Approximation Algorithms

Lecture 11: MAXSAT via Randomized Rounding

Part I: Maximum Satisfiability (MAXSAT)

Philipp Kindermann

Summer Semester 2020

Given: Boolean variables x_1, \ldots, x_n ,

Given: Boolean variables x_1, \ldots, x_n , clauses C_1, \ldots, C_m

Given: Boolean variables x_1, \ldots, x_n , clauses C_1, \ldots, C_m with weight w_1, \ldots, w_m .

- **Given:** Boolean variables x_1, \ldots, x_n , clauses C_1, \ldots, C_m with weight w_1, \ldots, w_m .
- **Task:** Find an assignment of the variables x_1, \ldots, x_n

- **Given:** Boolean variables x_1, \ldots, x_n , clauses C_1, \ldots, C_m with weight w_1, \ldots, w_m .
- **Task:** Find an assignment of the variables x_1, \ldots, x_n such that the total weight of the *satisfied* clauses is **maximized**.

- **Given:** Boolean variables x_1, \ldots, x_n , clauses C_1, \ldots, C_m with weight w_1, \ldots, w_m .
- **Task:** Find an assignment of the variables x_1, \ldots, x_n such that the total weight of the *satisfied* clauses is **maximized**.
- **Literal:** Variable or negation of variable e.g. x_1 , $\overline{x_1}$

- **Given:** Boolean variables x_1, \ldots, x_n , clauses C_1, \ldots, C_m with weight w_1, \ldots, w_m .
- **Task:** Find an assignment of the variables x_1, \ldots, x_n such that the total weight of the *satisfied* clauses is **maximized**.
- **Literal:** Variable or negation of variable e.g. x_1 , $\overline{x_1}$
- **Clause:** Disjunction of literals e.g. $x_1 \vee \overline{x_2} \vee x_3$

- **Given:** Boolean variables x_1, \ldots, x_n , clauses C_1, \ldots, C_m with weight w_1, \ldots, w_m .
- **Task:** Find an assignment of the variables x_1, \ldots, x_n such that the total weight of the *satisfied* clauses is **maximized**.
- **Literal:** Variable or negation of variable e.g. x_1 , $\overline{x_1}$
- **Clause:** Disjunction of literals e.g. $x_1 \vee \overline{x_2} \vee x_3$
- Length of a clause: Number of literals

- **Given:** Boolean variables x_1, \ldots, x_n , clauses C_1, \ldots, C_m with weight w_1, \ldots, w_m .
- **Task:** Find an assignment of the variables x_1, \ldots, x_n such that the total weight of the *satisfied* clauses is **maximized**.
- **Literal:** Variable or negation of variable e.g. x_1 , $\overline{x_1}$
- **Clause:** Disjunction of literals e.g. $x_1 \vee \overline{x_2} \vee x_3$

Length of a clause: Number of literals

Problem is NP-hard since SATISFIABILITY (SAT) is NP-hard: Is a given propositional formula (in conjunctive normal form) satisfiable?

- **Given:** Boolean variables x_1, \ldots, x_n , clauses C_1, \ldots, C_m with weight w_1, \ldots, w_m .
- **Task:** Find an assignment of the variables x_1, \ldots, x_n such that the total weight of the *satisfied* clauses is **maximized**.
- **Literal:** Variable or negation of variable e.g. x_1 , $\overline{x_1}$
- **Clause:** Disjunction of literals e.g. $x_1 \vee \overline{x_2} \vee x_3$

Length of a clause: Number of literals

Problem is NP-hard since SATISFIABILITY (SAT) is NP-hard: Is a given propositional formula (in conjunctive normal form) satisfiable? E.g. $(x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor \overline{x_3} \lor x_4) \land (x_1 \lor \overline{x_4})$.

Approximation Algorithms

Lecture 11: MAXSAT via Randomized Rounding

Part II: A Simple Randomized Algorithm

Philipp Kindermann

Summer Semester 2020

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected -approximation for MAXSAT.

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be random variable for the truth value of clause C_j .

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be random variable for the truth value of clause C_j .

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be random variable for the truth value of clause C_j .

Let *W* be random variable for the weight of satisfied clauses.

E[W] =

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be random variable for the truth value of clause C_j .

$$E[\mathbf{W}] = E\left[\sum_{j=1}^{m} w_{j} Y_{j}\right] =$$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be random variable for the truth value of clause C_j .

$$E[\mathbf{W}] = E\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j E[Y_j] =$$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be random variable for the truth value of clause C_j .

$$E[\mathbf{W}] = E\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j E[Y_j] = \sum_{j=1}^{m} w_j \Pr[\mathbf{C}_j \text{ satisfied}]$$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be random variable for the truth value of clause C_j .

Let *W* be random variable for the weight of satisfied clauses.

$$E[\mathbf{W}] = E\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j E[Y_j] = \sum_{j=1}^{m} w_j \Pr[\mathbf{C}_j \text{ satisfied}]$$

Let l_j be length of C_j .

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be random variable for the truth value of clause C_j .

Let *W* be random variable for the weight of satisfied clauses.

$$E[\mathbf{W}] = E\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j E[Y_j] = \sum_{j=1}^{m} w_j \Pr[\mathbf{C}_j \text{ satisfied}]$$

Let l_j be length of C_j . $\Rightarrow \Pr[C_j \text{ satisfied}] =$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be random variable for the truth value of clause C_j .

Let *W* be random variable for the weight of satisfied clauses.

$$E[\mathbf{W}] = E\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j E[Y_j] = \sum_{j=1}^{m} w_j \Pr[\mathbf{C}_j \text{ satisfied}]$$

Let l_j be length of C_j . $\Rightarrow \Pr[C_j \text{ satisfied}] = 1 - (1/2)^{l_j} \ge$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be random variable for the truth value of clause C_j .

Let *W* be random variable for the weight of satisfied clauses.

$$E[\mathbf{W}] = E\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j E[Y_j] = \sum_{j=1}^{m} w_j \Pr[\mathbf{C}_j \text{ satisfied}]$$

Let l_j be length of C_j . $\Rightarrow \Pr[C_j \text{ satisfied}] = 1 - (1/2)^{l_j} \ge 1/2$.

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be random variable for the truth value of clause C_j .

Let *W* be random variable for the weight of satisfied clauses.

$$E[\mathbf{W}] = E\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j E[Y_j] = \sum_{j=1}^{m} w_j \Pr[\mathbf{C}_j \text{ satisfied}]$$

Let l_j be length of C_j . $\Rightarrow \Pr[C_j \text{ satisfied}] = 1 - (1/2)^{l_j} \ge 1/2$. Thus, $E[W] \ge$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be random variable for the truth value of clause C_j .

Let *W* be random variable for the weight of satisfied clauses.

$$E[\mathbf{W}] = E\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j E[Y_j] = \sum_{j=1}^{m} w_j \Pr[\mathbf{C}_j \text{ satisfied}]$$

Let l_j be length of C_j . $\Rightarrow \Pr[C_j \text{ satisfied}] = 1 - (1/2)^{l_j} \ge 1/2$. Thus, $E[W] \ge 1/2 \sum_{j=1}^m w_j \ge$

Theorem. Independently setting each variable to 1 (true) with probability 1/2 provides an expected 1/2-approximation for MAXSAT.

Proof.

Let $Y_j \in \{0, 1\}$ be random variable for the truth value of clause C_j .

