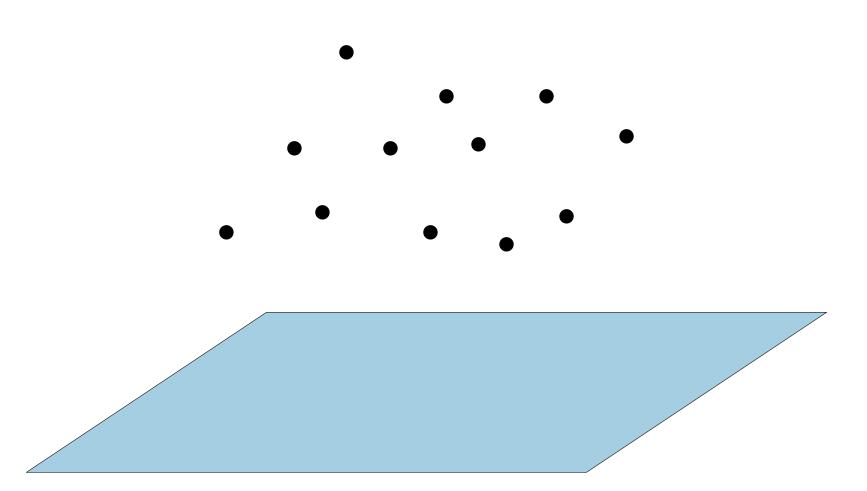
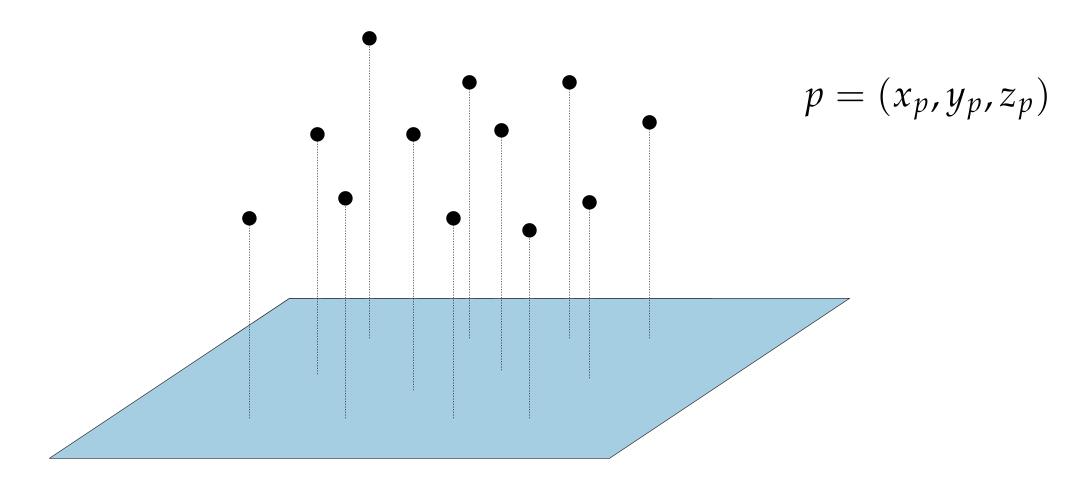
Computational Geometry

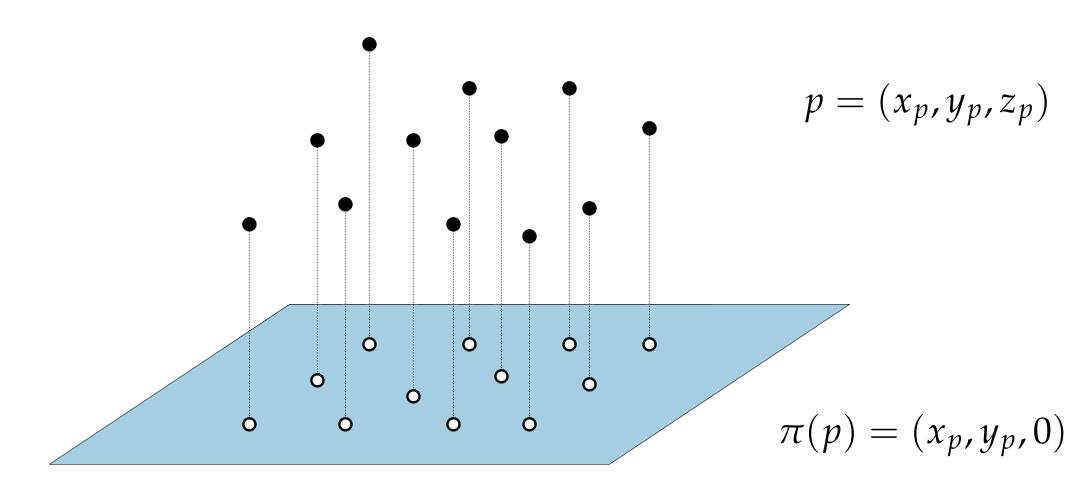
Lecture 8:
Delaunay Triangulations
or
Height Interpolation

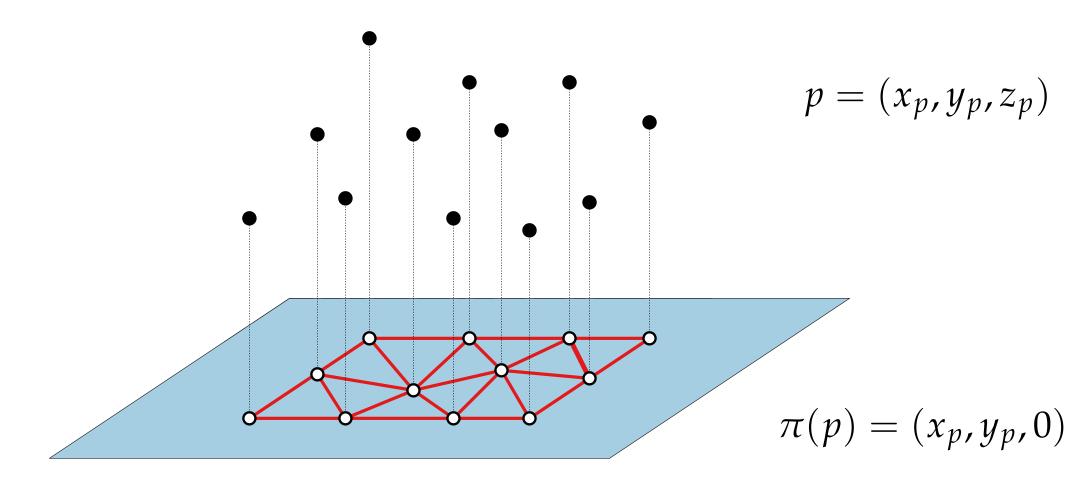
Part I: Height Interpolation

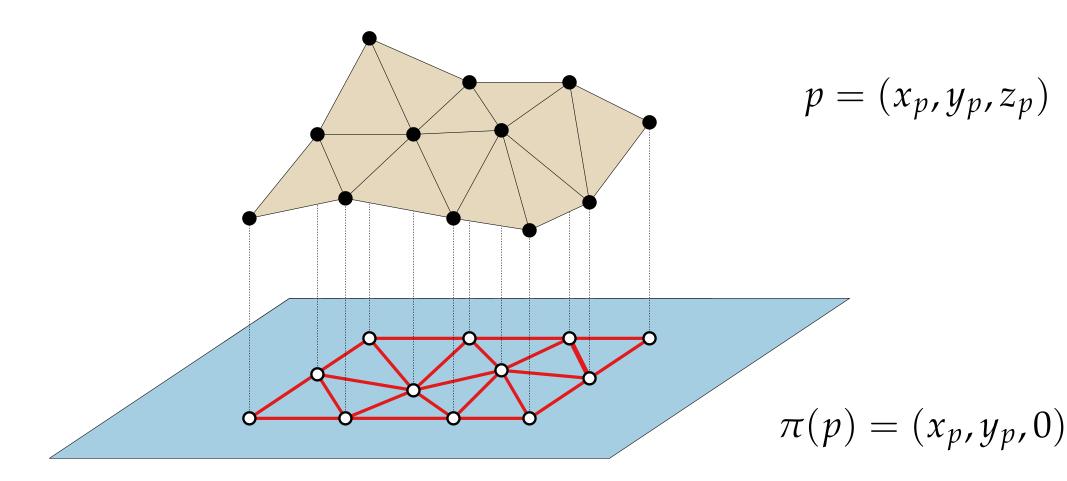
[opentopomap.org]



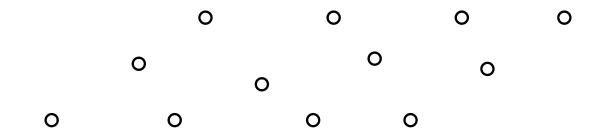




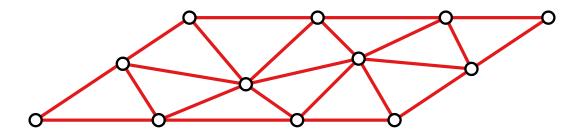




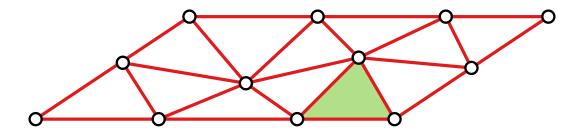
Definition. Given $P \subset \mathbb{R}^2$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.



Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

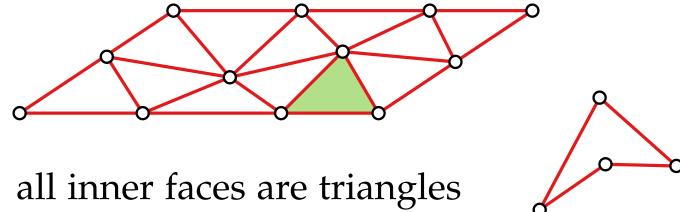


Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

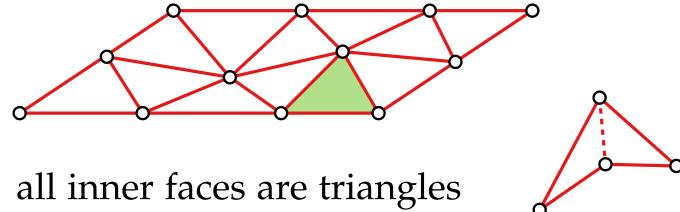


Observe. all inner faces are triangles

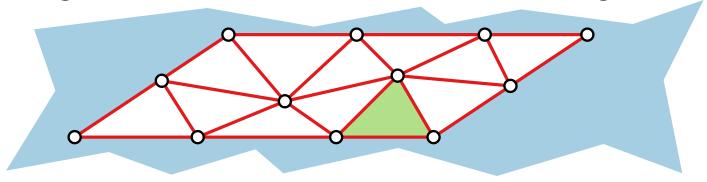
Definition. Given $P \subset \mathbb{R}^2$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.



Definition. Given $P \subset \mathbb{R}^2$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

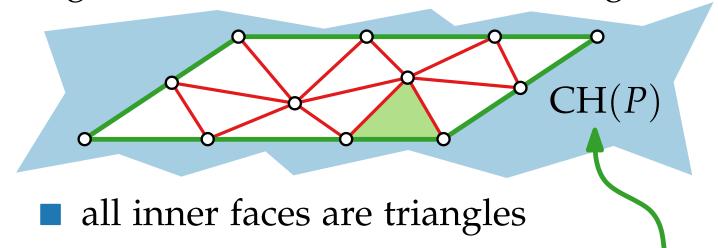


Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.



- all inner faces are triangles
- outer face is complement of a convex polygon

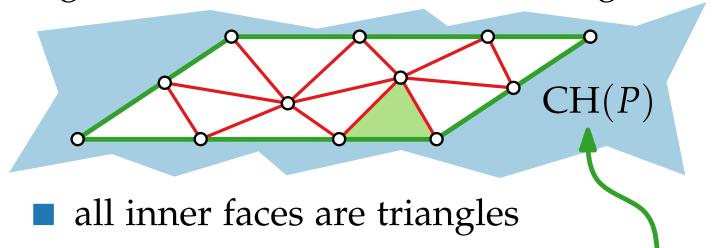
Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.



Observe.

outer face is complement of a convex polygon

Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

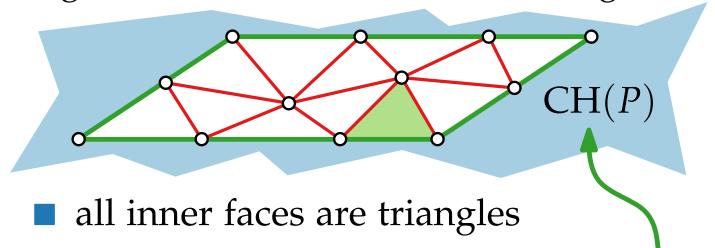


Observe.

outer face is complement of a convex polygon

Theorem. Let $P \subset \mathbb{R}^2$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial CH(P)$.

Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

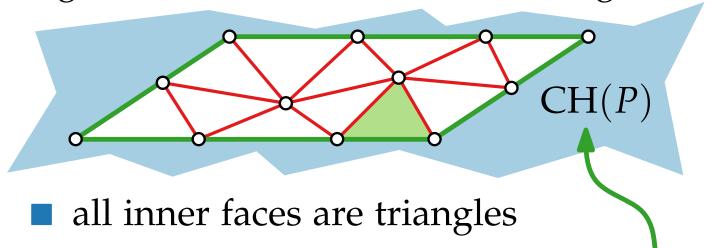


Observe.

outer face is complement of a convex polygon

Theorem. Let $P \subset \mathbb{R}^2$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial CH(P)$. Then *any* triangulation of P has ? edges.

Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

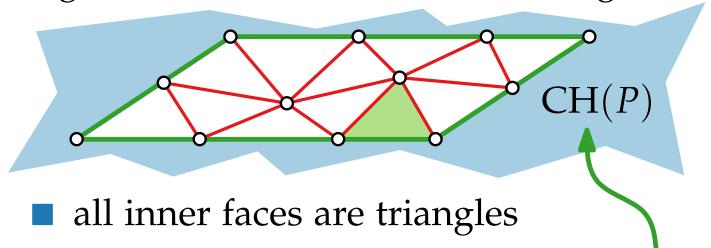


Observe.

outer face is complement of a convex polygon

Theorem. Let $P \subset \mathbb{R}^2$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial CH(P)$. Then *any* triangulation of P has ? triangles and 3n-3-h edges.

Definition. Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.



Observe.

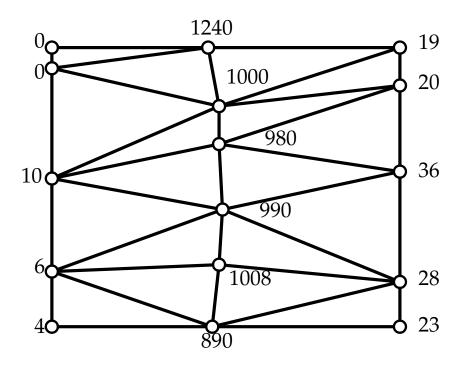
outer face is complement of a convex polygon

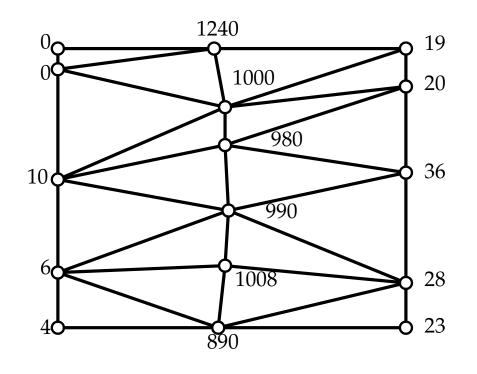
Theorem. Let $P \subset \mathbb{R}^2$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial CH(P)$. Then *any* triangulation of P has 2n-2-h triangles and 3n-3-h edges.

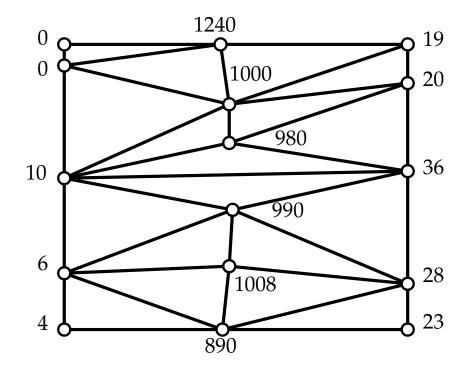
Computational Geometry

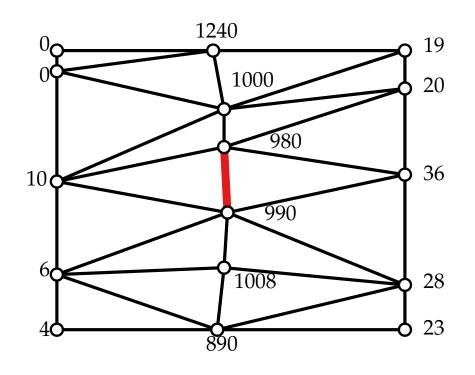
Lecture 8:
Delaunay Triangulations
or
Height Interpolation

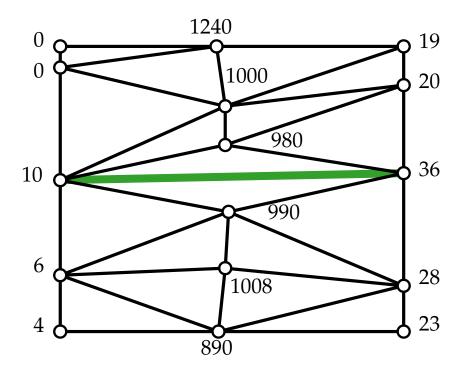
Part II: Angle-Optimal Triangulation

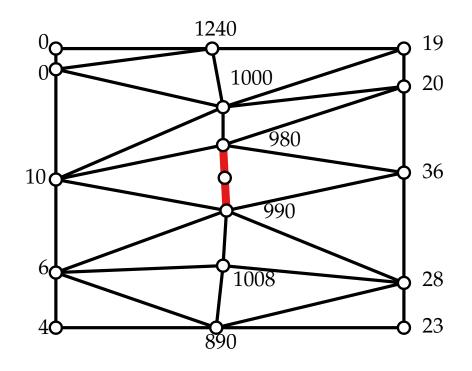


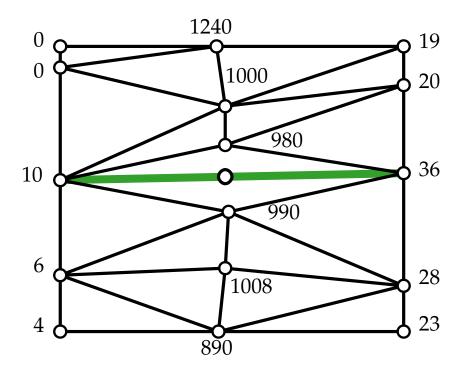


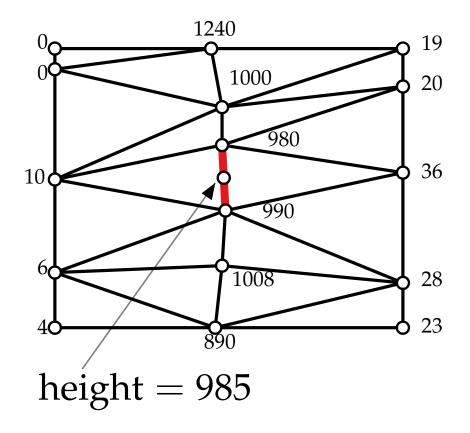


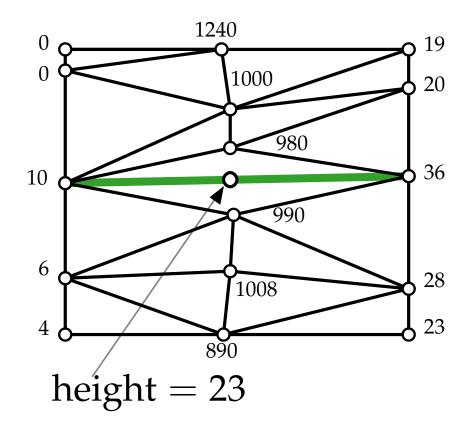


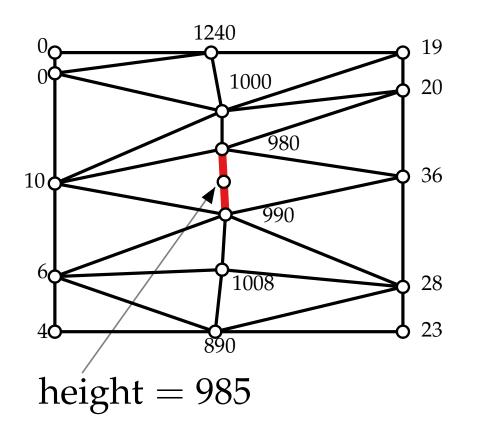


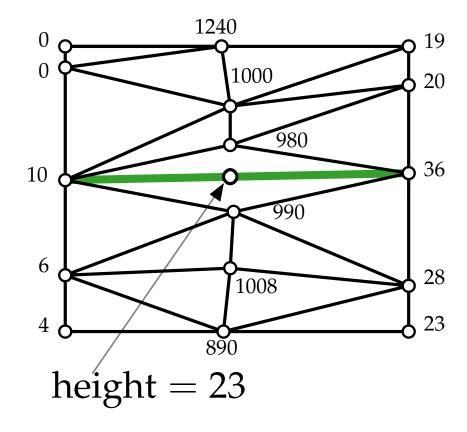




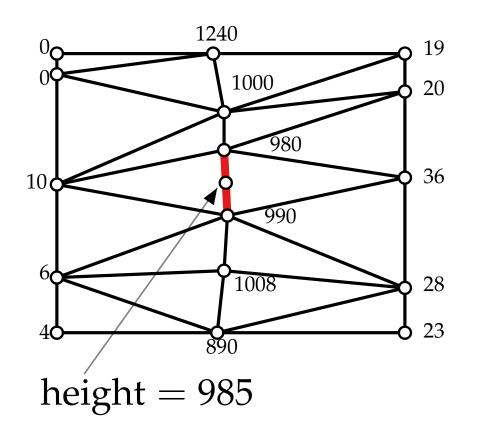


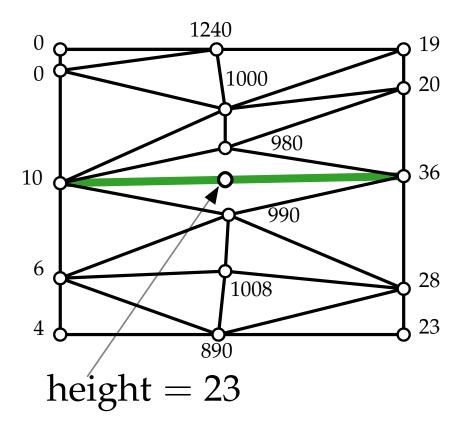






Intuition. Avoid "skinny" triangles!





Intuition. Avoid "skinny" triangles!
In other words: avoid small angles!

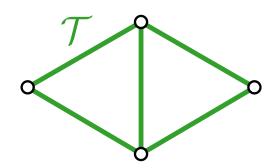
Definition. Given a set $P \subset \mathbb{R}^2$

 C

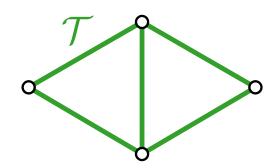
0 0

0

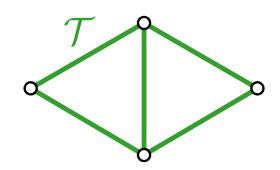
Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P,

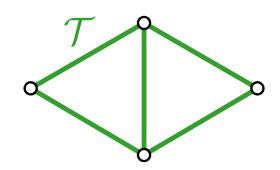


Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T}



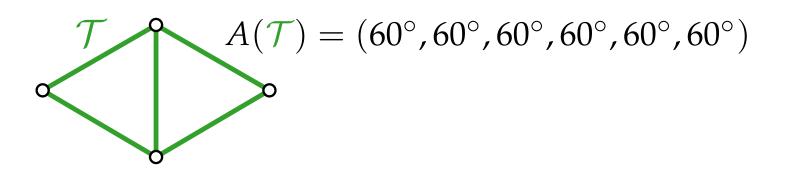
Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T}



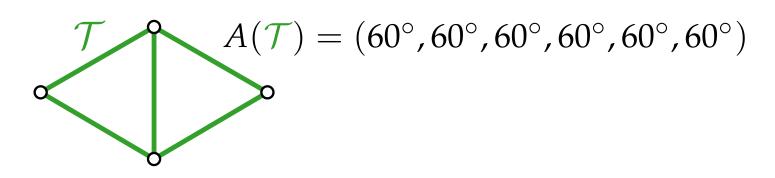


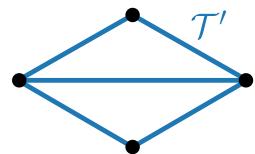
$$A(T) = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$$

