Approximation Algorithms

Lecture 10: An Approximation Scheme for EUCLIDEANTSP

Part I: TravelingSalesmanProblem

Philipp Kindermann

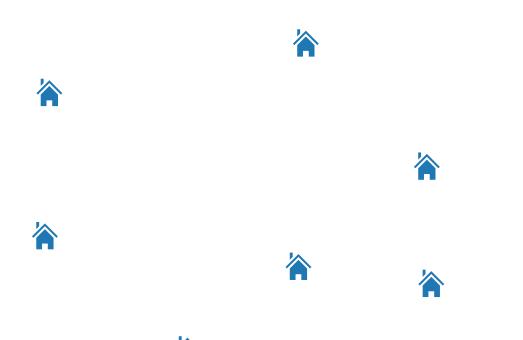
Summer Semester 2020

Question: What's the fastest way to deliver all parcels to their destination?

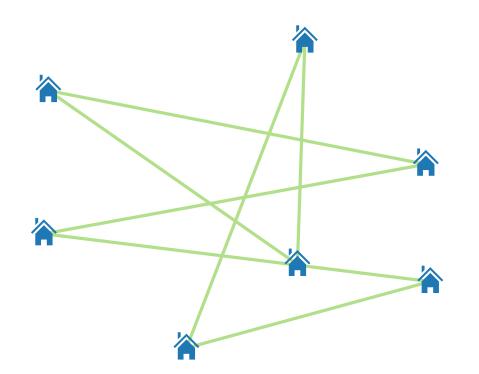
Question: What's the fastest way to deliver all parcels to their destination?

2 - 2

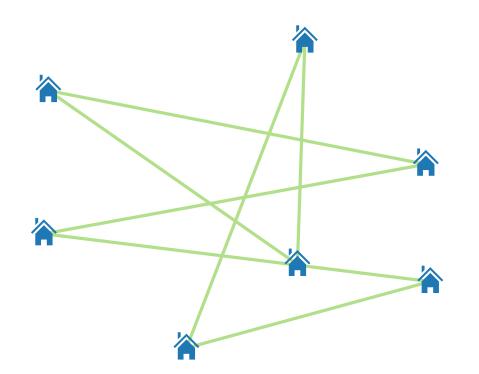
Given: A set of *n* houses (points) in \mathbb{R}^2 .



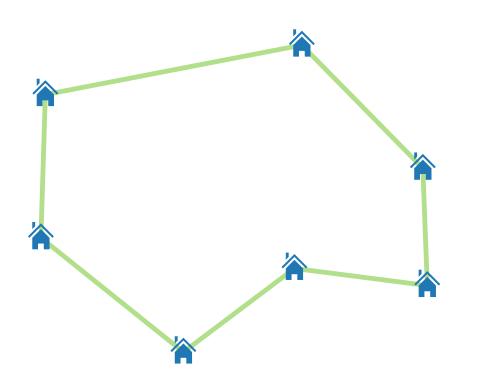
- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task:Find a tour (Hamiltonian cycle)



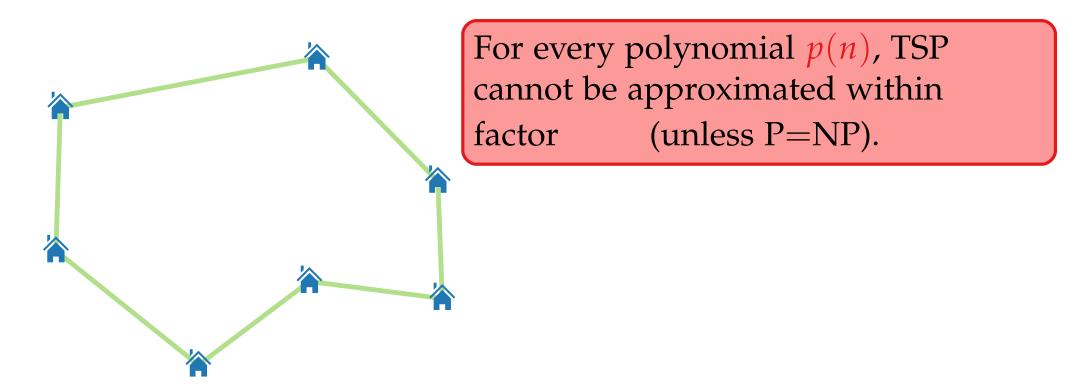
- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given:** A set of *n* houses (points) in \mathbb{R}^2 .
- Task:Find a tour (Hamiltonian cycle)



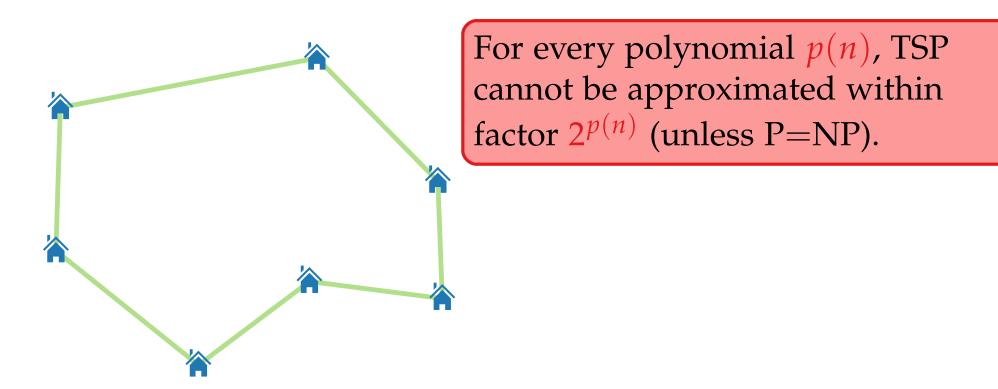
- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given:** A set of *n* houses (points) in \mathbb{R}^2 .
- Task:Find a tour (Hamiltonian cycle) of min. length.



- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task:Find a tour (Hamiltonian cycle) of min. length.

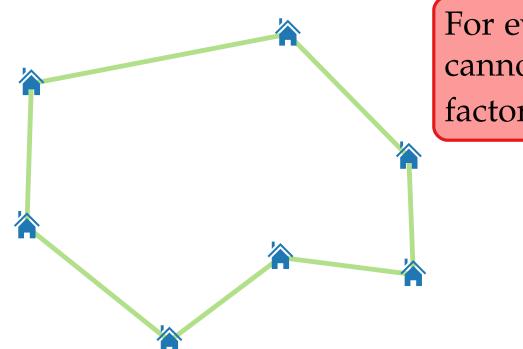


- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task:Find a tour (Hamiltonian cycle) of min. length.



- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task: Find a tour (Hamiltonian cycle) of min. length.

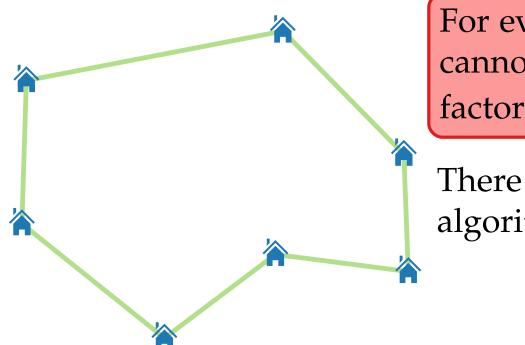
Distance between two points?



For every polynomial p(n), TSP cannot be approximated within factor $2^{p(n)}$ (unless P=NP).

- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task: Find a tour (Hamiltonian cycle) of min. length.

Distance between two points?

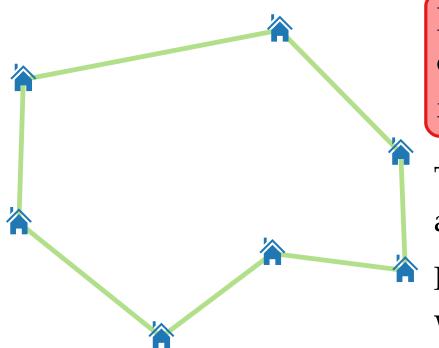


For every polynomial p(n), TSP cannot be approximated within factor $2^{p(n)}$ (unless P=NP).

There is a 3/2-approximation algorithm for METRICTSP.

- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task:Find a tour (Hamiltonian cycle) of min. length.

Distance between two points?

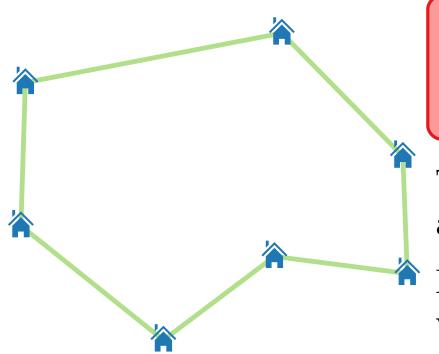


For every polynomial p(n), TSP cannot be approximated within factor $2^{p(n)}$ (unless P=NP).

There is a 3/2-approximation algorithm for METRICTSP.

METRICTSP cannot be approximated within factor 123/122 (unless P=NP).

- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task:Find a tour (Hamiltonian cycle) of min. length.
- The Salesman can fly \Rightarrow Euclidean distance.

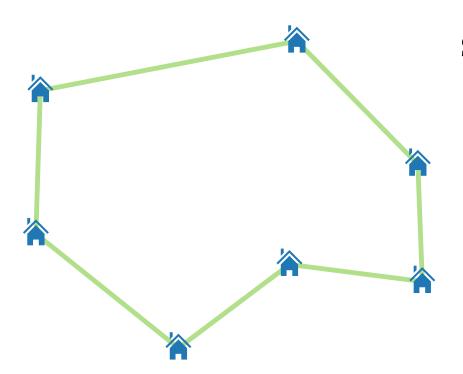


For every polynomial p(n), TSP cannot be approximated within factor $2^{p(n)}$ (unless P=NP).

There is a 3/2-approximation algorithm for METRICTSP.

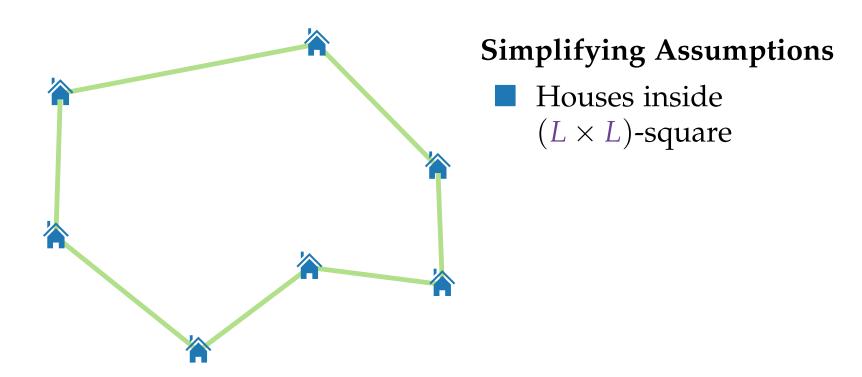
METRICTSP cannot be approximated within factor 123/122 (unless P=NP).

- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task: Find a tour (Hamiltonian cycle) of min. length.
- The Salesman can fly \Rightarrow Euclidean distance.

