log(4)2 =1

2222 _ 222

11-14

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

Examples.

10 (i)n': n | le:()/
& log, (log"" "V n) ifi > 0.

For n > 0, let log™ n := max{i | log(i) n>1;4.

0g =
Z.og(l) 2222 = log, 2222 — 2%

I.og(z) 02" _ log, log(l) 02" 2

Z-og(B) 2222 = 2; log(4) 2222 =1 = log" 2222 =

11-15

11-16

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | le:()/
& log, (log"" "V n) ifi > 0.

For n > 0, let log™ n := max{i | log(i) n>1;4.

Examples. log —

= log,
I.og(z) 02" _ log, log(l) 02" 2

log'®) 02" _ ; log® 22" =1 = log*2

2222 _ 222

11-17

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n': n | le:()/
& log, (log"" "V n) ifi > 0.

For n > 0, let log™ n := max{i | log(i) n>1;4.

Examples. log —

= log,
2 2

I.og(z) 2222 = log, log(l) 22" =22 |

log® 22" =2; 1og® 22 =1 = log*2

2222 _ 222

Logs All Over the Place

n of n be defined by
iti =0,

it i > 0.

D > 1}.

073710894 059556 311453 089506 130880933 348 101 038 234 342907 263~
181822949382118812668 869506364 761547029 165041 871916351587
066347219442930927 982 084309 104855990570 159318959 639524 863 -
372367203002916969592 156 108 764948 889 254090 805911457037 675 { .

2003529930406 846 464979 072351560255 750447825475569751 419265016)

208500206671563702366 126359747 144807111 774815880914 135742
720967190151836282560 618091458852699 826 141425030123391

2.00352993040684646497907235156025575044782547556975. .. x 1019728

19729 decimal digits
-T O - T O4L

log(z) 02" _ log, log()2222 =22 |
2; log™ LA RN log* 2

[—
e,
Gq/\
>
N
N
N
N
|

11-18

11-19

Logs All Over the Place

2 1] 1 1
2 estimated number of atoms in the universe

2003529930406 846 464979 072351560255 750447825475569751 419265016 1. lDSD atoms
073710894 059556 311453 089506 130880933 348 101 038 234 342907 263~
181822949382118812668 869506364 761547029 165041 871916351587
066347219442930927 982 084309 104855990570 159318959 639524 863 -
372367203002916969592 156 108 764 948 889 254 090805911457 037 675~ .
208500206671563702366 126359747 144807111 774815880914 135742
720967190151836282560 618091458852699 826 141425030123391

Dy > 1),

2.00352993040684646497907235156025575044782547556975. .. x 1019728

19729 decimal digits
-T O - T O4L

log(z) 02" _ log, log()2222 =22 |
2; log™ LA RN log* 2

—~
6V
~—
N
N
N
N9
|

11 - 20

Logs All Over the Place

2 1] 1 1
2 estimated number of atoms in the universe

2003529930406 846 464979 072351560255 750447825475569751 419265016 1. lDSD atoms
073710894 059556 311453 089506 130880933 348 101 038 234 342907 263~
181822949382118812668 869506364 761547029 165041 871916351587
066347219442930927 982 084309 104855990570 159318959 639524 863 -
372367203002916969592 156 108 764 948 889 254 090805911457 037 675~
208500206671563702366 126359747 144807111 774815880914 135742
720967190151836282560 618091458852699 826 141425030123391 92

2.00352993040684646497907235156025575044782547556975. .. x 1019728

2. 101964 per atom

19729 decimal digits
-T O - T O4L

log(z) 02" _ log, log()2222 =22 |
2; log™ LA RN log* 2

—~
6V
~—
N
N
N
N9
|

11-21

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n°: n | le:O/
& log, (log"" "V n) ifi > 0.

For n > 0, let log™ n := max{i | _og(i) n>1;4.
For 0 < h <log*n,let N(h) := [n/ log(h) nl.

Examples. log —

= log,
Z.og(z) 02" _ log, log(l) 02" 2

log'®) 02" _ ; log® 22" =1 = log*2

2222 _ 222

11-22

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n°: n | le:O/
& log, (log"" "V n) ifi > 0.

For n > 0, let log™ n := max{i | _og(i) n>1;4.
For 0 < h <log*n,let N(h) := [n/ log(h) nl.

