Approximation Algorithms

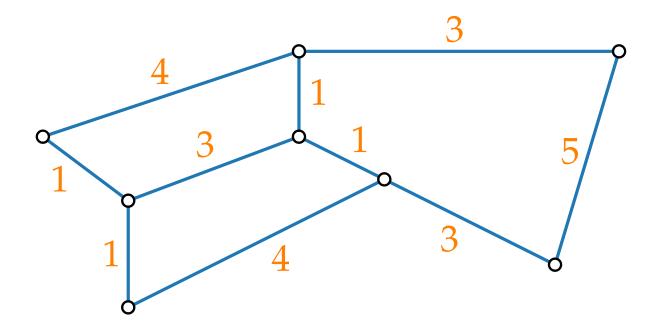
Lecture 12: SteinerForest via Primal-Dual

Part I: SteinerForest

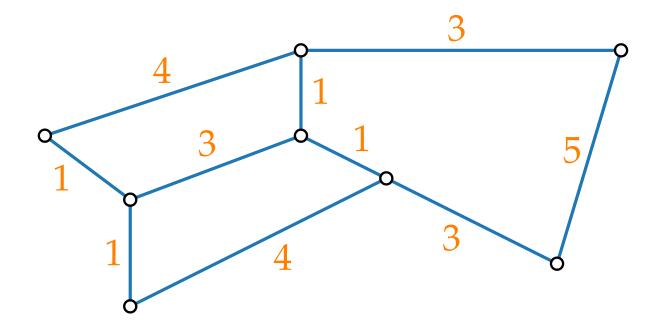
Philipp Kindermann

Summer Semester 2020

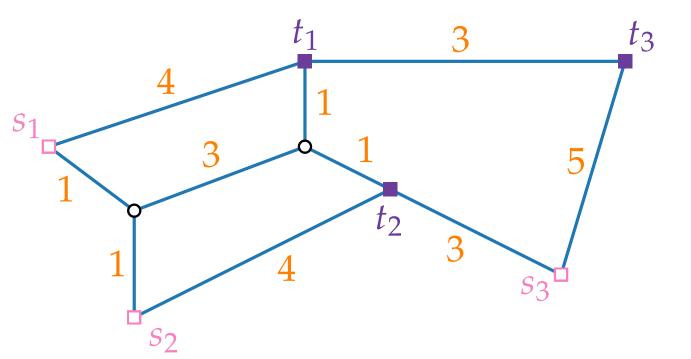
Given: A graph G = (V, E) with edge costs $c \colon E \to \mathbb{N}$



Given: A graph G = (V, E) with edge costs $c : E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of *k* pairs of vertices

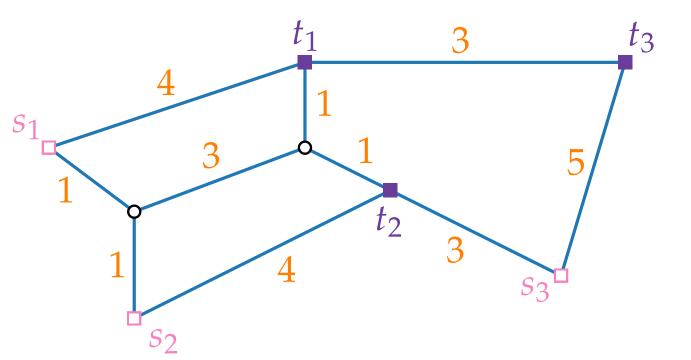


Given: A graph G = (V, E) with edge costs $c \colon E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of *k* pairs of vertices

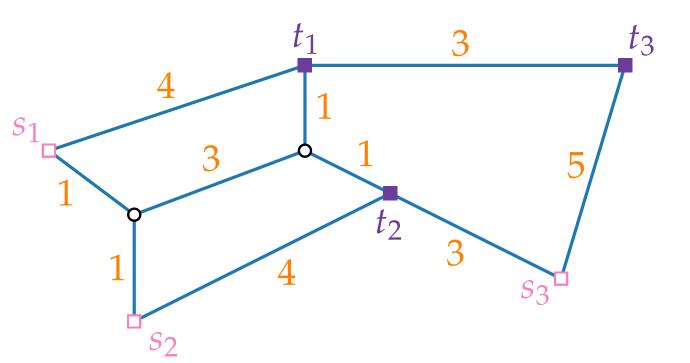


Given: A graph G = (V, E) with edge costs $c \colon E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of *k* pairs of vertices

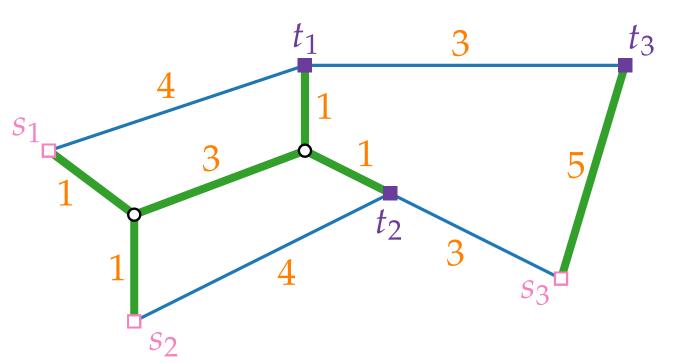
Task: Find an edge set $F \subseteq E$ with min. total cost c(F)



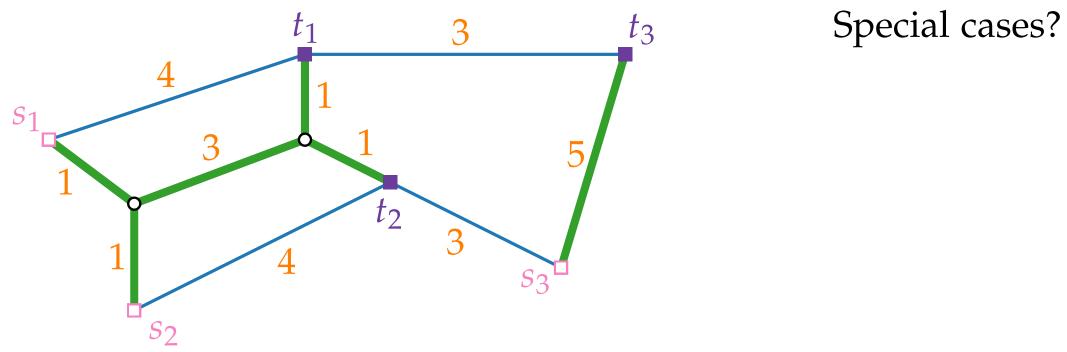
- **Given:** A graph G = (V, E) with edge costs $c \colon E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of *k* pairs of vertices
- **Task:** Find an edge set $F \subseteq E$ with min. total cost c(F) such that in the subgraph (V, F) each pair $(s_i, t_i), i = 1, ..., k$ is connected.



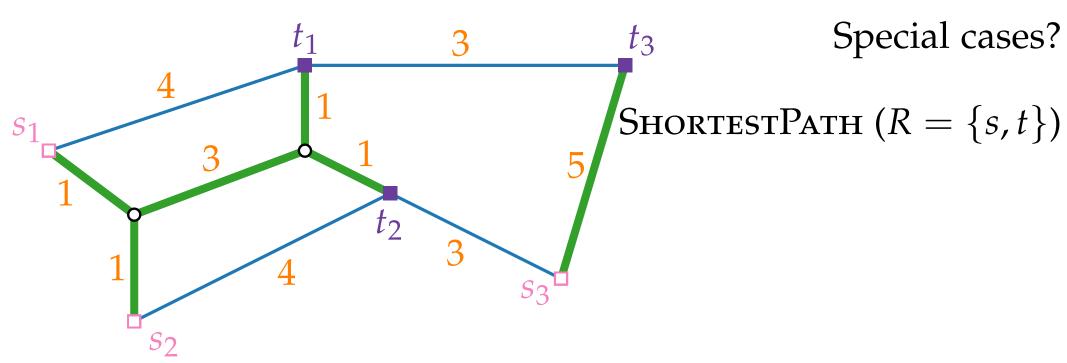
- **Given:** A graph G = (V, E) with edge costs $c \colon E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of *k* pairs of vertices
- **Task:** Find an edge set $F \subseteq E$ with min. total cost c(F) such that in the subgraph (V, F) each pair $(s_i, t_i), i = 1, ..., k$ is connected.



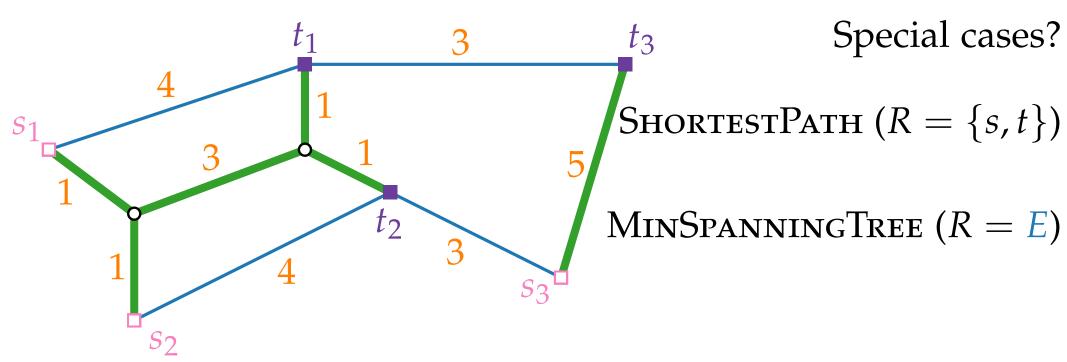
- **Given:** A graph G = (V, E) with edge costs $c : E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of *k* pairs of vertices
- **Task:** Find an edge set $F \subseteq E$ with min. total cost c(F) such that in the subgraph (V, F) each pair $(s_i, t_i), i = 1, ..., k$ is connected.



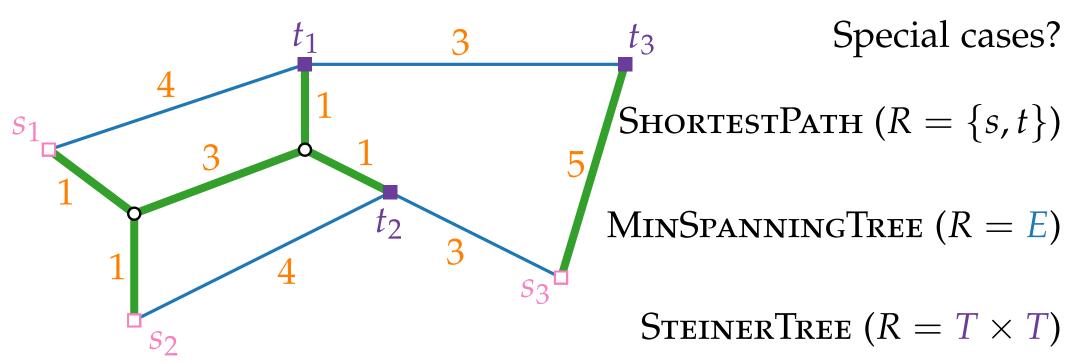
- **Given:** A graph G = (V, E) with edge costs $c : E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of *k* pairs of vertices
- **Task:** Find an edge set $F \subseteq E$ with min. total cost c(F) such that in the subgraph (V, F) each pair $(s_i, t_i), i = 1, ..., k$ is connected.



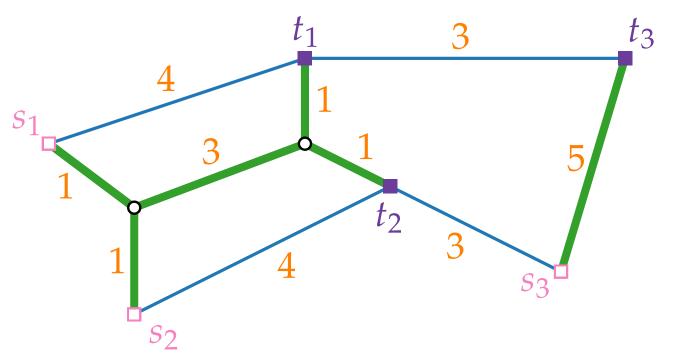
- **Given:** A graph G = (V, E) with edge costs $c : E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of *k* pairs of vertices
- **Task:** Find an edge set $F \subseteq E$ with min. total cost c(F) such that in the subgraph (V, F) each pair $(s_i, t_i), i = 1, ..., k$ is connected.



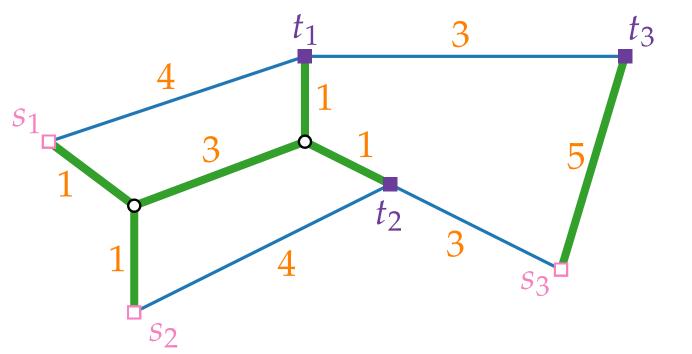
- **Given:** A graph G = (V, E) with edge costs $c : E \to \mathbb{N}$ and a set $R = \{(s_1, t_1), \dots, (s_k, t_k)\}$ of *k* pairs of vertices
- **Task:** Find an edge set $F \subseteq E$ with min. total cost c(F) such that in the subgraph (V, F) each pair $(s_i, t_i), i = 1, ..., k$ is connected.



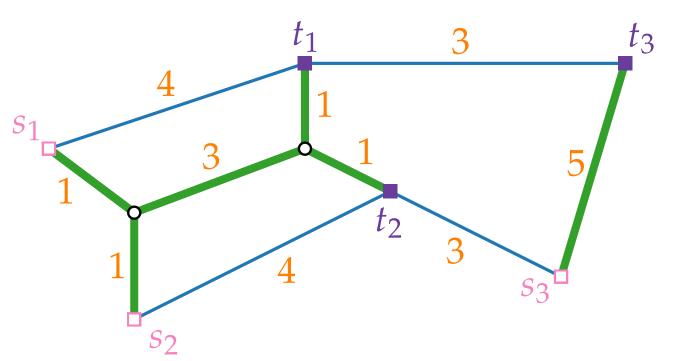
• Merge k shortest s_i - t_i -paths



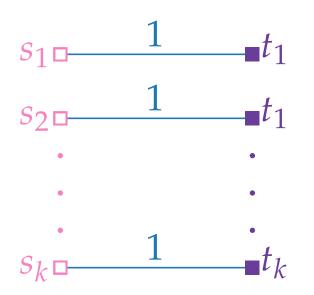
- Merge *k* shortest s_i - t_i -paths
- STEINERTREE on the set of terminals



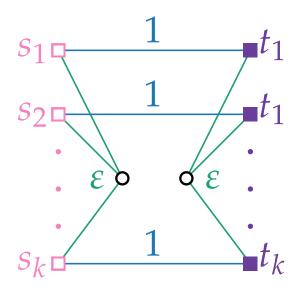
- Merge *k* shortest s_i - t_i -paths
- STEINERTREE on the set of terminals
- Above approaches perform poorly :-(



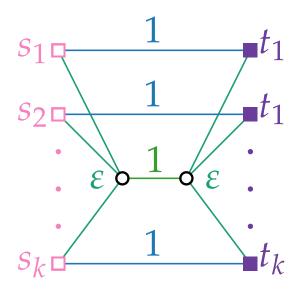
- Merge k shortest s_i - t_i -paths
- STEINERTREE on the set of terminals
- Above approaches perform poorly :-(



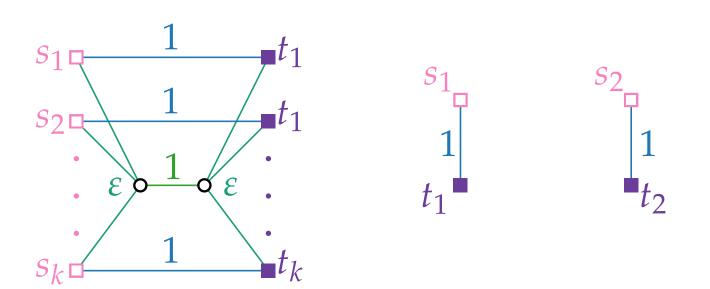
- Merge k shortest s_i - t_i -paths
- STEINERTREE on the set of terminals
- Above approaches perform poorly :-(



- Merge k shortest s_i - t_i -paths
- STEINERTREE on the set of terminals
- Above approaches perform poorly :-(



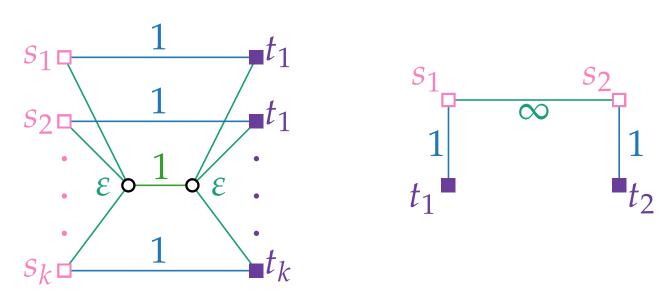
- Merge k shortest s_i - t_i -paths
- STEINERTREE on the set of terminals
- Above approaches perform poorly :-(



- Merge *k* shortest s_i - t_i -paths
- STEINERTREE on the set of terminals
- Above approaches perform poorly :-(



- Merge k shortest s_i - t_i -paths
- STEINERTREE on the set of terminals
- Above approaches perform poorly :-(
- **Difficulty:** which terminals belong to the same tree of the forest?