Let *W* be random variable for the weight of satisfied clauses.

$$E[\mathbf{W}] = E\left[\sum_{j=1}^{m} w_j Y_j\right] = \sum_{j=1}^{m} w_j E[Y_j] = \sum_{j=1}^{m} w_j \Pr[\mathbf{C}_j \text{ satisfied}]$$

Let l_j be length of C_j . \Rightarrow $\Pr[C_j \text{ satisfied}] = 1 - (1/2)^{l_j} \ge 1/2$. Thus, $E[W] \ge 1/2 \sum_{j=1}^m w_j \ge OPT/2$.

Approximation Algorithms

Lecture 11: MAXSAT via Randomized Rounding

Part III: Derandomization by Conditional Expectation

Philipp Kindermann

Summer Semester 2020

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MAXSAT.

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MAXSAT.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MAXSAT.

Proof.

We set x_1 deterministically, but $x_2, ..., x_n$ randomly. Namely: set $x_1 = 1 \Leftrightarrow E[W|x_1 = 1] \ge E[W|x_1 = 0]$.

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MAXSAT.

Proof.

We set x_1 deterministically, but $x_2, ..., x_n$ randomly. Namely: set $x_1 = 1 \Leftrightarrow E[W|x_1 = 1] \ge E[W|x_1 = 0]$. E[W] =

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MAXSAT.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Namely: set $x_1 = 1 \iff E[W|x_1 = 1] \ge E[W|x_1 = 0]$.

 $E[W] = (E[W|x_1 = 0] + E[W|x_1 = 1])/2.$

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MAXSAT.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Namely: set $x_1 = 1 \iff E[W|x_1 = 1] \ge E[W|x_1 = 0]$.

 $E[W] = (E[W|x_1 = 0] + E[W|x_1 = 1])/2.$

[because of original random choice of x_1]

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MAXSAT.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Namely: set $x_1 = 1 \iff E[W|x_1 = 1] \ge E[W|x_1 = 0]$.

 $E[W] = (E[W|x_1 = 0] + E[W|x_1 = 1])/2.$

[because of original random choice of x_1]

If x_1 was set to $b_1 \in \{0, 1\}$,

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MAXSAT.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Namely: set
$$x_1 = 1 \iff E[W|x_1 = 1] \ge E[W|x_1 = 0]$$
.

 $E[W] = (E[W|x_1 = 0] + E[W|x_1 = 1])/2.$

[because of original random choice of x_1]

If x_1 was set to $b_1 \in \{0, 1\}$, then $E[W|x_1 = b_1] \ge$

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MAXSAT.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Namely: set $x_1 = 1 \iff E[W|x_1 = 1] \ge E[W|x_1 = 0]$.

 $E[W] = (E[W|x_1 = 0] + E[W|x_1 = 1])/2.$

[because of original random choice of x_1]

If x_1 was set to $b_1 \in \{0, 1\}$, then $E[W|x_1 = b_1] \ge E[W] \ge$

Theorem. The previous algorithm can be derandomized, i.e., there is a deterministic 1/2-approximation algorithm for MAXSAT.

Proof.

We set x_1 deterministically, but x_2, \ldots, x_n randomly.

Namely: set $x_1 = 1 \iff E[W|x_1 = 1] \ge E[W|x_1 = 0]$.

 $E[W] = (E[W|x_1 = 0] + E[W|x_1 = 1])/2.$

[because of original random choice of x_1]

If x_1 was set to $b_1 \in \{0, 1\}$, then $E[W|x_1 = b_1] \ge E[W] \ge OPT/2$.

Assume (by induction) that we have set x_1, \ldots, x_i to b_1, \ldots, b_i such that

Assume (by induction) that we have set x_1, \ldots, x_i to b_1, \ldots, b_i such that

$$E[W|x_1 = b_1, \ldots, x_i = b_i] \ge OPT/2$$

Assume (by induction) that we have set x_1, \ldots, x_i to b_1, \ldots, b_i such that

$$E[W|x_1 = b_1, \ldots, x_i = b_i] \ge OPT/2$$

Assume (by induction) that we have set x_1, \ldots, x_i to b_1, \ldots, b_i such that

$$E[W|x_1 = b_1, ..., x_i = b_i] \ge OPT/2$$

$$(E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 0]$$

+ $E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 1])/2$

Assume (by induction) that we have set x_1, \ldots, x_i to b_1, \ldots, b_i such that

$$E[W|x_1 = b_1, ..., x_i = b_i] \ge OPT/2$$

$$(E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 0] +E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 1])/2 = E[W|x_1 = b_1, \dots, x_i = b_i] \ge OPT/2$$

Assume (by induction) that we have set x_1, \ldots, x_i to b_1, \ldots, b_i such that

$$E[W|x_1 = b_1, ..., x_i = b_i] \ge OPT/2$$

Then (similar to the base case):

$$(E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 0] +E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 1])/2 = E[W|x_1 = b_1, \dots, x_i = b_i] \ge OPT/2$$

So we set $x_{i+1} = 1 \Leftrightarrow$

Assume (by induction) that we have set x_1, \ldots, x_i to b_1, \ldots, b_i such that

$$E[W|x_1 = b_1, ..., x_i = b_i] \ge OPT/2$$

$$(E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 0] +E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 1])/2 = E[W|x_1 = b_1, \dots, x_i = b_i] \ge OPT/2$$

So we set
$$x_{i+1} = 1 \Leftrightarrow$$

 $E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 1]$
 $\ge E[W|x_1 = b_1, \dots, x_i = b_i, x_{i+1} = 0]$

Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently!

Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_1 = b_1, \ldots, x_i = b_i$ and a clause C_j .

Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_1 = b_1, ..., x_i = b_i$ and a clause C_j .

If C_j is already satisfied, then it contributes exactly to $E[W|x_1 = b_1, ..., x_i = b_i].$

Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_1 = b_1, \ldots, x_i = b_i$ and a clause C_j .

If C_j is already satisfied, then it contributes exactly w_j to $E[W|x_1 = b_1, ..., x_i = b_i]$.

Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_1 = b_1, ..., x_i = b_i$ and a clause C_j .

If C_j is already satisfied, then it contributes exactly w_j to $E[W|x_1 = b_1, ..., x_i = b_i]$.

If C_j is not yet satisfied and contains k unassigned variables, then it contributes exactly to $E[W|x_1 = b_1, \dots, x_i = b_i].$

Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_1 = b_1, ..., x_i = b_i$ and a clause C_j .

If C_j is already satisfied, then it contributes exactly w_j to $E[W|x_1 = b_1, ..., x_i = b_i]$.

If C_j is not yet satisfied and contains k unassigned variables, then it contributes exactly $w_j(1 - (1/2)^k)$ to $E[W|x_1 = b_1, \dots, x_i = b_i].$

Thus, the algorithm can be derandomized if the conditional expectation can be computed efficiently!

Consider a partial assignment $x_1 = b_1, ..., x_i = b_i$ and a clause C_j .

If C_j is already satisfied, then it contributes exactly w_j to $E[W|x_1 = b_1, ..., x_i = b_i]$.

If C_j is not yet satisfied and contains k unassigned variables, then it contributes exactly $w_j(1 - (1/2)^k)$ to $E[W|x_1 = b_1, ..., x_i = b_i].$

The conditional expectation is simply the sum of the contributions from each clause.

Standard procedure with which many randomized algorithms can be derandomized.

Standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

Standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the expected value.

Standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the expected value.

The algorithm iteratively sets the variables and greedily decides for the locally best assignment.

Standard procedure with which many randomized algorithms can be derandomized.

Requirement: respective conditional probabilities can be appropriately estimated for each random decision.

The algorithm simply chooses the best option at each step.

Quality of the obtained solution is then at least as high as the expected value.

The algorithm iteratively sets the variables and greedily decides for the locally best assignment.

Global optimization?

Approximation Algorithms

Lecture 11: MAXSAT via Randomized Rounding

Part IV: Randomized Rounding

Philipp Kindermann

Summer Semester 2020

maximize

where
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$
 for $j = 1, ..., m$.

maximize

$$y_i \in \{0, 1\},$$
 for $i = 1, ..., n$

where
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$
 for $j = 1, ..., m$.

maximize

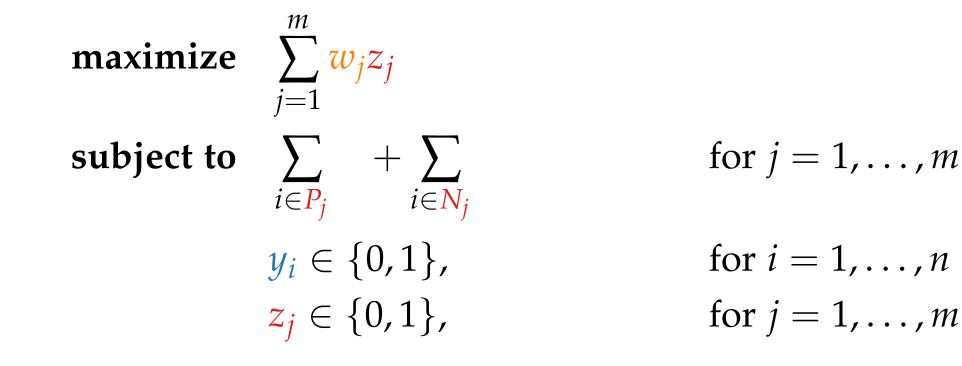
$$y_i \in \{0, 1\},$$
 for $i = 1, ..., n$
 $z_j \in \{0, 1\},$ for $j = 1, ..., m$

where
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$
 for $j = 1, ..., m$.

maximize $\sum_{j=1}^{m} w_j z_j$

$$y_i \in \{0, 1\},$$
 for $i = 1, ..., n$
 $z_j \in \{0, 1\},$ for $j = 1, ..., m$

where
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$
 for $j = 1, ..., m$.



where
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$
 for $j = 1, ..., m$.

maximize
$$\sum_{j=1}^{m} w_j z_j$$
subject to
$$\sum_{i \in P_j} y_i + \sum_{i \in N_j}$$
for $j = 1, \dots, m$ $y_i \in \{0, 1\},$ for $i = 1, \dots, n$ $z_j \in \{0, 1\},$ for $j = 1, \dots, m$

where
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$
 for $j = 1, ..., m$.

$$\begin{array}{ll} \textbf{maximize} & \sum_{j=1}^{m} w_{j} z_{j} \\ \textbf{subject to} & \sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) & \text{for } j = 1, \dots, m \\ & y_{i} \in \{0, 1\}, & \text{for } i = 1, \dots, n \\ & z_{j} \in \{0, 1\}, & \text{for } j = 1, \dots, m \end{array}$$

where
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$
 for $j = 1, ..., m$.

$$\begin{array}{ll} \textbf{maximize} & \sum_{j=1}^{m} w_{j} z_{j} \\ \textbf{subject to} & \sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) \geq & \text{for } j = 1, \dots, m \\ & y_{i} \in \{0, 1\}, & \text{for } i = 1, \dots, n \\ & z_{j} \in \{0, 1\}, & \text{for } j = 1, \dots, m \end{array}$$

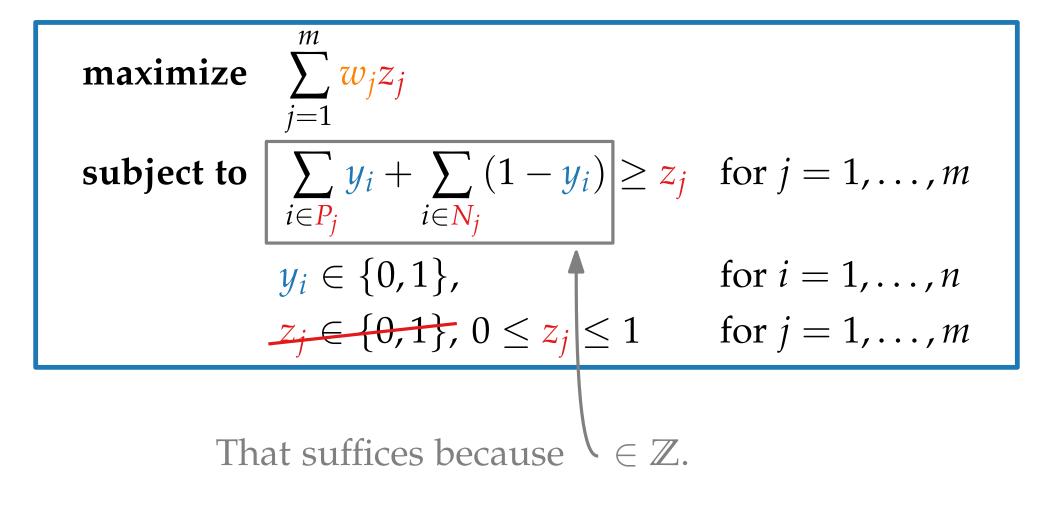
where
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$
 for $j = 1, ..., m$.

$$\begin{array}{ll} \textbf{maximize} & \sum_{j=1}^{m} w_{j} z_{j} \\ \textbf{subject to} & \sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) \geq z_{j} & \text{for } j = 1, \dots, m \\ & y_{i} \in \{0, 1\}, & \text{for } i = 1, \dots, n \\ & z_{j} \in \{0, 1\}, & \text{for } j = 1, \dots, m \end{array}$$

where
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$
 for $j = 1, ..., m$.

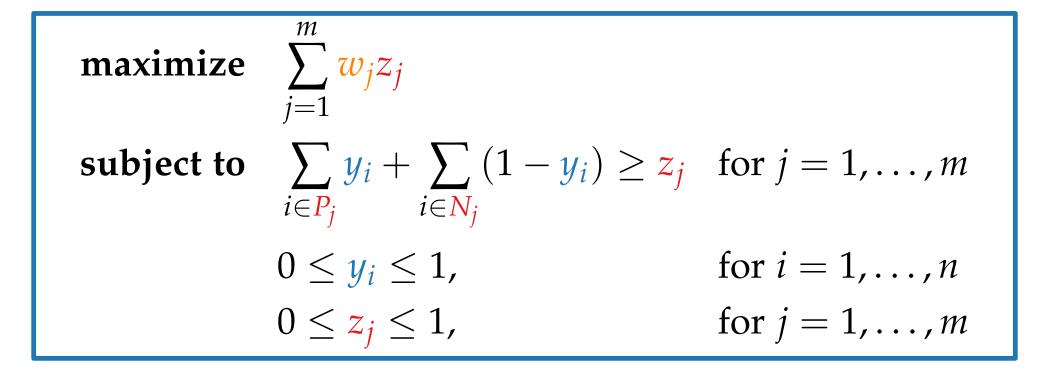
$$\begin{array}{ll} \textbf{maximize} & \sum_{j=1}^{m} w_{j} z_{j} \\ \textbf{subject to} & \sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) \geq z_{j} & \text{for } j = 1, \dots, m \\ & y_{i} \in \{0, 1\}, & \text{for } i = 1, \dots, n \\ & z_{j} \in \{0, 1\}, & \text{for } j = 1, \dots, m \end{array}$$

where
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$
 for $j = 1, ..., m$.



where
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$
 for $j = 1, ..., m$.