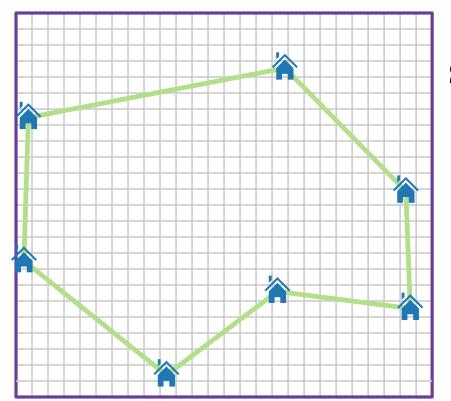


Simplifying Assumptions

- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task: Find a tour (Hamiltonian cycle) of min. length.
- The Salesman can fly \Rightarrow Euclidean distance.

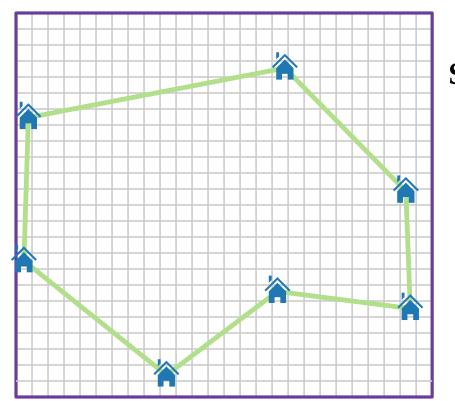


- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task: Find a tour (Hamiltonian cycle) of min. length.
- The Salesman can fly \Rightarrow Euclidean distance.



Simplifying Assumptions

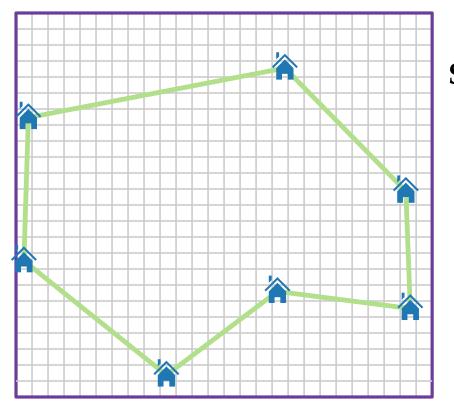
- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task: Find a tour (Hamiltonian cycle) of min. length.
- The Salesman can fly \Rightarrow Euclidean distance.



Simplifying Assumptions

$$L := 4n^2$$

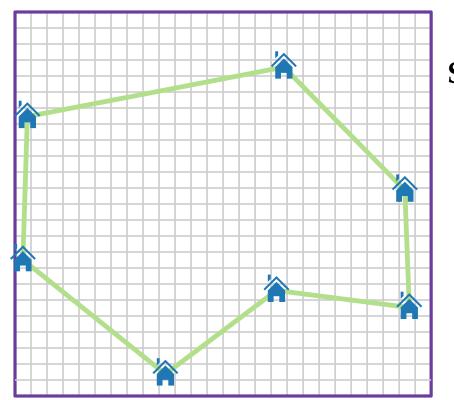
- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task: Find a tour (Hamiltonian cycle) of min. length.
- The Salesman can fly \Rightarrow Euclidean distance.



Simplifying Assumptions

L :=
$$4n^2 = 2^k$$
;

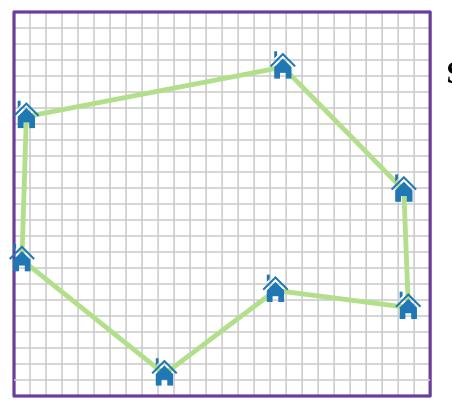
- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task: Find a tour (Hamiltonian cycle) of min. length.
- The Salesman can fly \Rightarrow Euclidean distance.



Simplifying Assumptions

L :=
$$4n^2 = 2^k$$
;
k = 2 + 2 log₂ n

- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task: Find a tour (Hamiltonian cycle) of min. length.
- The Salesman can fly \Rightarrow Euclidean distance.



Simplifying Assumptions

Houses inside $(L \times L)$ -square

L :=
$$4n^2 = 2^k$$
;
k = 2 + 2 log₂ n

integer coordinates

- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task: Find a tour (Hamiltonian cycle) of min. length.
- The Salesman can fly \Rightarrow Euclidean distance.



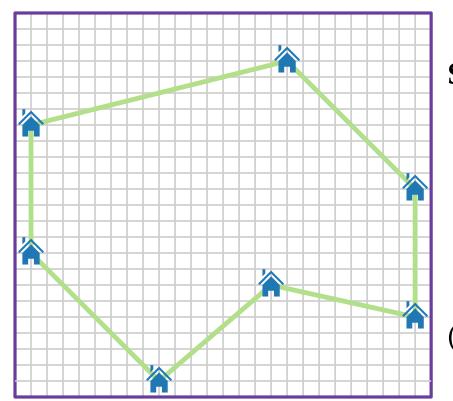
Simplifying Assumptions

Houses inside $(L \times L)$ -square

L :=
$$4n^2 = 2^k$$
;
k = 2 + 2 log₂ n

integer coordinates

- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task: Find a tour (Hamiltonian cycle) of min. length.
- The Salesman can fly \Rightarrow Euclidean distance.



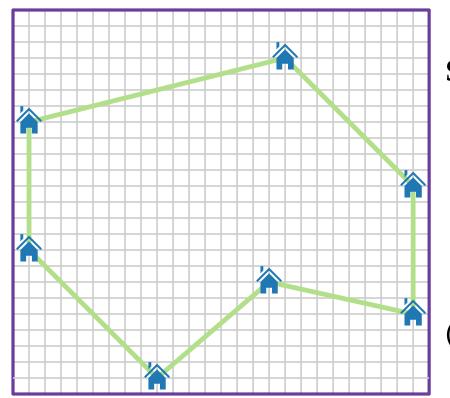
Simplifying Assumptions

Houses inside $(L \times L)$ -square

L :=
$$4n^2 = 2^k$$
;
k = 2 + 2 log₂ n

integer coordinates ("justification": homework)

- **Question:** What's the fastest way to deliver all parcels to their destination?
- **Given**: A set of *n* houses (points) in \mathbb{R}^2 .
- Task: Find a tour (Hamiltonian cycle) of min. length.
- The Salesman can fly \Rightarrow Euclidean distance.



Simplifying Assumptions

Houses inside (L × L)-square
L := $4n^2 = 2^k$; k = 2 + 2 log₂ n

Goal: $(1 + \varepsilon)$ approximation!

integer coordinates ("justification": homework)