Approximation Algorithms

Lecture 12: SteinerForest via Primal-Dual

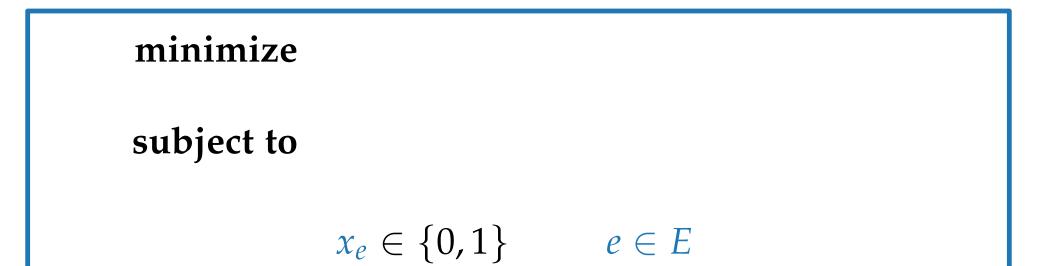
Part II: Primal and Dual LP

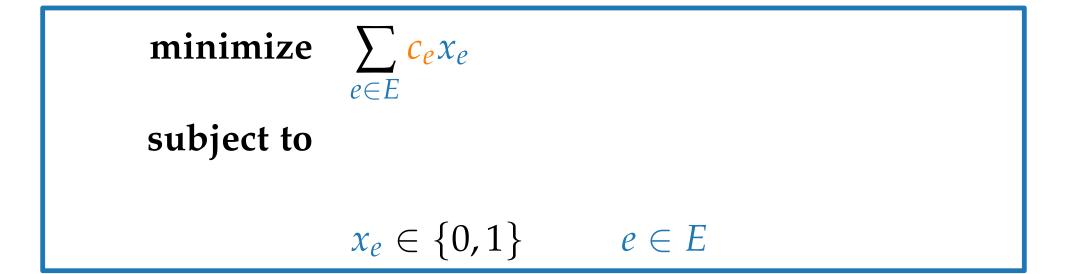
Philipp Kindermann

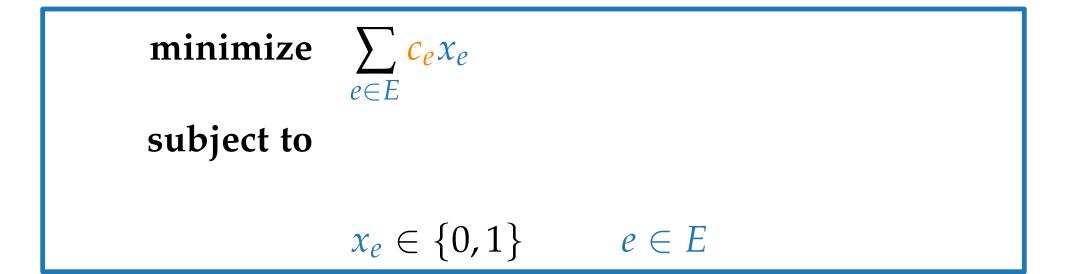
Summer Semester 2020

minimize

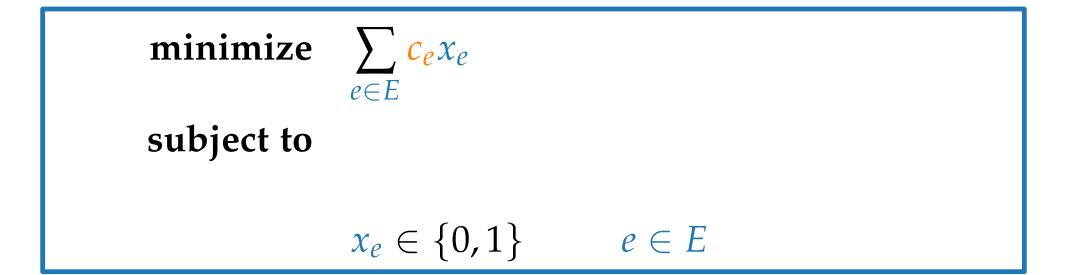
subject to

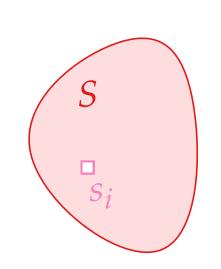




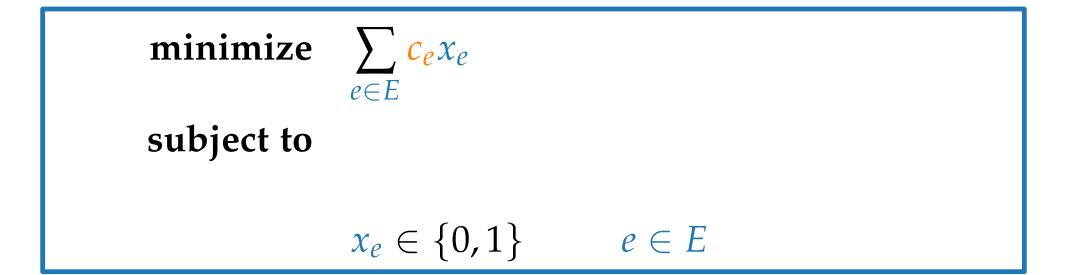


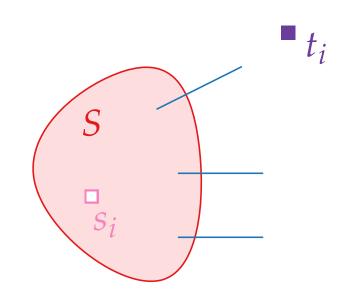
 t_i

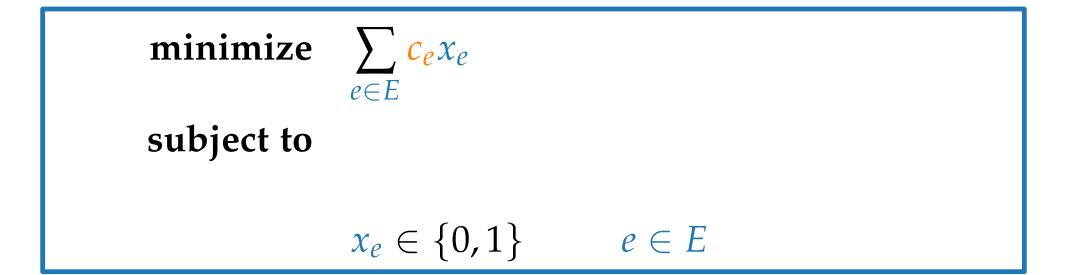


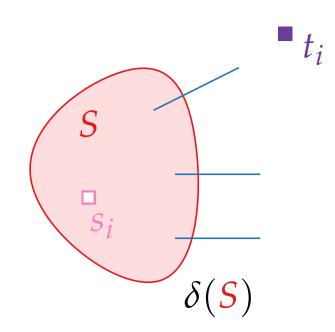


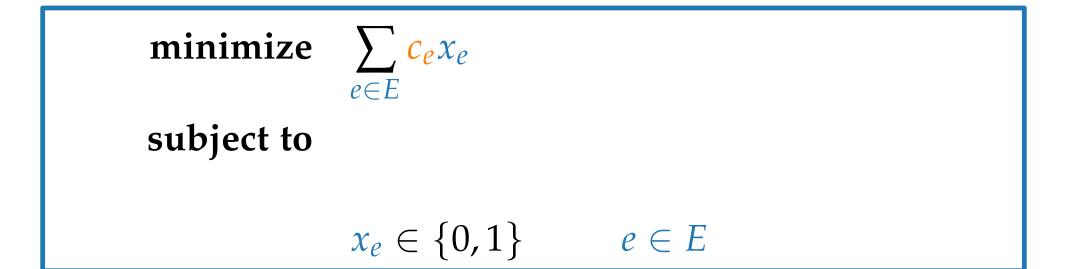
 t_i

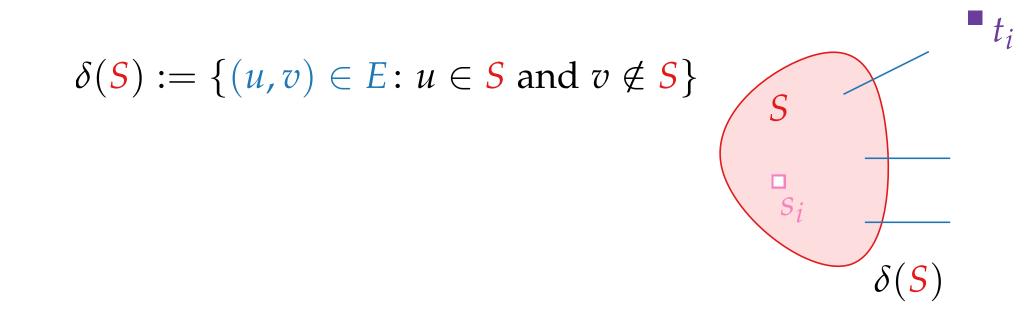


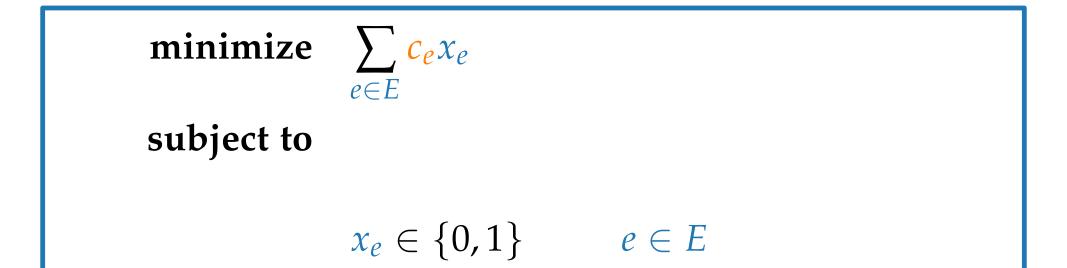


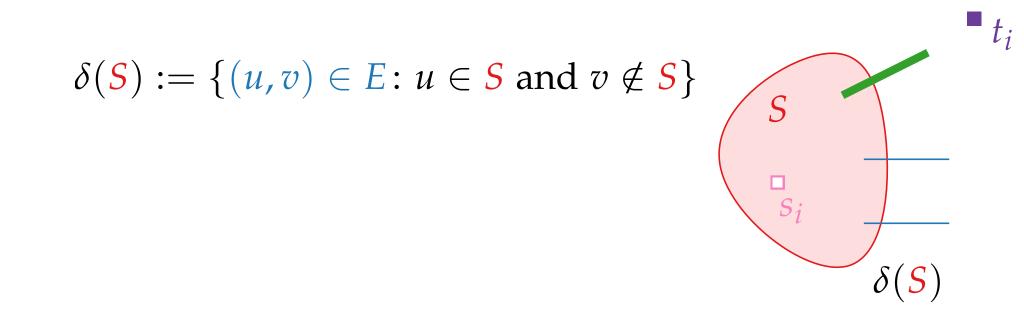


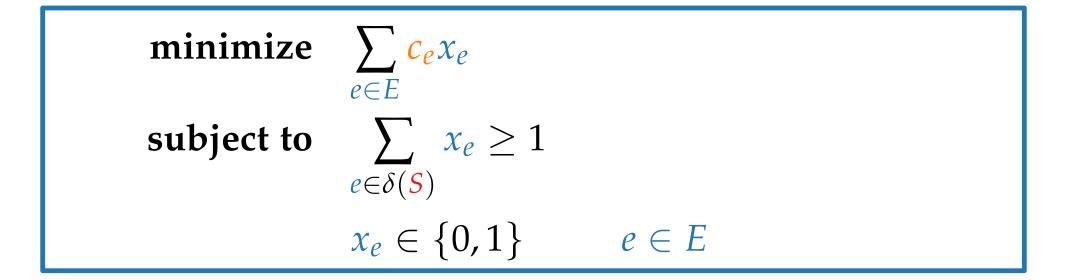


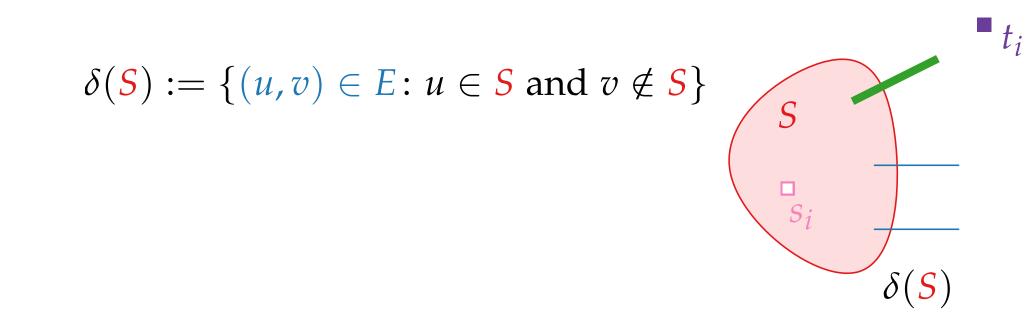


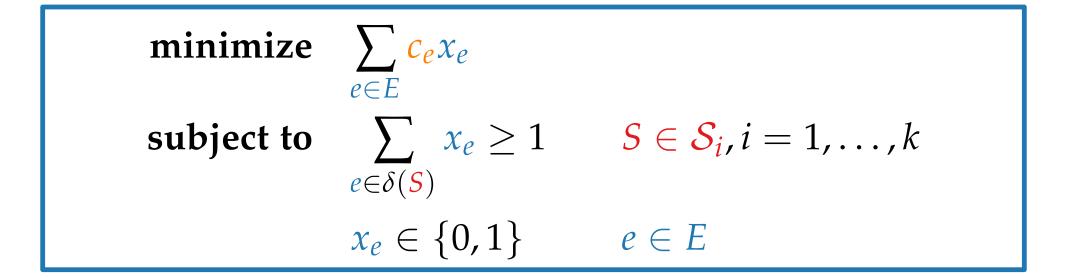


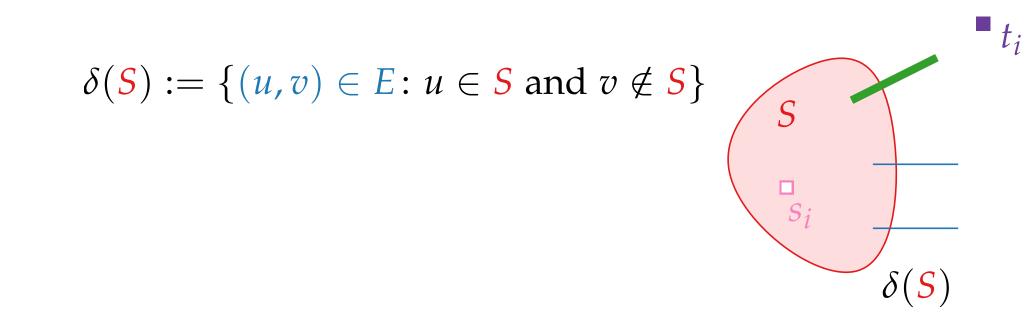


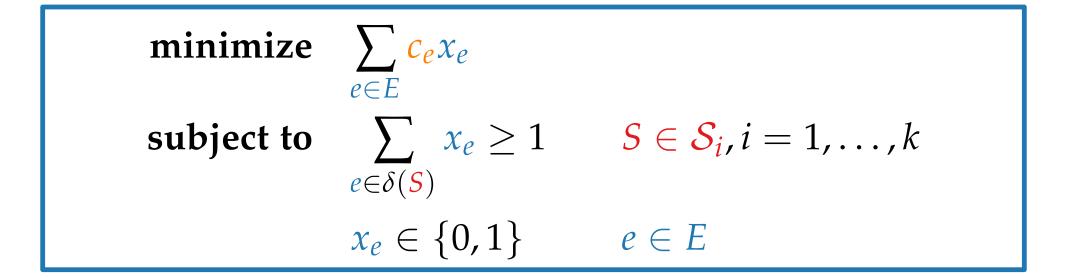






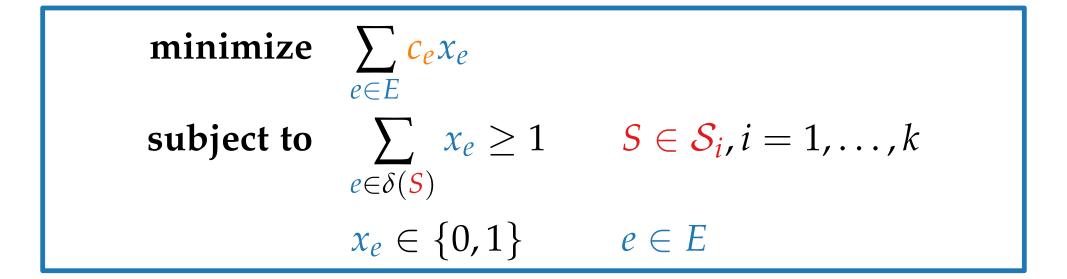




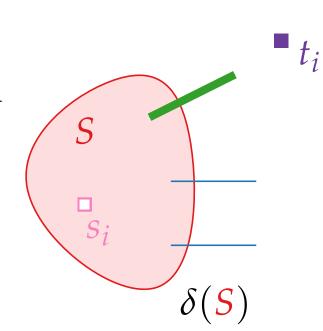


where
$$S_i := \{S \subseteq V : |S \cap \{s_i, t_i\}| = 1\}$$

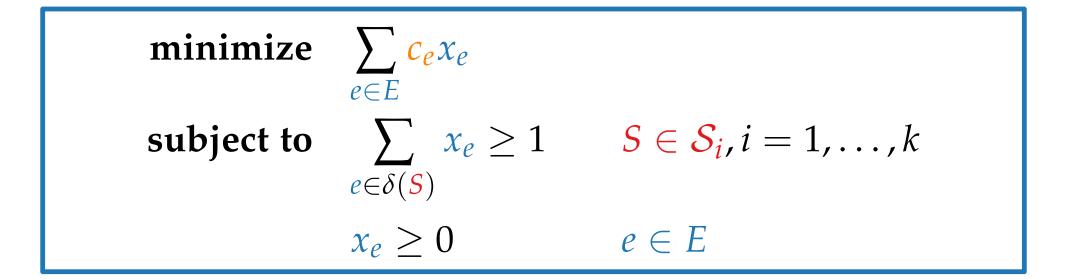
and $\delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}$



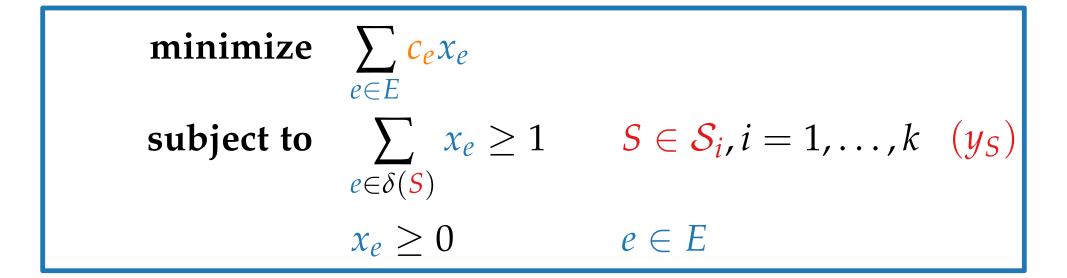
where $S_i := \{S \subseteq V : |S \cap \{s_i, t_i\}| = 1\}$ and $\delta(S) := \{(u, v) \in E : u \in S \text{ and } v \notin S\}$ \rightsquigarrow exponentially many constraints!