... and its Relaxation



where
$$C_j = \bigvee_{i \in P_j} x_i \lor \bigvee_{i \in N_j} \bar{x}_i$$
 for $j = 1, ..., m$.

Randomized Rounding

Theorem. Let (y^*, z^*) be an optimal solution to the LP-relaxation.

Theorem. Let (y^*, z^*) be an optimal solution to the LP-relaxation. Independently setting each variable x_i to 1

Theorem. Let (y^*, z^*) be an optimal solution to the LP-relaxation. Independently setting each variable x_i to 1 with probability y_i^* provides a ()-approximation for MAXSAT.

Theorem. Let (y^*, z^*) be an optimal solution to the LP-relaxation. Independently setting each variable x_i to 1 with probability y_i^* provides a (1 - 1/e)-approximation for MAXSAT.

Theorem. Let (y^*, z^*) be an optimal solution to the LP-relaxation. Independently setting each variable x_i to 1 with probability y_i^* provides a (1 - 1/e)-approximation for MAXSAT.

 ≈ 0.63

Approximation Algorithms

Lecture 11: MAXSAT via Randomized Rounding

Part V: Randomized Rounding – Proof

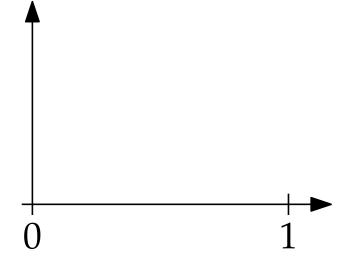
Philipp Kindermann

Summer Semester 2020

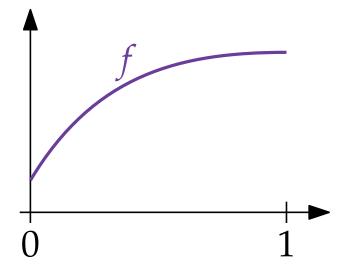
Let f be function that is concave on [0, 1]

Let *f* be function that is concave on [0, 1](i.e. $f''(x) \le 0$ on [0, 1])

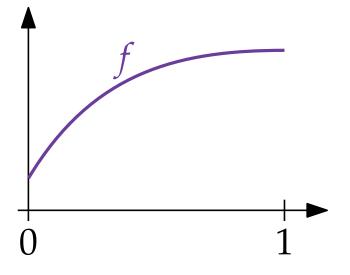
Let *f* be function that is concave on [0,1](i.e. $f''(x) \le 0$ on [0,1])



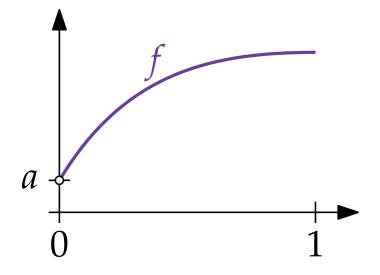
Let *f* be function that is concave on [0,1](i.e. $f''(x) \le 0$ on [0,1])



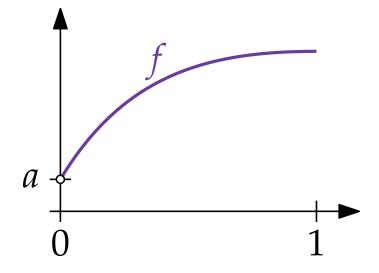
Let *f* be function that is concave on [0,1](i.e. $f''(x) \le 0$ on [0,1]) with f(0) = a



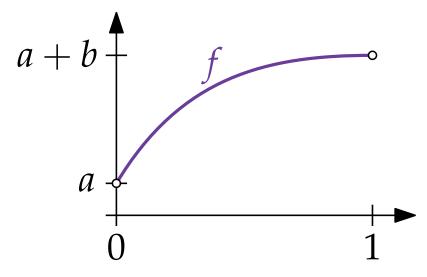
Let *f* be function that is concave on [0,1](i.e. $f''(x) \le 0$ on [0,1]) with f(0) = a



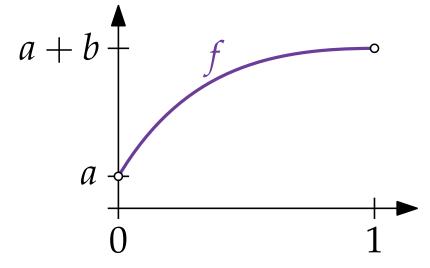
Let *f* be function that is concave on [0,1](i.e. $f''(x) \le 0$ on [0,1]) with f(0) = a and f(1) = a + b



Let *f* be function that is concave on [0,1](i.e. $f''(x) \le 0$ on [0,1]) with f(0) = a and f(1) = a + b

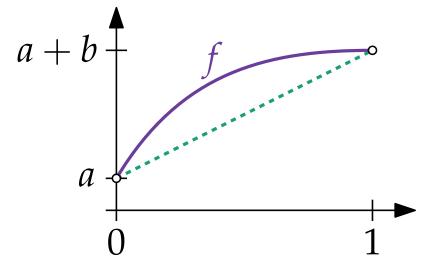


Let *f* be function that is concave on [0,1](i.e. $f''(x) \le 0$ on [0,1]) with f(0) = a and f(1) = a + b $\Rightarrow f(x) \ge bx + a$ for $x \in [0,1]$.



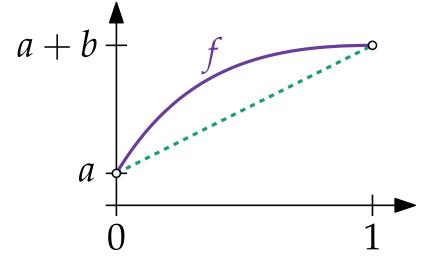
Let *f* be function that is concave on [0,1](i.e. $f''(x) \le 0$ on [0,1]) with f(0) = a and f(1) = a + b

 $\Rightarrow f(x) \ge bx + a$ for $x \in [0, 1]$.



Let *f* be function that is concave on [0,1](i.e. $f''(x) \le 0$ on [0,1]) with f(0) = a and f(1) = a + b

 $\Rightarrow f(x) \ge bx + a$ for $x \in [0, 1]$.



Arithmetic-Geometric Mean Inequality (AGMI):

Let *f* be function that is concave on [0,1](i.e. $f''(x) \le 0$ on [0,1]) with f(0) = a and f(1) = a + b

 $\Rightarrow f(x) \ge bx + a$ for $x \in [0, 1]$.

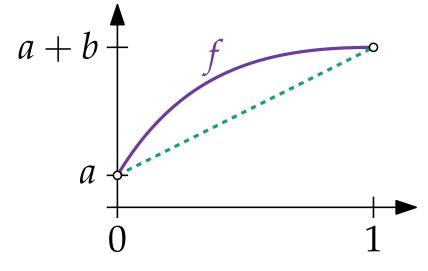


Arithmetic-Geometric Mean Inequality (AGMI):

For all non-negative numbers a_1, \ldots, a_k :

Let *f* be function that is concave on [0,1](i.e. $f''(x) \le 0$ on [0,1]) with f(0) = a and f(1) = a + b

 $\Rightarrow f(x) \ge bx + a$ for $x \in [0, 1]$.