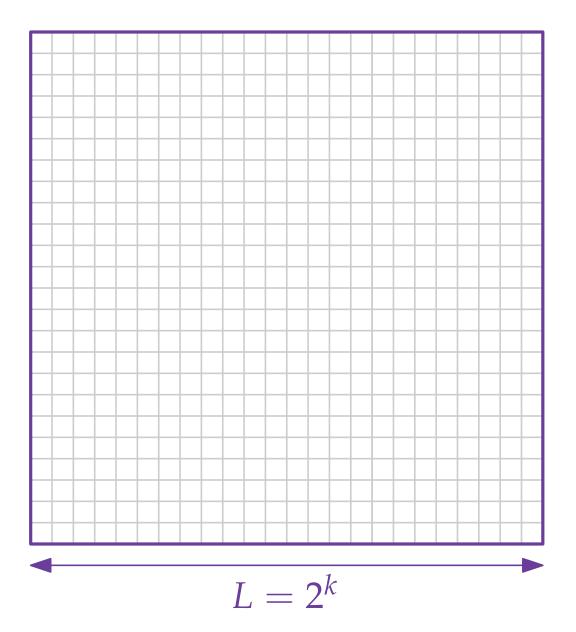
Approximation Algorithms

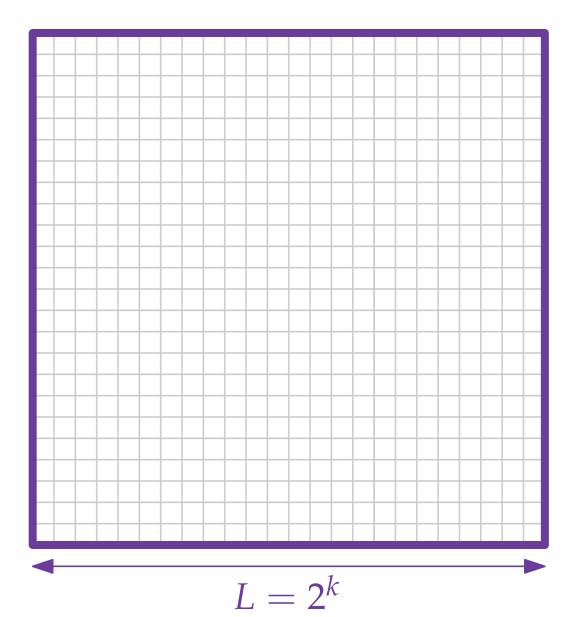
Lecture 10: PTAS for EuclideanTSP

Part II: Dissection

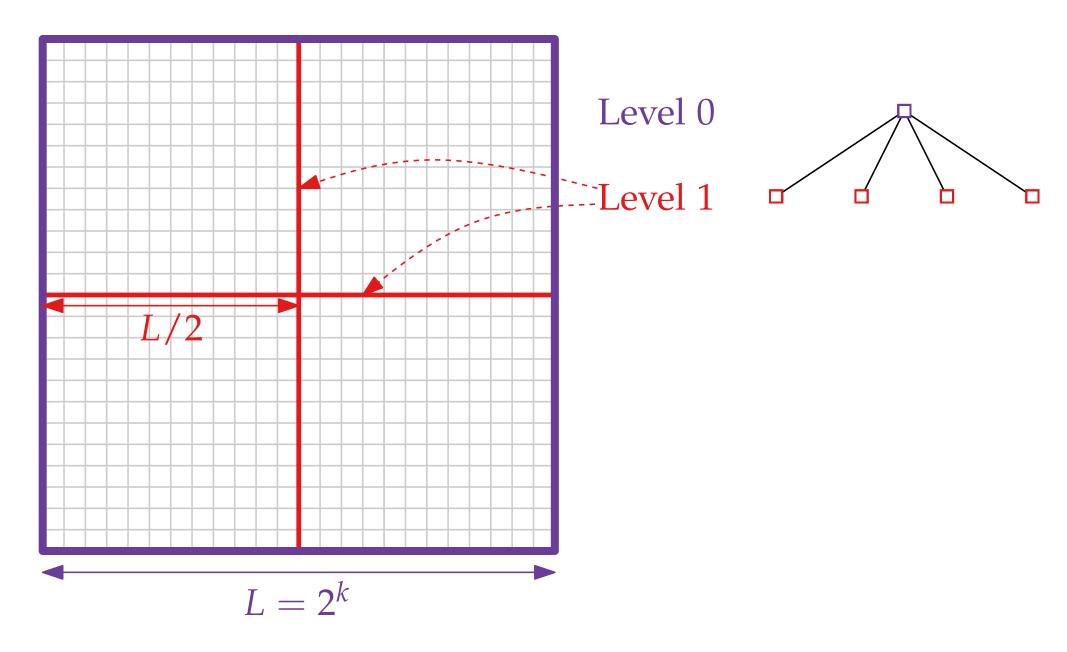
Philipp Kindermann

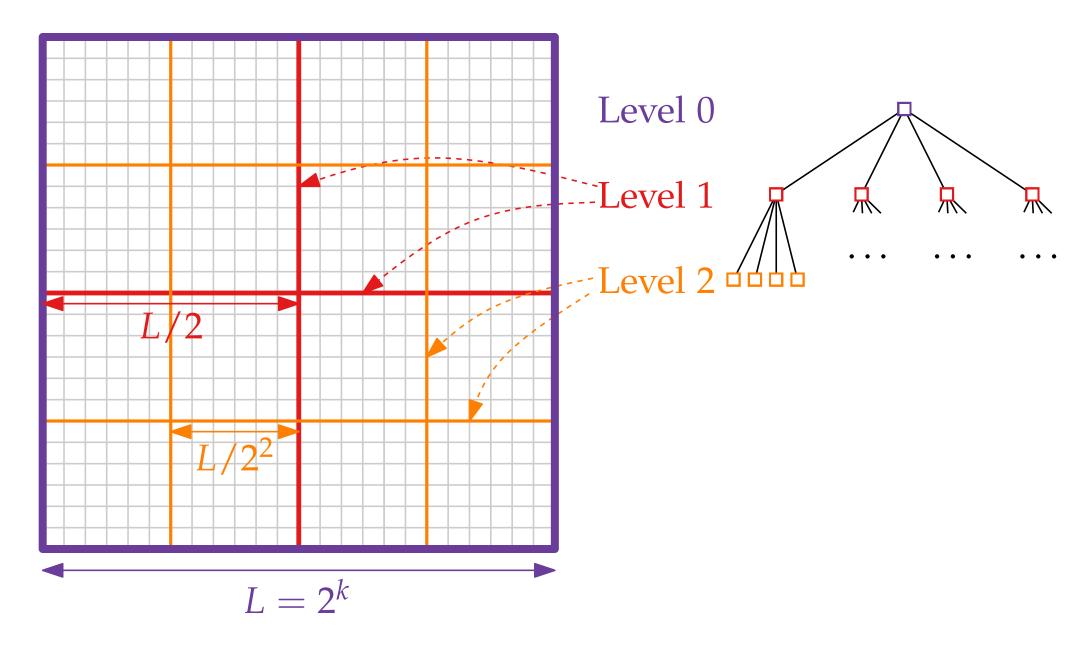
Summer Semester 2020

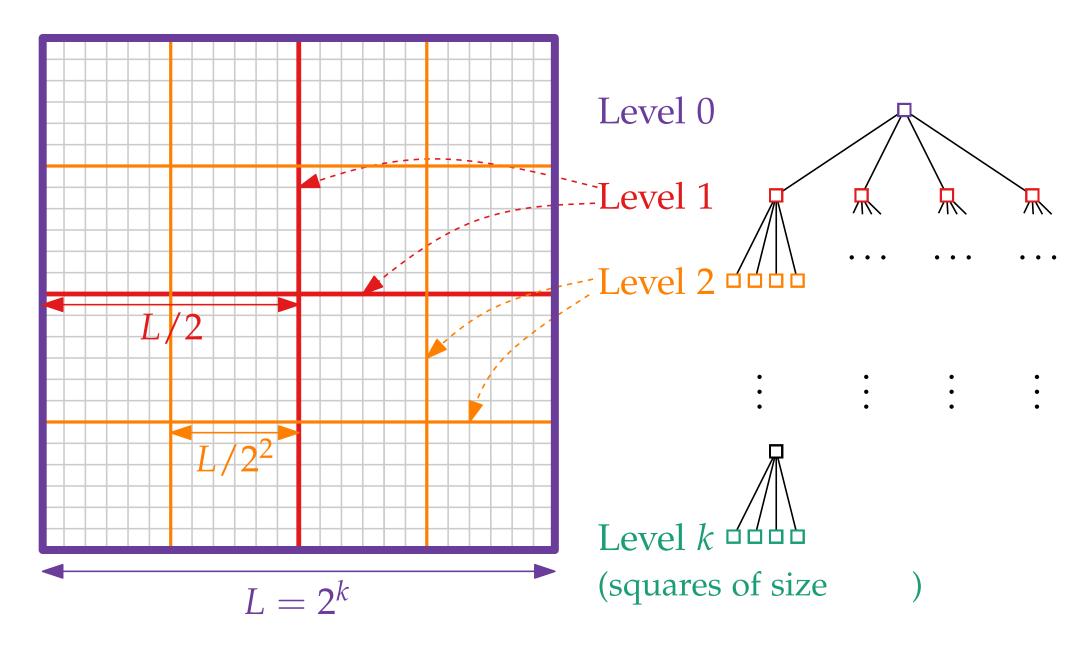


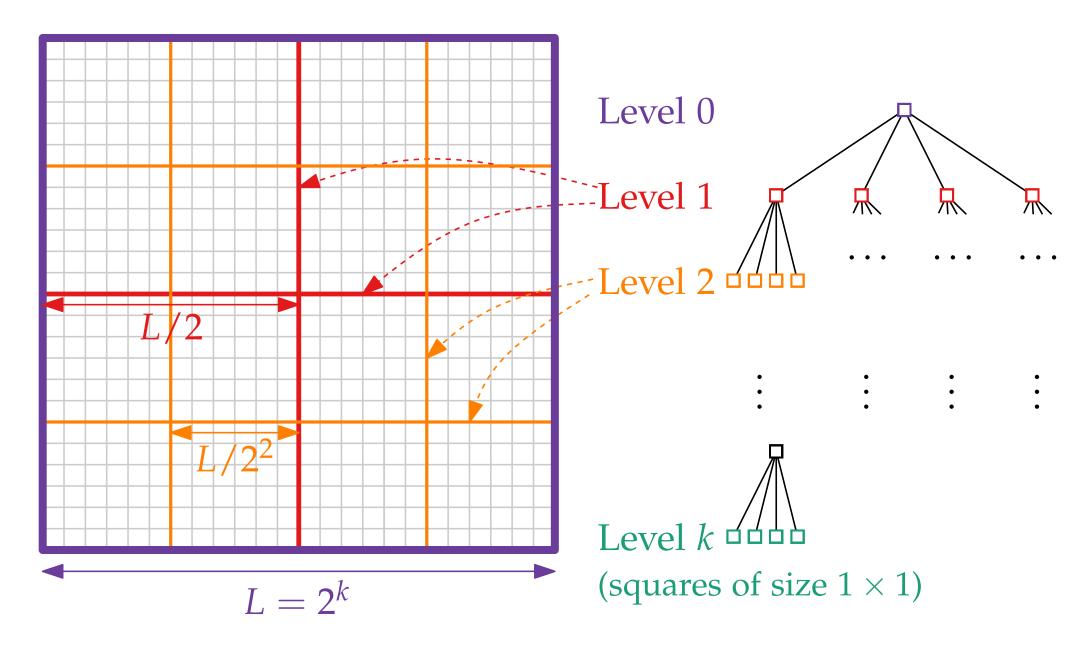


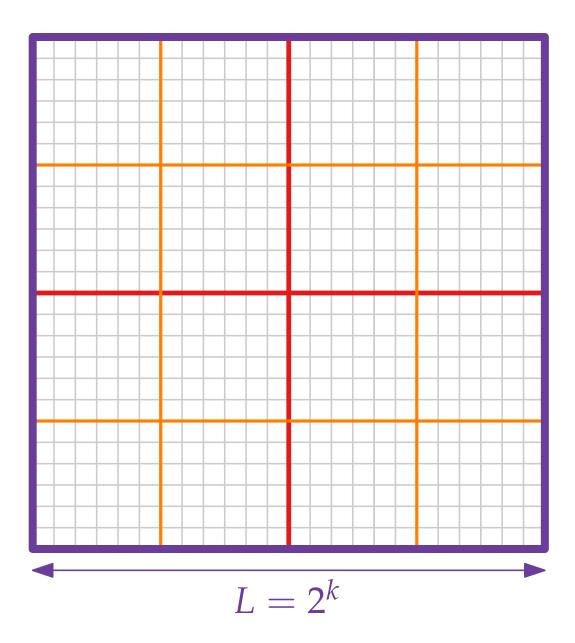
4 - 2



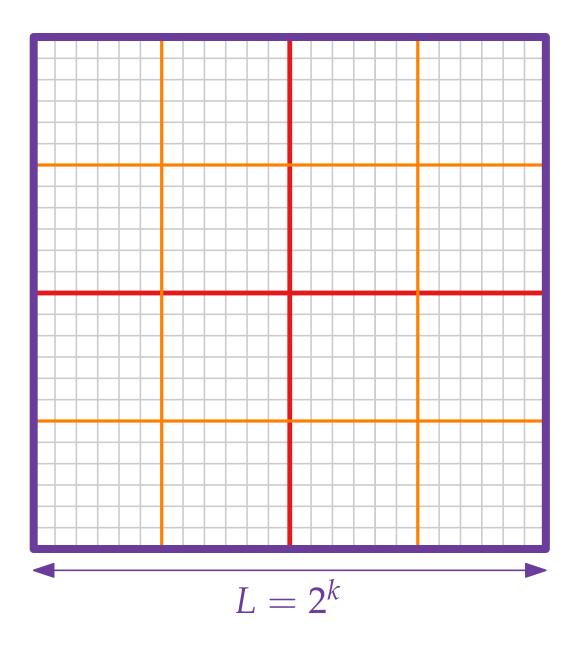






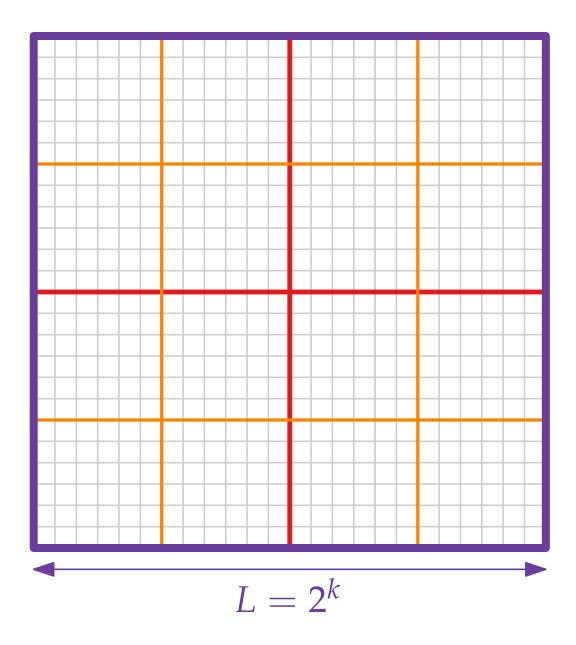


m power of two in interval $[k/\varepsilon, 2k/\varepsilon]$



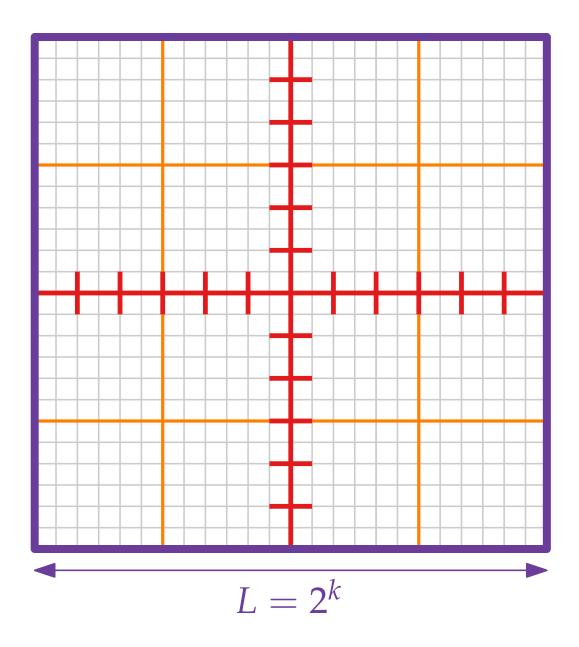
m power of two in interval $[k/\varepsilon, 2k/\varepsilon]$