Examples. log —

= log,
Z.og(z) 02" _ log, log(l) 02" 2

log'®) 02" _ ; log® 22" =1 = log*2

2222 _ 222

11-23

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n°: n | le:O/
& log, (log"" "V n) ifi > 0.

For n > 0, let log™ n := max{i | _og(i) n>1;4.
For 0 < h <log*n,let N(h) := [n/ log(h) nl.

Examples. log —

= log,
Z.og(z) 02" _ log, log(l) 02" 2

log'®) 02" _ ; log® 22" =1 = log*2

2222 _ 222

11-24

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

10 (i)n°: n | le:O/
& log, (log"" "V n) ifi > 0.

For n > 0, let log™ n := max{i | _og(i) n>1;4.
For 0 < h <log*n,let N(h) := [n/ log(h) nl.

Examples. log —

= log,
Z.og(z) 02" _ log, log(l) 02" 2

log'®) 02" _ ; log® 22" =1 = log*2

2222 _ 222

11-25

Logs All Over the Place

Definition. Let the i-th iterated logarithm of n be defined by

Examples.

10 (i)n°: n | le:O,
& log, (log"" "V n) ifi > 0.

For n > 0, let log™ n := max{i | _og(i) n>1;4.
For 0 < h <log*n,let N(h) := [n/ log(h) nl.

0g =

Z.og(l) 2222 = log, 2222 — 2%

Z.og(z) 02" _ log, log(l) 02" 2

log® 22 =2, log@2? —1 = log*2? —4

N(0) =1, N(1) = [n/logn], N(log*n) > n/2.

The Algorithm

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P
2. Compute 77 and Q; for {s1}.

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P

2. Compute 77 and Q; for {s1}.
foreach v € P do 7t(v) < ptr to the leaf of Q; that contains v.

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P

2. Compute 77 and Q; for {s1}.
foreach v € P do 7t(v) < ptr to the leaf of Q; that contains v.
for h =1 to log™ n do

3.1

3.2

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P

2. Compute 77 and Q; for {s1}.
foreach v € P do 7t(v) < ptr to the leaf of Q; that contains v.

for h = 1tolog*n do
3.1 fori=N(h—1)+1to N(h) do

i

3.2

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P
2. Compute 77 and Q; for {s1}.
foreach v € P do 7t(v) < ptr to the leaf of Q; that contains v.

for h = 1tolog*n do
L insert s; = v;w; in T;_q using 7t (Ui)

3.2

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P
2. Compute 77 and Q; for {s1}.
foreach v € P do 7t(v) < ptr to the leaf of Q; that contains v.

for h = 1tolog*n do
L insert s; = v;w; in T;_q using 7t (Ui)

39 walk along P through Ty

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P

2. Compute 77 and Q; for {s1}.
foreach v € P do 7t(v) < ptr to the leaf of Q; that contains v.
for h = 1tolog*n do

3.1 fori=N(h—1)+1to N(h) do

L insert s; = v;w; in T;_1 using 7(v;)

39 walk along P through Ty

foreach vertex v do

L

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P

2. Compute 77 and Q; for {s1}.
foreach v € P do 7t(v) < ptr to the leaf of Q; that contains v.
for h = 1tolog*n do

3.1 fori=N(h—1)+1to N(h) do

L insert s; = v;w; in T;_1 using 7(v;)

39 walk along P through Ty

foreach vertex v do
L A + the trapezoid in Ty) that contains v

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P

2. Compute 77 and Q; for {s1}.
foreach v € P do 7t(v) < ptr to the leaf of Q; that contains v.
for h = 1tolog*n do

3.1 fori=N(h—1)+1to N(h) do

L insert s; = v;w; in T;_1 using 7(v;)

39 walk along P through Ty

foreach vertex v do
L A < the trapezoid in Ty, that contains v

7t(v) < the node in Qpy) corresponding to A

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P

2. Compute 77 and Q; for {s1}.
foreach v € P do 7t(v) < ptr to the leaf of Q; that contains v.
for h = 1tolog*n do

3.1 fori=N(h—1)+1to N(h) do

L insert s; = v;w; in T;_1 using 7(v;)