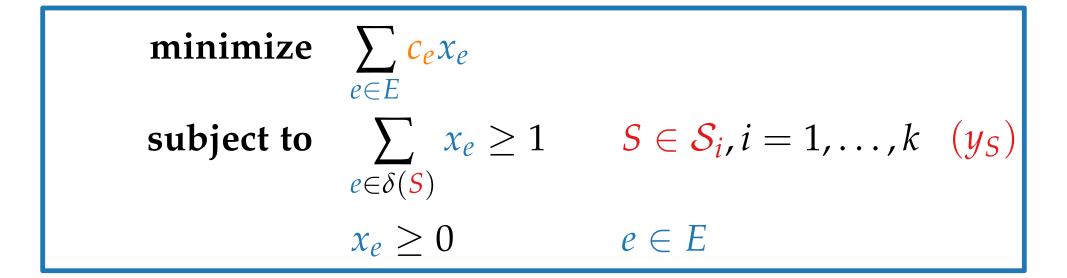
LP-Relaxation and Dual LP

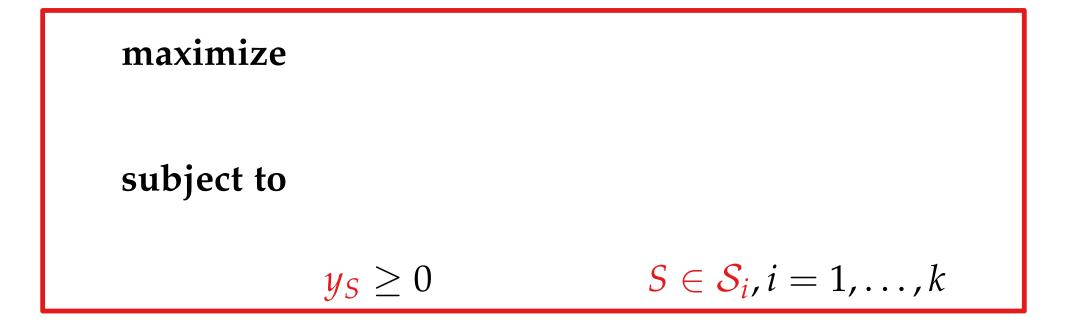


LP-Relaxation and Dual LP

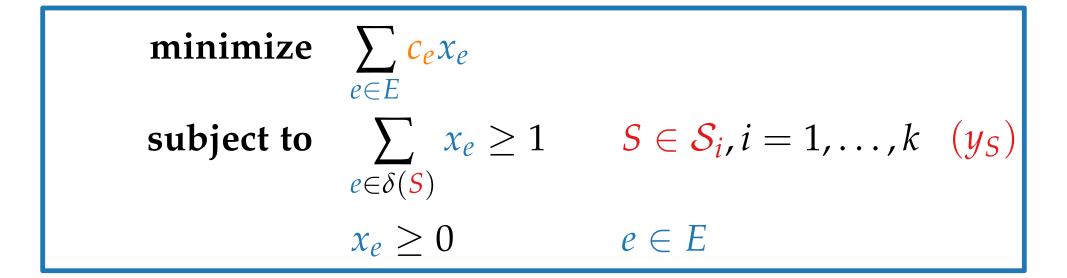


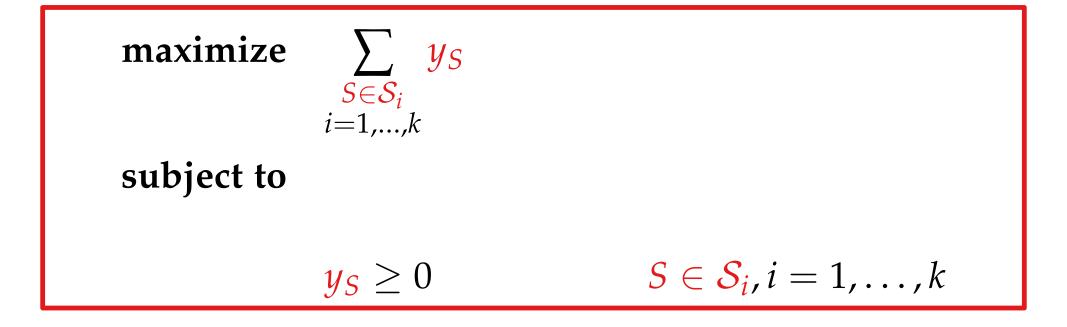
LP-Relaxation and Dual LP



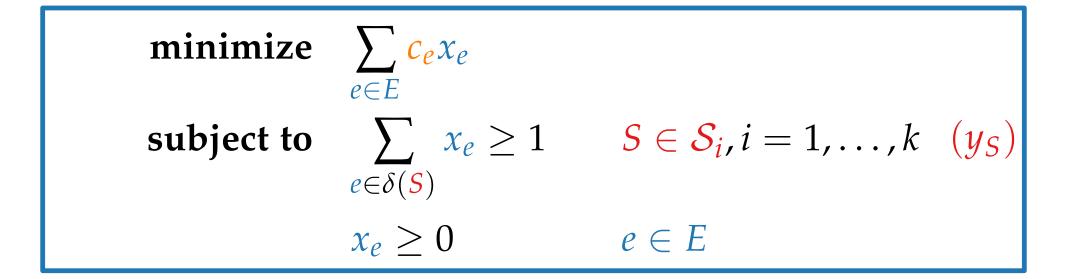


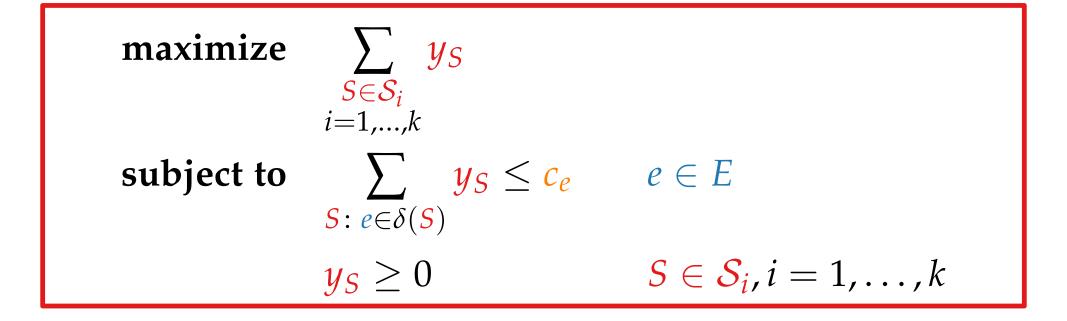
LP-Relaxation and Dual LP

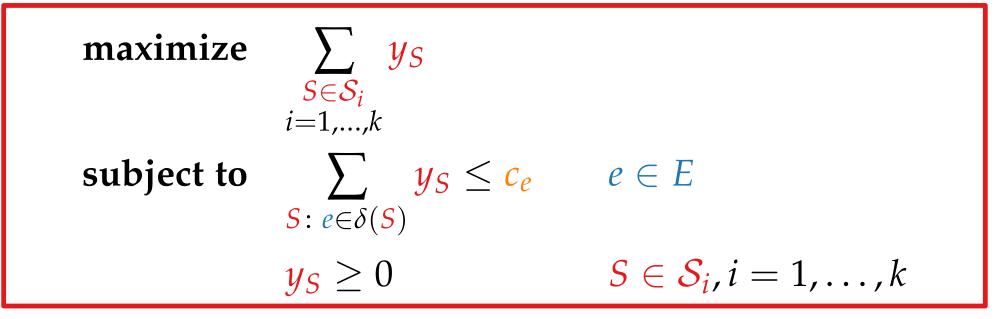


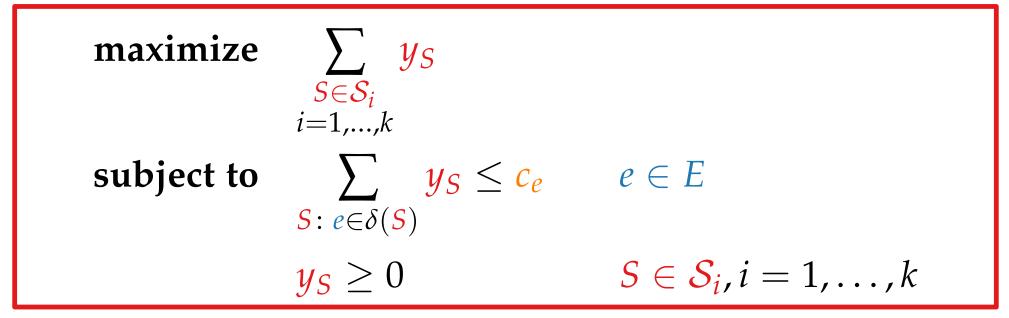


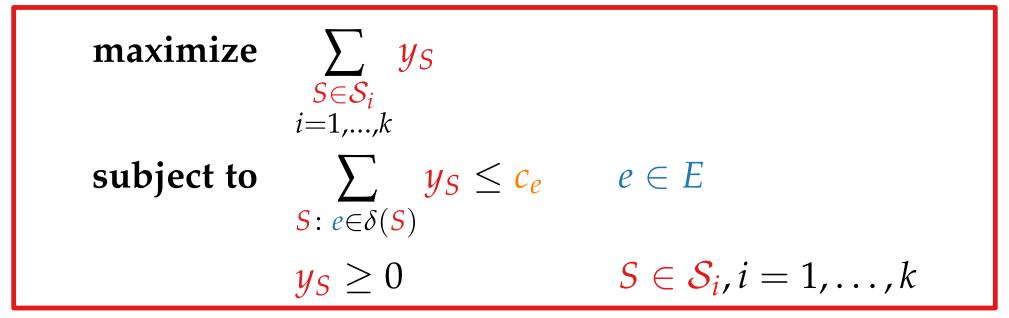
LP-Relaxation and Dual LP

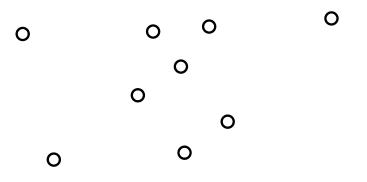


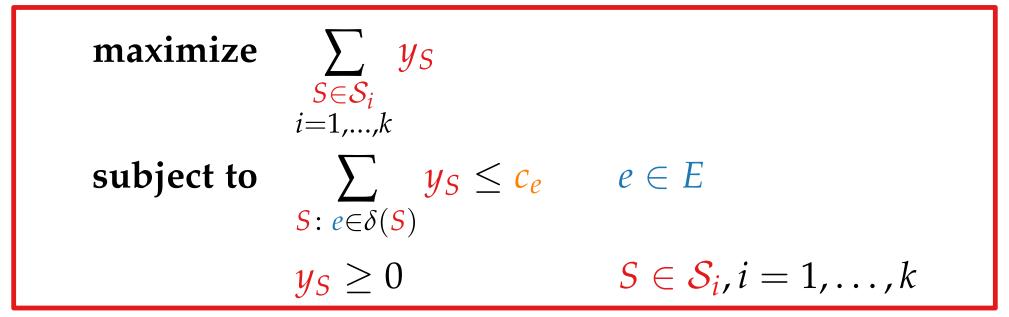


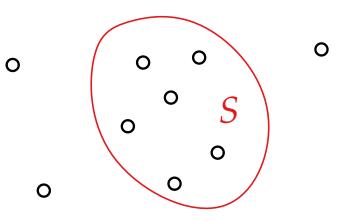


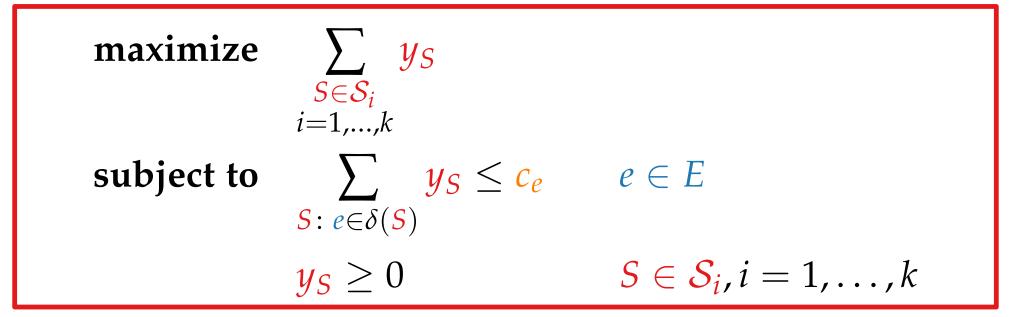


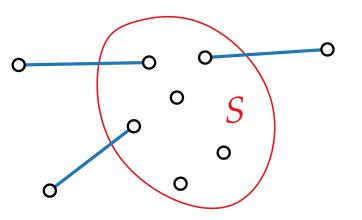


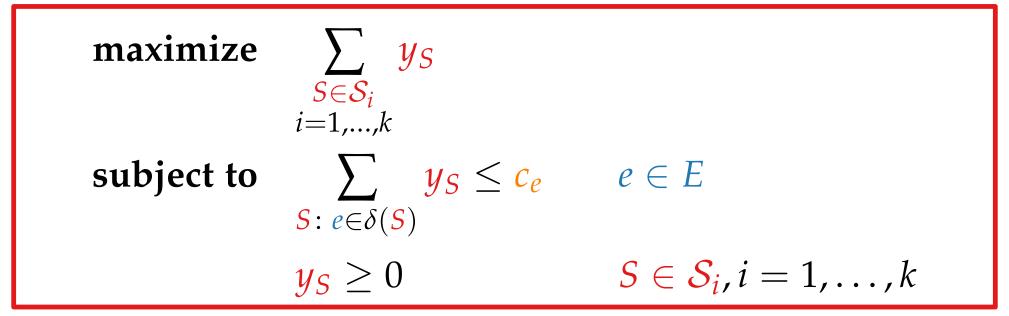


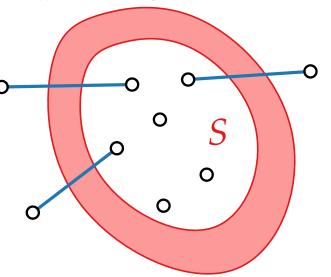


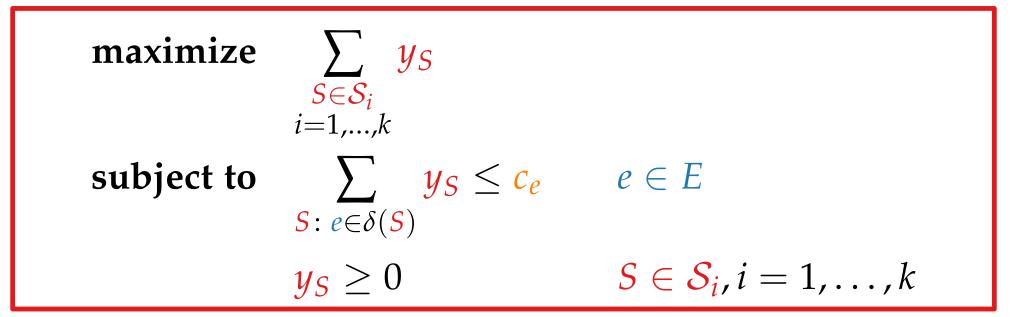


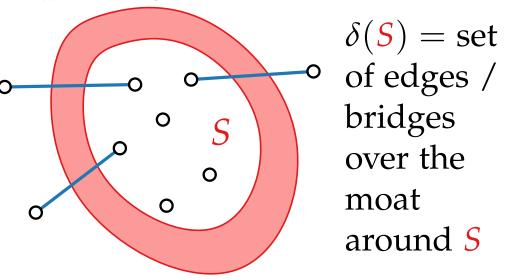


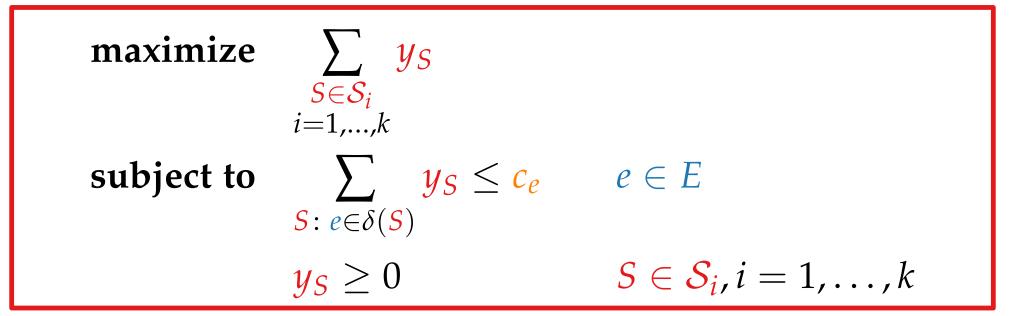




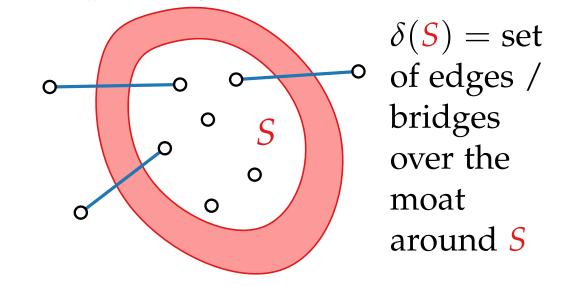


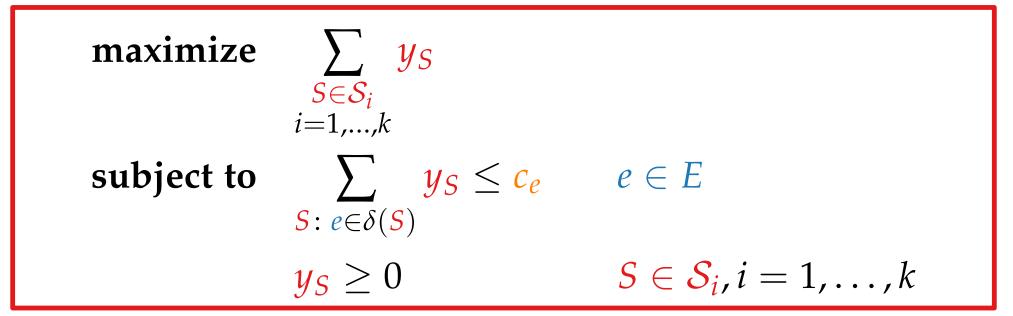




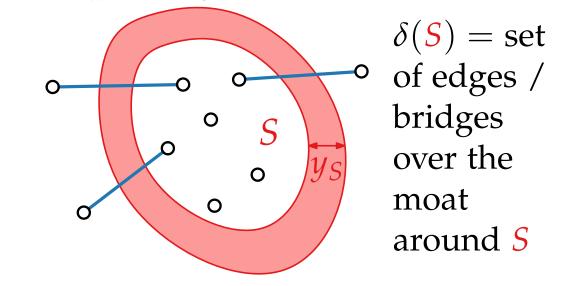