We say
$$A(\mathcal{T}) > A(\mathcal{T}')$$

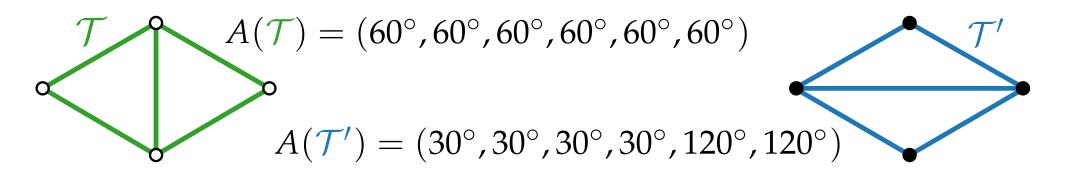


We say
$$A(\mathcal{T}) > A(\mathcal{T}')$$



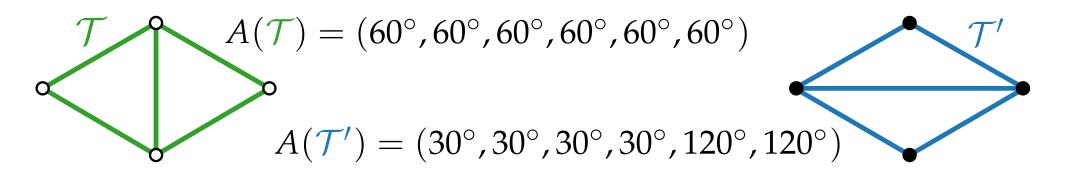


We say
$$A(\mathcal{T}) > A(\mathcal{T}')$$



We say
$$A(\mathcal{T}) > A(\mathcal{T}')$$

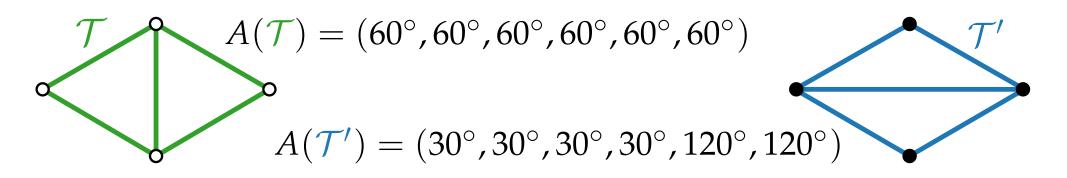
if $\exists i \in \{1,...,3m\}$:



Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say
$$A(\mathcal{T}) > A(\mathcal{T}')$$

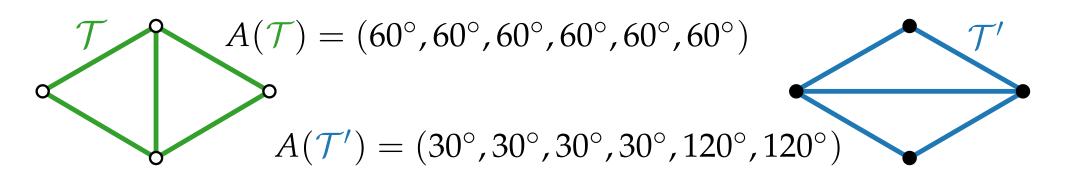
if $\exists i \in \{1, ..., 3m\} : \alpha_i > \alpha'_i$



Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say
$$A(\mathcal{T}) > A(\mathcal{T}')$$

if $\exists i \in \{1, ..., 3m\} : \alpha_i > \alpha'_i$ and



Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say
$$A(\mathcal{T}) > A(\mathcal{T}')$$

if $\exists i \in \{1,...,3m\} : \alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.



Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, ..., 3m\} : \alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.

 \mathcal{T} is angle-optimal if

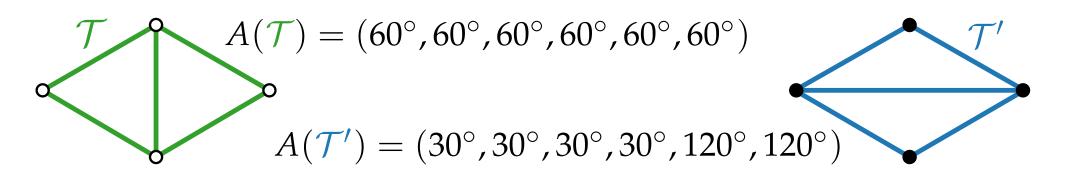
$$A(T) = (60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ}, 60^{\circ})$$

$$A(T') = (30^{\circ}, 30^{\circ}, 30^{\circ}, 30^{\circ}, 120^{\circ}, 120^{\circ})$$

Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, ..., 3m\} : \alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.

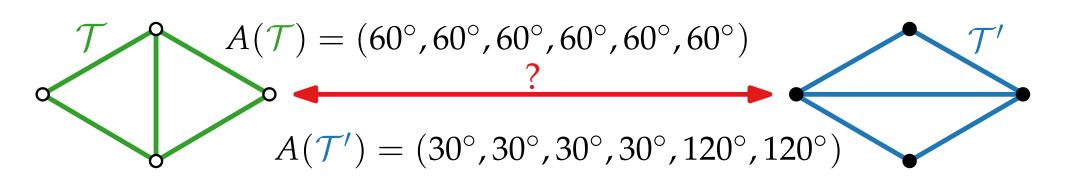
 \mathcal{T} is angle-optimal if $A(\mathcal{T}) \geq A(\mathcal{T}')$ for all triangulations \mathcal{T}' of P.



Definition. Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \dots, \alpha_{3m})$ be the *angle vector* of \mathcal{T} , where $\alpha_1 \leq \dots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T} .

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, ..., 3m\} : \alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.

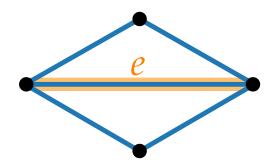
 \mathcal{T} is angle-optimal if $A(\mathcal{T}) \geq A(\mathcal{T}')$ for all triangulations \mathcal{T}' of P.

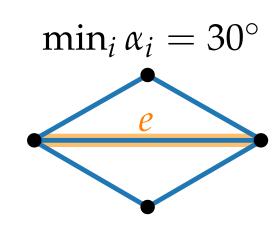


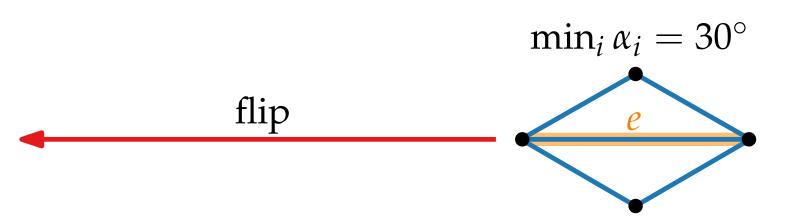
Computational Geometry

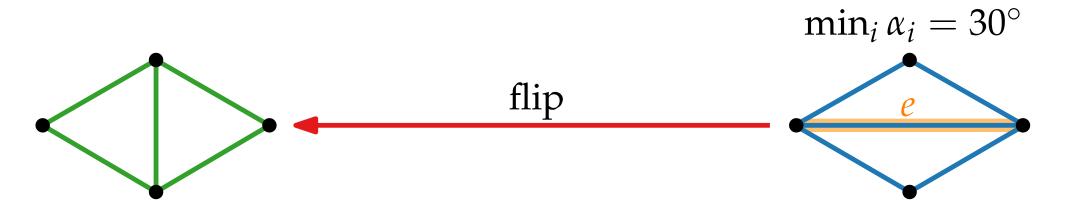
Lecture 8:
Delaunay Triangulations
or
Height Interpolation

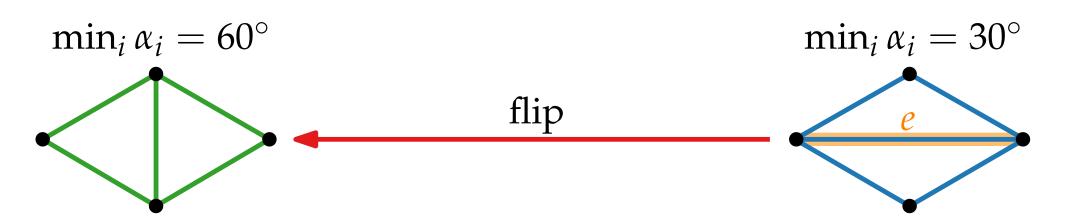
Part III: Edge Flips & Legal Triangulations





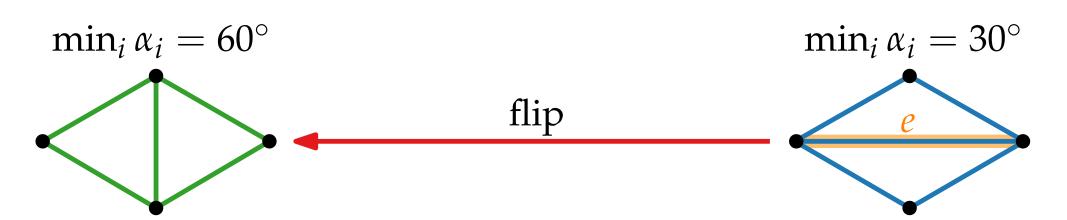






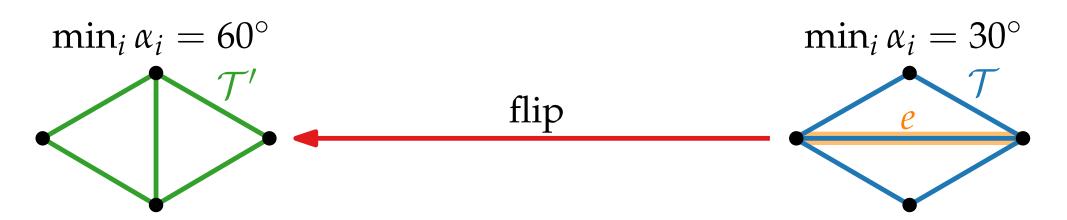
Definition. Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to e increases when flipping.

Observe. Let e be an illegal edge of \mathcal{T} , and $\mathcal{T}' = \text{flip}(\mathcal{T}, e)$.



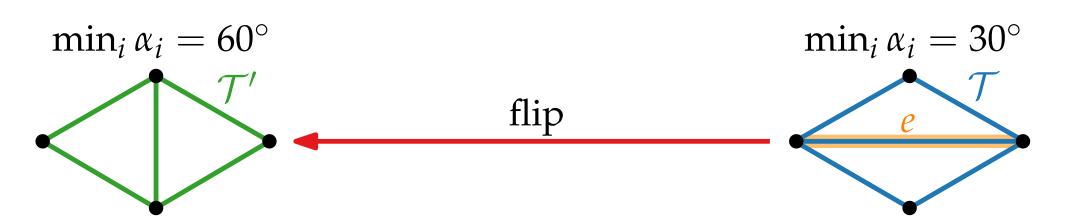
Definition. Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to e increases when flipping.

Observe. Let e be an illegal edge of \mathcal{T} , and $\mathcal{T}' = \text{flip}(\mathcal{T}, e)$.



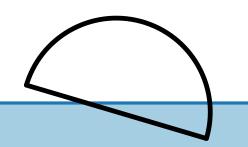
Definition. Let \mathcal{T} be a triangulation. An edge e of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to e increases when flipping.

Observe. Let e be an illegal edge of \mathcal{T} , and $\mathcal{T}' = \text{flip}(\mathcal{T}, e)$. Then $A(\mathcal{T}') > A(\mathcal{T})$.

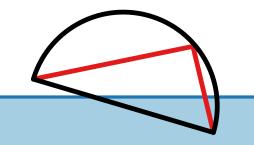


Theorem. [Thales]

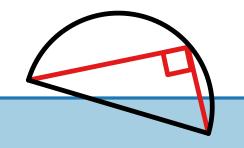
Theorem. [Thales]



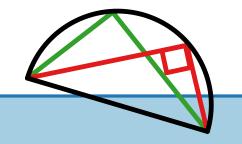
Theorem. [Thales]



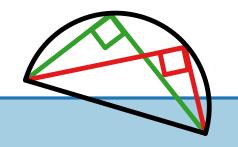
Theorem. [Thales]



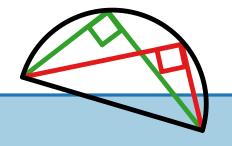
Theorem. [Thales]



Theorem. [Thales]

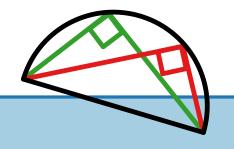


Theorem. [Thales]



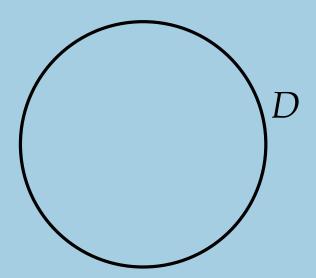
Theorem. [Thales]

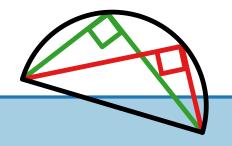
The diameter of a circle always subtends a right angle to any point on the circle.



Theorem. [Thales]

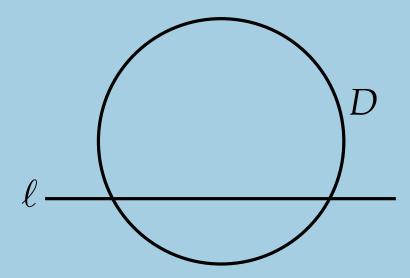
The diameter of a circle always subtends a right angle to any point on the circle.