39 walk along P through Ty

foreach vertex v do
L A < the trapezoid in Ty, that contains v

7t(v) < the node in Qpy) corresponding to A

4. fori= N(log"n)+1tondo

i

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P

2. Compute 77 and Q; for {s1}.
foreach v € P do 7t(v) < ptr to the leaf of Q; that contains v.
for h = 1tolog*n do

3.1 fori=N(h—1)+1to N(h) do

L insert s; = v;w; in T;_1 using 7(v;)

39 walk along P through Ty

foreach vertex v do
L A < the trapezoid in Ty, that contains v

7t(v) < the node in Qpy) corresponding to A

4. fori= N(log"n)+1tondo
L insert s; = v;w; in T;_1 using 7(v;)

The Algorithm
PolygonTrapezoidation ((edges along) simple polygon P)

1. (s1,82,...,54) := random ordering of the edges of P

2. Compute 77 and Q; for {s1}.
foreach v € P do 7t(v) < ptr to the leaf of Q; that contains v.
for h = 1tolog*n do

3.1 fori=N(h—1)+1to N(h) do

L insert s; = v;w; in T;_1 using 7(v;)

39 walk along P through Ty

foreach vertex v do
L A < the trapezoid in Ty, that contains v

7t(v) < the node in Qpy) corresponding to A

4. fori= N(log"n)+1tondo
L insert s; = v;w; in T;_1 using 7(v;)

return (7, Q)

Computational Geometry

Lecture 12:
Seidel’s Triangulation Algorithm

Part V:
Time Complexity

Philipp Kindermann Winter Semester 2020

Time Complexity

Step 1: Random permutation

14 -

Time Complexity

Step 1: Random permutation

Time Complexity

Step 1: Random permutation

Step 2: Setting up 71, Q1, and 71(v)

Time Complexity

Step 1: Random permutation

Step 2: Setting up 71, Q1, and 71(v)

Time Complexity

Step 1: Random permutation
Step 2: Setting up 71, Q1, and 71(v)
Step 3: Phases 1 to log™ n

Time Complexity

Step 1: Random permutation
Step 2: Setting up 71, Q1, and 71(v)
Step 3: Phases 1 to log™ n

Time Complexity

Step 1: Random permutation
Step 2: Setting up 71, Q1, and 71(v)
Step 3: Phases 1 to log™ n

Step 3.2: Walking the polygon

Time Complexity

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log* n (log*n) -
Step 3.2: Walking the polygon Lemma 5 =

‘Lemma 5. S as before, R C S random subset, r := IR]|. \

Let I be the number of intersections between
rays of 7 (R) and segments in S \ R. Then

E[I] < 4(n — r), where the expectation is over all
size-r subsets of S.

A\ J

Time Complexity

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log* n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

‘Lemma 5. S as before, R C S random subset, 7 := IR]|. \

Let I be the number of intersections between
rays of 7 (R) and segments in S \ R. Then

E[I] < 4(n — r), where the expectation is over all
size-r subsets of S.

A\ J

Time Complexity

Step 1: Random permutation
Step 2: Setting up 71, Q1, and 71(v)
Step 3: Phases 1 to log™ n

Step 3.2: Walking the polygon Lemma 5 =
Step 3.1: Inserting s; = v;w; using QN(h—l)

14 - 10

O(n)

O(n)

(log™n) -
O(n)

Time Complexity

Step 1: Random permutation
Step 2: Setting up 71, Q1, and 71(v)
Step 3: Phases 1 to log™ n

Step 3.2: Walking the polygon Lemma 5 =
Step 3.1: Inserting s; = v;w; using QN(h—l)

— threading cost:

— locating cost:

14 - 11

O(n)

O(n)

(log™n) -
O(n)

14 - 12

Time Complexity

Step 1: Random permutation O(n)
Step 2: Setting up 71, Q1, and 71(v) O(n)
Step 3: Phases 1 to log™ n (log*n) -

Step 3.2: Walking the polygon Lemma 5 = O(n)
Step 3.1: Inserting s; = v;w; using Qpr=1)

— threading cost:

— locating cost:

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

14 - 13

Time Complexity

Step 1: Random permutation O(n)
Step 2: Setting up 71, Q1, and 71(v) O(n)
Step 3: Phases 1 to log* n (log*n) -

Step 3.2: Walking the polygon Lemma 5 = O(n)
Step 3.1: Inserting s; = v;w; using Qpr=1)

— threading cost:Lem. 2 = expected O(1) per segm.