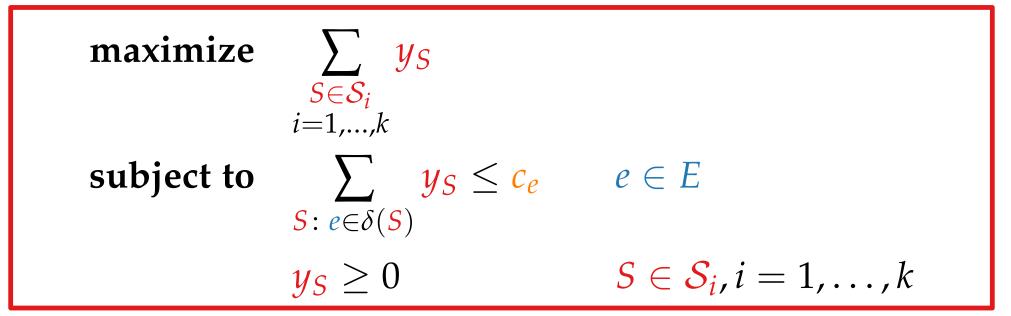
The graph is a network of **bridges**, spanning the **moats**.



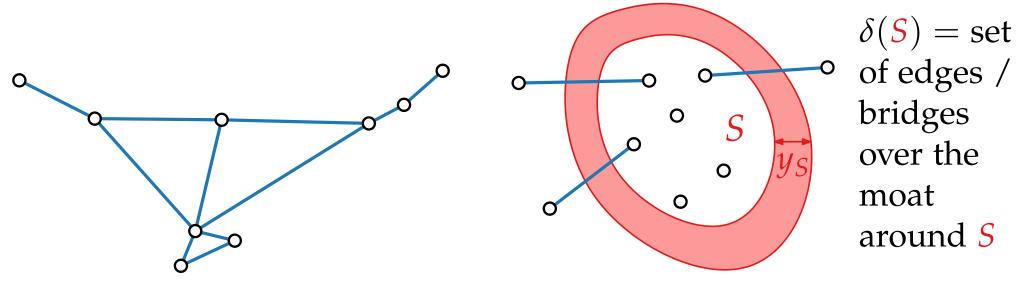


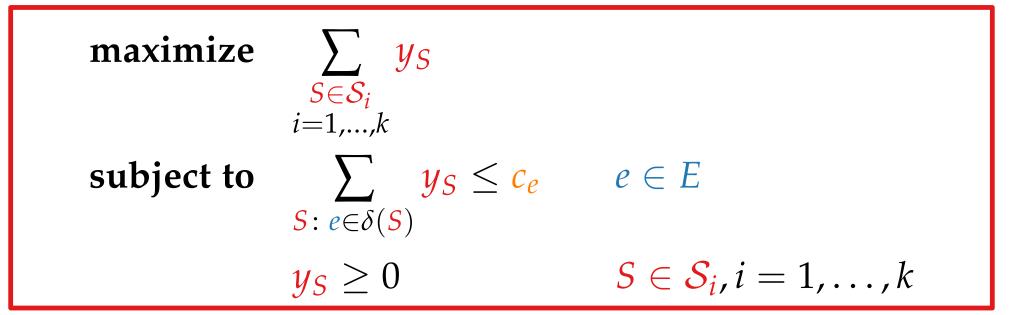
The graph is a network of **bridges**, spanning the **moats**.



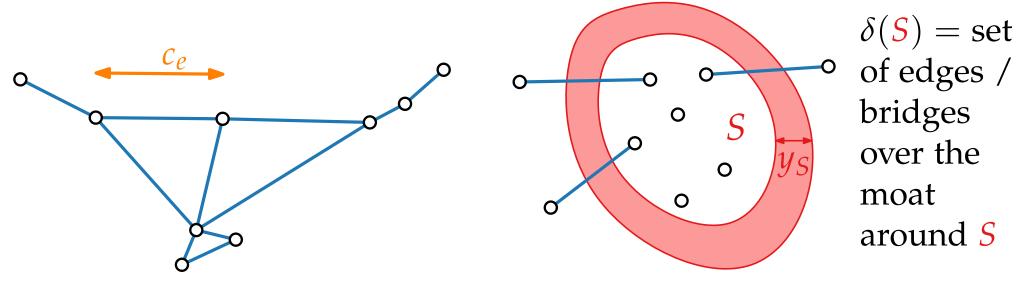


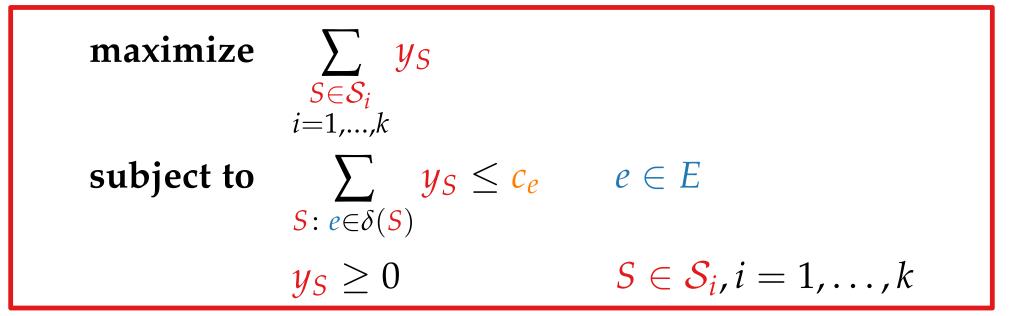
The graph is a network of **bridges**, spanning the **moats**.



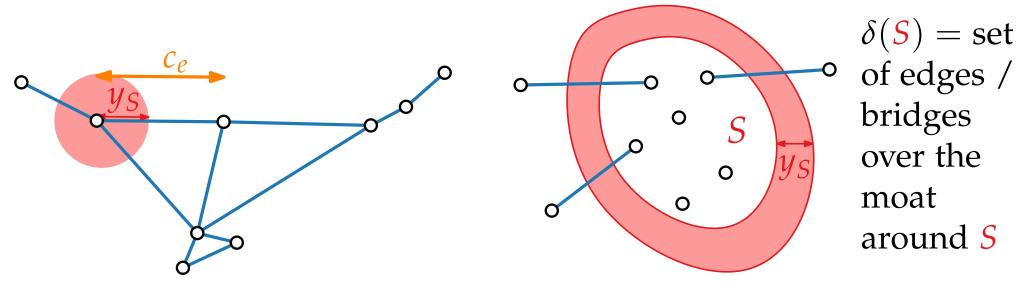


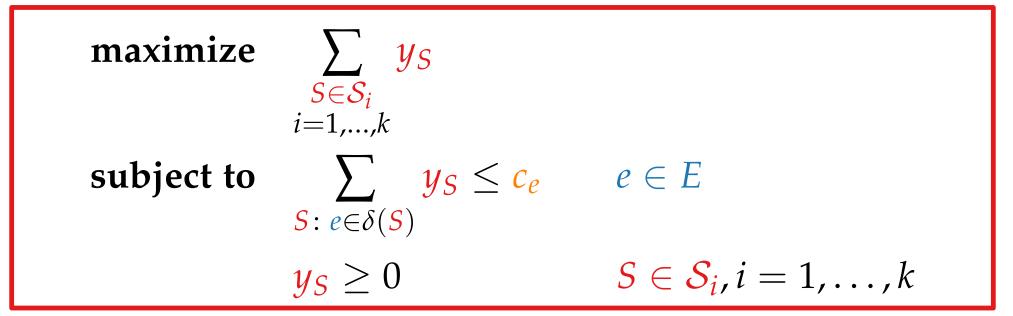
The graph is a network of **bridges**, spanning the **moats**.



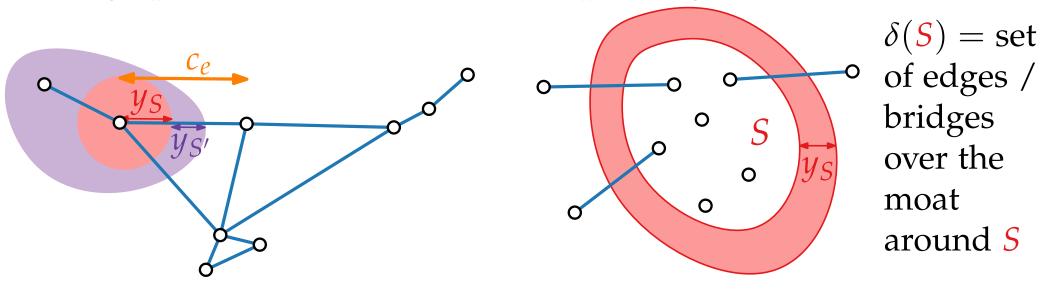


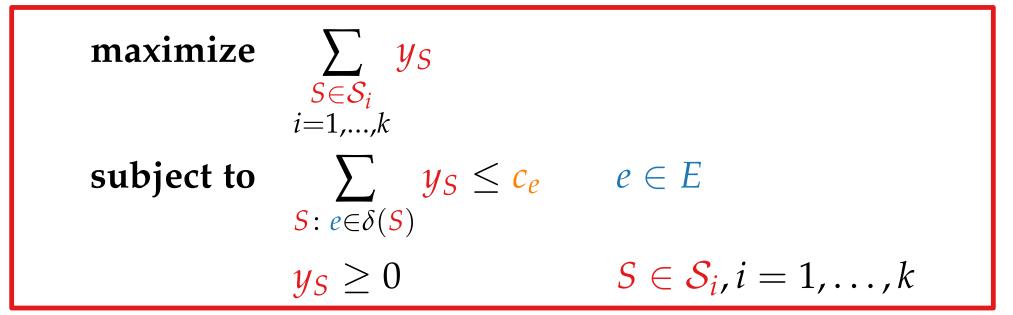
The graph is a network of **bridges**, spanning the **moats**.



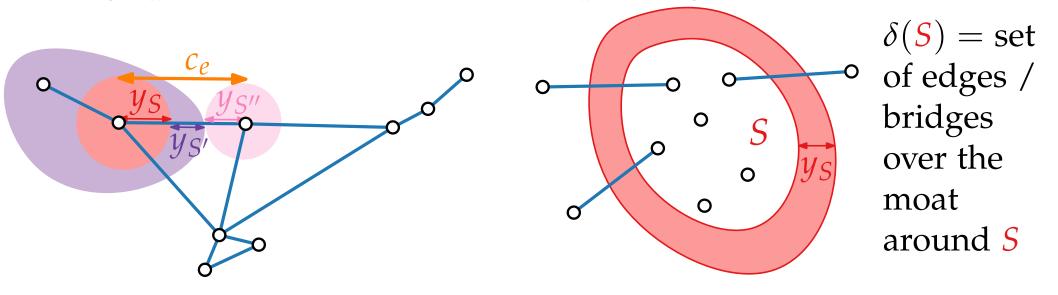


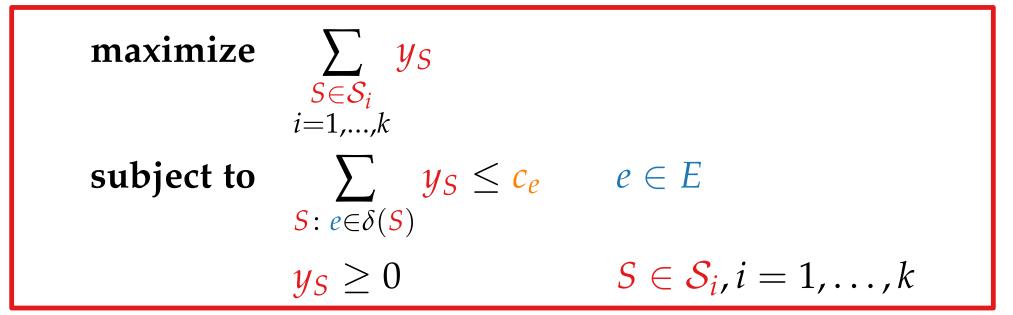
The graph is a network of **bridges**, spanning the **moats**.

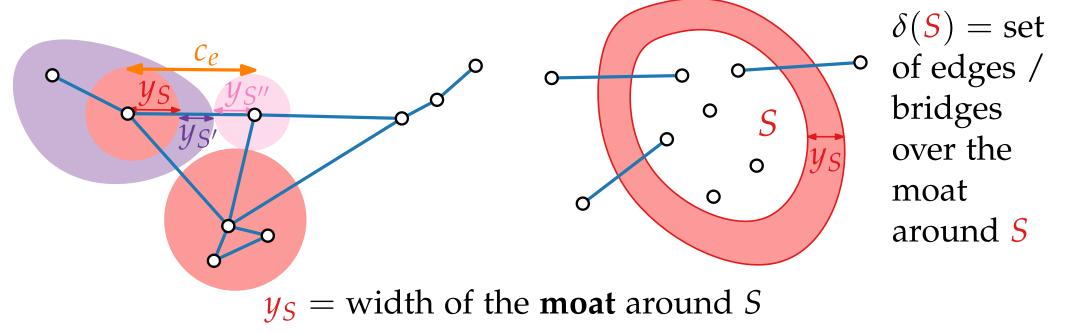


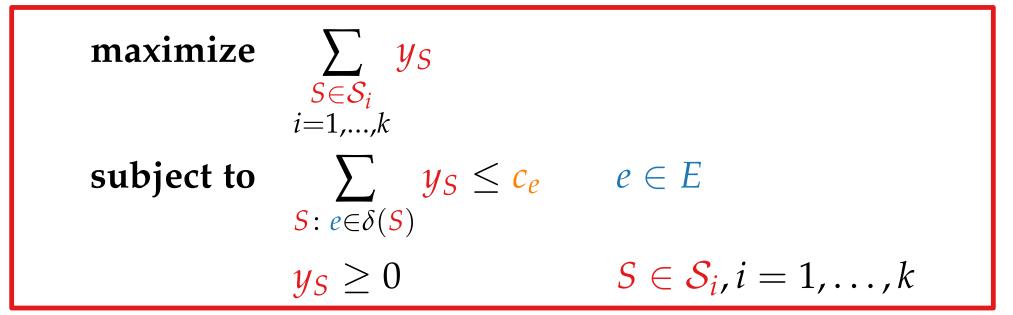


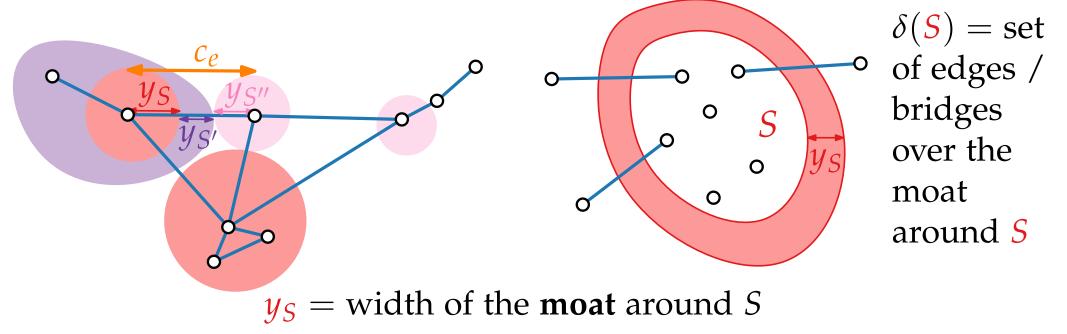
The graph is a network of **bridges**, spanning the **moats**.