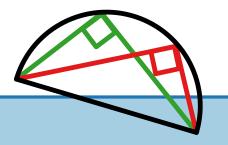




Theorem. [Thales]

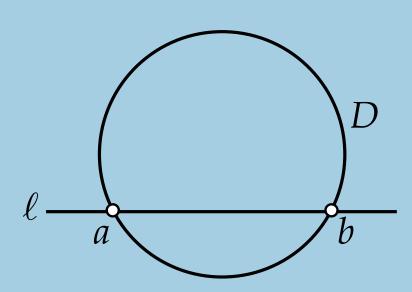
The diameter of a circle always subtends a right angle to any point on the circle.



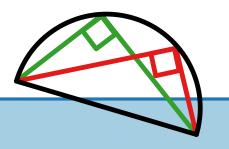


Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

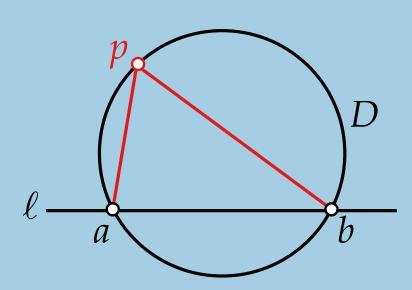


$$\{a,b\} := \ell \cap \partial D \ (a \neq b)$$

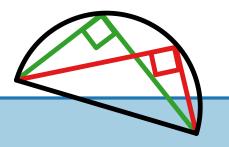


Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

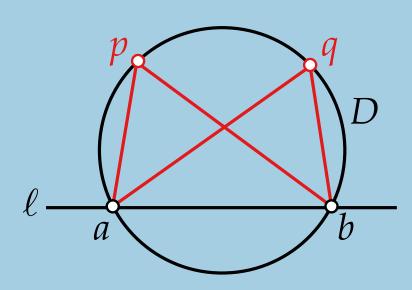


$$\{a,b\} := \ell \cap \partial D \ (a \neq b)$$



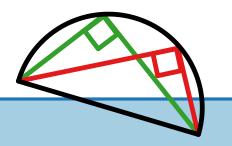
Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.



$$\{a,b\} := \ell \cap \partial D \ (a \neq b)$$

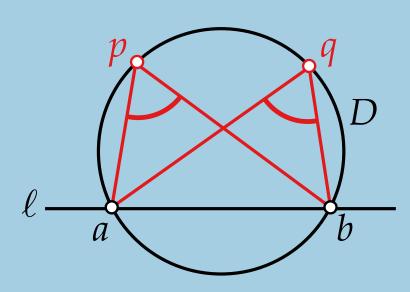
$$p,q \in \partial D$$



Theorem.

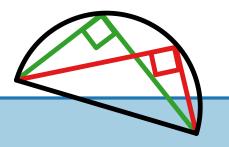
[Thales]

The diameter of a circle always subtends a right angle to any point on the circle.



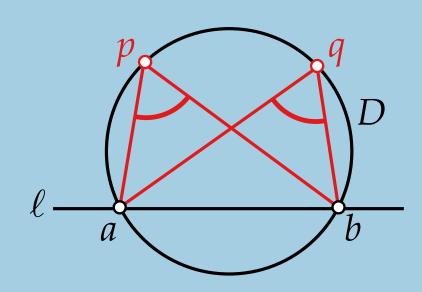
$$\{a,b\} := \ell \cap \partial D \ (a \neq b)$$

$$p,q \in \partial D$$



Theorem. [Thales]

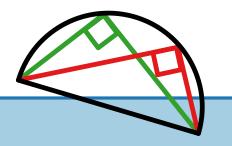
The diameter of a circle always subtends a right angle to any point on the circle.



$$\{a,b\} := \ell \cap \partial D \ (a \neq b)$$

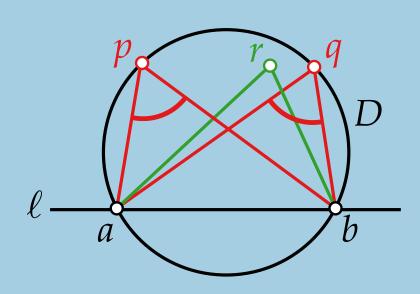
$$p,q \in \partial D$$

$$\angle apb = \angle aqb$$



Theorem. [Thales]

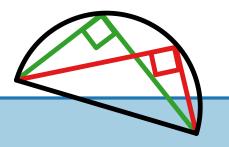
The diameter of a circle always subtends a right angle to any point on the circle.



$$\{a,b\} := \ell \cap \partial D \ (a \neq b)$$

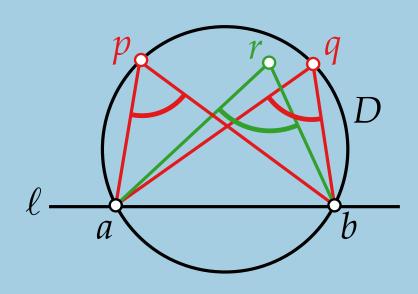
$$p, q \in \partial D$$
 $r \in int(D)$

$$\angle apb = \angle aqb$$



Theorem. [Thales]

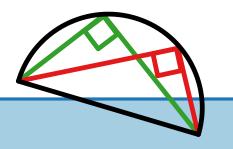
The diameter of a circle always subtends a right angle to any point on the circle.



$$\{a,b\} := \ell \cap \partial D \ (a \neq b)$$

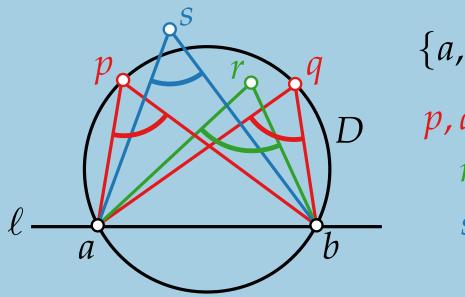
$$p, q \in \partial D$$
 $r \in int(D)$

$$\angle apb = \angle aqb < \angle arb$$



Theorem. [Thales]

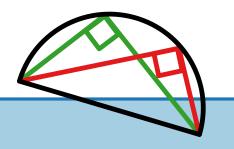
The diameter of a circle always subtends a right angle to any point on the circle.



$$\{a,b\} := \ell \cap \partial D \ (a \neq b)$$

$$p,q \in \partial D$$
 $r \in int(D)$
 $s \notin D$

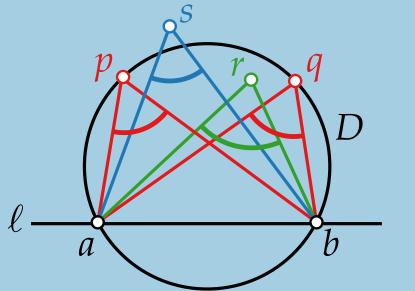
$$\angle apb = \angle aqb < \angle arb$$



Theorem. [Thales]

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: [Thales++]



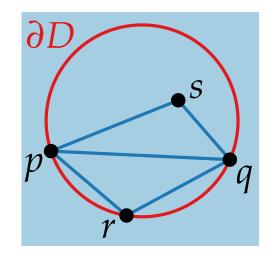
$$\{a,b\} := \ell \cap \partial D \ (a \neq b)$$

$$p,q \in \partial D$$
 $r \in int(D)$
 $s \notin D$

 $\angle asb < \angle apb = \angle aqb < \angle arb$

Legal Triangulations

Lemma. Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.



Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

p r q

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, ∂D

then either pq or rs is illegal.

Proof.

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof.

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in int(D)$.

If p,q,r,s in convex position and $s \notin \partial D$, ∂D

then either pq or rs is illegal.

Proof.

Show: $\forall \alpha'$ in $\mathcal{T}' \exists \alpha$ in \mathcal{T} s.t. $\alpha < \alpha'$.

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof.

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof.

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof.

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof.

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof.

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either pq or rs is illegal.

Proof.

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof.

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either pq or rs is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ Use Thales++ w.r.t. qs'.

Note.

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either pq or rs is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ Use Thales++ w.r.t. qs'.

Note.

If $s \in \partial D$, both pq and rs legal.

Legal Triangulations

Lemma. Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof. Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ Use Thales++ w.r.t. qs'.

Note. If $s \in \partial D$, both pq and rs legal.

Definition. A triangulation is *legal* if it has no illegal edge.

Legal Triangulations

Lemma. Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof. Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ Use Thales++ w.r.t. qs'.

Note. If $s \in \partial D$, both pq and rs legal.

Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

Legal Triangulations

Lemma. Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof. Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ Use Thales++ w.r.t. qs'.

Note. If $s \in \partial D$, both pq and rs legal.

Definition. A triangulation is *legal* if it has no illegal edge.

Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T} .

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ Use Thales++ w.r.t. qs'.

Note.

If $s \in \partial D$, both pq and rs legal.

Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T} .

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ Use Thales++ w.r.t. qs'.

Note.

If $s \in \partial D$, both pq and rs legal.

Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T} .

 $A(\mathcal{T})$ goes up!

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either pq or rs is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ Use Thales++ w.r.t. qs'.

Note.

If $s \in \partial D$, both pq and rs legal.

Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T} .

 $A(\mathcal{T})$ goes up! &

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ Use Thales++ w.r.t. qs'.

Note.

If $s \in \partial D$, both pq and rs legal.

Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T} .

 $A(\mathcal{T})$ goes up! & #(triangulations of P) < ∞

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ Use Thales++ w.r.t. qs'.

Note.

If $s \in \partial D$, both pq and rs legal.

Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T} .

 \blacksquare A(T) goes up! & #(triangulations of P) < ∞

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ Use Thales++ w.r.t. qs'.

Note.

If $s \in \partial D$, both pq and rs legal.

Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T} .

algorithm terminates

 $A(\mathcal{T})$ goes up! & #(triangulations of P) $< \infty$

Legal Triangulations

Lemma.

Let Δprq , $\Delta pqs \in \mathcal{T}$ and $p,q,r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p,q,r,s in convex position and $s \notin \partial D$,

then either *pq* or *rs* is illegal.

Proof.

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'.$ Use Thales++ w.r.t. qs'.

Note.

If $s \in \partial D$, both pq and rs legal.

Definition. A triangulation is *legal* if it has no illegal edge.

Existence?

algorithm terminates Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T} .

 $A(\mathcal{T})$ goes up! & #(triangulations of P) < ∞

Clearly... Every angle-optimal triangulation is legal.

Clearly... Every angle-optimal triangulation is legal.

But is every legal triangulation angle-optimal??

Clearly... Every angle-optimal triangulation is legal.

But is every legal triangulation angle-optimal??

Let's see.

Clearly... Every angle-optimal triangulation is legal.

But is every legal triangulation angle-optimal??

Let's see.

To clarify things, we'll introduce yet another type of triangulation...

Computational Geometry

Lecture 8:
Delaunay Triangulations
or
Height Interpolation

Part IV: Delaunay Triangulation

Recall: Given a set P of n points in the plane...

Recall: Given a set P of n points in the plane... Vor(P) = subdivision of the plane into Voronoi cells, edges, and vertices

Recall: Given a set P of n points in the plane... Vor(P) = subdivision of the plane into Voronoi cells, edges, and vertices $\mathcal{V}(p) = \{x \in \mathbb{R}^2 \colon |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ Voronoi cell of $p \in P$

Recall:

Given a set P of n points in the plane...

Vor(P) = subdivision of the plane intoVoronoi cells, edges, and vertices

 $\mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$ Voronoi cell of $p \in P$

Definition: The graph $\mathcal{G} = (P, E)$ with $\{p,q\} \in E \Leftrightarrow \mathcal{V}(p) \text{ and } \mathcal{V}(q) \text{ share an edge}$ is the dual graph of Vor(P)

Recall:

Given a set P of n points in the plane...

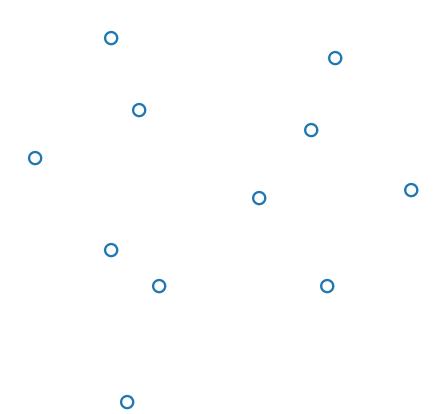
Vor(P) = subdivision of the plane intoVoronoi cells, edges, and vertices

 $\mathcal{V}(p) = \{ x \in \mathbb{R}^2 \colon |xp| < |xq| \text{ for all } q \in P \setminus \{p\} \}$ Voronoi cell of $p \in P$

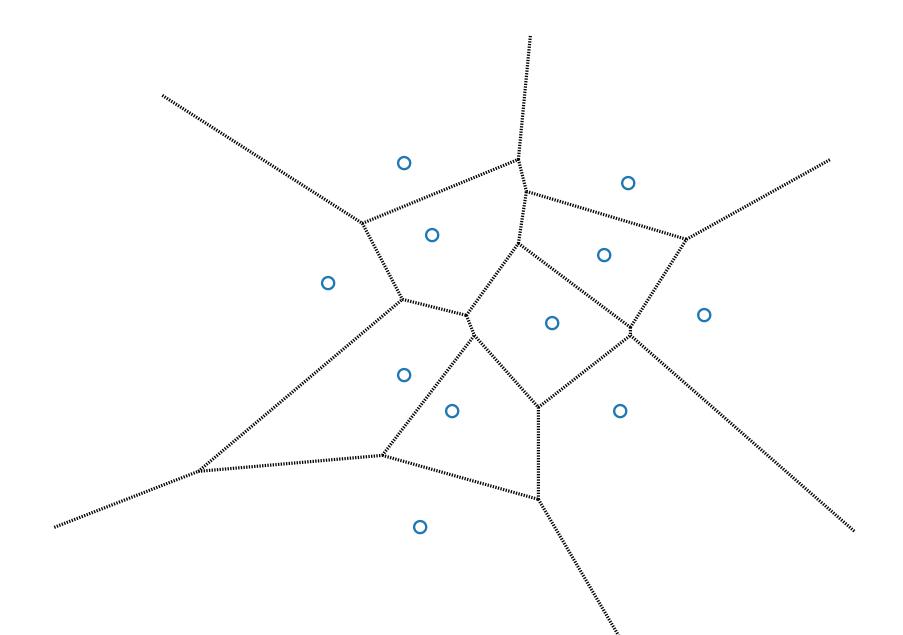
Definition: The graph $\mathcal{G} = (P, E)$ with $\{p,q\} \in E \Leftrightarrow \mathcal{V}(p) \text{ and } \mathcal{V}(q) \text{ share an edge}$ is the dual graph of Vor(P)

Definition: The *Delaunay graph* $\mathcal{DG}(P)$ is the straight-line drawing of \mathcal{G} .