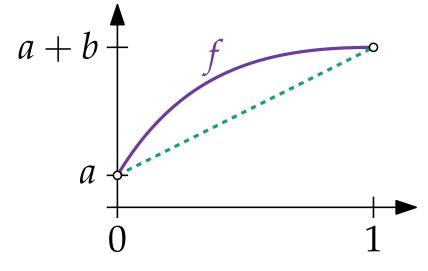
Arithmetic-Geometric Mean Inequality (AGMI):

For all non-negative numbers a_1, \ldots, a_k :

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le$$

Let *f* be function that is concave on [0,1](i.e. $f''(x) \le 0$ on [0,1]) with f(0) = a and f(1) = a + b

 $\Rightarrow f(x) \ge bx + a$ for $x \in [0, 1]$.



Arithmetic-Geometric Mean Inequality (AGMI):

For all non-negative numbers a_1, \ldots, a_k :

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \left(\sum_{i=1}^k a_i\right)$$

Consider a fixed clause C_j of length l_j . Then we have: $Pr[C_j \text{ not sat.}] =$

$$\Pr[C_j \text{ not sat.}] = \prod_{i \in P_j} (1 - y_i^*)$$

Consider a fixed clause C_i of length l_i . Then we have:

$$\Pr[C_j \text{ not sat.}] = \prod_{i \in P_j} (1 - y_i^*) \prod_{i \in N_j} y_i^*$$

 \leq

$$\Pr[C_{j} \text{ not sat.}] = \prod_{i \in P_{j}} (1 - y_{i}^{*}) \prod_{i \in N_{j}} y_{i}^{*}$$
$$\left(\prod_{i=1}^{k} a_{i}\right)^{1/k} \leq \frac{1}{k} \left(\sum_{i=1}^{k} a_{i}\right)$$

$$AGMI$$

$$\Pr[C_{j} \text{ not sat.}] = \prod_{i \in P_{j}} (1 - y_{i}^{*}) \prod_{i \in N_{j}} y_{i}^{*}$$

$$\left(\prod_{i=1}^{k} a_{i}\right)^{1/k} \leq \frac{1}{k} \left(\sum_{i=1}^{k} a_{i}\right)$$

$$AGMI \qquad \leq \left[\frac{1}{l_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}}$$

$$\Pr[C_{j} \text{ not sat.}] = \prod_{i \in P_{j}} (1 - y_{i}^{*}) \prod_{i \in N_{j}} y_{i}^{*}$$

$$\underbrace{\left(\prod_{i=1}^{k} a_{i}\right)^{1/k} \leq \frac{1}{k} \left(\sum_{i=1}^{k} a_{i}\right)}_{\text{AGMI}} \leq \left[\frac{1}{l_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}}$$

$$= \left[1 - \frac{1}{l_{j}} \left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*})\right)\right]^{l_{j}}$$

$$\Pr[C_{j} \text{ not sat.}] = \prod_{i \in P_{j}} (1 - y_{i}^{*}) \prod_{i \in N_{j}} y_{i}^{*}$$

$$\left(\prod_{i=1}^{k} a_{i}\right)^{1/k} \leq \frac{1}{k} \left(\sum_{i=1}^{k} a_{i}\right)$$

$$AGMI \qquad \leq \left[\frac{1}{l_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}}$$

$$= \left[1 - \frac{1}{l_{j}} \left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*})\right)\right]^{l_{j}}$$

$$\geq$$

$$\Pr[C_{j} \text{ not sat.}] = \prod_{i \in P_{j}} (1 - y_{i}^{*}) \prod_{i \in N_{j}} y_{i}^{*}$$

$$\left(\prod_{i=1}^{k} a_{i}\right)^{1/k} \leq \frac{1}{k} \left(\sum_{i=1}^{k} a_{i}\right)$$

$$AGMI \qquad \leq \left[\frac{1}{l_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}}$$

$$= \left[1 - \frac{1}{l_{j}} \left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*})\right)\right]^{l_{j}}$$

$$\geq \text{ by LP constraints}$$

$$\begin{aligned} \Pr[C_{j} \text{ not sat.}] &= \prod_{i \in P_{j}} (1 - y_{i}^{*}) \prod_{i \in N_{j}} y_{i}^{*} \\ \underbrace{\left(\prod_{i=1}^{k} a_{i}\right)^{1/k} \leq \frac{1}{k} \left(\sum_{i=1}^{k} a_{i}\right)}_{\text{AGMI}} & = \left[\frac{1}{l_{j}} \left(\sum_{i \in P_{j}} (1 - y_{i}^{*}) + \sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}} \\ &= \left[1 - \frac{1}{l_{j}} \left(\sum_{i \in P_{j}} y_{i}^{*} + \sum_{i \in N_{j}} (1 - y_{i}^{*})\right)\right]^{l_{j}} \\ &\leq \left(1 - \frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}} & \geq z_{j}^{*} \text{ by LP constraints} \end{aligned}$$

The function
$$f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$$
 is concave on [0, 1].

The function
$$f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$$
 is concave on [0, 1].
Thus

 $\Pr[C_i \text{ satisfied}] \geq$

The function
$$f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$$
 is concave on [0, 1].
Thus

 $\Pr[C_j \text{ satisfied}] \ge f(z_j^*) \ge$

The function $f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$ is concave on [0,1]. Thus

 $\Pr[C_j \text{ satisfied}] \ge f(z_j^*) \ge f(1) \cdot z_j^* + f(0)$

 \geq

The function
$$f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$$
 is concave on [0, 1].
Thus

$$\Pr[C_{j} \text{ satisfied}] \ge f(z_{j}^{*}) \ge f(1) \cdot z_{j}^{*} + f(0)$$
$$\ge \left[1 - \left(1 - \frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*}$$

 \geq

The function
$$f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$$
 is concave on [0, 1].
Thus

$$\Pr[C_{j} \text{ satisfied}] \ge f(z_{j}^{*}) \ge f(1) \cdot z_{j}^{*} + f(0)$$
$$\ge \left[1 - \left(1 - \frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*}$$

$$\geq \\ \uparrow \\ 1+x \leq e^x$$

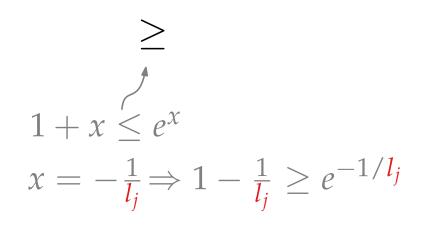
The function
$$f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$$
 is concave on [0, 1].
Thus

$$\Pr[C_{j} \text{ satisfied}] \ge f(z_{j}^{*}) \ge f(1) \cdot z_{j}^{*} + f(0)$$
$$\ge \left[1 - \left(1 - \frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*}$$

$$\geq \sum_{\substack{i=1\\i \\ x = -\frac{1}{l_i}}}$$

The function
$$f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$$
 is concave on [0, 1].
Thus

$$\Pr[C_{j} \text{ satisfied}] \ge f(z_{j}^{*}) \ge f(1) \cdot z_{j}^{*} + f(0)$$
$$\ge \left[1 - \left(1 - \frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*}$$