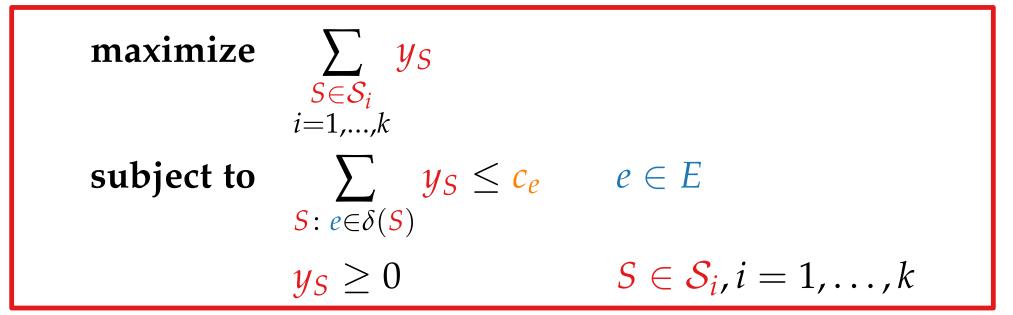


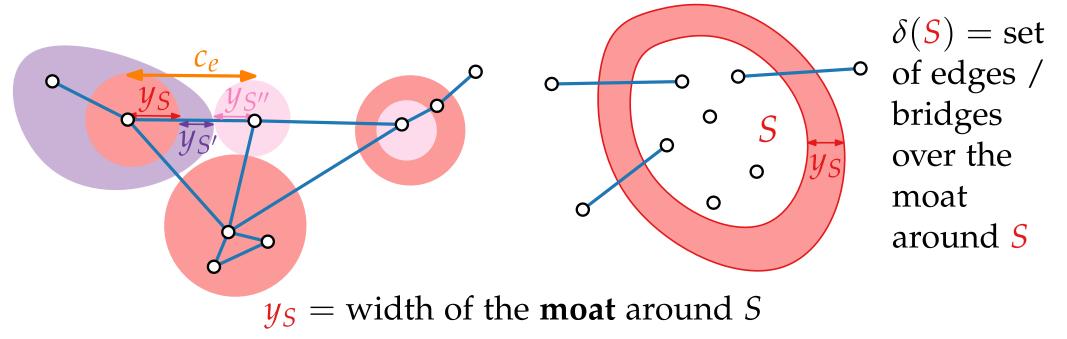


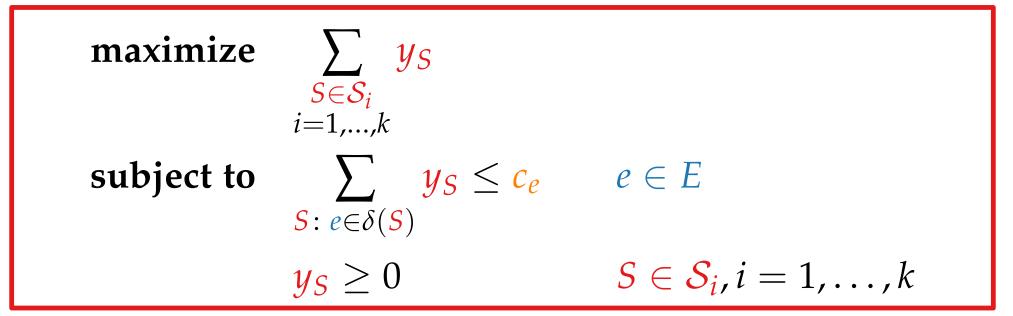


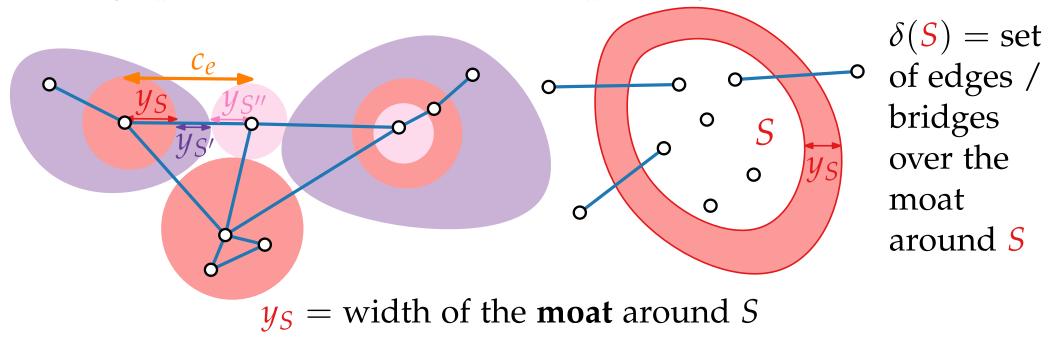












Approximation Algorithms

Lecture 12: SteinerForest via Primal-Dual

Part III: A First Primal-Dual Approach

Philipp Kindermann

Summer Semester 2020

Complementary Slackness (Rep.)

minimize	$C^{T} \chi$			maximiz	$\mathbf{z}\mathbf{e} b^{T}\mathbf{y}$		
subject to	Ax	\geq	b	subject (to $A^{T}y$	\leq	С
	X	\geq	0		y	\geq	0

Theorem. Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_m)$ be valid solutions for the primal and dual program (resp.). Then x and y are optimal if and only if the following conditions are met: **Primal CS**: For each j = 1, ..., n: either $x_j = 0$ or $\sum_{i=1}^m a_{ij}y_i = c_j$ **Dual CS**: For each i = 1, ..., m: either $y_i = 0$ or $\sum_{j=1}^n a_{ij}x_j = b_i$

Complementary slackness: $x_e > 0 \Rightarrow$

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

 \Rightarrow pick "critical" edges (and only those)

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$.

 \Rightarrow pick "critical" edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$. \Rightarrow pick "critical" edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$. \Rightarrow pick "critical" edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$ ~ Consider related component *C*!

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$. \Rightarrow pick "critical" edges (and only those)

Idea: iteratively build a feasible integral Primal-Solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$ \rightsquigarrow Consider related component *C*!

How do we iteratively improve the Dual-Solution?

Complementary slackness: $x_e > 0 \implies \sum_{S: e \in \delta(S)} y_S = c_e$. \Rightarrow pick "critical" edges (and only those)

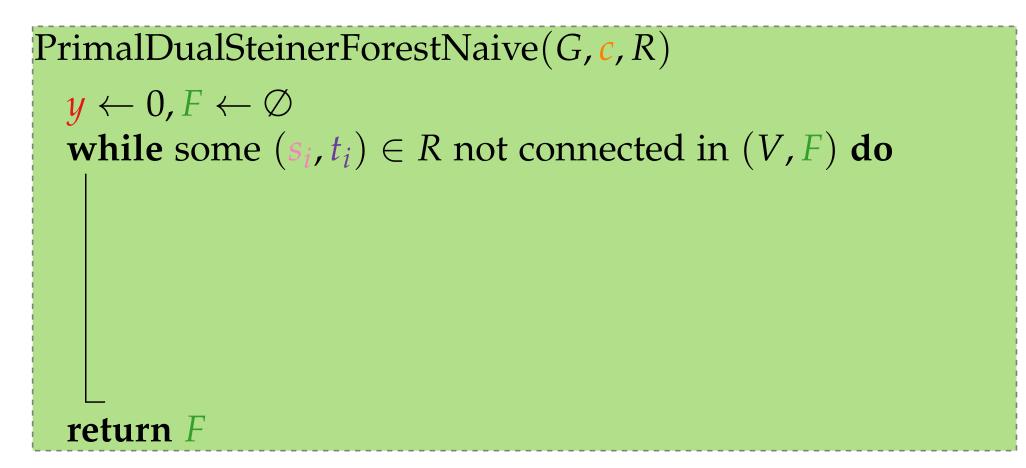
Idea: iteratively build a feasible integral Primal-Solution.

How to find a violated primal constraint? $(\sum_{e \in \delta(S)} x_e < 1)$ \rightsquigarrow Consider related component *C*! How do we iteratively improve the Dual-Solution?

 \rightsquigarrow increase y_{C} ! (until some edge in $\delta(C)$ becomes critical)

PrimalDualSteinerForestNaive(*G*, *c*, *R*)

PrimalDualSteinerForestNaive(G, c, R) $y \leftarrow 0, F \leftarrow \emptyset$



```
PrimalDualSteinerForestNaive(G, c, R)
y \leftarrow 0, F \leftarrow \emptyset
while some (s_i, t_i) \in R not connected in (V, F) do
     C \leftarrow \text{comp. in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i
return F
```

```
PrimalDualSteinerForestNaive(G, c, R)
\mathbf{y} \leftarrow 0, F \leftarrow \emptyset
while some (s_i, t_i) \in R not connected in (V, F) do
      C \leftarrow \text{comp. in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i
      Increase \gamma_{C}
return F
```

PrimalDualSteinerForestNaive(G, c, R) $\mathbf{y} \leftarrow 0, F \leftarrow \emptyset$ while some $(s_i, t_i) \in R$ not connected in (V, F) do $C \leftarrow \text{comp. in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i$ Increase γ_{C} until $y_S = c_{e'}$ for some $e' \in \delta(C)$. $S: e' \in \delta(S)$ return F

PrimalDualSteinerForestNaive(G, c, R) $y \leftarrow 0, F \leftarrow \emptyset$ while some $(s_i, t_i) \in R$ not connected in (V, F) do $C \leftarrow \text{comp. in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i$ Increase γ_{C} until $y_S = c_{e'}$ for some $e' \in \delta(C)$. $S: e' \in \delta(S)$ $F \leftarrow F \cup \{e'\}$ return F

PrimalDualSteinerForestNaive(G, c, R) $y \leftarrow 0, F \leftarrow \emptyset$ while some $(s_i, t_i) \in R$ not connected in (V, F) do $C \leftarrow \text{comp. in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i$ Increase γ_{C} until $y_S = c_{e'}$ for some $e' \in \delta(C)$. $S: e' \in \delta(S)$ $F \leftarrow F \cup \{e'\}$ return F

Running Time?

PrimalDualSteinerForestNaive(G, c, R) $y \leftarrow 0, F \leftarrow \emptyset$ while some $(s_i, t_i) \in R$ not connected in (V, F) do $C \leftarrow \text{comp. in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i$ Increase γ_{C} until $y_S = c_{e'}$ for some $e' \in \delta(C)$. $S: e' \in \delta(S)$ $F \leftarrow F \cup \{e'\}$ return F

Running Time? Trick: Handle all y_S with $y_S = 0$ implicitly

$$\sum_{e \in F} c_e =$$

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F}$$

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S =$$

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F| \cdot y_S.$$

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

$$t_2$$

 $c \equiv 1$
 $s_1 = s_2 = \cdots = s_k$
 \ldots
 t_k

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

$$t_2$$
 $c \equiv 1$
 $\cdots = s_k$

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

$$t_2$$
 $c \equiv 1$
 $\cdots = s_k$

The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

$$t_2$$

 t_2
 t_1
 t_2
 t_1
 t_2
 t_3
 t_4
 t_4
 t_4
 t_5
 t_1
 t_5
 t_5

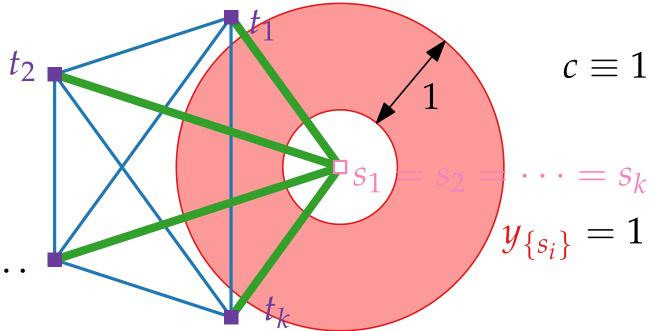
The cost of the solution *F* can be written as

$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

There are examples with $|\delta(S) \cap F| = k$ for each $y_S > 0$:

But: Average degree of component is 2!



The cost of the solution *F* can be written as

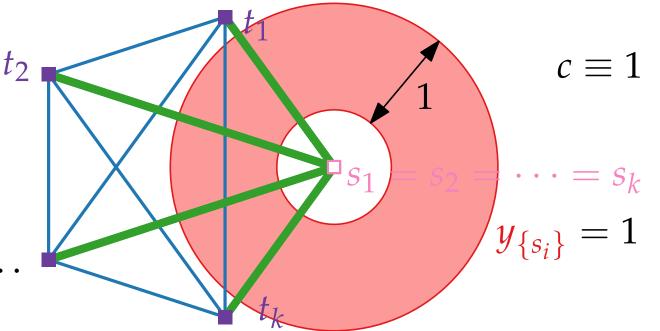
$$\sum_{e \in F} c_e \stackrel{\text{CS}}{=} \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

Compare to the value of the dual objective function $\sum_{S} y_{S}$

There are examples with $|\delta(S) \cap F| = k$ for each $y_S > 0$:

But: Average degree of component is 2!

 $\Rightarrow \text{Increase } y_C \text{ for}$ all components *C* simultaneously!



Approximation Algorithms

Lecture 12: SteinerForest via Primal-Dual

Part IV: Primal-Dual with Synchronized Increases

Philipp Kindermann

Summer Semester 2020

14 - 1

PrimalDualSteinerForest(*G*, *c*, *R*) $y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$ while some $(s_i, t_i) \in R$ not connected in (V, F) do $\ell \leftarrow \ell + 1$

 $F \leftarrow F \cup \{e_{\ell}\}$

PrimalDualSteinerForest(*G*, *c*, *R*) $y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$ while some $(s_i, t_i) \in R$ not connected in (V, F) do $\ell \leftarrow \ell + 1$ $\mathcal{C} \leftarrow \{\text{comp. } \mathcal{C} \text{ in } (V, F) \text{ with } |\mathcal{C} \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$

$F \leftarrow F \cup \{e_\ell\}$

PrimalDualSteinerForest(*G*, *c*, *R*) $y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$ while some $(s_i, t_i) \in R$ not connected in (V, F) do $\ell \leftarrow \ell + 1$ $C \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$ Increase y_C for all $C \in C$ simultaneously

 $F \leftarrow F \cup \{e_{\ell}\}$

PrimalDualSteinerForest(*G*, *c*, *R*) $y \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$ while some $(s_i, t_i) \in R$ not connected in (V, F) do $\ell \leftarrow \ell + 1$ $\mathcal{C} \leftarrow \{\text{comp. } \mathcal{C} \text{ in } (V, F) \text{ with } |\mathcal{C} \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$ Increase $y_{\mathcal{C}}$ for all $\mathcal{C} \in \mathcal{C}$ simultaneously until $\sum_{\substack{S: e_{\ell} \in \delta(S)\\F \leftarrow F \cup \{e_{\ell}\}}} y_{S} = c_{e_{\ell}}$ for some $e_{\ell} \in \delta(\mathcal{C}), C \in \mathcal{C}$.