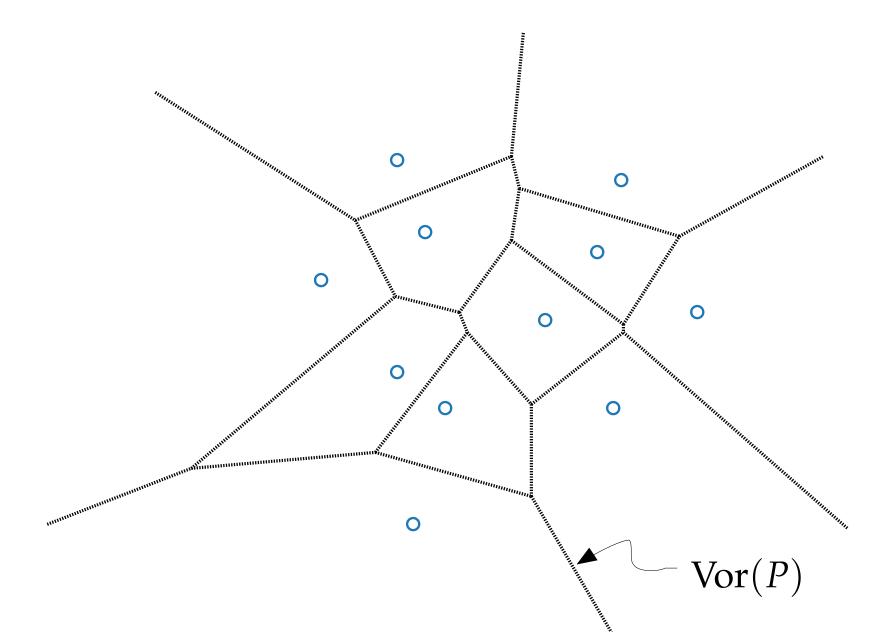
$$P \subset \mathbb{R}^2$$

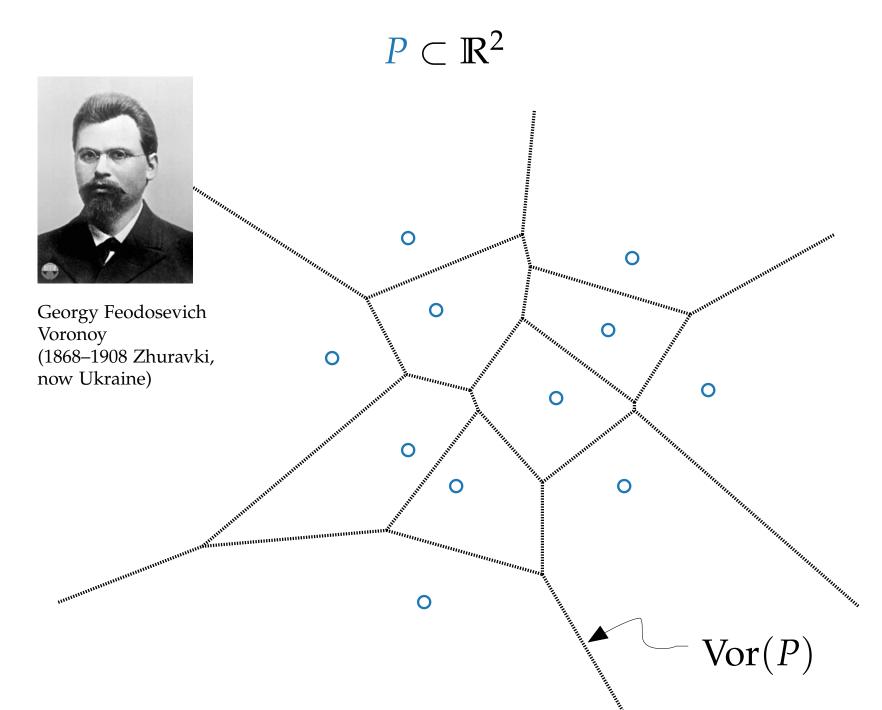


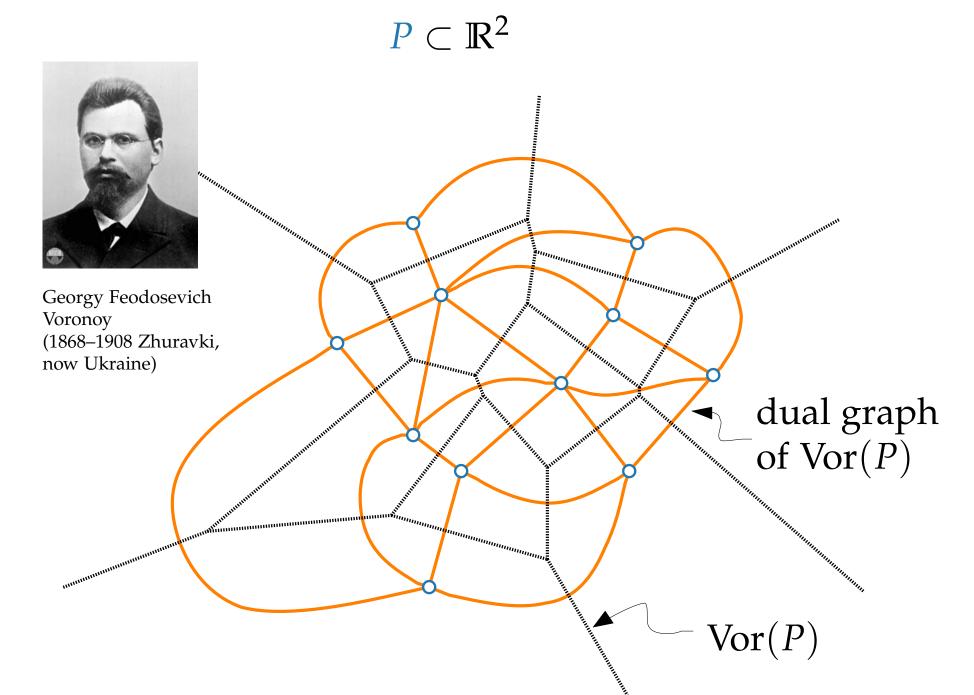
$$P \subset \mathbb{R}^2$$

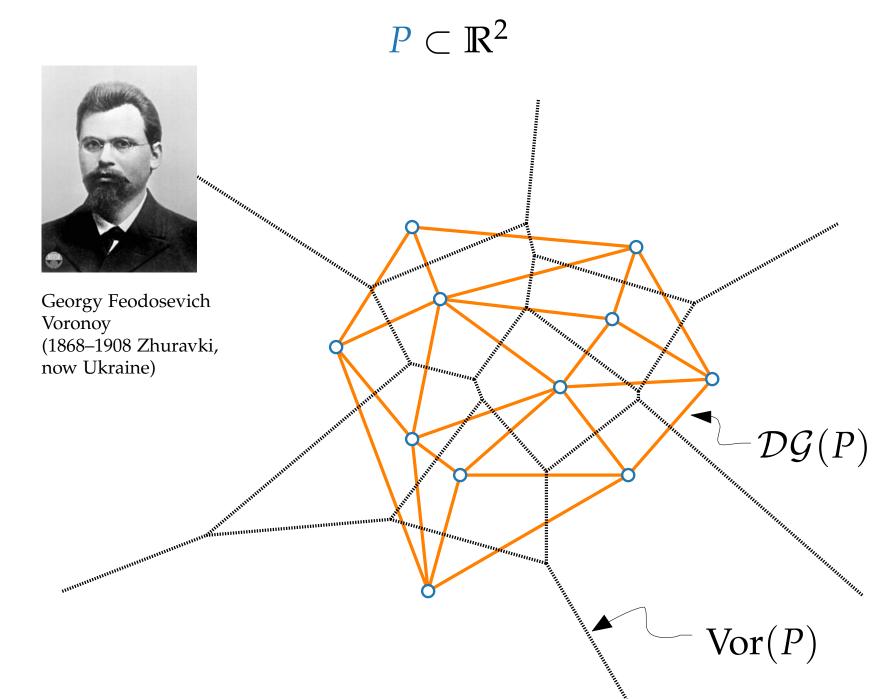


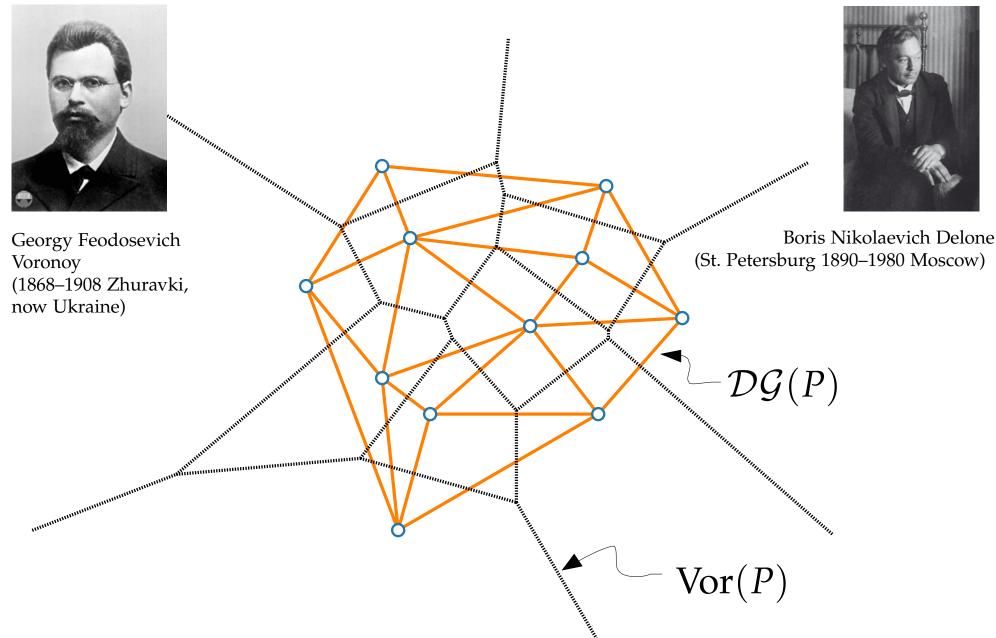
$$P \subset \mathbb{R}^2$$

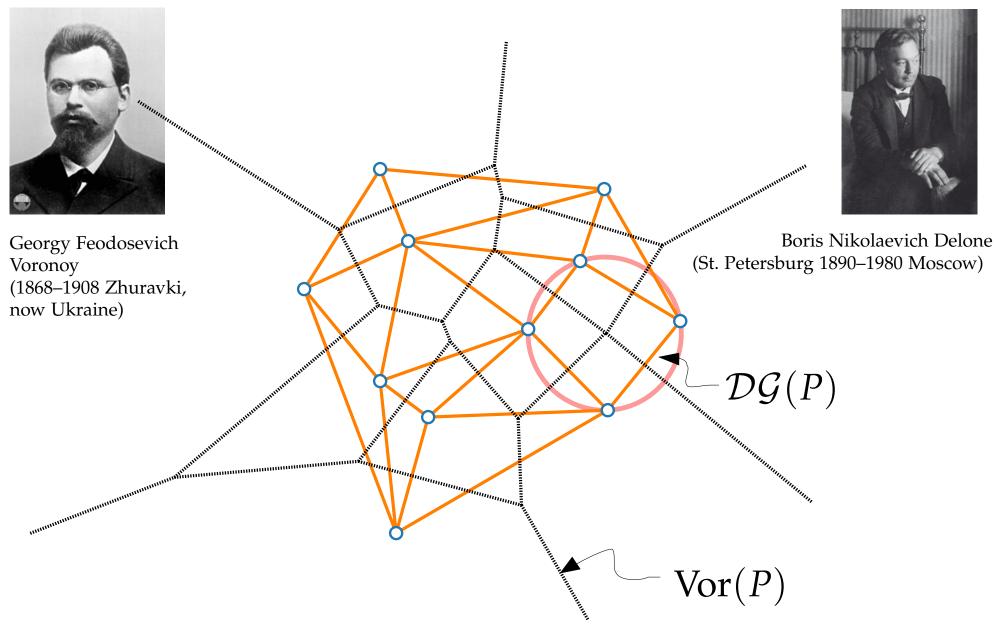


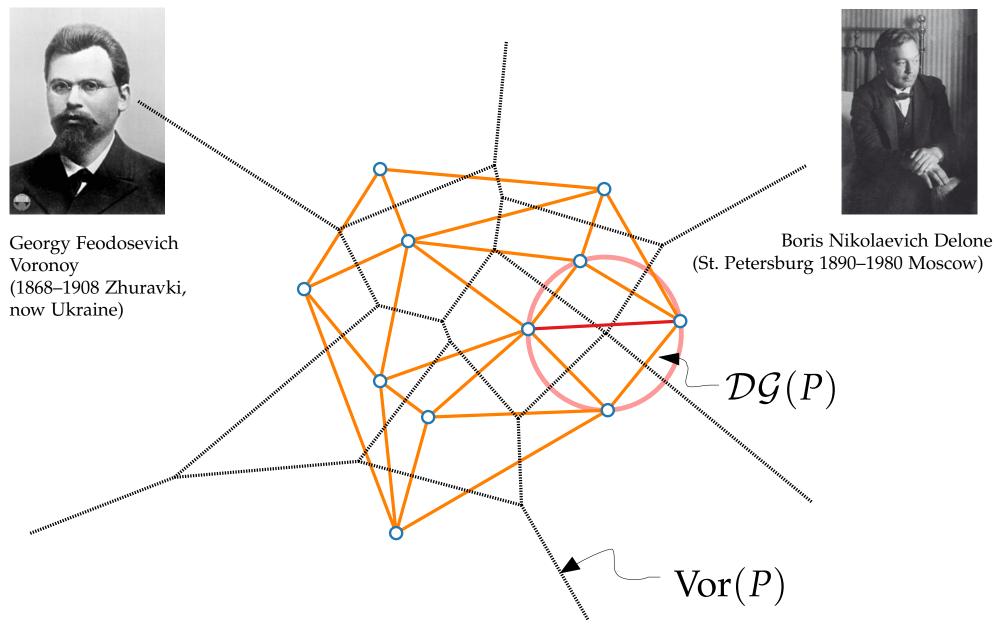


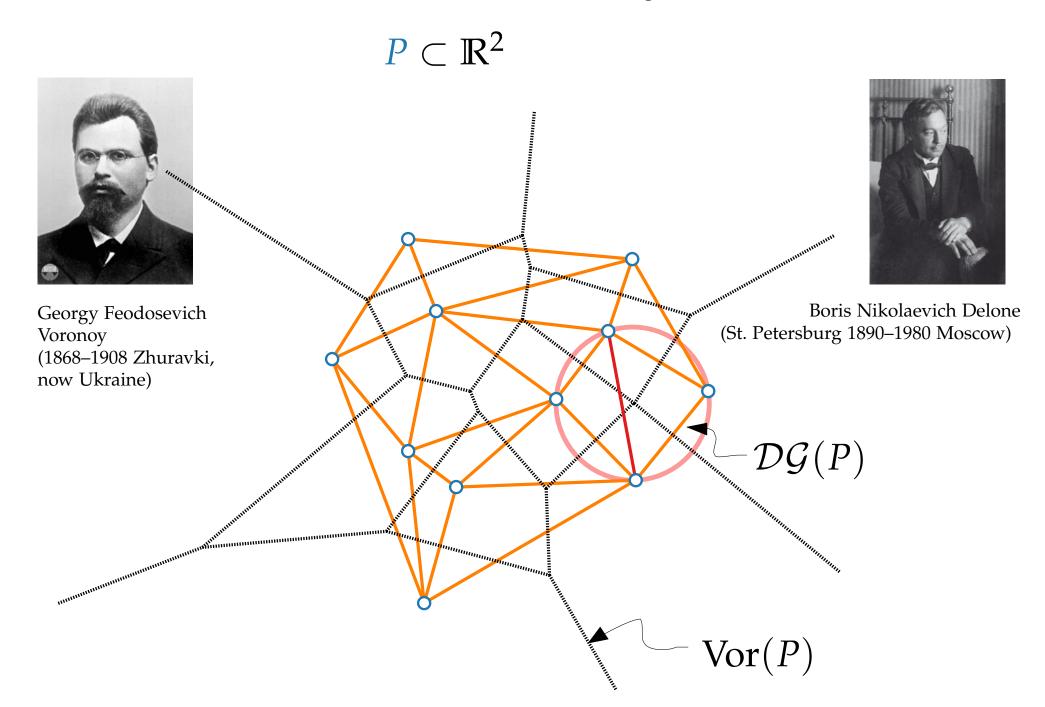










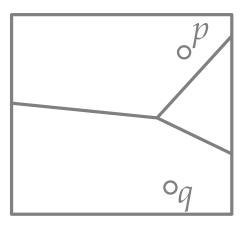


Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Lemma. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:



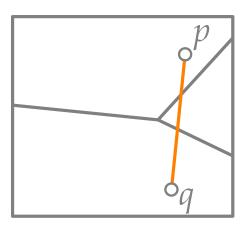
Lemma.

 $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \Leftrightarrow$

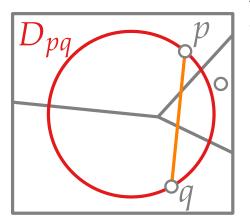


Lemma.

 $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:



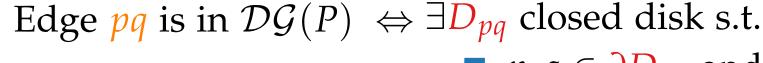
Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

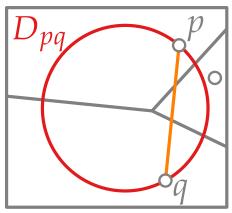
Lemma.

 $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:





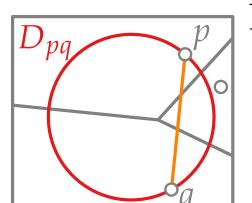
 $\mathbf{p}, q \in \partial D_{pq} \text{ and}$

Lemma.

 $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:



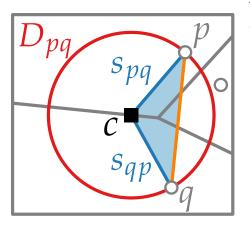
Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p,q \in \partial D_{pq}$ and

Lemma.

$P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.



Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

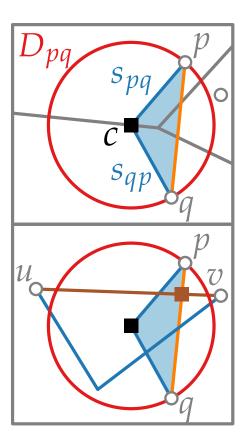
- $p, q \in \partial D_{pq}$ and

 $c = \operatorname{center}(D_{pq})$ lies on edge betw. V(p) & V(q).

Lemma.

$P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.



Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p,q \in \partial D_{pq}$ and

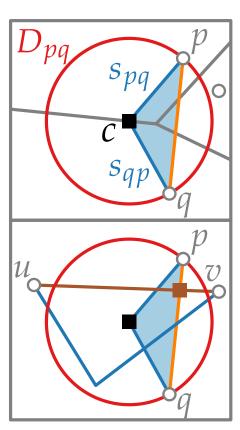
 $c = \operatorname{center}(D_{pq})$ lies on edge betw. V(p) & V(q).

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

Lemma.

$P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.



Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p,q \in \partial D_{pq}$ and

 $c = \operatorname{center}(D_{pq})$ lies on edge betw. V(p) & V(q).

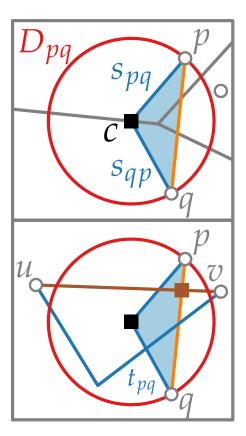
Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

$$u, v \notin D_{pq} \Rightarrow$$

Lemma.

$P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.



Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p,q \in \partial D_{pq}$ and

 $c = \operatorname{center}(D_{pq})$ lies on edge betw. V(p) & V(q).

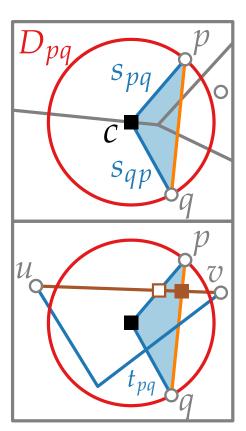
Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

 $u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$

Lemma.

$P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.



Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p,q \in \partial D_{pq}$ and

 $c = \operatorname{center}(D_{pq})$ lies on edge betw. V(p) & V(q).