 $k = 2 + 2\log_2 n$



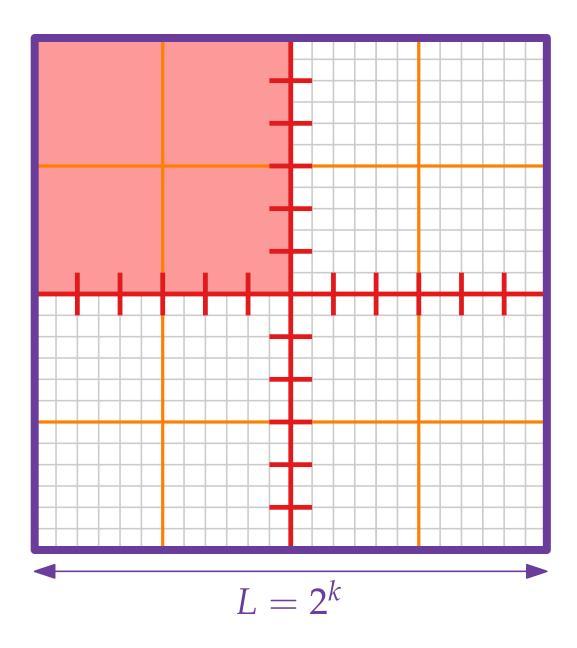
m power of two in interval $[k/\varepsilon, 2k/\varepsilon]$

 $k = 2 + 2\log_2 n$ $\Rightarrow m = O((\log n) / \varepsilon)$



m power of two in interval $[k/\varepsilon, 2k/\varepsilon]$ $k = 2 + 2\log_2 n$ $\Rightarrow m = O((\log n)/\varepsilon)$

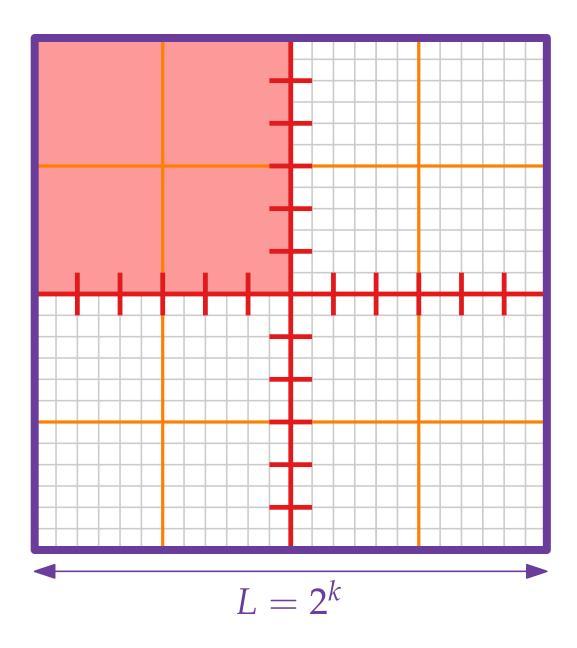
Portals on level-*i*-line with distance $L/(2^{i}m)$



m power of two in interval $[k/\varepsilon, 2k/\varepsilon]$ $k = 2 + 2\log_2 n$ $\Rightarrow m = O((\log n)/\varepsilon)$

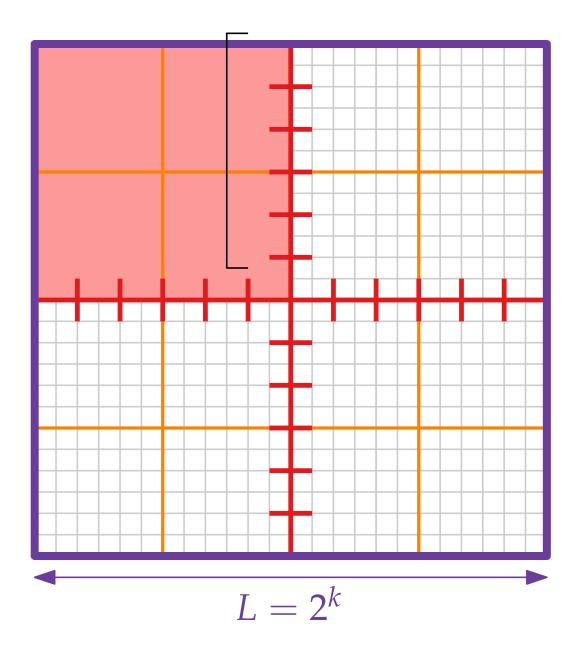
Portals on level-*i*-line with distance $L/(2^i m)$

Level-*i*-square: size



m power of two in interval $[k/\varepsilon, 2k/\varepsilon]$ $k = 2 + 2\log_2 n$ $\Rightarrow m = O((\log n)/\varepsilon)$

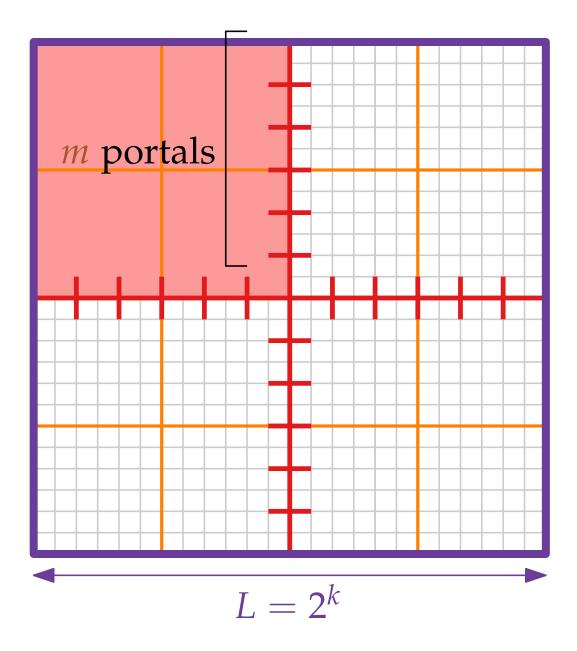
- Portals on level-*i*-line with distance $L/(2^{i}m)$
- Level-*i*-square: size $L/2^i \times L/2^i$



m power of two in interval $[k/\varepsilon, 2k/\varepsilon]$ $k = 2 + 2\log_2 n$ $\Rightarrow m = O((\log n)/\varepsilon)$

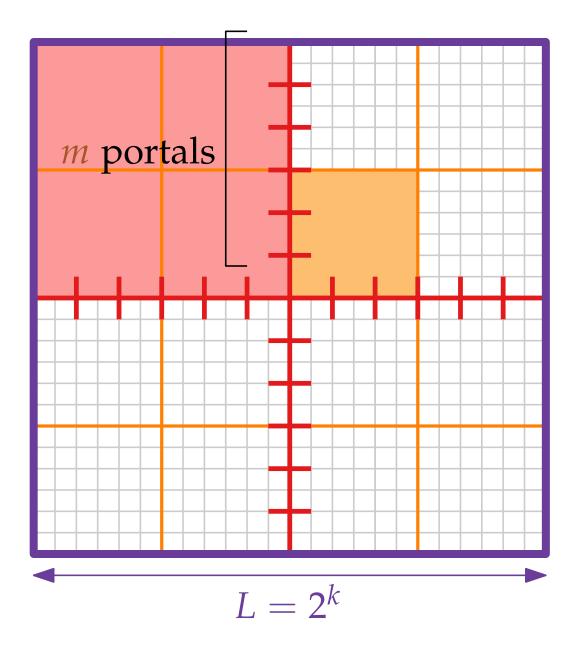
Portals on level-*i*-line with distance $L/(2^i m)$

Level-*i*-square: size $L/2^i \times L/2^i$



m power of two in interval $[k/\varepsilon, 2k/\varepsilon]$ $k = 2 + 2\log_2 n$ $\Rightarrow m = O((\log n)/\varepsilon)$

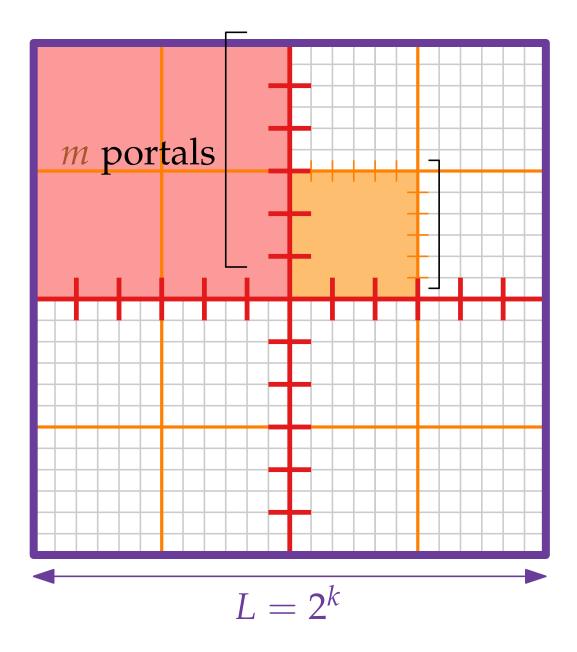
- Portals on level-*i*-line with distance $L/(2^i m)$
- Level-*i*-square: size $L/2^i \times L/2^i$



m power of two in interval $[k/\varepsilon, 2k/\varepsilon]$ $k = 2 + 2\log_2 n$ $\Rightarrow m = O((\log n)/\varepsilon)$

Portals on level-*i*-line with distance $L/(2^i m)$

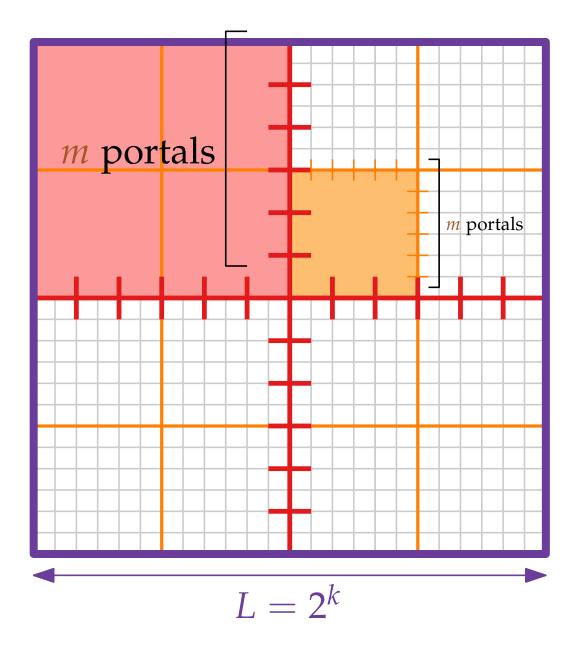
Level-*i*-square: size $L/2^i \times L/2^i$



m power of two in interval $[k/\varepsilon, 2k/\varepsilon]$ $k = 2 + 2\log_2 n$ $\Rightarrow m = O((\log n)/\varepsilon)$