The function
$$f(z_j^*) = 1 - \left(1 - \frac{z_j^*}{l_j}\right)^{l_j}$$
 is concave on [0, 1].
Thus

$$\Pr[C_{j} \text{ satisfied}] \ge f(z_{j}^{*}) \ge f(1) \cdot z_{j}^{*} + f(0)$$
$$\ge \left[1 - \left(1 - \frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*}$$
$$\ge \left(1 - \frac{1}{e}\right) z_{j}^{*}$$
$$1 + x \le e^{x}$$
$$x = -\frac{1}{l_{j}} \Rightarrow 1 - \frac{1}{l_{j}} \ge e^{-1/l_{j}}$$

$$E[\mathbf{W}] = \sum_{j=1}^{m} \Pr[\mathbf{C}_{j} \text{ satisfied}] \cdot \mathbf{w}_{j}$$
$$>$$

=

$$E[\mathbf{W}] = \sum_{j=1}^{m} \Pr[\mathbf{C}_{j} \text{ satisfied}] \cdot \mathbf{w}_{j}$$
$$\geq \left(1 - \frac{1}{e}\right) \sum_{j=1}^{m} \mathbf{w}_{j} \mathbf{z}_{j}^{*}$$

=

$$E[W] = \sum_{j=1}^{m} \Pr[C_j \text{ satisfied}] \cdot w_j$$
$$\geq \left(1 - \frac{1}{e}\right) \left[\sum_{j=1}^{m} w_j z_j^*\right]^{\text{(LP target function)}}$$

Therefore

$$E[\mathbf{W}] = \sum_{j=1}^{m} \Pr[\mathbf{C}_{j} \text{ satisfied}] \cdot \mathbf{w}_{j}$$
$$\geq \left(1 - \frac{1}{e}\right) \left[\sum_{j=1}^{m} \mathbf{w}_{j} \mathbf{z}_{j}^{*}\right]^{\text{(LP target function)}}$$
$$= \left(1 - \frac{1}{e}\right) \operatorname{OPT}_{\mathrm{LP}}$$

 \geq

$$E[\mathbf{W}] = \sum_{j=1}^{m} \Pr[\mathbf{C}_{j} \text{ satisfied}] \cdot \mathbf{w}_{j}$$

$$\geq \left(1 - \frac{1}{e}\right) \sum_{j=1}^{m} \mathbf{w}_{j} z_{j}^{*} \qquad \text{(LP target function)}$$

$$= \left(1 - \frac{1}{e}\right) \operatorname{OPT}_{\mathrm{LP}}$$

$$\geq \left(1 - \frac{1}{e}\right) \operatorname{OPT}$$

Therefore

$$E[\mathbf{W}] = \sum_{j=1}^{m} \Pr[\mathbf{C}_{j} \text{ satisfied}] \cdot w_{j}$$

$$\geq \left(1 - \frac{1}{e}\right) \sum_{j=1}^{m} w_{j} z_{j}^{*} \qquad \text{(LP target function)}$$

$$= \left(1 - \frac{1}{e}\right) \operatorname{OPT}_{\mathrm{LP}}$$

$$\geq \left(1 - \frac{1}{e}\right) \operatorname{OPT}_{\mathrm{IP}}$$

Theorem. The previous algorithm can be derandomized by the method of conditional expectation.

Approximation Algorithms

Lecture 11: MAXSAT via Randomized Rounding

Part VI: Combining the Algorithms

Philipp Kindermann

Summer Semester 2020

Theorem. The better solution among the randomized algorithm and the randomized LP-rounding algorithm provides a -approximation for MAxSAT.

Theorem. The better solution among the randomized algorithm and the randomized LP-rounding algorithm provides a 3/4-approximation for MAxSAT.

Theorem. The better solution among the randomized algorithm and the randomized LP-rounding algorithm provides a 3/4-approximation for MAXSAT.

Proof.

We use another probabilistic argument. With probability 1/2 choose the solution of the first algorithm, otherwise the solution of the second algorithm.

Theorem. The better solution among the randomized algorithm and the randomized LP-rounding algorithm provides a 3/4-approximation for MAXSAT.

Proof.

We use another probabilistic argument. With probability 1/2 choose the solution of the first algorithm, otherwise the solution of the second algorithm.

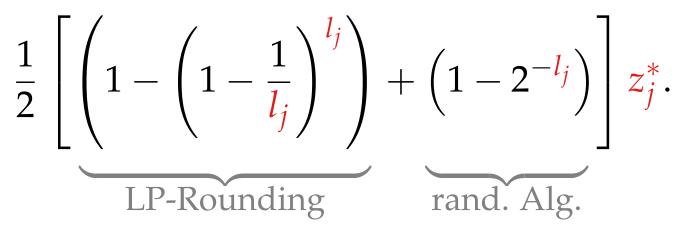
The better solution is at least as good as the expectation of the above algorithm.

> 1 2

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) z_j^* \right]$$
LP-Rounding

.

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j} \right)^{l_j} \right) z_j^* + \left(1 - 2^{-l_j} \right) \right]$$
LP-Rounding
The second s



$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j}\right)^{l_j} \right) + \left(1 - 2^{-l_j}\right) \right] z_j^*.$$

LP-Rounding
We claim that this is at least $3/4 \cdot z_j^*.$

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j}\right)^{l_j} \right) + \left(1 - 2^{-l_j}\right) \right] z_j^*$$

$$\underbrace{\text{LP-Rounding}}_{\text{We claim that this is at least } 3/4 \cdot z_j^*.$$

(The rest follows similarly to the previous two Theorems by the linearity of expectation).

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j}\right)^{l_j} \right) + \left(1 - 2^{-l_j}\right) \right] z_j^*$$

LP-Rounding rand. Alg.
We claim that this is at least $3/4 \cdot z_j^*$.

(The rest follows similarly to the previous two Theorems by the linearity of expectation).

For $l_j = 1, 2$, a simple calculation gives exactly $3/4 \cdot z_j^*$.

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j}\right)^{l_j} \right) + \left(1 - 2^{-l_j}\right) \right] z_j^*.$$
LP-Rounding Trand. Alg.
We claim that this is at least $3/4 \cdot z_j^*.$

(The rest follows similarly to the previous two Theorems by the linearity of expectation).

For $l_j = 1, 2$, a simple calculation gives exactly $3/4 \cdot z_j^*$.

For $l_j \ge 3$, $1 - (1 - 1/l_j)^{l_j} \ge (1 - 1/e)$ and $1 - 2^{-l_j} \ge \frac{7}{8}$.

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j}\right)^{l_j} \right) + \left(1 - 2^{-l_j}\right) \right] z_j^*.$$

LP-Rounding rand. Alg.
We claim that this is at least $3/4 \cdot z_j^*$.

(The rest follows similarly to the previous two Theorems by the linearity of expectation).

For $l_j = 1, 2$, a simple calculation gives exactly $3/4 \cdot z_j^*$.

For $l_j \ge 3$, $1 - (1 - 1/l_j)^{l_j} \ge (1 - 1/e)$ and $1 - 2^{-l_j} \ge \frac{7}{8}$. Thus, we have at least:

$$\frac{1}{2}\left[\left(1-\frac{1}{e}\right)+\frac{7}{8}\right]z_{j}^{*}\approx$$

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j}\right)^{l_j} \right) + \left(1 - 2^{-l_j}\right) \right] z_j^*.$$

LP-Rounding rand. Alg.
We claim that this is at least $3/4 \cdot z_j^*$.