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

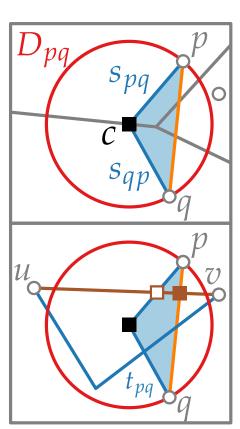
$$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$$

uv crosses another edge of t_{pq}

Lemma.

$P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.



Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p,q \in \partial D_{pq}$ and

 $c = \operatorname{center}(D_{pq})$ lies on edge betw. V(p) & V(q).

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

$$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$$

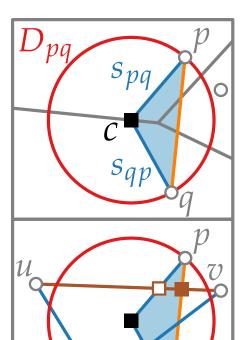
uv crosses another edge of t_{pq}

$$p,q \notin D_{uv} \Rightarrow$$

Lemma.

$P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.



Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p,q \in \partial D_{pq}$ and

 $c = \operatorname{center}(D_{pq})$ lies on edge betw. V(p) & V(q).

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

$$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$$

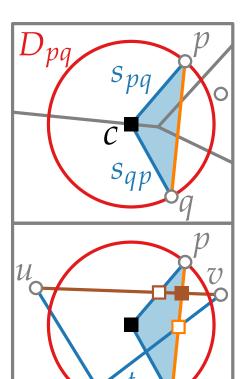
uv crosses another edge of t_{pq}

$$p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow$$

Lemma.

$P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.



Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p,q \in \partial D_{pq}$ and

 $c = \operatorname{center}(D_{pq})$ lies on edge betw. V(p) & V(q).

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

$$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$$

uv crosses another edge of t_{pq}

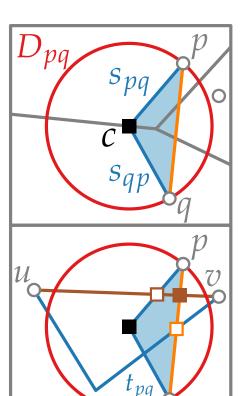
$$p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow$$

pq crosses another edge of t_{uv}

Lemma.

$P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.



Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p,q \in \partial D_{pq}$ and

 $c = \operatorname{center}(D_{pq})$ lies on edge betw. V(p) & V(q).

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

$$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$$

uv crosses another edge of t_{pq}

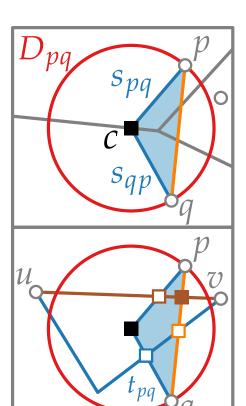
$$p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow$$

pq crosses another edge of t_{uv}

Lemma.

$P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.



Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and

 $c = \operatorname{center}(D_{pq})$ lies on edge betw. V(p) & V(q).

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

$$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$$

uv crosses another edge of t_{pq}

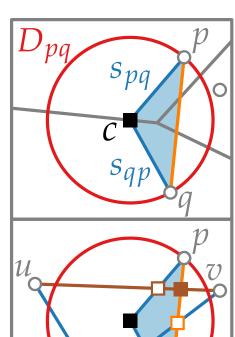
$$p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow$$

pq crosses another edge of t_{uv}

Lemma.

$P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.



Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and

 $c = \operatorname{center}(D_{pq})$ lies on edge betw. V(p) & V(q).