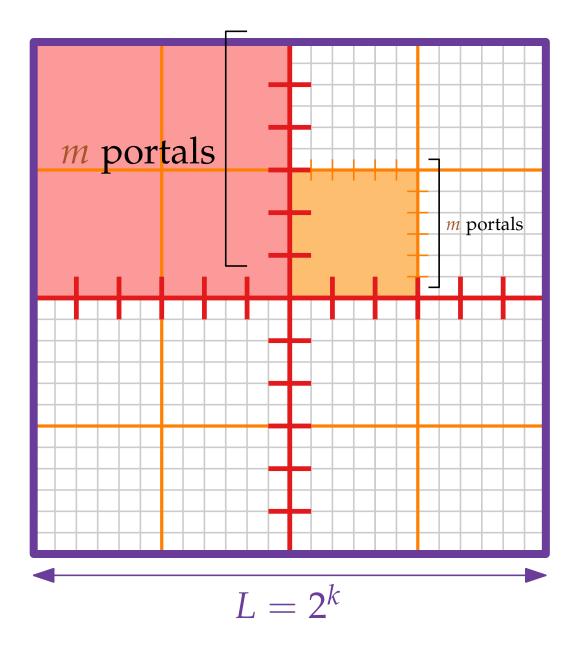
Portals on level-*i*-line with distance $L/(2^i m)$

Level-*i*-square: size $L/2^i \times L/2^i$



m power of two in interval $[k/\varepsilon, 2k/\varepsilon]$ $k = 2 + 2\log_2 n$ $\Rightarrow m = O((\log n)/\varepsilon)$

- Portals on level-*i*-line with distance $L/(2^{i}m)$
- Level-*i*-square: size $L/2^i \times L/2^i$



m power of two in interval $[k/\varepsilon, 2k/\varepsilon]$ $k = 2 + 2\log_2 n$ $\Rightarrow m = O((\log n)/\varepsilon)$

- Portals on level-*i*-line with distance $L/(2^{i}m)$
- Level-*i*-square: size $L/2^i \times L/2^i$

Level-*i*-square has at most 4*m* portals on its boundary.

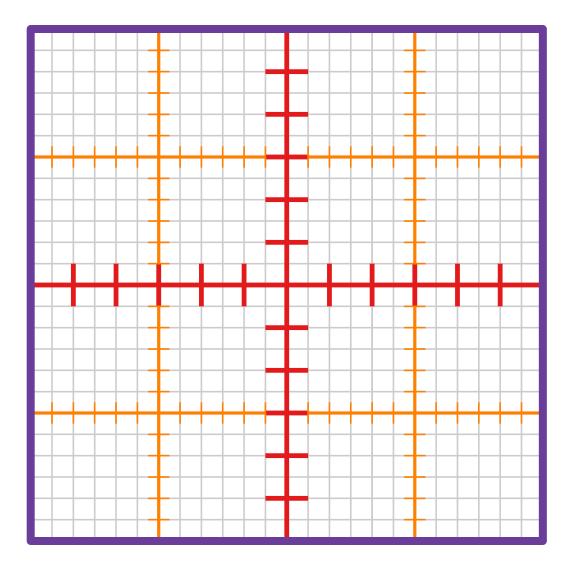
Approximation Algorithms

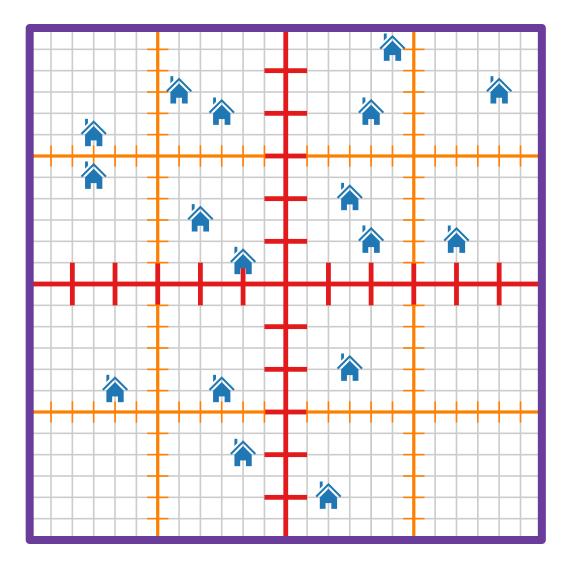
Lecture 10: PTAS for EuclideanTSP

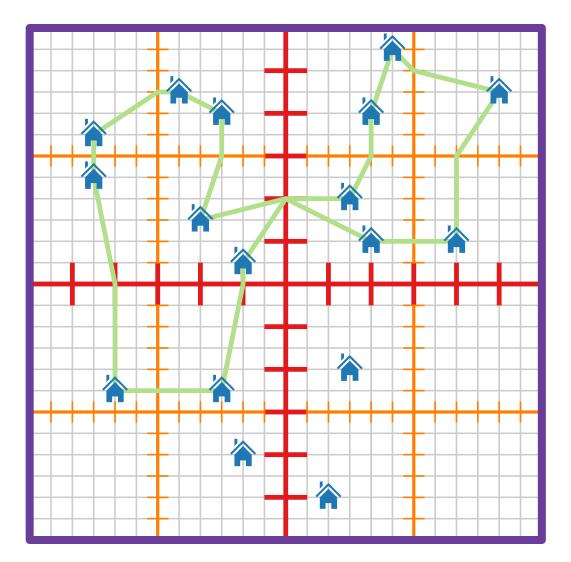
Part III: Well Behaved Tours

Philipp Kindermann

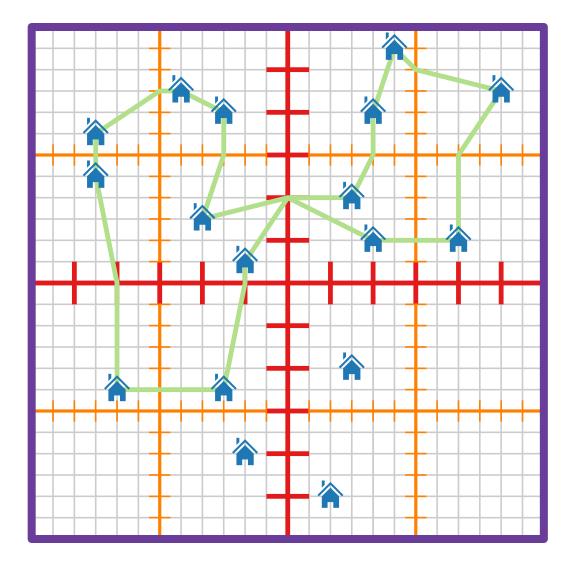
Summer Semester 2020



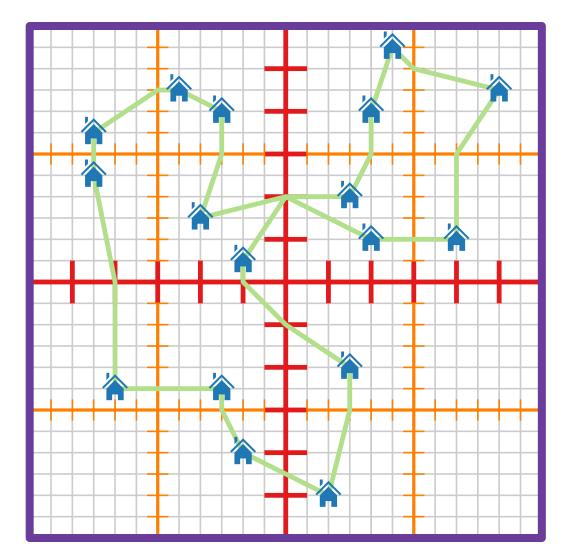




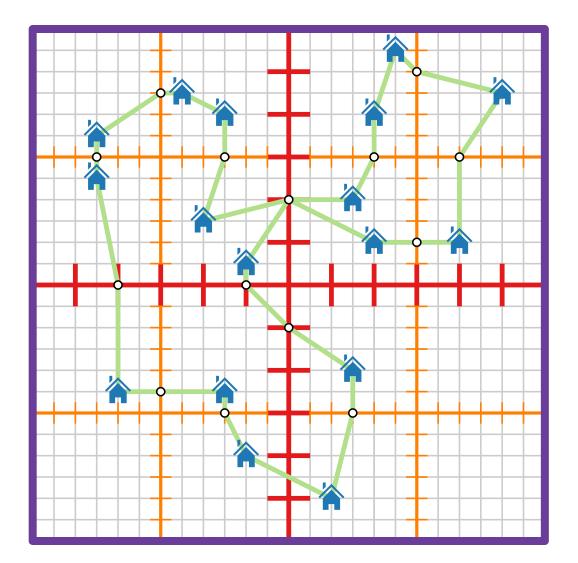




A tour is *well behaved* if it involves all houses

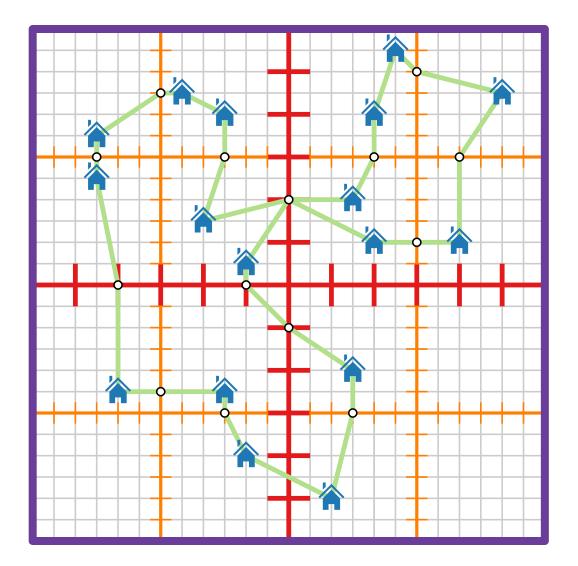


A tour is *well behaved* if it involves all houses

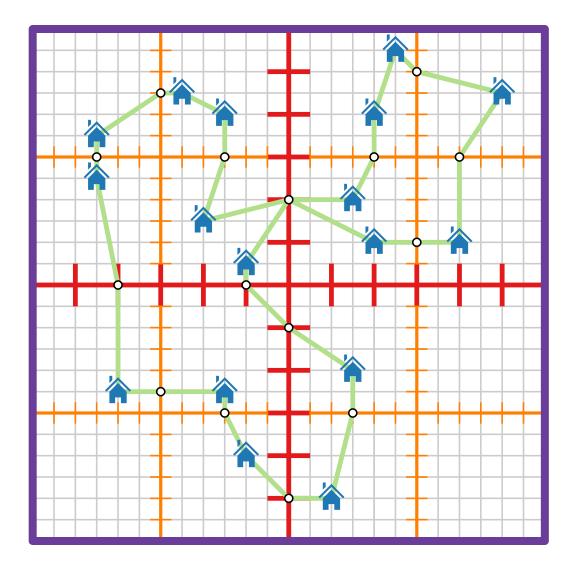


A tour is well behaved if

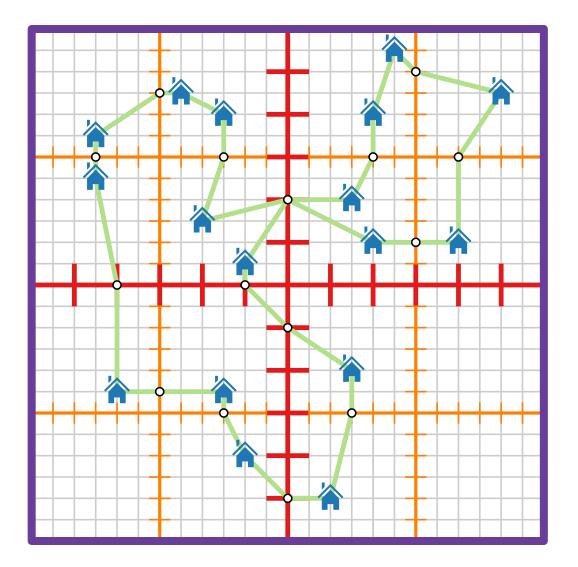
it involves all houses and a subset of the portals,