— locating cost:

Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

Time Complexity

Step 1: Random permutation
Step 2: Setting up 71, Q1, and 71(v)
Step 3: Phases 1 to log™ n

Step 3.2: Walking the polygon Lemma 5 =
Step 3.1: Inserting s; = v;w; using Qpr=1)

— threading cost:Lem. 2 = expected O(1) per segm.
— locating cost: Know the location of v; in Qg 1)-

14 -14

O(n)

O(n)

(log™n) -
O(n)

14 - 15

Time Complexity

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log* n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)

— threading cost:Lem. 2 = expected O(1) per segm.

— locating cost: Know the location of v; in Qg 1)-
Lem. 4 = expected location cost

Lemma4. Let1 <j<k<nandg € R% Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).

14 - 16

Time Complexity

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log* n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per segm.
— locating cost: Know the location of v; in Qg 1)-

Lem. 4 = expected location cost
O(log(i/N(h—1))) C

Lemma4. Let1 <j<k<nandg € R% Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).

14 -17

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per segm.
— locating cost: Know the location of v; in Qg 1)-

Lem. 4 = expected location cost
O(log(i/N(h—1))) C

Lemma4. Let1 <j<k<nandg € R% Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).

14 - 18

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per segm.
— locating cost: Know the location of v; in Qg 1)-

Lem. 4 = expected location cost
O(log(i/ NIE=)) O (log ™) n)

Lemma4. Let1 <j<k<nandg € R% Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).

14 - 19

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per seg
— locating cost: Know the location of v; in Qg1

Lem. 4 = expected location cost
O(log(i/ NIE=)) O (log ™) n)

14 - 20

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per seg
— locating cost: Know the location of v; in Q1.

. N(n) =
Lem. 4 = expected location cost

O(log i/ Ni=l))) <O(log") n)

14 - 21

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per seg
— locating cost: Know the location of v; in Qg1

N = O(n)

Lem. 4 = expected location cost
O(log(i/ M=) O (log") n)

14 - 22

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per seg
— locating cost: Know the location of v; in Qg1

N@#) = O(n)

Lem. 4 = expected location cost
O(log(i/ NIE=)) O (log ™) n)

Step 4: Inserting s; (for N(log™ n) < i < n) using Qg)

14 - 23

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per seg
— locating cost: Know the location of v; in Qg1

, .N(h) = O(n)
Lem. 4 = expected location cost
0(log(i/ NihE))) O(log™ n)
Step 4: Inserting s; (for N(log™ n) < i < n) using Qg)

— threading cost:
— locating cost:

14 - 24

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per segmy.
— locating cost: Know the location of v; in QN(h"j. e s
Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

)

Step 4: Inserting s; (for N(log™ n) < i < n) using Qg)

— threading cost:
— locating cost:

14 - 25

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per segmy.
— locating cost: Know the location of v; in QN(h"j. e s
Lemma 2. Fori =1,...,n, the expected number of rays of
T (S;_1) that are intersected by s; is at most 4.

)

Step 4: Inserting s; (for N(log™ n) < i < n) using Qg)

— threading cost:Lem. 2 = O(1)
— locating cost:

14 - 26

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using QN(h—l)
— threading cost:Lem. 2 = expected O(1) per segnq.
Lemma4. Let1 <j <k <nandg € R? Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).

Step 4: Inserting s; (for N(log™ n) < i < n) using Qg)

— threading cost:Lem. 2 = O(1)
— locating cost: Lem. 4 =

14 - 27

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using QN(h—l)
— threading cost:Lem. 2 = expected O(1) per segnq.
Lemma4. Let1 <j <k <nandg € R? Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).

Step 4: Inserting s; (for N(log™ n) < i < n) using Qg)

— threading cost:Lem. 2 = O(1)
— locating cost: Lem. 4 = O(logn/N(log*n)) =

14 - 28

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using QN(h—l)
— threading cost:Lem. 2 = expected O(1) per segnq.
Lemma4. Let1 <j <k <nandg € R? Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).