(The rest follows similarly to the previous two Theorems by the linearity of expectation).

For $l_j = 1, 2$, a simple calculation gives exactly $3/4 \cdot z_i^*$.

For $l_j \ge 3$, $1 - (1 - 1/l_j)^{l_j} \ge (1 - 1/e)$ and $1 - 2^{-l_j} \ge \frac{7}{8}$. Thus, we have at least:

$$\frac{1}{2}\left[\left(1-\frac{1}{e}\right)+\frac{7}{8}\right]z_j^*\approx 0.753z_j^*$$

$$\frac{1}{2} \left[\left(1 - \left(1 - \frac{1}{l_j}\right)^{l_j} \right) + \left(1 - 2^{-l_j}\right) \right] z_j^*.$$

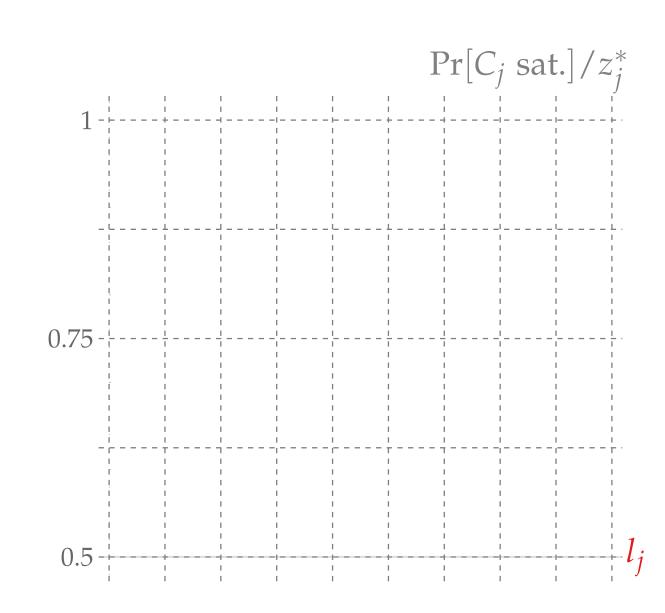
LP-Rounding rand. Alg.
We claim that this is at least $3/4 \cdot z_j^*.$

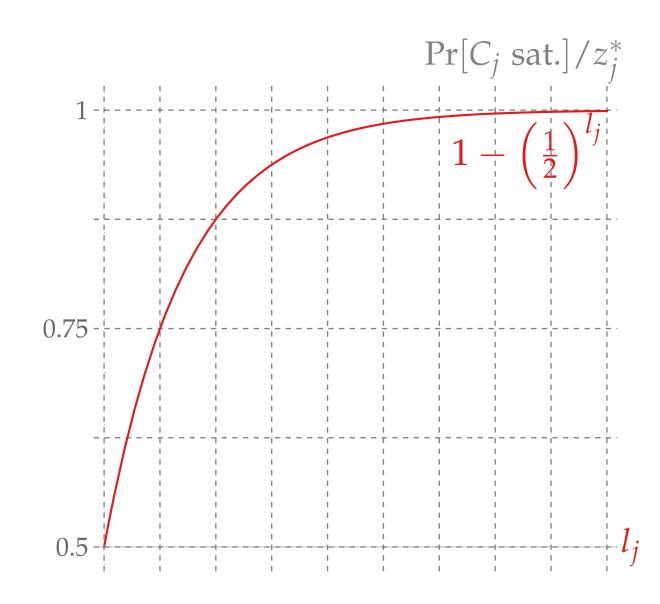
(The rest follows similarly to the previous two Theorems by the linearity of expectation).

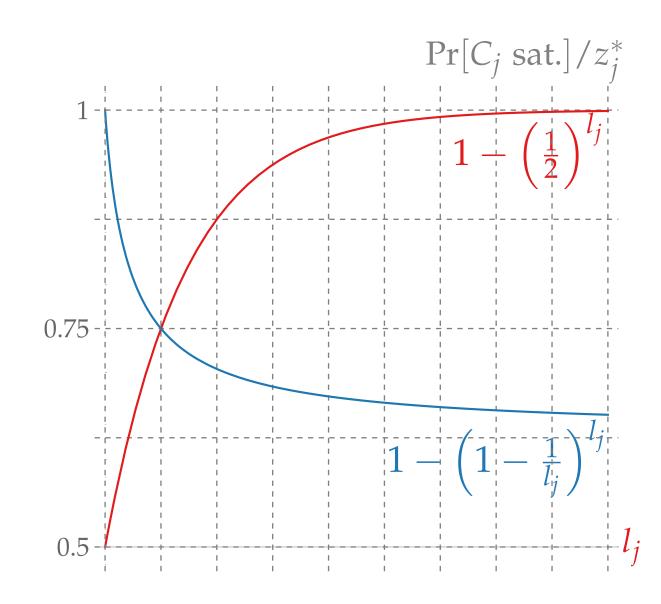
For $l_j = 1, 2$, a simple calculation gives exactly $3/4 \cdot z_j^*$.

For $l_j \ge 3$, $1 - (1 - 1/l_j)^{l_j} \ge (1 - 1/e)$ and $1 - 2^{-l_j} \ge \frac{7}{8}$. Thus, we have at least:

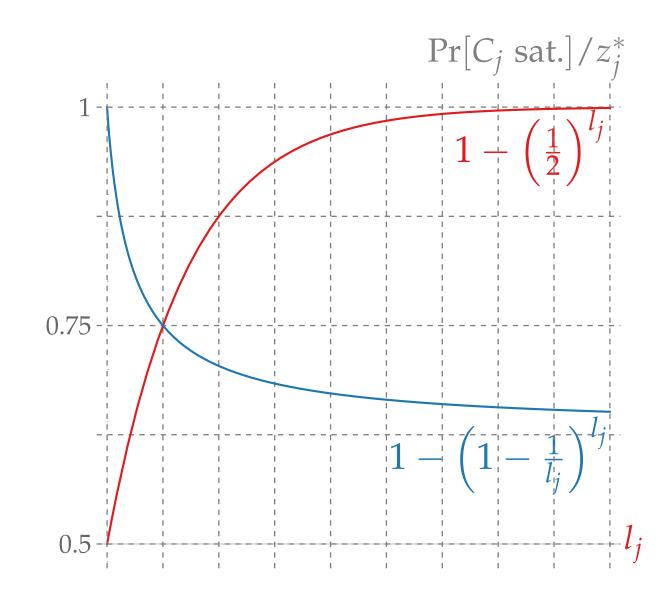
$$\frac{1}{2}\left[\left(1-\frac{1}{e}\right)+\frac{7}{8}\right]z_j^*\approx 0.753z_j^*\geq \frac{3}{4}z_j^*$$