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

$$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$$

uv crosses another edge of t_{pq}

$$p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow$$

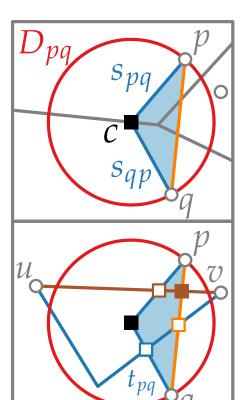
pq crosses another edge of t_{uv}

$$s_{pq} \subset \mathcal{V}(p), s_{qp} \subset \mathcal{V}(q), s_{uv} \subset \mathcal{V}(u), s_{vu} \subset \mathcal{V}(v).$$

Lemma.

$P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.



Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \Leftrightarrow \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and

 $c = \operatorname{center}(D_{pq})$ lies on edge betw. V(p) & V(q).

Suppose $\exists uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

$$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$$

uv crosses another edge of t_{pq}

$$p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow$$

pq crosses another edge of t_{uv}

$$s_{pq} \subset \mathcal{V}(p), s_{qp} \subset \mathcal{V}(q), s_{uv} \subset \mathcal{V}(u), s_{vu} \subset \mathcal{V}(v).$$

Characterization of Voronoi vertices and Voronoi edges ⇒

Characterization of Voronoi vertices and Voronoi edges ⇒

Lemma. $P \subset \mathbb{R}^2$ finite. Then

Characterization of Voronoi vertices and Voronoi edges ⇒

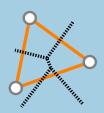
Lemma. $P \subset \mathbb{R}^2$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow$

Characterization of Voronoi vertices and Voronoi edges ⇒

Lemma

 $P \subset \mathbb{R}^2$ finite. Then



(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow$

Characterization of Voronoi vertices and Voronoi edges ⇒

Lemma

 $P \subset \mathbb{R}^2$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow$

Characterization of Voronoi vertices and Voronoi edges ⇒

Lemma

 $P \subset \mathbb{R}^2$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p, q, r)) \cap P = \emptyset$

Characterization of Voronoi vertices and Voronoi edges ⇒

Lemma

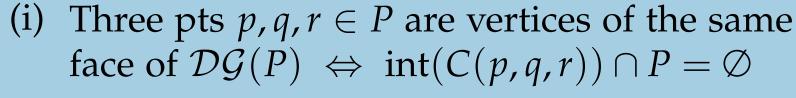
 $P \subset \mathbb{R}^2$ finite. Then

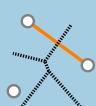
- (i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p, q, r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$ there is a disk D with

Characterization of Voronoi vertices and Voronoi edges ⇒

Lemma

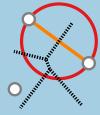






(ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$ there is a disk D with

Characterization of Voronoi vertices and Voronoi edges \Rightarrow



- (i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p,q,r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$ there is a disk D with

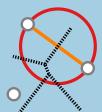
Characterization of Voronoi vertices and Voronoi edges ⇒

- (i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p,q,r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$ there is a disk D with

 - \blacksquare int(D) \cap P = \emptyset .

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma.



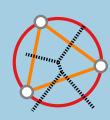
- (i) Three pts $p, q, r \in P$ are vertices of the same face of $\mathcal{DG}(P) \Leftrightarrow \operatorname{int}(C(p,q,r)) \cap P = \emptyset$
- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$ there is a disk D with

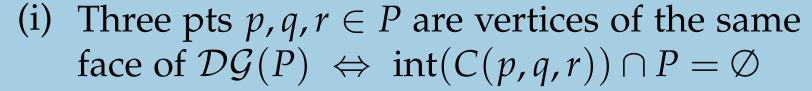
 - \blacksquare int(D) \cap P = \emptyset .

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} :

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma





- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$ there is a disk D with

 - $\blacksquare int(D) \cap P = \emptyset.$

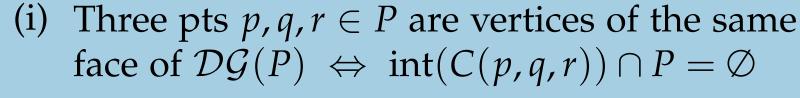
Lemma

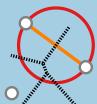
 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} :

Characterization

Characterization of Voronoi vertices and Voronoi edges ⇒

Lemma





- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$ there is a disk D with

 - $\blacksquare int(D) \cap P = \emptyset.$

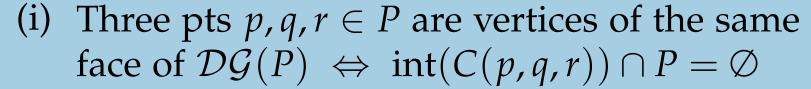
Lemma.

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} : int $(C(\Delta)) \cap P = \emptyset$.

Characterization

Characterization of Voronoi vertices and Voronoi edges ⇒

Lemma.



- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$ there is a disk D with

 - $\blacksquare int(D) \cap P = \emptyset.$

Lemma.

$$C(\Delta)$$

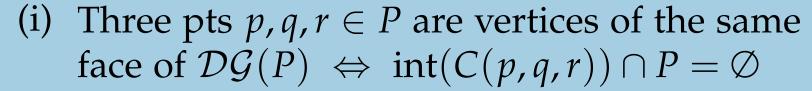
 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} : int $(C(\Delta)) \cap P = \emptyset$.

Characterization

Characterization of Voronoi vertices and Voronoi edges \Rightarrow

Lemma.

 $P \subset \mathbb{R}^2$ finite. Then



- (ii) Two pts $p, q \in P$ form an edge of $\mathcal{DG}(P) \Leftrightarrow$ there is a disk D with

 - \blacksquare int $(D) \cap P = \emptyset$.

Lemma.

 $C(\Delta)$

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} Delaunay \Leftrightarrow for each triangle Δ of \mathcal{T} : int $(C(\Delta)) \cap P = \emptyset$.

("empty-circumcircle property")

Computational Geometry

Lecture 8:
Delaunay Triangulations
or
Height Interpolation

Part V: Correctness & Computation

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal \Leftrightarrow

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. "←"

```
Theorem. P \subset \mathbb{R}^2 finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal \Leftrightarrow \mathcal{T} Delaunay.
```

Proof. "⇐" implied by empty-circumcircle prop. & Thales++

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow "

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction:

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is local triang, of P, but not Dolamay.

Assume \mathcal{T} is legal triang. of P, but not Delaunay.

 $\Rightarrow \exists \Delta pqr \text{ such that int}(C(\Delta pqr)) \text{ contains } s \in P.$

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay.

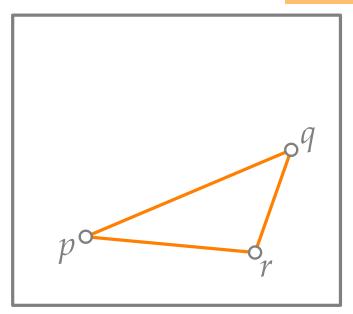
 $\Rightarrow \exists \Delta pqr \text{ such that int}(C(\Delta pqr)) \text{ contains } s \in P.$

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay.

 $\Rightarrow \exists \Delta pqr$ such that int $(C(\Delta pqr))$ contains $s \in P$.

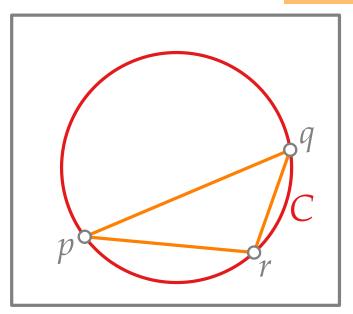


Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay.

 $\Rightarrow \exists \Delta pqr \text{ such that int}(C(\Delta pqr)) \text{ contains } s \in P.$

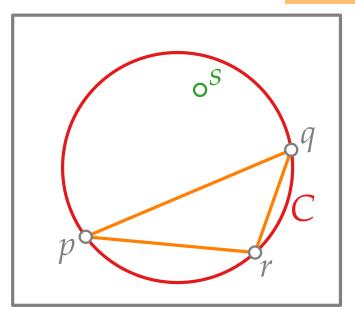


Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay.

 $\Rightarrow \exists \Delta pqr \text{ such that int}(C(\Delta pqr)) \text{ contains } s \in P.$

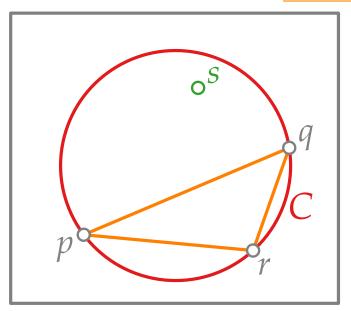


Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay.

 $\Rightarrow \exists \Delta pqr \text{ such that int}(C(\Delta pqr)) \text{ contains } s \in P.$



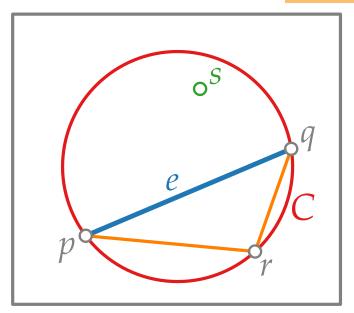
Wlog. let e = pq be the edge of Δpqr such that s "sees" pq before the other edges of Δpqr .

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay.

 $\Rightarrow \exists \Delta pqr \text{ such that int}(C(\Delta pqr)) \text{ contains } s \in P.$



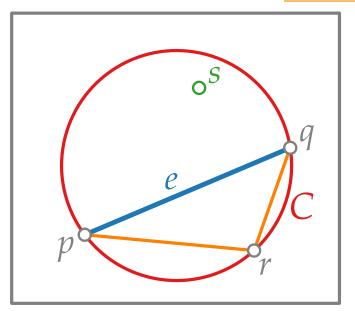
Wlog. let e = pq be the edge of Δpqr such that s "sees" pq before the other edges of Δpqr .

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay.

 $\Rightarrow \exists \Delta pqr \text{ such that int}(C(\Delta pqr)) \text{ contains } s \in P.$



Wlog. let e = pq be the edge of Δpqr such that s "sees" pq before the other edges of Δpqr .

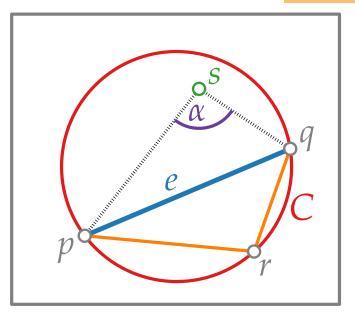
Among all such pairs $(\Delta pqr, s)$ in \mathcal{T} choose one that maximizes $\alpha = \angle psq$.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Proof. " \Leftarrow " implied by empty-circumcircle prop. & Thales++ " \Rightarrow " by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay.

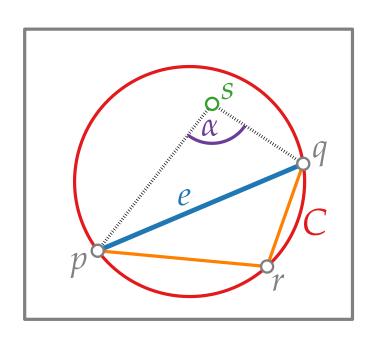
 $\Rightarrow \exists \Delta pqr \text{ such that int}(C(\Delta pqr)) \text{ contains } s \in P.$



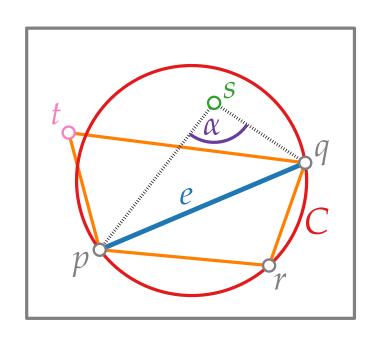
Wlog. let e = pq be the edge of Δpqr such that s "sees" pq before the other edges of Δpqr .

Among all such pairs $(\Delta pqr, s)$ in \mathcal{T} choose one that maximizes $\alpha = \angle psq$.

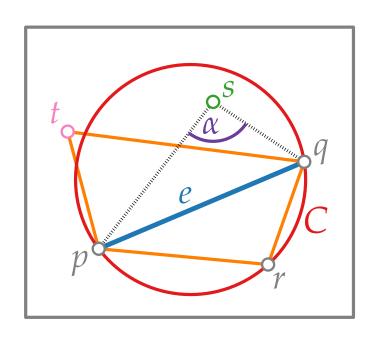
Consider the triangle Δpqt adjacent to e in \mathcal{T} .



Consider the triangle Δpqt adjacent to e in \mathcal{T} .