PrimalDualSteinerForest(G, c, R) $\mathbf{y} \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$ while some $(s_i, t_i) \in R$ not connected in (V, F) do $\ell \leftarrow \ell + 1$ $\mathcal{C} \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$ Increase γ_C for all $C \in \mathcal{C}$ simultaneously until $y_S = c_{e_\ell}$ for some $e_\ell \in \delta(C), C \in C$. $S: e_{\ell} \in \delta(S)$ $F \leftarrow F \cup \{e_{\ell}\}$ $F' \leftarrow F$

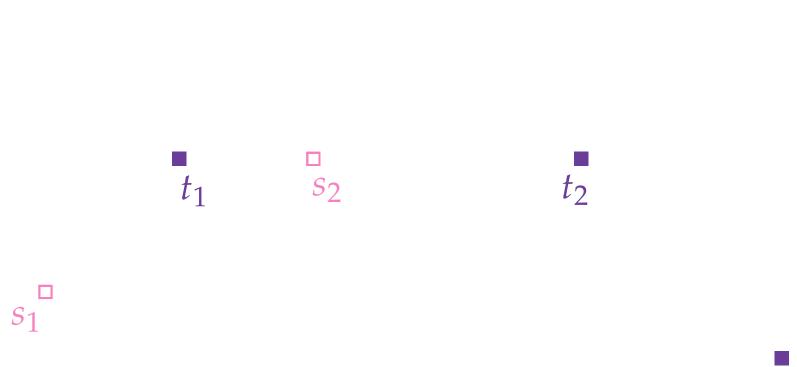
PrimalDualSteinerForest(G, c, R) $\mathbf{y} \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$ while some $(s_i, t_i) \in R$ not connected in (V, F) do $\ell \leftarrow \ell + 1$ $\mathcal{C} \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$ Increase y_C for all $C \in C$ simultaneously until $y_S = c_{e_\ell}$ for some $e_\ell \in \delta(C), C \in C$. $S: e_{\ell} \in \delta(S)$ $F \leftarrow F \cup \{e_{\ell}\}$ $F' \leftarrow F$ // Pruning

PrimalDualSteinerForest(G, c, R) $\mathbf{y} \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$ while some $(s_i, t_i) \in R$ not connected in (V, F) do $\ell \leftarrow \ell + 1$ $\mathcal{C} \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$ Increase γ_C for all $C \in \mathcal{C}$ simultaneously until $y_S = c_{e_\ell}$ for some $e_\ell \in \delta(C), C \in C$. $S: e_{\ell} \in \delta(S)$ $F \leftarrow F \cup \{e_{\ell}\}$ $F' \leftarrow F$ // Pruning for $j \leftarrow \ell$ down to 1 do

PrimalDualSteinerForest(G, c, R) $\mathbf{y} \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$ while some $(s_i, t_i) \in R$ not connected in (V, F) do $\ell \leftarrow \ell + 1$ $\mathcal{C} \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$ Increase γ_C for all $C \in \mathcal{C}$ simultaneously until $y_S = c_{e_\ell}$ for some $e_\ell \in \delta(C), C \in C$. $S: e_{\ell} \in \delta(S)$ $F \leftarrow F \cup \{e_{\ell}\}$ $F' \leftarrow F$ // Pruning for $j \leftarrow \ell$ down to 1 do if $F' \setminus \{e_i\}$ is feasible solution then return F

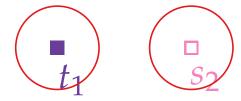
PrimalDualSteinerForest(G, c, R) $\mathbf{y} \leftarrow 0, F \leftarrow \emptyset, \ell \leftarrow 0$ while some $(s_i, t_i) \in R$ not connected in (V, F) do $\ell \leftarrow \ell + 1$ $\mathcal{C} \leftarrow \{\text{comp. } C \text{ in } (V, F) \text{ with } |C \cap \{s_i, t_i\}| = 1 \text{ for some } i\}$ Increase γ_C for all $C \in \mathcal{C}$ simultaneously until $y_S = c_{e_\ell}$ for some $e_\ell \in \delta(C)$, $C \in C$. $S: e_{\ell} \in \delta(S)$ $F \leftarrow F \cup \{e_{\ell}\}$ $F' \leftarrow F$ // Pruning for $j \leftarrow \ell$ down to 1 do if $F' \setminus \{e_i\}$ is feasible solution then $F' \leftarrow F' \setminus \{e_i\}$ return F'

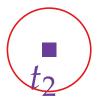
 $G = K_6$ with Euclidean edge costs

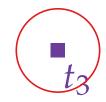


□ *S*3

 $G = K_6$ with Euclidean edge costs

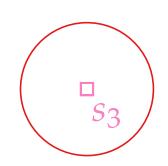


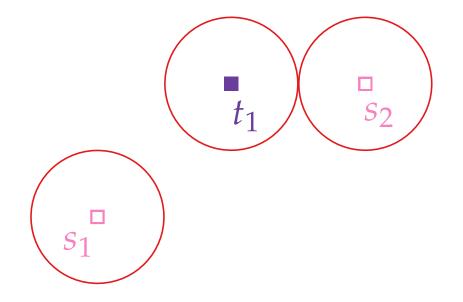


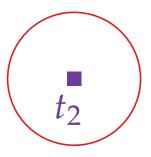


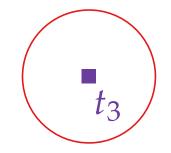
 \Box S'

 $G = K_6$ with Euclidean edge costs

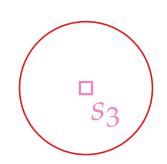


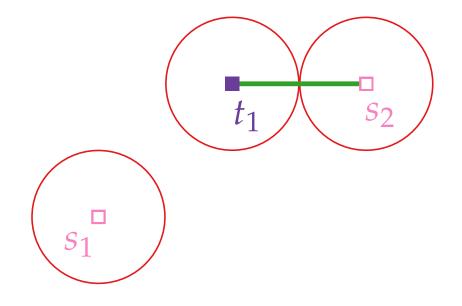


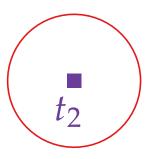


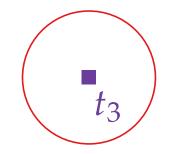


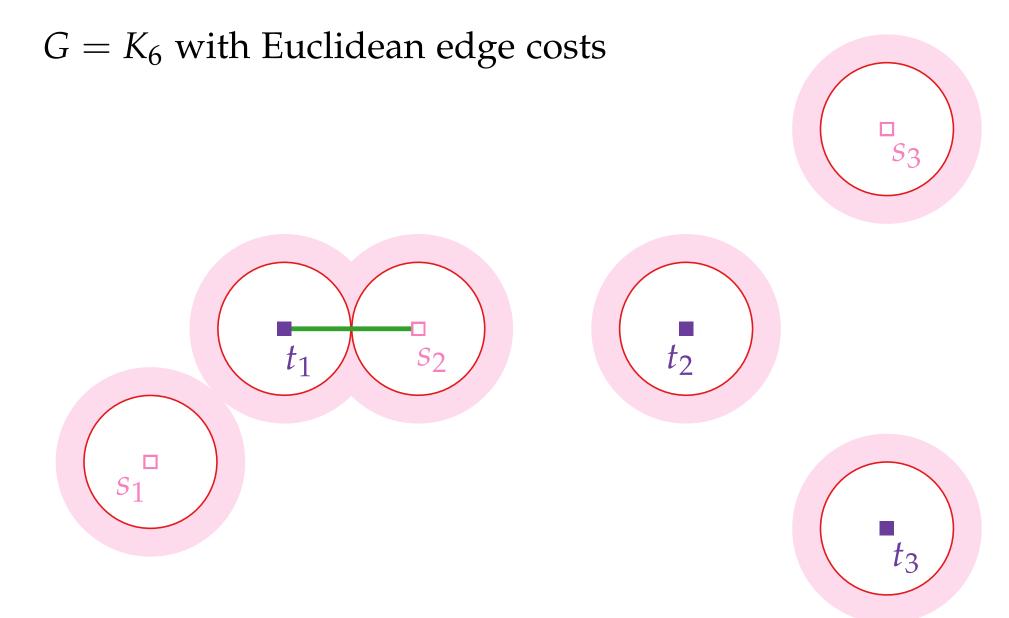
 $G = K_6$ with Euclidean edge costs

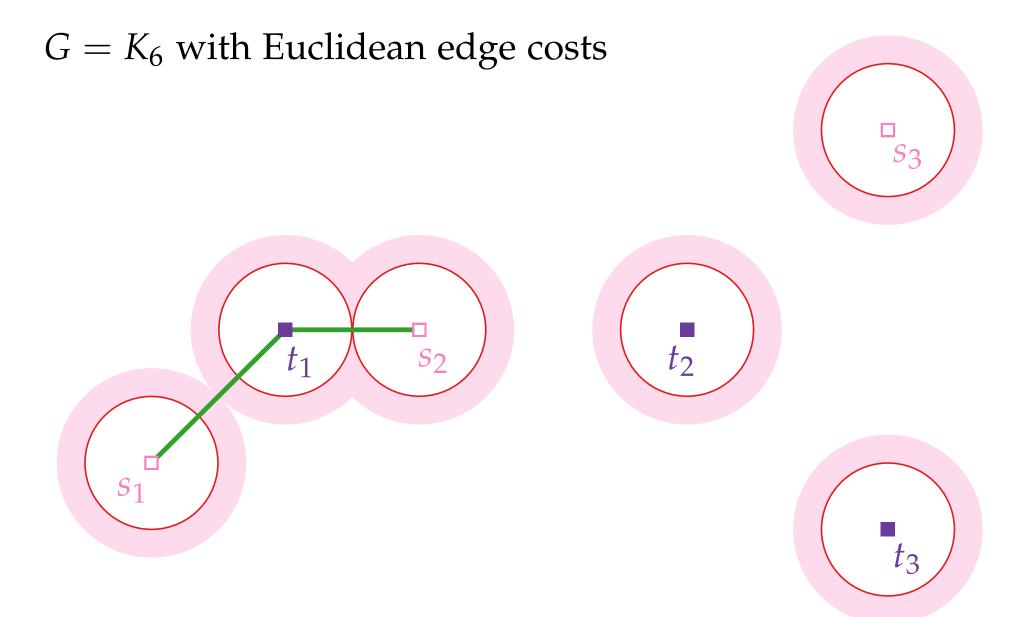


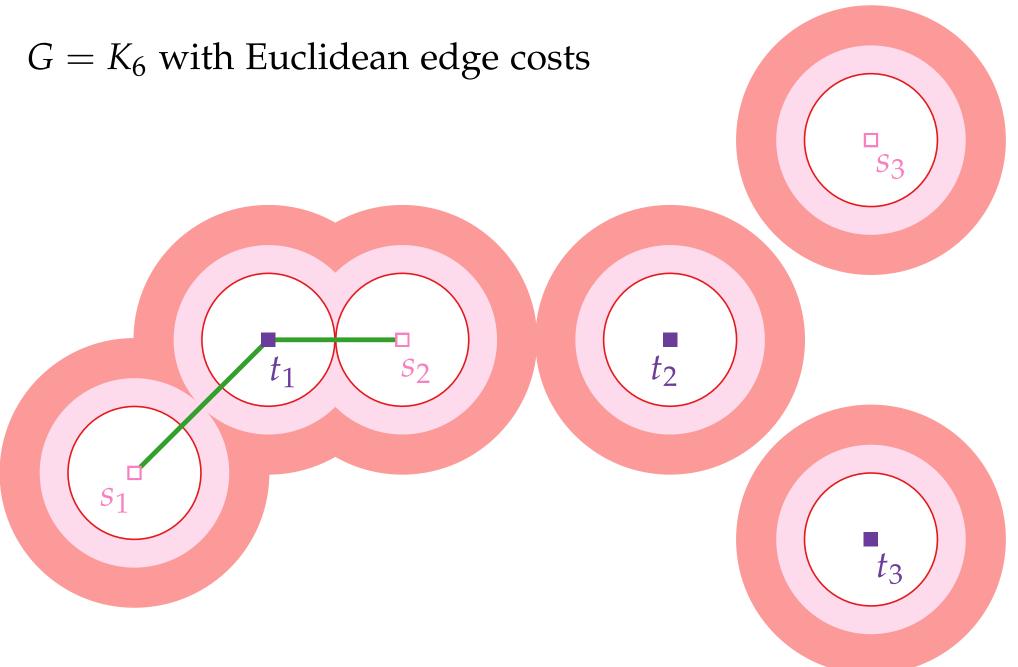


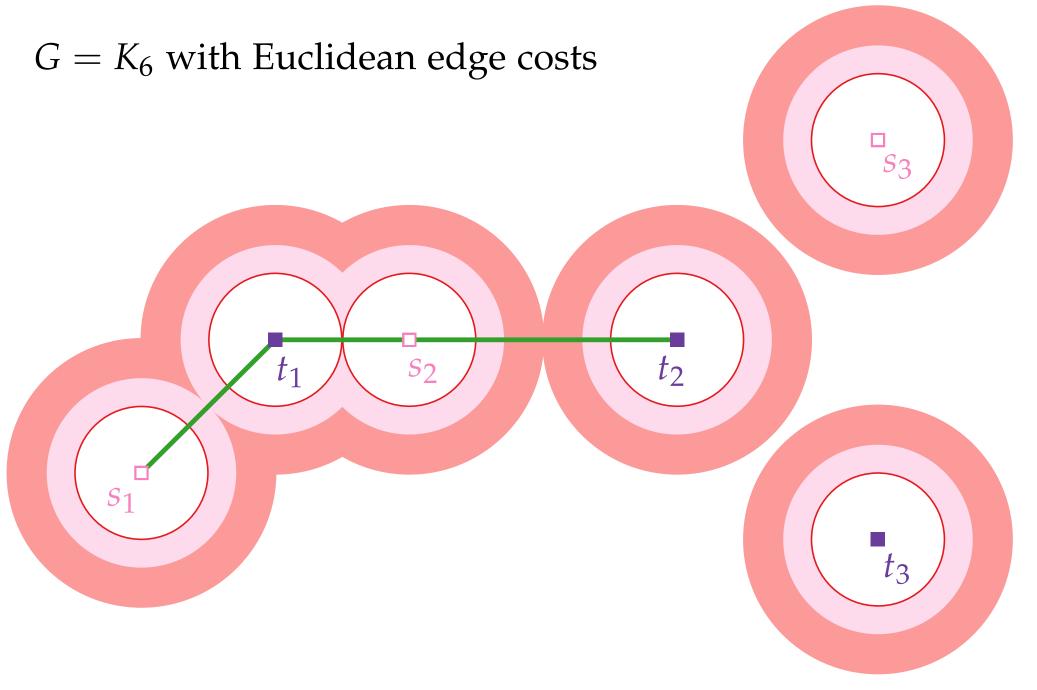


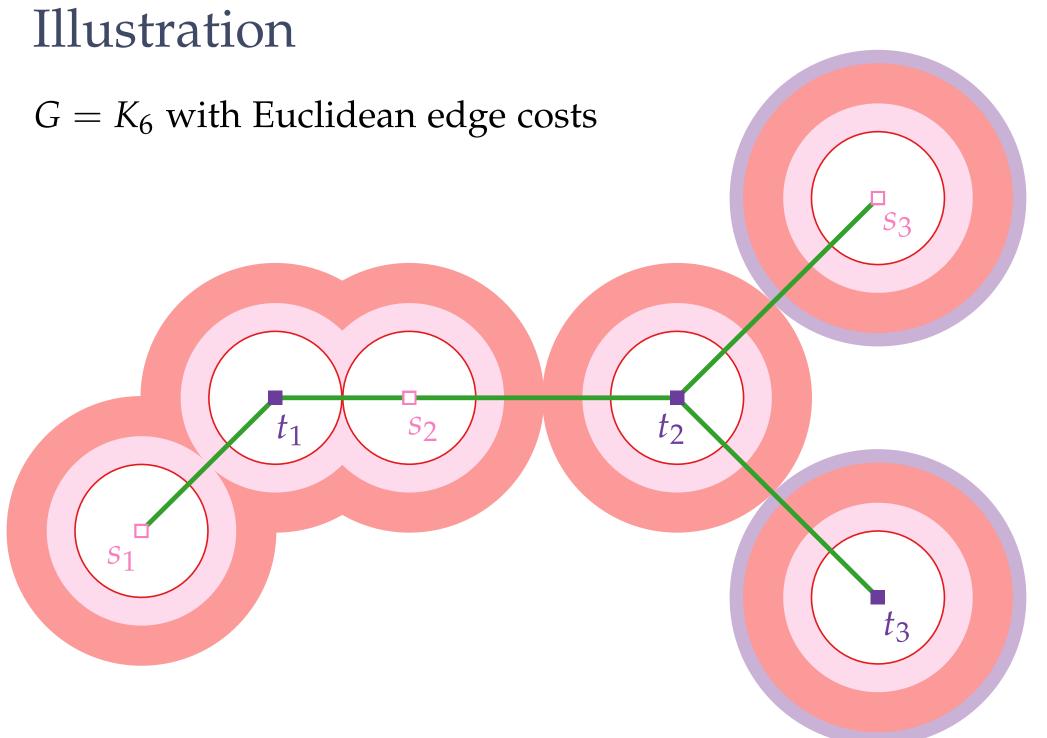


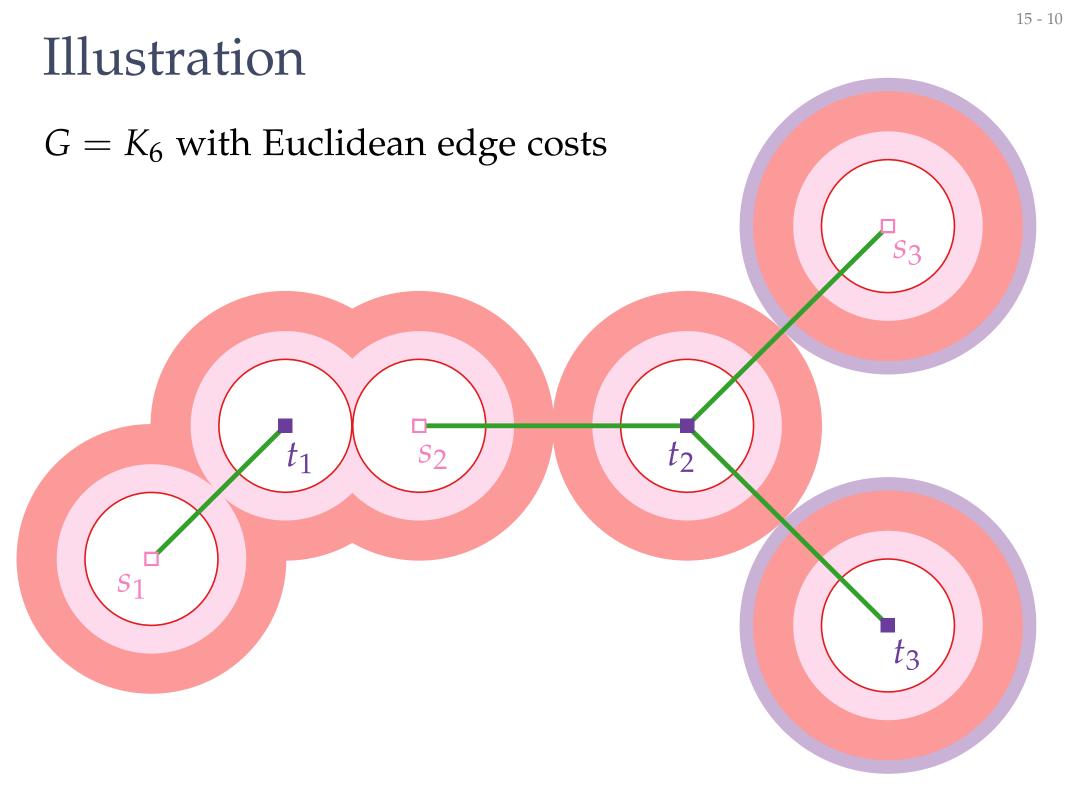












Approximation Algorithms

Lecture 12: SteinerForest via Primal-Dual

Part V: Structure Lemma

Philipp Kindermann

Summer Semester 2020

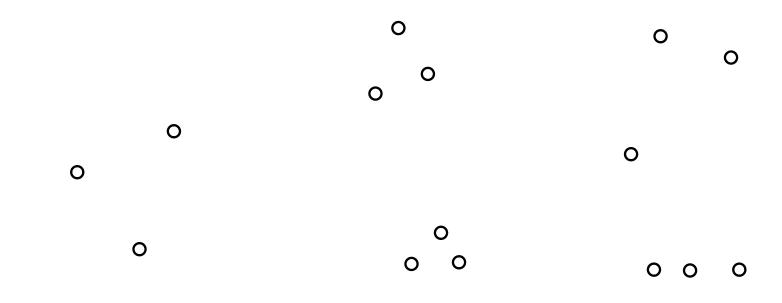
Lemma. For each C of an iteration of the algorithm:

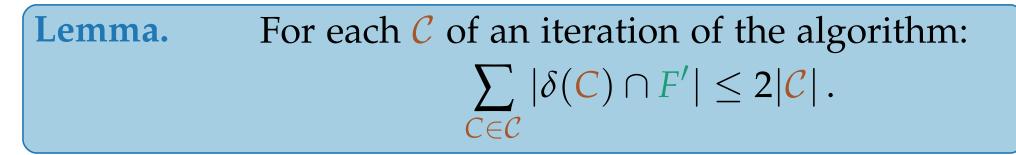
Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \leq C$

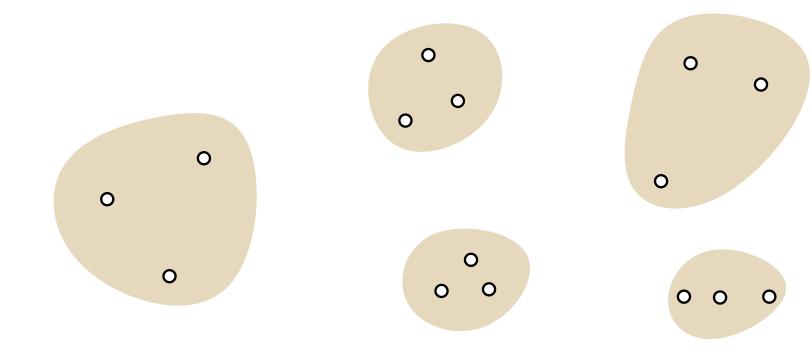
Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

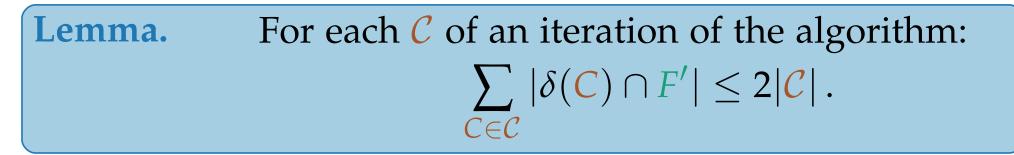
Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

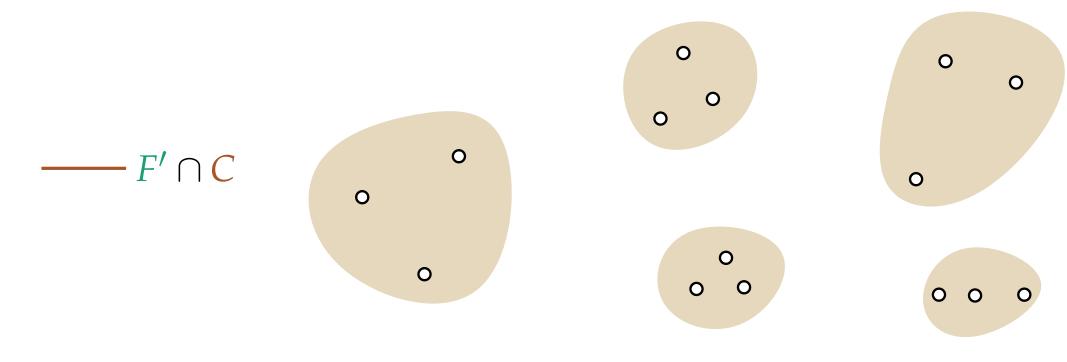
Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

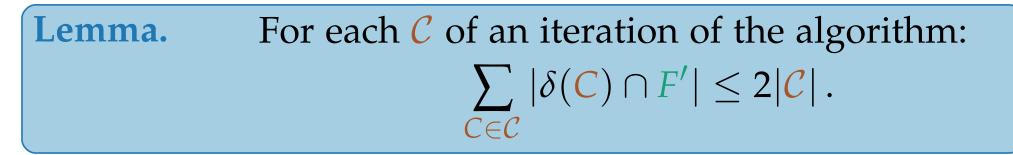


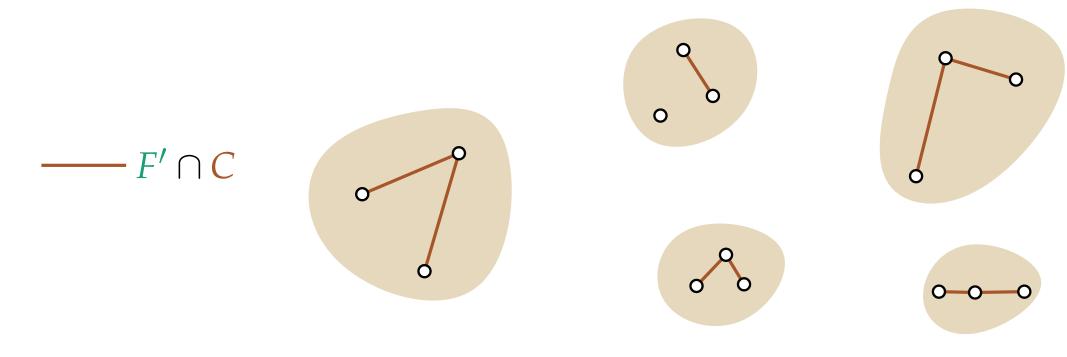


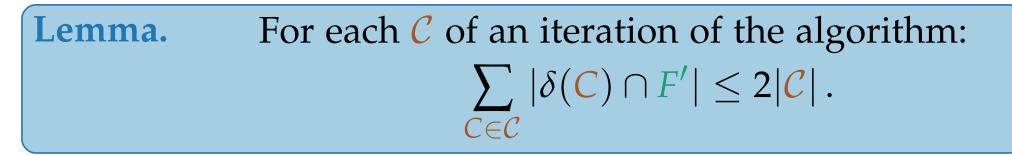


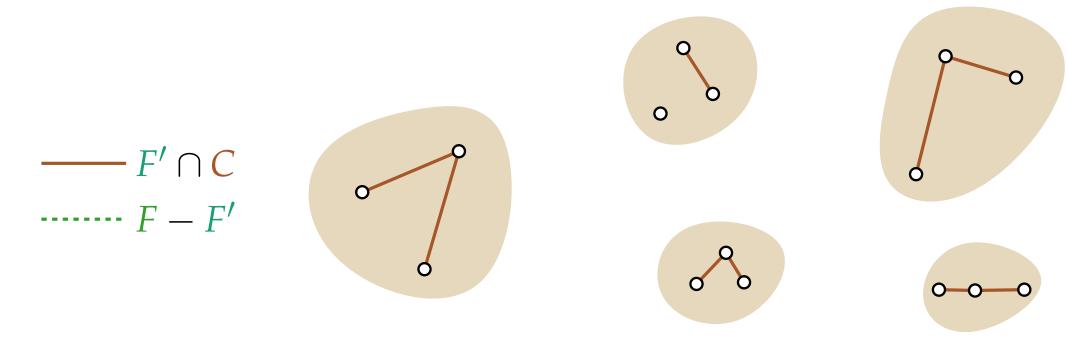




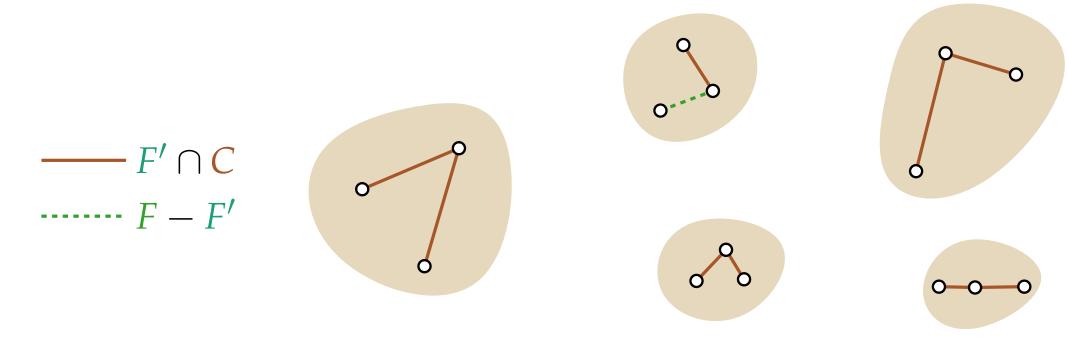


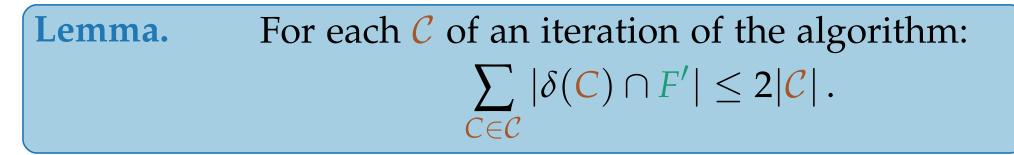


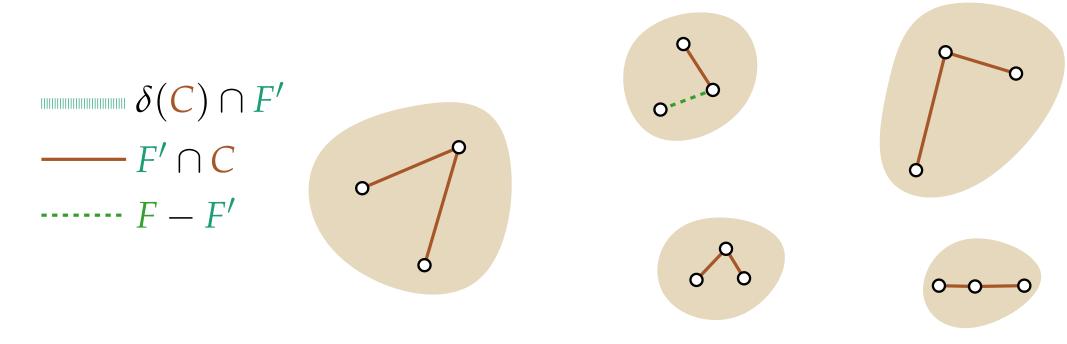




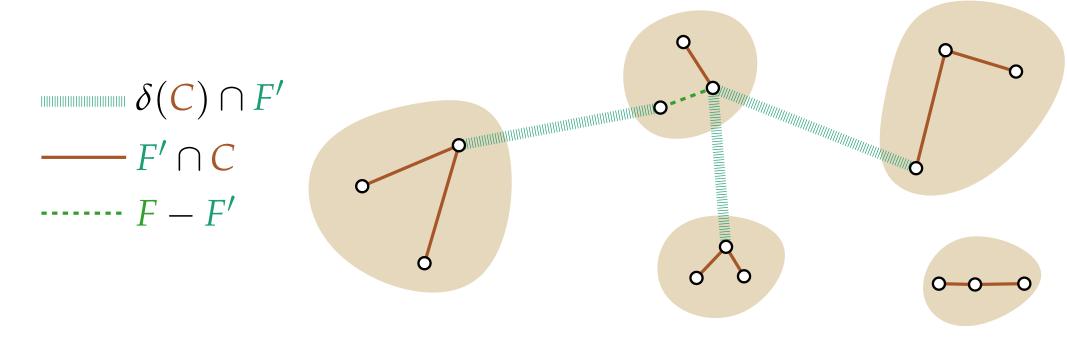
Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$





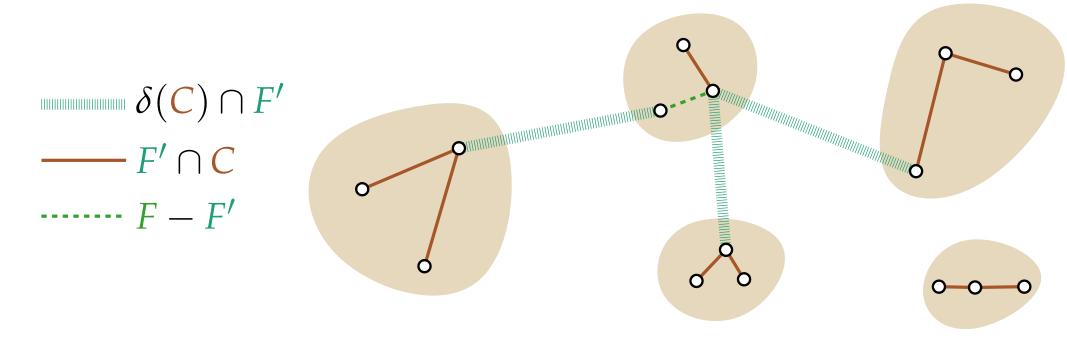


Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$



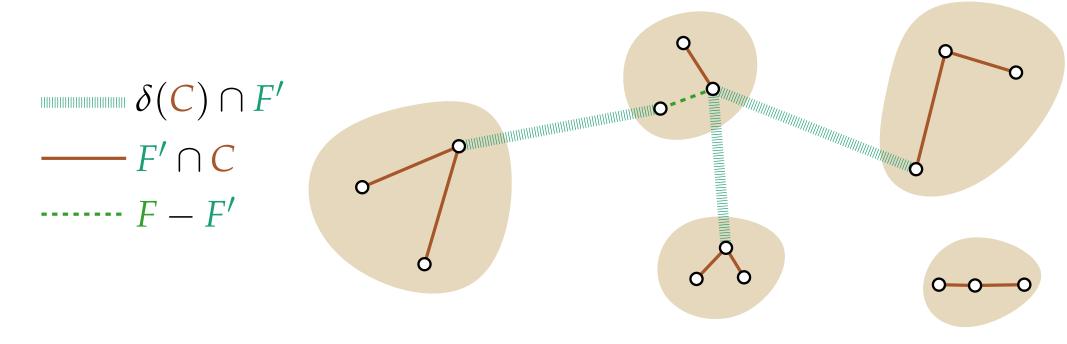
Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

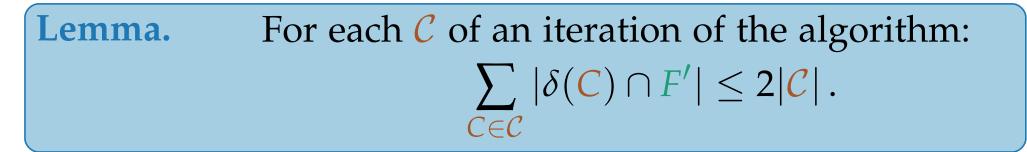
Proof. First the intuition... each component *C* of *F* is a forest in $F' \rightarrow avg$. degree



Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof. First the intuition... each component *C* of *F* is a forest in F' \rightsquigarrow avg. degree ≤ 2

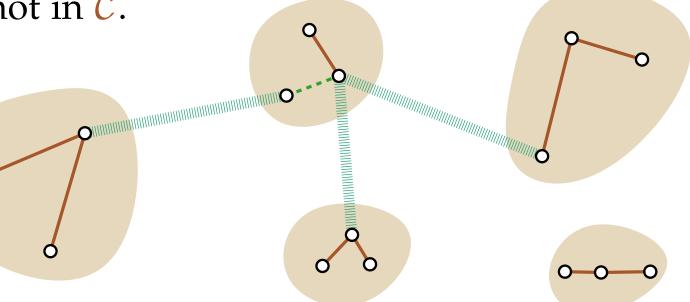




Proof. First the intuition... each component *C* of *F* is a forest in $F' \rightarrow avg$. degree ≤ 2

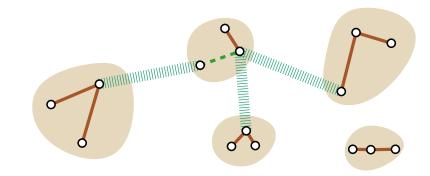
Difficulty: Some C not in C.

 $\delta(C) \cap F'$ $----F' \cap C$ -----F'



Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

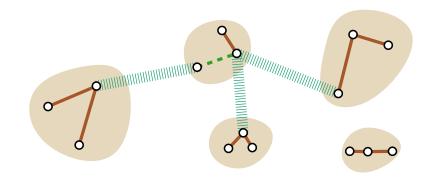
Proof.



Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to *F*.

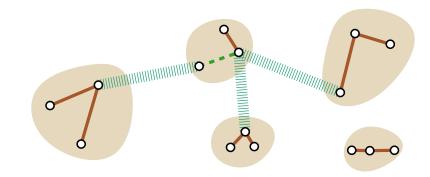


Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to *F*.