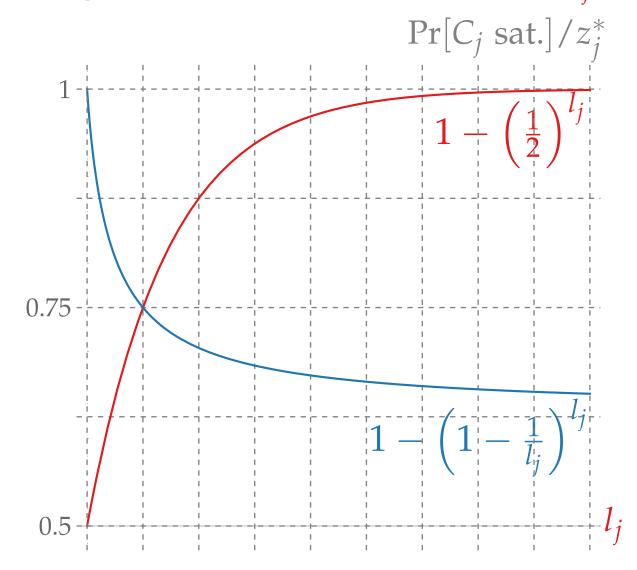




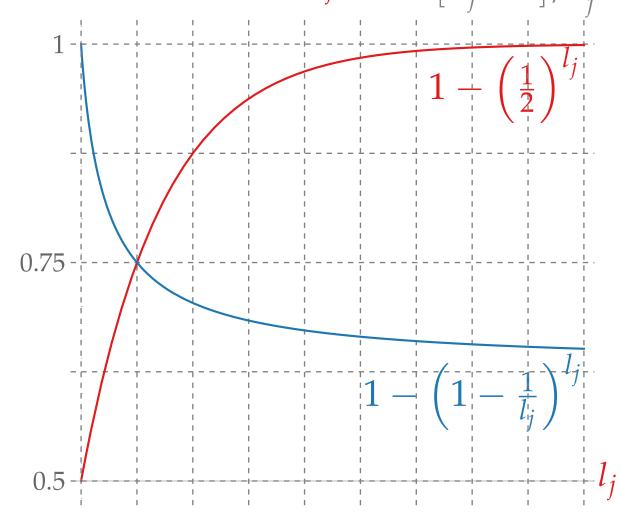
– Randomized alg. is better for large values of l_i .



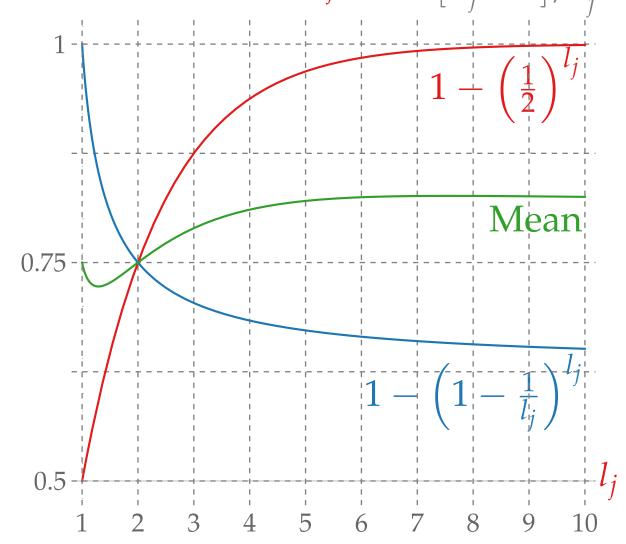
- Randomized alg. is better for large values of l_i .
- Randomized LP-rounding is better for small values of l_i



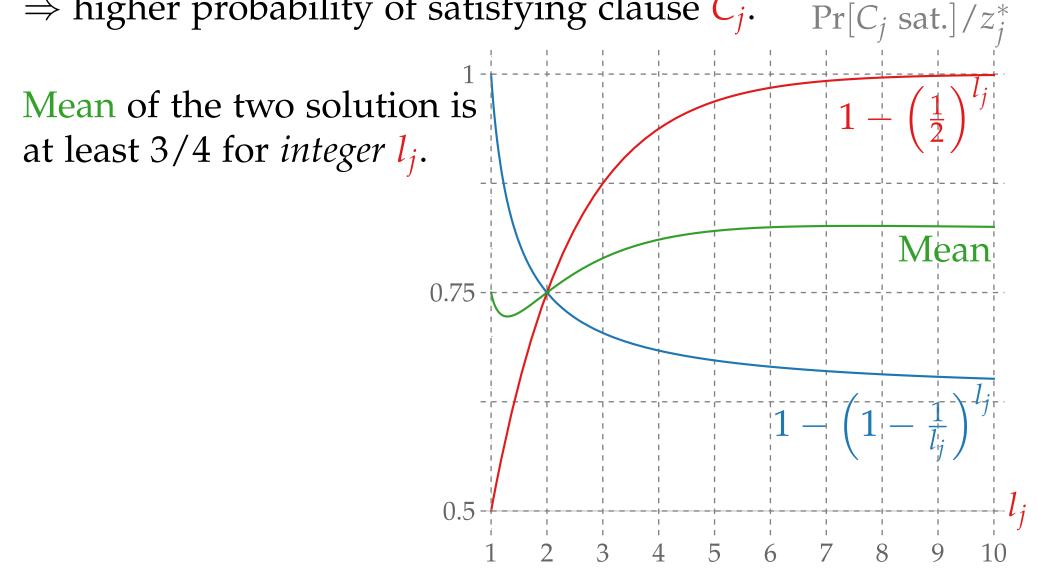
- Randomized alg. is better for large values of l_i .
- Randomized LP-rounding is better for small values of l_i
- \Rightarrow higher probability of satisfying clause C_j . $\Pr[C_j \text{ sat.}]/z_i^*$



- Randomized alg. is better for large values of l_i .
- Randomized LP-rounding is better for small values of l_i
- \Rightarrow higher probability of satisfying clause C_j . $\Pr[C_j \text{ sat.}]/z_i^*$



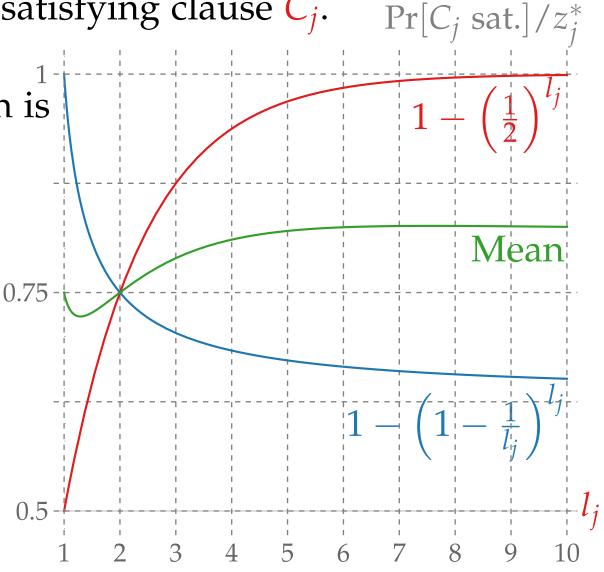
- Randomized alg. is better for large values of l_i .
- Randomized LP-rounding is better for small values of l_i
- \Rightarrow higher probability of satisfying clause C_i .



- Randomized alg. is better for large values of l_i .
- Randomized LP-rounding is better for small values of l_i
- \Rightarrow higher probability of satisfying clause C_j .

Mean of the two solution is at least 3/4 for *integer* l_i .

Maximum is at least as large as the mean.



- Randomized alg. is better for large values of l_i .
- Randomized LP-rounding is better for small values of l_i
- \Rightarrow higher probability of satisfying clause C_i .

Mean of the two solution is at least 3/4 for *integer* l_j .

Maximum is at least as large as the mean.

This algorithm can also be derandomized by conditional expectation.