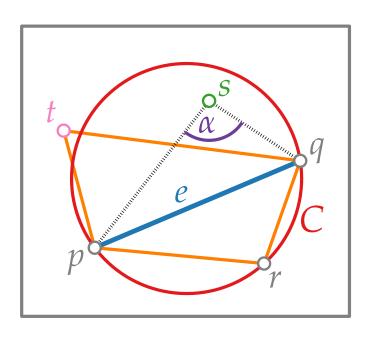


Consider the triangle Δpqt adjacent to e in \mathcal{T} . \mathcal{T} legal \Rightarrow



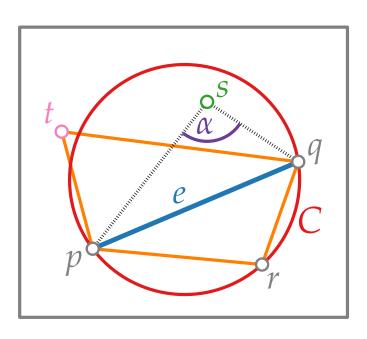
Consider the triangle Δpqt adjacent to e in \mathcal{T} .

$$\mathcal{T} \text{ legal} \Rightarrow e \text{ legal} \Rightarrow$$



Consider the triangle Δpqt adjacent to e in \mathcal{T} .

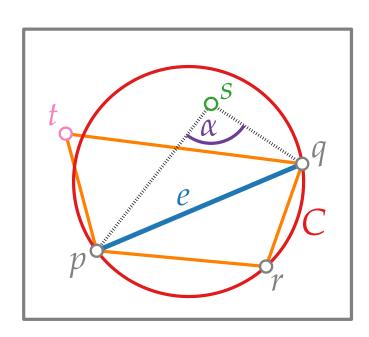
$$\mathcal{T} \text{ legal} \Rightarrow e \text{ legal} \Rightarrow t \notin \text{int}(C(\Delta pqr))$$



Consider the triangle Δpqt adjacent to e in \mathcal{T} .

 $\mathcal{T} \text{ legal} \Rightarrow e \text{ legal} \Rightarrow t \notin \text{int}(C(\Delta pqr))$

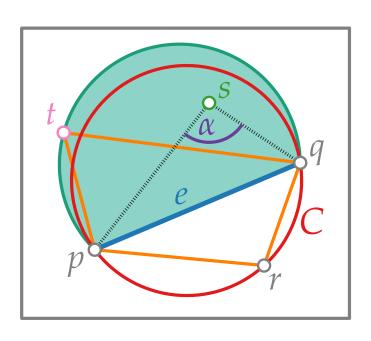
 $\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.



Consider the triangle Δpqt adjacent to e in \mathcal{T} .

$$\mathcal{T} \text{ legal} \Rightarrow e \text{ legal} \Rightarrow t \notin \text{int}(C(\Delta pqr))$$

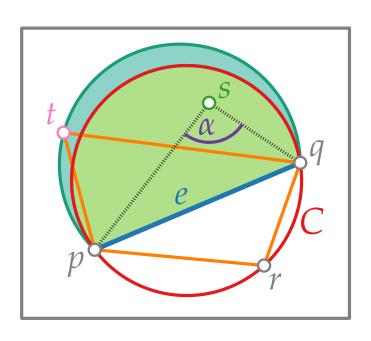
$$\Rightarrow$$
 $C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.



Consider the triangle Δpqt adjacent to e in \mathcal{T} .

$$\mathcal{T} \text{ legal} \Rightarrow e \text{ legal} \Rightarrow t \notin \text{int}(C(\Delta pqr))$$

$$\Rightarrow$$
 $C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\begin{cases} \text{halfplane} \\ \text{supported by } e \\ \text{that contains } s \end{cases}$



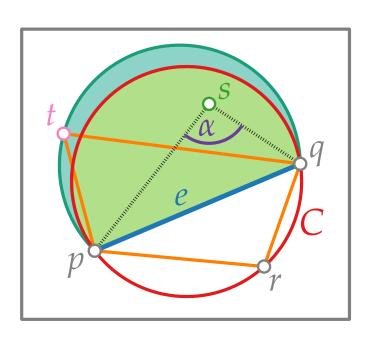
that contains s

Proof of Main Result (cont'd)

Consider the triangle Δpqt adjacent to e in \mathcal{T} .

```
\mathcal{T} \text{ legal} \Rightarrow e \text{ legal} \Rightarrow t \notin \text{int}(C(\Delta pqr))
                                                                                  halfplane
\Rightarrow C(\Delta pqt) contains C(\Delta pqr) \cap e^+.
                                                                                  supported by e
```

 $\Rightarrow s \in C(\Delta pqt)$

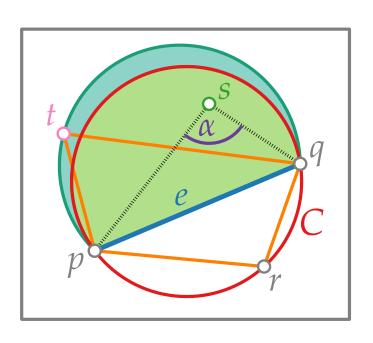


Consider the triangle Δpqt adjacent to e in \mathcal{T} .

$$\mathcal{T} \text{ legal} \Rightarrow e \text{ legal} \Rightarrow t \notin \text{int}(C(\Delta pqr))$$

$$\Rightarrow$$
 $C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\begin{cases} \text{halfplane} \\ \text{supported by } e \\ \text{that contains } s \end{cases}$

$$\Rightarrow s \in C(\Delta pqt)$$

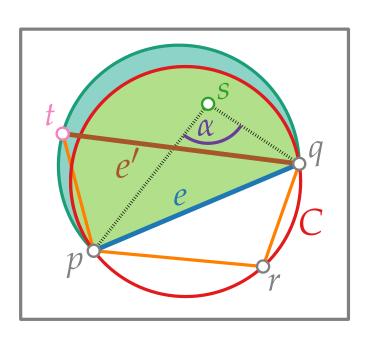


Consider the triangle Δpqt adjacent to e in \mathcal{T} .

$$\mathcal{T} \text{ legal} \Rightarrow \underline{e} \text{ legal} \Rightarrow \underline{t} \notin \text{int}(\underline{C(\Delta pqr)})$$

$$\Rightarrow$$
 $C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\begin{cases} \text{halfplane} \\ \text{supported by } e \\ \text{that contains } s \end{cases}$

$$\Rightarrow s \in C(\Delta pqt)$$



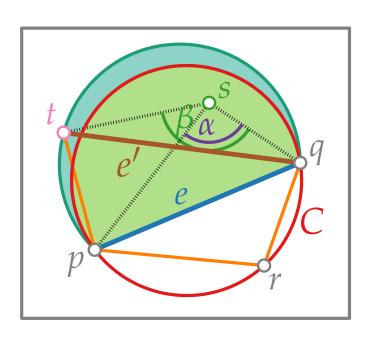
Consider the triangle Δpqt adjacent to e in \mathcal{T} .

$$\mathcal{T} \text{ legal} \Rightarrow \underline{e} \text{ legal} \Rightarrow \underline{t} \notin \text{int}(\underline{C(\Delta pqr)})$$

$$\Rightarrow$$
 $C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\begin{cases} \text{halfplane} \\ \text{supported by } e \\ \text{that contains } s \end{cases}$

$$\Rightarrow s \in C(\Delta pqt)$$

$$\Rightarrow \beta = \angle tsq > \alpha = \angle psq$$



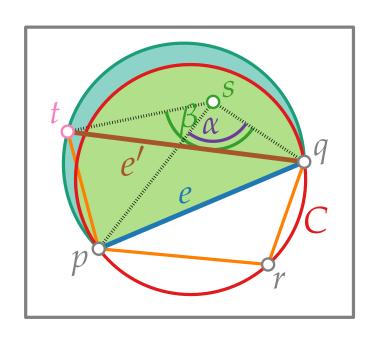
Consider the triangle Δpqt adjacent to e in \mathcal{T} .

$$\mathcal{T} \text{ legal} \Rightarrow \underline{e} \text{ legal} \Rightarrow \underline{t} \notin \text{int}(\underline{C(\Delta pqr)})$$

$$\Rightarrow$$
 $C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\begin{cases} \text{halfplane} \\ \text{supported by } e \\ \text{that contains } s \end{cases}$

$$\Rightarrow s \in C(\Delta pqt)$$

$$\Rightarrow \beta = \angle tsq > \alpha = \angle psq$$



Consider the triangle Δpqt adjacent to e in \mathcal{T} .

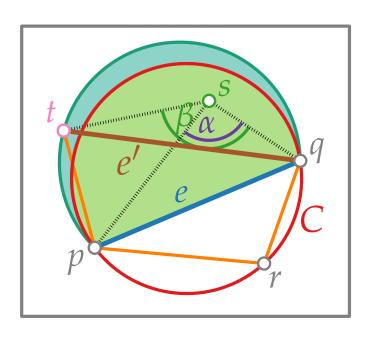
$$\mathcal{T} \text{ legal} \Rightarrow \underline{e} \text{ legal} \Rightarrow \underline{t} \notin \text{int}(\underline{C(\Delta pqr)})$$

$$\Rightarrow$$
 $C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. $\begin{cases} \text{halfplane} \\ \text{supported by } e \\ \text{that contains } s \end{cases}$

$$\Rightarrow s \in C(\Delta pqt)$$

Wlog. let e' = qt be the edge of Δpqt that s sees.

$$\Rightarrow \beta = \angle tsq > \alpha = \angle psq$$



Contradiction to choice of the pair $(\Delta pqr, s)$.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

```
Theorem. P \subset \mathbb{R}^2 finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal \Leftrightarrow \mathcal{T} Delaunay.
```

Observation. Suppose *P* is in general position...

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose *P* is in general position. *empty circle!*

no 4 pts on an

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose *P* is in general position. *empty circle!*

no 4 pts on an

⇒ Delaunay triangulation unique

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose *P* is in general position. *empty circle!*

no 4 pts on an

 \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose *P* is in general position. *empty circle!*

no 4 pts on an

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- ⇒ legal triangulation unique

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose *P* is in general position. *empty circle!*

no 4 pts on an

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- ⇒ legal triangulation unique

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose *P* is in general position. *empty circle!*

no 4 pts on an

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- ⇒ legal triangulation unique

 $\downarrow \downarrow$ angle-optimal \Rightarrow legal

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose *P* is in general position. *empty circle!*

no 4 pts on an

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- ⇒ legal triangulation unique

 $\downarrow \downarrow$ angle-optimal \Rightarrow legal [by def.]

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose *P* is in general position. *empty circle!*

no 4 pts on an

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- ⇒ legal triangulation unique

 $\downarrow \downarrow$ angle-optimal \Rightarrow legal [by def.]

Delaunay triangulation is angle-optimal!

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose *P* is in general position. *empty circle!*

no 4 pts on an empty circle!

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- ⇒ legal triangulation unique

 $\downarrow \downarrow$ angle-optimal \Rightarrow legal [by def.]

Delaunay triangulation is angle-optimal!

Suppose *P* is *not* in general position...

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose *P* is in general position. *empty circle!*

no 4 pts on an

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- ⇒ legal triangulation unique

 $\downarrow \downarrow$ angle-optimal \Rightarrow legal [by def.]

Delaunay triangulation is angle-optimal!

Suppose *P* is *not* in general position. . .

⇒ Delaunay graph has convex "holes" bounded by co-circular pts

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose *P* is in general position. *empty circle!*

no 4 pts on an

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- ⇒ legal triangulation unique

 $\downarrow \downarrow$ angle-optimal \Rightarrow legal [by def.]

Delaunay triangulation is angle-optimal!

Suppose *P* is *not* in general position. . .

⇒ Delaunay graph has convex "holes" bounded by co-circular pts

 $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Theorem. Then \mathcal{T} legal $\Leftrightarrow \mathcal{T}$ Delaunay.

Observation. Suppose *P* is in general position. *empty circle!*

no 4 pts on an

- \Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
- ⇒ legal triangulation unique

 $\downarrow \downarrow$ angle-optimal \Rightarrow legal [by def.]

Delaunay triangulation is angle-optimal!

Suppose *P* is *not* in general position. . .

⇒ Delaunay graph has convex "holes" bounded by co-circular pts

All Delaunay triang. have same min. angle.

Theorem. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in

 $O(n \log n)$ time.

Theorem. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of Vor(P), fill holes.]

Theorem.

A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of Vor(P), fill holes.]

Corollary.

An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time.

Theorem.

A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of Vor(P), fill holes.]

Corollary.

An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time. $[\mathcal{DG}!]$

A Delaunay triangulation of an arbitrary set of *n* pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of Vor(P), fill holes.]

Corollary.

An angle-optimal triangulation of a set of *n* pts in general position can be computed in $O(n \log n)$ time.

Corollary. Given an arbitrary set of *n* pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time.

A Delaunay triangulation of an arbitrary set of *n* pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of Vor(P), fill holes.]

Corollary.

An angle-optimal triangulation of a set of *n* pts in general position can be computed in $O(n \log n)$ time.

Corollary. Given an arbitrary set of *n* pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time. [Use Theorem.]

Theorem. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time. $[\mathcal{DG}!]$

Corollary. Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time. [Use Theorem.]

Corollary. An angle-optimal triangulation of an arbitrary set of n pts can be computed in $O(n^2)$ time.

Theorem. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time. $[\mathcal{DG}!]$

Corollary. Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time. [Use Theorem.]

Corollary. An angle-optimal triangulation of an arbitrary set of n pts can be computed in $O(n^2)$ time.

[How?]