Let $F_i = \{e_1, ..., e_i\}$

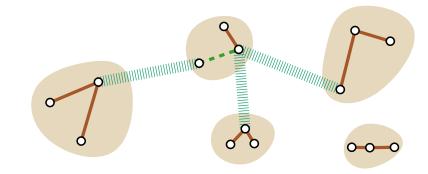


Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to *F*.

Let
$$F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i)$$

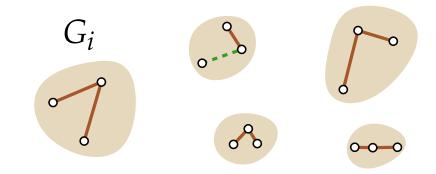


Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to *F*.

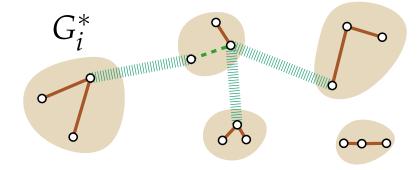
Let
$$F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i)$$



Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

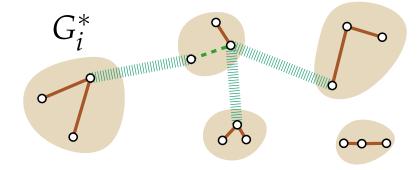
Consider *i*-th iteration where e_i is added to F. Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$



Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to F. Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$



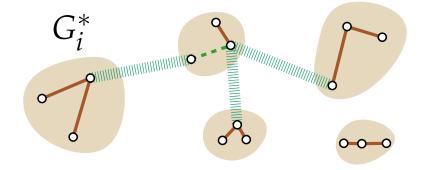
Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to *F*.

Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$

Contract each comp. *C* of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.



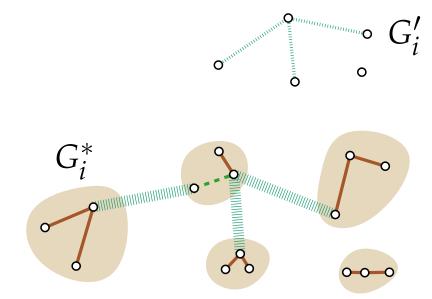
Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to *F*.

Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$

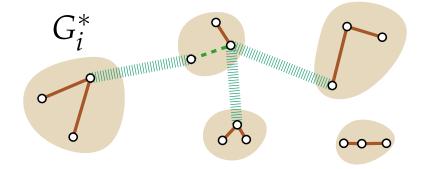
Contract each comp. C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$.



Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to *F*. Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$ Contract each comp. *C* of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$. Ignore all comp. *C* with $\delta(C) \cap F' = \emptyset$.)

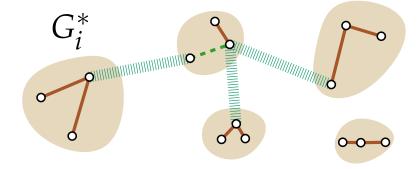


റ

Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

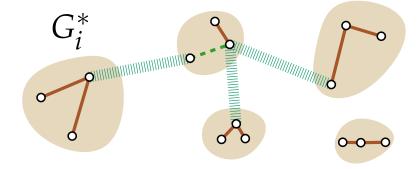
Consider *i*-th iteration where e_i is added to *F*. Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$ Contract each comp. *C* of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$. Ignore all comp. *C* with $\delta(C) \cap F' = \emptyset$.)



Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

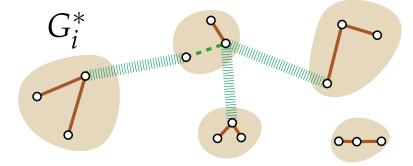
Consider *i*-th iteration where e_i is added to *F*. Let $F_i = \{e_1, \ldots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$. Contract each comp. *C* of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$. Ignore all comp. *C* with $\delta(C) \cap F' = \emptyset$.) Claim. G'_i is a forest.



Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to *F*. Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$ Contract each comp. *C* of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$. Ignore all comp. *C* with $\delta(C) \cap F' = \emptyset$.) Claim. G'_i is a forest. Note: $\sum_{C \text{ comp.}} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} |\deg_{G'}(v)|^{\circ}$



Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to *F*. Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$ Contract each comp. C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$. Ignore all comp. *C* with $\delta(C) \cap F' = \emptyset$.)**O Claim.** G'_i is a forest. Note: $\sum_{C \text{ comp.}} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} |\deg_{G'}(v)|$ = 2|E(G')| G_i^*

Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to F. Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$ Contract each comp. C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$. Ignore all comp. *C* with $\delta(C) \cap F' = \emptyset$.) **Claim.** G'_i is a forest. Ommuning Note: $\sum_{C \text{ comp.}}^{\prime} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} |\deg_{G'}(v)| \approx$ = $2|E(G')| \leq 2|V(G')|$ G_i^*

Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to *F*. Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$ Contract each comp. C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$. Ignore all comp. *C* with $\delta(C) \cap F' = \emptyset$.) **Claim.** G'_i is a forest. Ommuning Note: $\sum_{C \text{ comp.}}^{\prime} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} |\deg_{G'}(v)| \approx$ = $2|E(G')| \leq 2|V(G')|$

Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to F. Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$ Contract each comp. C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$. Ignore all comp. *C* with $\delta(C) \cap F' = \emptyset$.) **Claim.** G'_i is a forest. Ommuning Note: $\sum_{C \text{ comp.}}^{\prime} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} |\deg_{G'}(v)|$ = $2|E(G')| \leq 2|V(G')|$ WWWWWWWWWWWW

Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to *F*. Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$ Contract each comp. C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$. Ignore all comp. *C* with $\delta(C) \cap F' = \emptyset$.) **Claim.** G'_i is a forest. Note: $\sum_{C \text{ comp.}}^{\prime} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} |\deg_{G'}(v)|$ = $2|E(G')| \le 2|V(G')|$ G_i^*

Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to F. Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$ Contract each comp. C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$. Ignore all comp. *C* with $\delta(C) \cap F' = \emptyset$.) **Claim.** G'_i is a forest. Note: $\sum_{C \text{ comp.}}^{\prime} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} |\deg_{G'}(v)|$ = $2|E(G')| \le 2|V(G')|$ G_i^*

Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to *F*. Let $F_i = \{e_1, \ldots, e_i\}$, $G_i = (V, F_i)$, and $G_i^* = (V, F_i \cup F')$. Contract each comp. *C* of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$. Ignore all comp. *C* with $\delta(C) \cap F' = \emptyset$.) Claim. G'_i is a forest. Note: $\sum_{C \text{ comp.}} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} |\deg_{G'}(v)| \circ active inactive end of the e$

Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to F. Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$ Contract each comp. C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$. Ignore all comp. *C* with $\delta(C) \cap F' = \emptyset$.) **Claim.** G'_i is a forest. Note: $\sum_{C \text{ comp.}}^{\prime} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} |\deg_{G'}(v)|$ = $2|E(G')| \le 2|V(G')|$ **Claim.** Inactive vertices have degree ≥ 2 . Then $\sum_{v \text{ active }} |\deg_{G'}(v)| \leq$

Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to F. Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$ Contract each comp. C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$. Ignore all comp. *C* with $\delta(C) \cap F' = \emptyset$.) **Claim.** G'_i is a forest. Note: $\sum_{C \text{ comp.}} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} |\deg_{G'}(v)|$ = $2|E(G')| \le 2|V(G')|$ **Claim.** Inactive vertices have degree ≥ 2 . Then $\sum_{v \text{ active }} |\deg_{G'}(v)| \leq$ $2 \cdot |V(G')| - 2 \cdot #($ inactive)

Lemma. For each C of an iteration of the algorithm: $\sum_{C \in C} |\delta(C) \cap F'| \le 2|C|.$

Proof.

Consider *i*-th iteration where e_i is added to F. Let $F_i = \{e_1, \ldots, e_i\}, G_i = (V, F_i), \text{ and } G_i^* = (V, F_i \cup F').$ Contract each comp. C of G_i in G_i^* to a single vertex $\rightsquigarrow G'_i$. Ignore all comp. *C* with $\delta(C) \cap F' = \emptyset$.) **Claim.** G'_i is a forest. Note: $\sum_{C \text{ comp.}} |\delta(C) \cap F'| = \sum_{v \in V(G'_i)} |\deg_{G'}(v)|$ = $2|E(G')| \le 2|V(G')|$ **Claim.** Inactive vertices have degree ≥ 2 . Then $\sum_{v \text{ active }} |\deg_{G'}(v)| \leq$ $2 \cdot |V(G')| - 2 \cdot \#(\text{inactive}) = 2|\mathcal{C}|.$

Approximation Algorithms

Lecture 12: SteinerForest via Primal-Dual

Part VI: Analysis

Philipp Kindermann

Summer Semester 2020

Theorem.The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

Proof.

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Proof.

As before

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F'| \cdot y_S.$$

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Proof.

As before

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Proof.

As before

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

$$\sum_{S} |\delta(S) \cap F'| \cdot y_{S} \leq$$

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Proof.

As before

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{(*)}$$

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Proof.

As before

$$\sum_{e \in F'} c_e \stackrel{\text{CS}}{=} \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_S |\delta(S) \cap F'| \cdot y_S.$$

We prove by induction over the number of iterations of the algorithm that

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{(*)}$$

From that, the claim of the theorem follows.

Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \qquad (*)$$

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \qquad (*)$$

Base case trivial since we start with $y_S = 0$ for each *S*.

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_{S} \leq 2 \sum_{S} y_{S}. \qquad (*)$$

Base case trivial since we start with $y_S = 0$ for each *S*.

Assume that (*) holds at the start of each iteration.

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \qquad (*)$$

Base case trivial since we start with $y_S = 0$ for each *S*.

Assume that (*) holds at the start of each iteration.

In the active iteration, we increase y_C for all $C \in C$ by the same amount, say $\varepsilon \ge 0$.

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_{S} \le 2 \sum_{S} y_{S}. \qquad (*)$$

Base case trivial since we start with $y_S = 0$ for each *S*.

Assume that (*) holds at the start of each iteration.

In the active iteration, we increase y_C for all $C \in C$ by the same amount, say $\varepsilon \ge 0$.

This increases the left side of (*) by

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \tag{*}$$

Base case trivial since we start with $y_S = 0$ for each *S*.

Assume that (*) holds at the start of each iteration.

In the active iteration, we increase y_C for all $C \in C$ by the same amount, say $\varepsilon \ge 0$.

This increases the left side of (*) by
$$\varepsilon \sum_{C \in \mathcal{C}} |\delta(C) \cap F'|$$

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \qquad (*)$$

Base case trivial since we start with $y_S = 0$ for each *S*.

Assume that (*) holds at the start of each iteration.

In the active iteration, we increase y_C for all $C \in C$ by the same amount, say $\varepsilon \ge 0$.

This increases the left side of (*) by $\varepsilon \sum_{C \in C} |\delta(C) \cap F'|$ and the right side by

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \qquad (*)$$

Base case trivial since we start with $y_S = 0$ for each *S*.

Assume that (*) holds at the start of each iteration.

In the active iteration, we increase y_C for all $C \in C$ by the same amount, say $\varepsilon \ge 0$.

This increases the left side of (*) by $\varepsilon \sum_{C \in \mathcal{C}} |\delta(C) \cap F'|$ and the right side by $2\varepsilon |\mathcal{C}|$.

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Proof.

$$\sum_{S} |\delta(S) \cap F'| \cdot y_S \le 2 \sum_{S} y_S. \qquad (*)$$

Base case trivial since we start with $y_S = 0$ for each *S*.

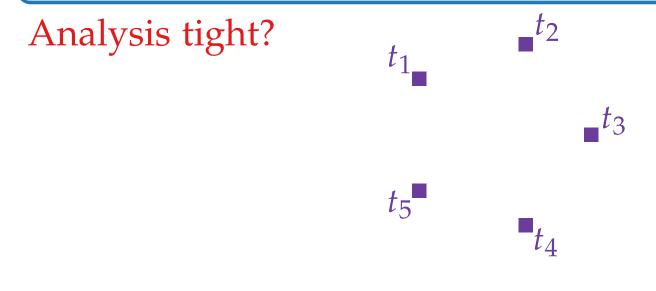
Assume that (*) holds at the start of each iteration.

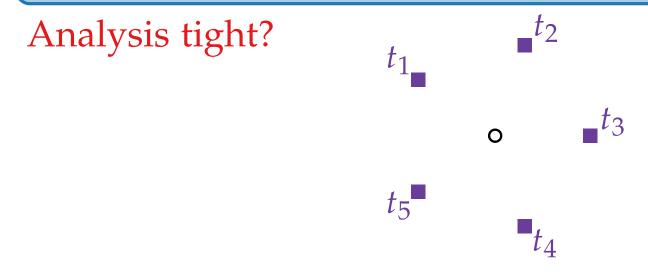
In the active iteration, we increase y_C for all $C \in C$ by the same amount, say $\varepsilon \ge 0$.

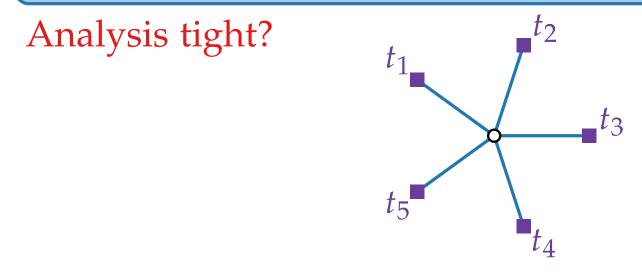
This increases the left side of (*) by $\varepsilon \sum_{C \in \mathcal{C}} |\delta(C) \cap F'|$ and the right side by $2\varepsilon |\mathcal{C}|$.

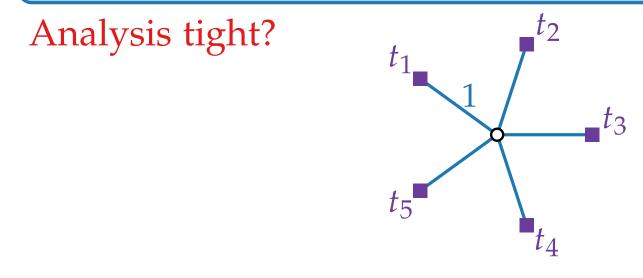
Thus, by the Structure Lemma, (*) also holds after the active iteration.

Theorem.The Primal-Dual algorithm with
synchronized increases gives a
2-approximation for STEINERFOREST.

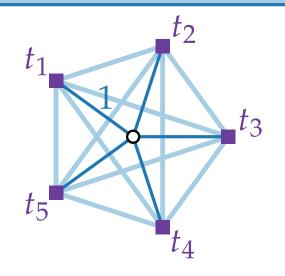




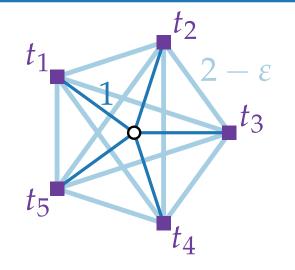




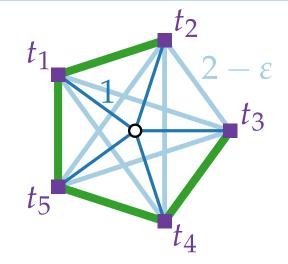
Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.



Theorem. The Primal-Dual algorithm with synchronized increases gives a 2-approximation for STEINERFOREST.

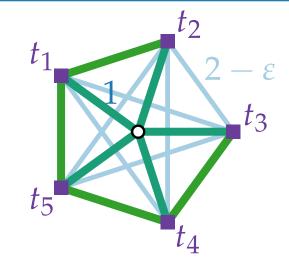


Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.



 $ALG = (2 - \varepsilon)(n - 1)$

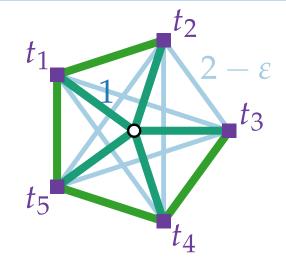
Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.



 $ALG = (2 - \varepsilon)(n - 1)$ OPT = n

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Analysis tight?

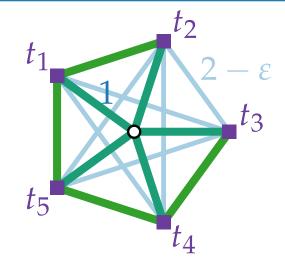


 $ALG = (2 - \varepsilon)(n - 1)$ OPT = n

better?

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Analysis tight?

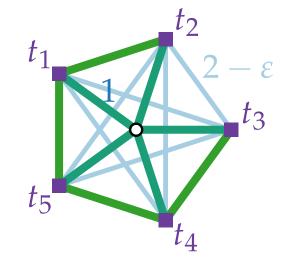


 $ALG = (2 - \varepsilon)(n - 1)$ OPT = n

better? No better approximation factor is known.

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Analysis tight?



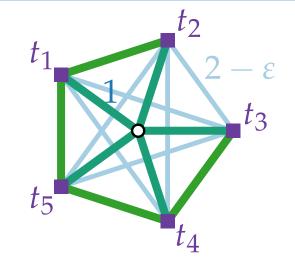
 $ALG = (2 - \varepsilon)(n - 1)$ OPT = n

better?

No better approximation factor is known. The integrality gap is 2 - 1/n.

Theorem. The Primal-Dual algorithm with synchronized increases gives a **2**-approximation for STEINERFOREST.

Analysis tight?



$$ALG = (2 - \varepsilon)(n - 1)$$
$$OPT = n$$

better?

No better approximation factor is known.

The integrality gap is 2 - 1/n.

STEINERFOREST cannot be approximated within factor 1.0074 (unless P=NP) [Thimm '03]