Step 4: Inserting s; (for N(log™ n) < i < n) using Qg)
— threading cost:Lem. 2 = O(1)

— locating cost: Lem. 4 = O(logn/N(log*n)) =

14 - 29

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per segnq.

Lemma4. Let1 <j <k <nandg € R? Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).
Step 4: Inserting s; (for N(log™ n) < i < n) using Qg)
— threading cost:Lem. 2 = O(1)
— locating cost: Lem. 4 = O(logn/N(log*n)) =

>n/2

14 - 30

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per segnq.

Lemma4. Let1 <j <k <nandg € R? Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).
Step 4: Inserting s; (for N(log™ n) < i < n) using Qg)
— threading cost:Lem. 2 = O(1)
— locating cost: Lem. 4 = O(logn/N(log=n)) = O(1)

>n/2

14 - 31

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per segnq.

Lemma4. Let1 <j <k <nandg € R? Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).
Step 4: Inserting s; (for N(log™ n) < i < n) using Qg)
— threading cost:Lem. 2 = O(1)
— locating cost: Lem. 4 = O(logn/N(log=n)) = O(1)

>n/2

14 - 32

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using QN(h—l)
— threading cost:Lem. 2 = expected O(1) per segnq.
Lemma4. Let1 <j <k <nandg € R? Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).

Step 4: Inserting s; (for N(log™ n) < i < n) using Qg)

— threading cost:Lem. 2 = O(1) 0n) =

— locating cost: Lem. 4 = O(logn/N(log=n)) = O(1)

>n/2

14 - 33

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using QN(h—l)
— threading cost:Lem. 2 = expected O(1) per segnq.
Lemma4. Let1 <j <k <nandg € R? Suppose location

of g in Q(S;) is known, then g can be located in
Q(Sk) in expected time 5(Hy — H;) € O(logk/j).

Step 4: Inserting s; (for N(log* n) < i < n) using Qnpuegrsy O(71)

— threading cost:Lem. 2 = O(1) O(n) :j
— locating cost: Lem. 4 = O(logn/N(log=n)) = O(1)

>n/2

14 - 34

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per seg
— locating cost: Know the location of v; in QN e |

N = O(n)

Lem. 4 = expected location cost

O (log i/ N=))) O (log™ n)

Step 4: Inserting s; (for N(log* n) < i < n) using Qnpuegrsy O(71)

— threading cost:Lem. 2 = O(1) O(n) _j
— locating cost: Lem. 4 = O(logn/N(log™n)) = O(1) N

\F/

>n/2

14 - 35

Time Complexity N := [/ 1og™ n]

Step 1: Random permutation O(n)

Step 2: Setting up 71, Q1, and 71(v) O(n)

Step 3: Phases 1 to log™ n (log*n) -
Step 3.2: Walking the polygon Lemma 5 = O(n)

Step 3.1: Inserting s; = v;w; using Qpr=1)
— threading cost:Lem. 2 = expected O(1) per seg
— locating cost: Know the location of v; in Qg1

. N(##) = O(n)
Lem. 4 = expected location cost
O(log(i/) O (log") n)
Step 4: Inserting s; (for N(log* n) < i < n) using Qnpuegrsy O(71)
— threading cost:Lem. 2 = O(1) O(n) :j
— locating cost: Lem. 4 = O(logn/N(log=n)) = O(1)

>n/2 O(nlog™ n)

The Results

The Results

15 -

‘Theorem. Let S be the edge set of a polygon, |S| = n.

B We can build 7(S) and Q(S) in O(nlog™n)
expected time.

B The expected size of Q(S) is O(n).

B The expected time for locating a point in

T(S) via Q(S) is O(logn).

.

‘Theorem. Let S be the edge set of a plane straight-line
graph with k connected components, |S| = n.

B We can build 7(S) and Q(S) in
O(nlog™n + klogn) expected time.

B The expected size of Q(S) is O(n).

B The expected time for locating a point in

T(S) via Q(S) is O(logn).

	General Idea
	Triangulating a Polygon
	General Idea

	Location & Threading Time
	Threading Time
	Location Time

	Location & Threading Time
	The Two Main New Technical Ingredients

	The Algorithm
	Logs All Over the Place

	The Algorithm
	Time Complexity
	Time Complexity
	The Results