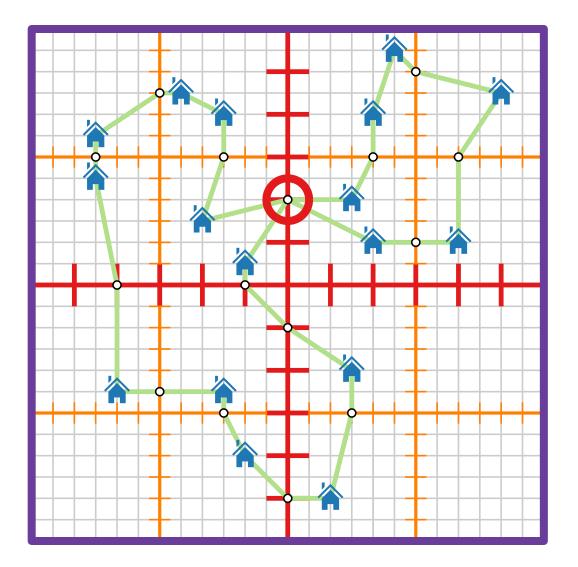
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,



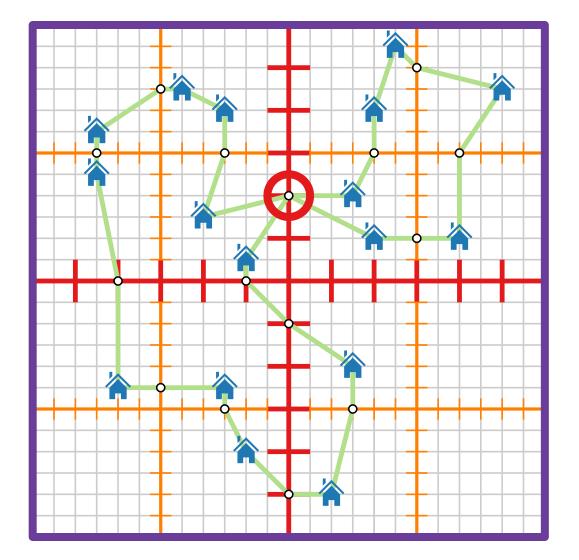
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,



- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- **i**t is crossing-free.

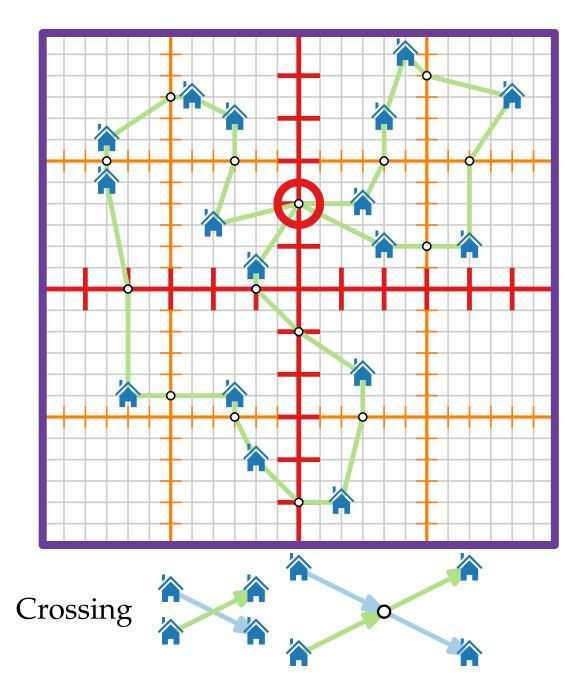


- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- **I** it is crossing-free.

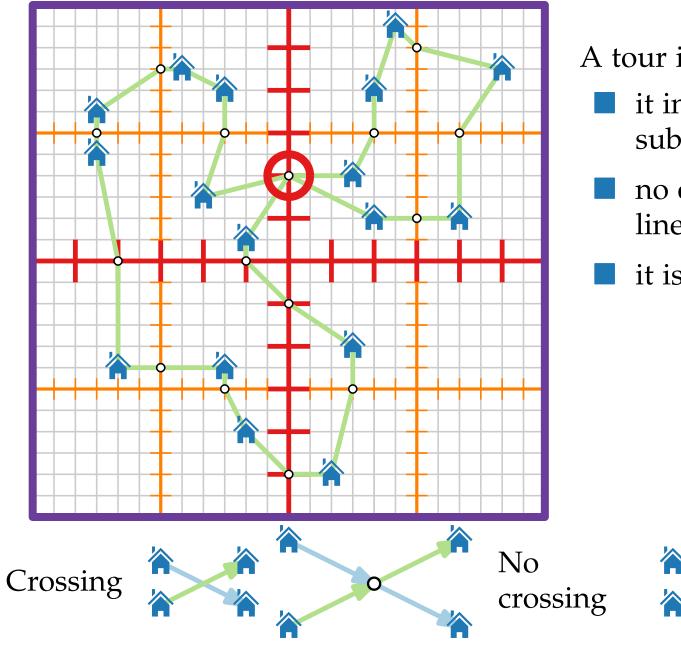


Crossing

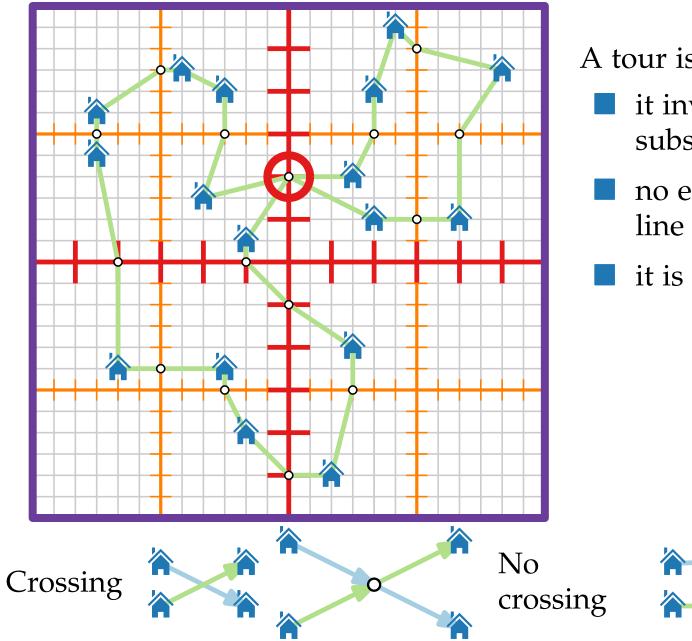
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- **I** it is crossing-free.



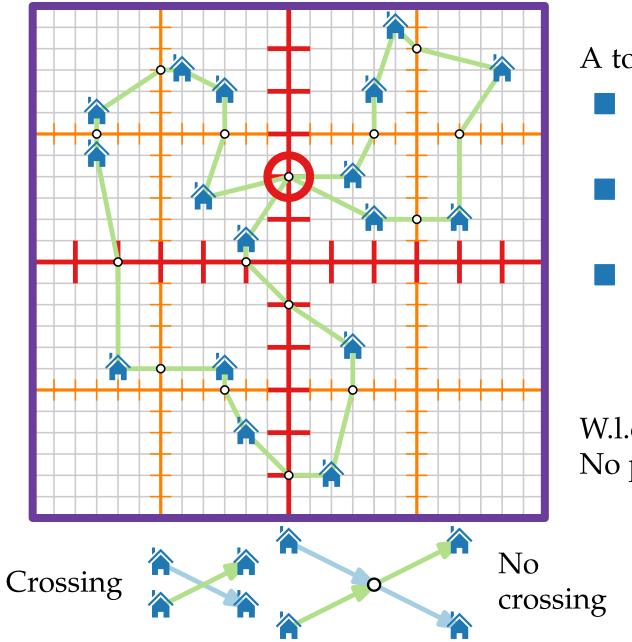
- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- **I** it is crossing-free.



- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- **I** it is crossing-free.



- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- it is crossing-free.



A tour is *well behaved* if

- it involves all houses and a subset of the portals,
- no edge of the tour crosses a line of the basic dissection,
- **i**t is crossing-free.

W.l.o.g. (homework): No portal visited more than twice

Lemma. An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\varepsilon)}$ time.

Lemma. An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\varepsilon)}$ time.

Sketch.

Lemma. An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\varepsilon)}$ time.

Sketch. Dynamic Programming!

Lemma. An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\varepsilon)}$ time.

Sketch. Dynamic Programming!

Compute sub-structure of an optimal tour for each square in the dissection tree.

Lemma. An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\varepsilon)}$ time.

Sketch. Dynamic Programming!

- Compute sub-structure of an optimal tour for each square in the dissection tree.
- These solutions can be efficiently propagated bottom-up through the dissection tree.

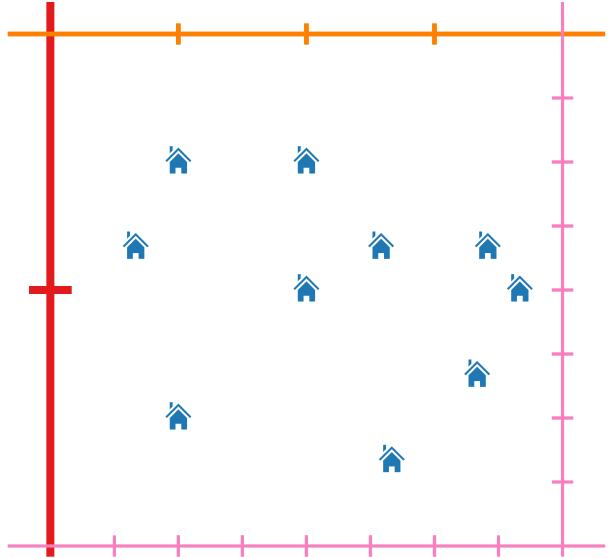
Approximation Algorithms

Lecture 10: PTAS for EuclideanTSP

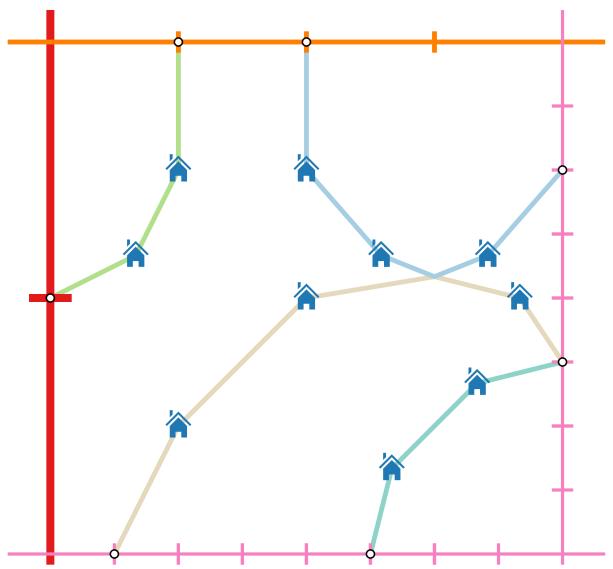
Part IV: Dynamic Program

Philipp Kindermann

Summer Semester 2020

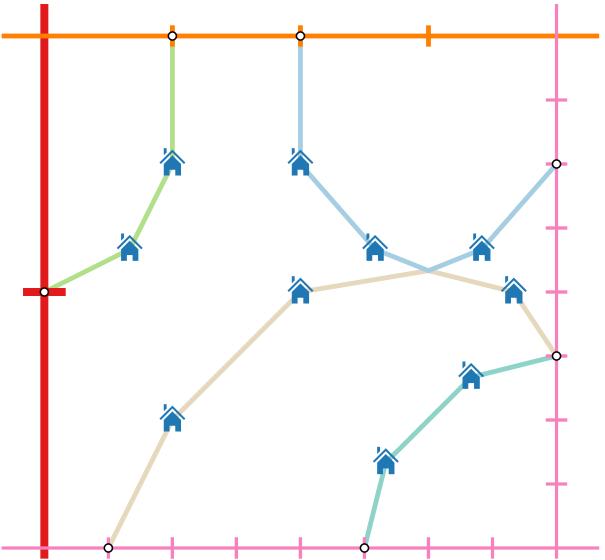


Each well behaved tour induces the following in each square *Q* of the dissection:



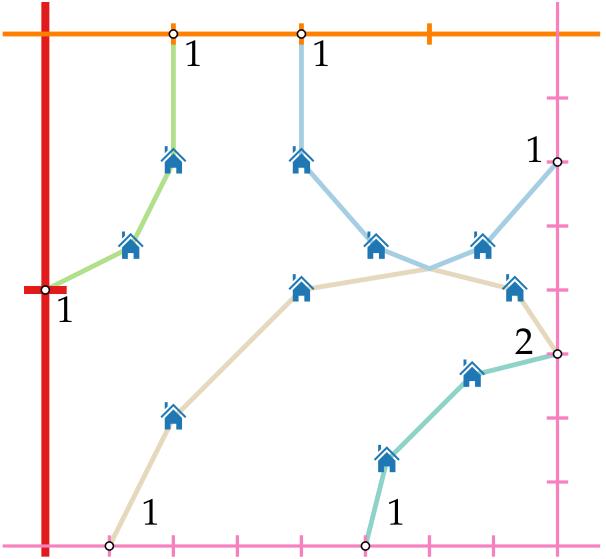
Each well behaved tour induces the following in each square *Q* of the dissection:

A path cover of the houses in *Q*



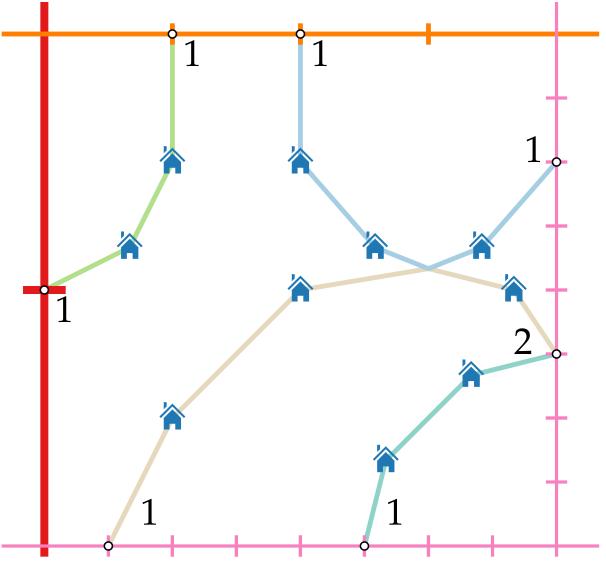
Each well behaved tour induces the following in each square *Q* of the dissection:

- A path cover of the houses in *Q*
- Each portal of *Q* is visited 0,1 or 2 times by this path cover



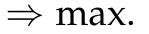
Each well behaved tour induces the following in each square *Q* of the dissection:

- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover

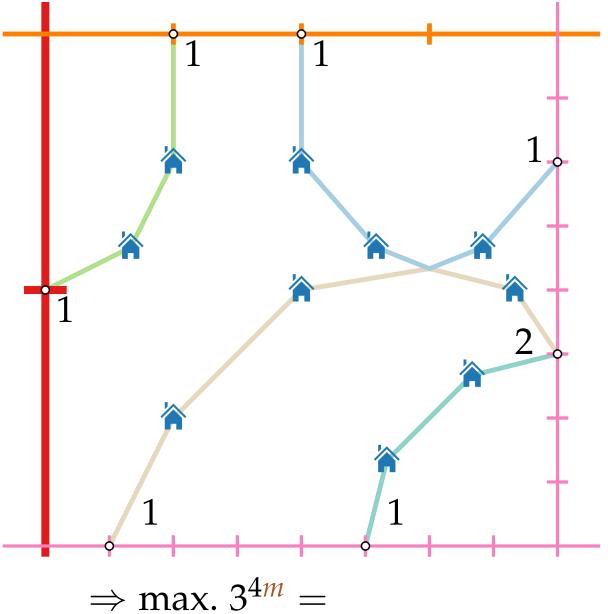


Each well behaved tour induces the following in each square *Q* of the dissection:

- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover

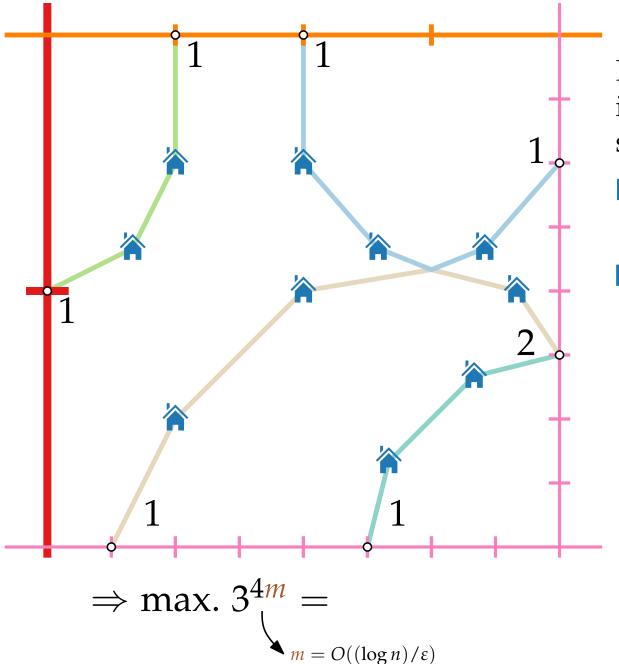


possibilities



Each well behaved tour induces the following in each square *Q* of the dissection:

- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover

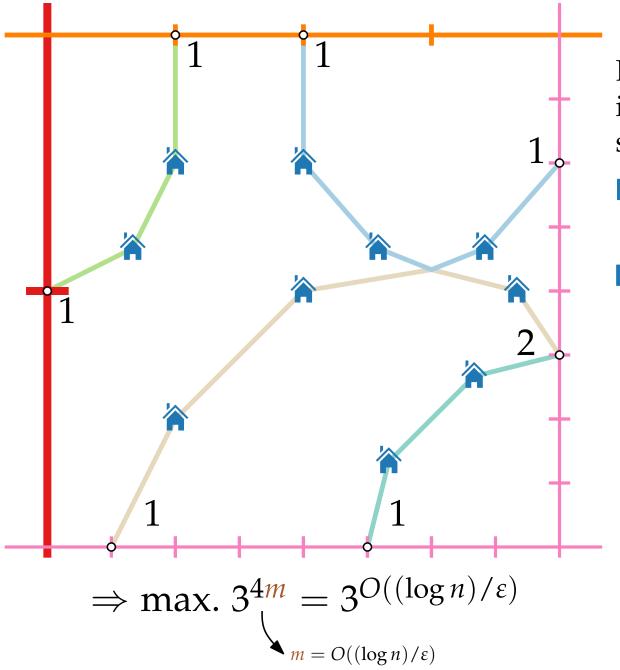


Each well behaved tour induces the following in each square *Q* of the dissection:

10 - 7

- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover

possibilities

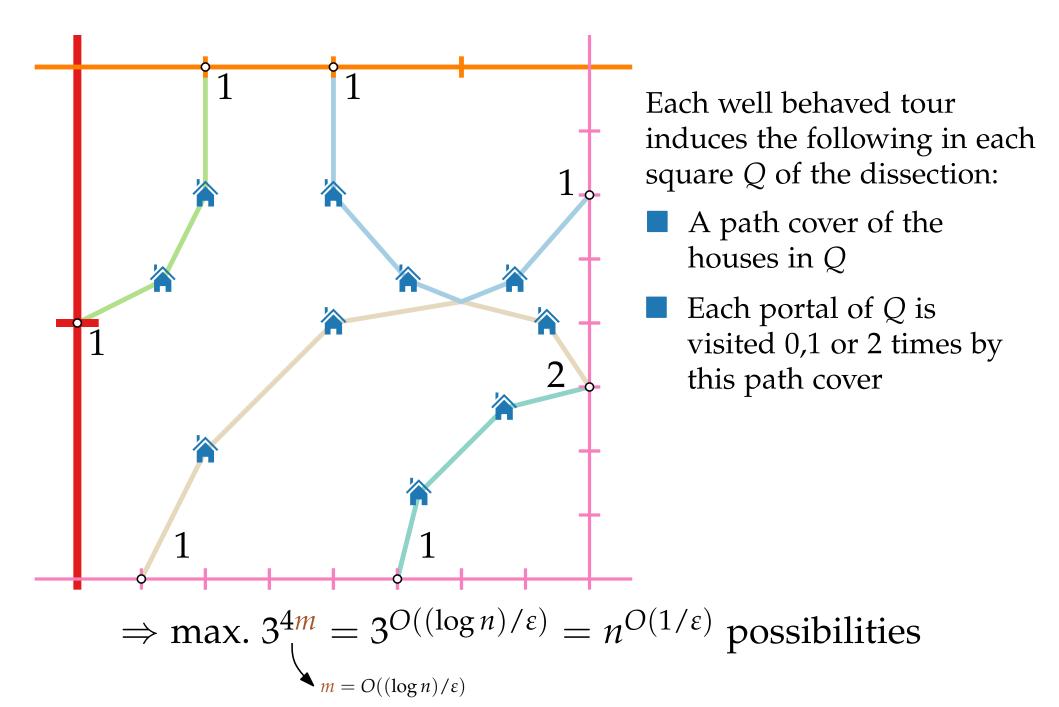


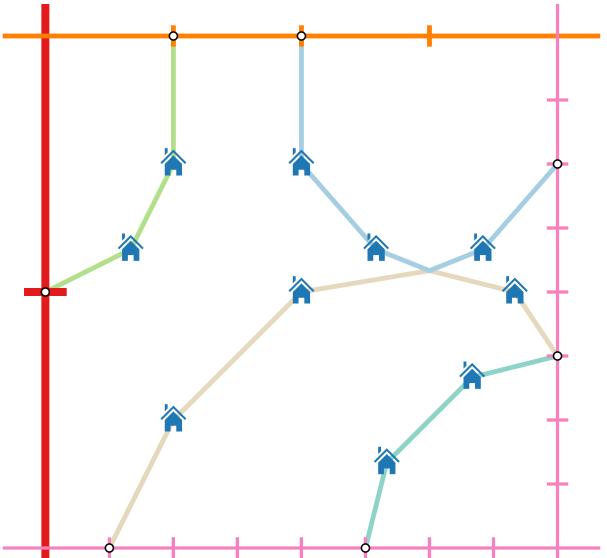
Each well behaved tour induces the following in each square *Q* of the dissection:

10 - 8

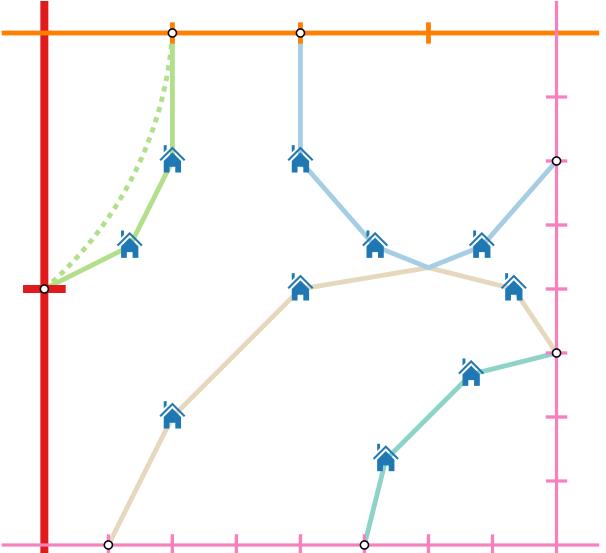
- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover

possibilities

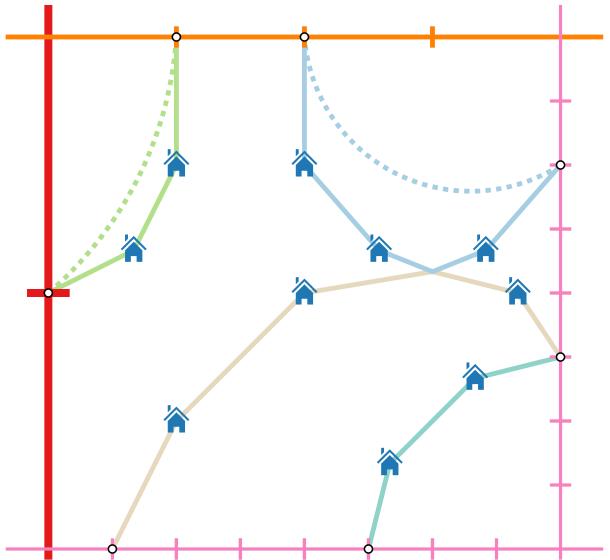




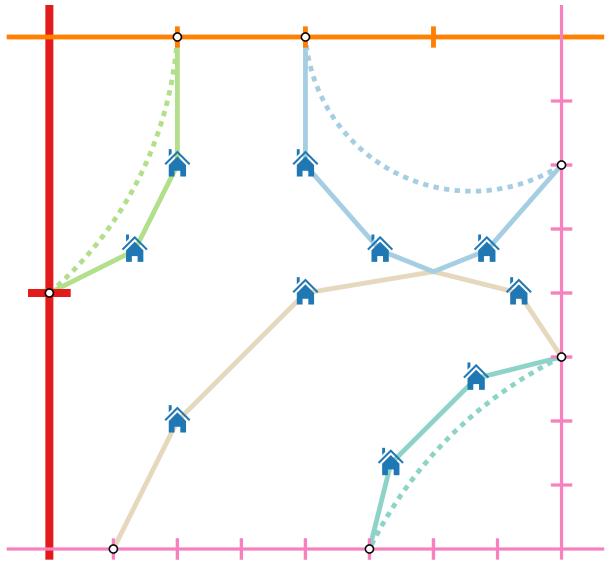
- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals



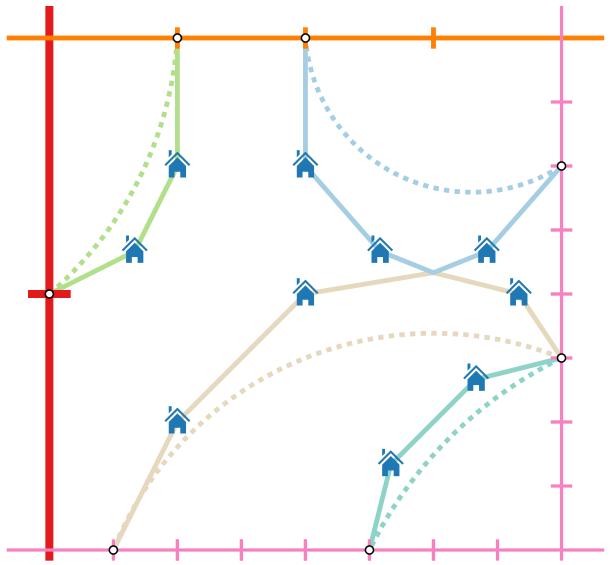
- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A **crossing-free pairing** of the visited portals



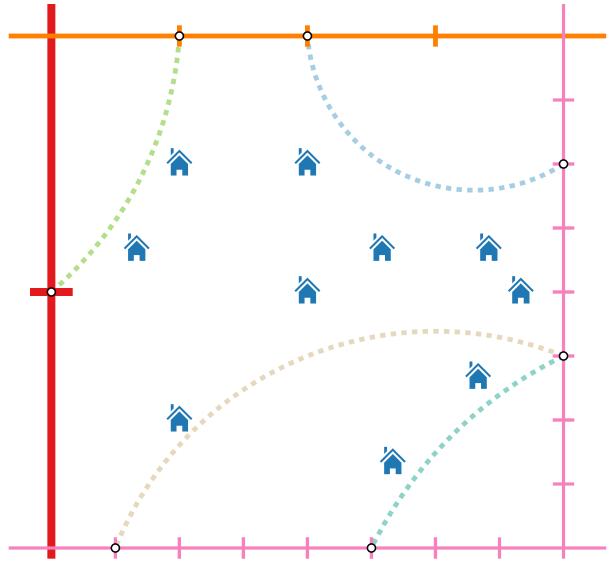
- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals



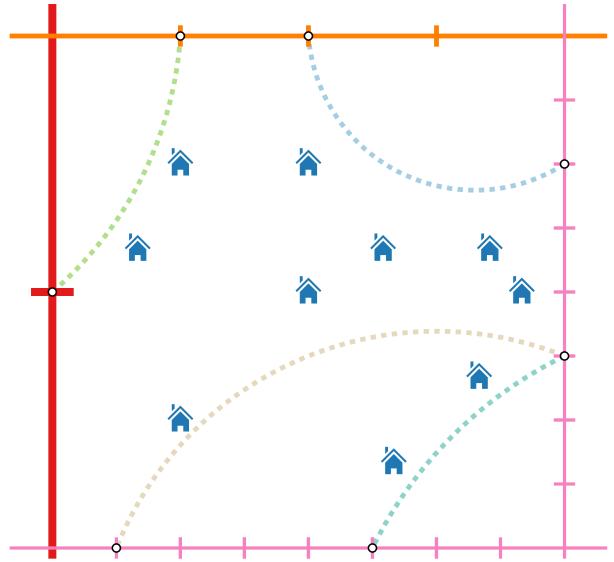
- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals



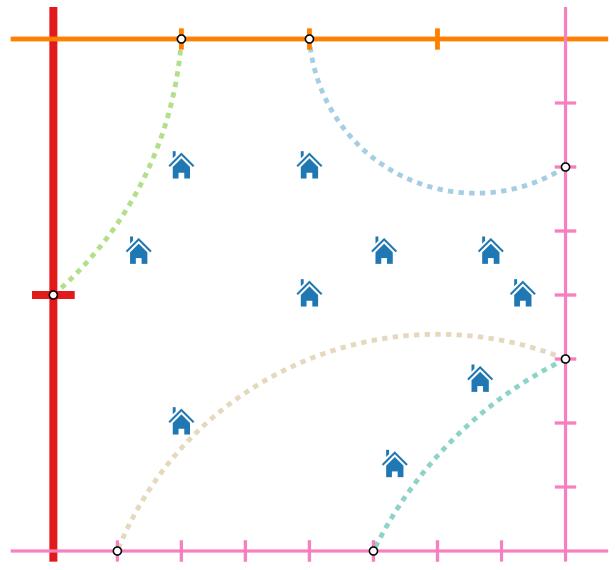
- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals



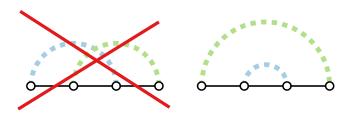
- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A **crossing-free pairing** of the visited portals

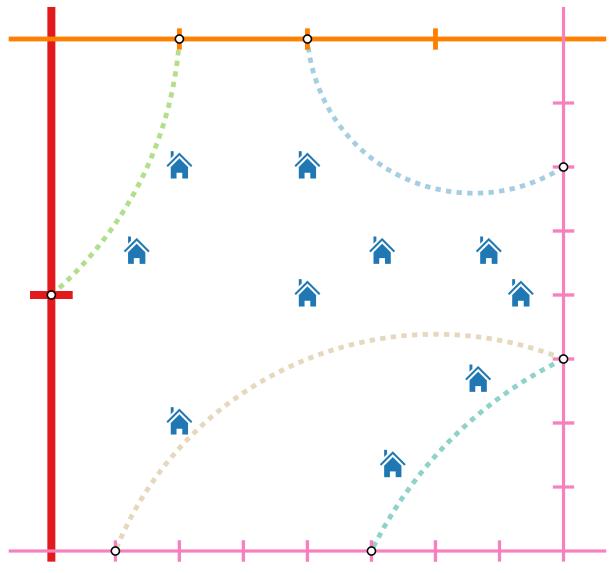


- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals



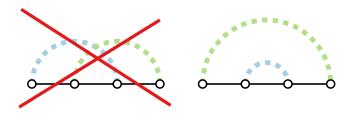
- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals



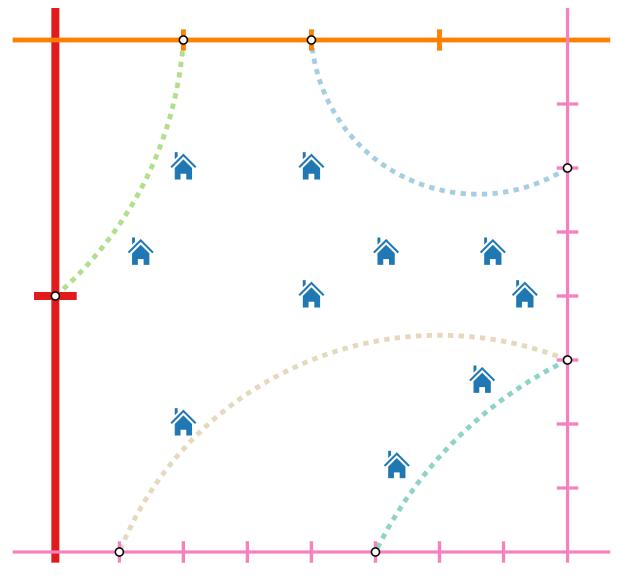


Each well behaved tour induces the following in each square *Q* of the dissection:

- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals



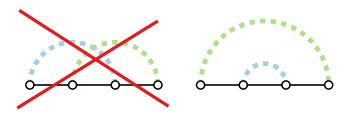
 \Rightarrow max.

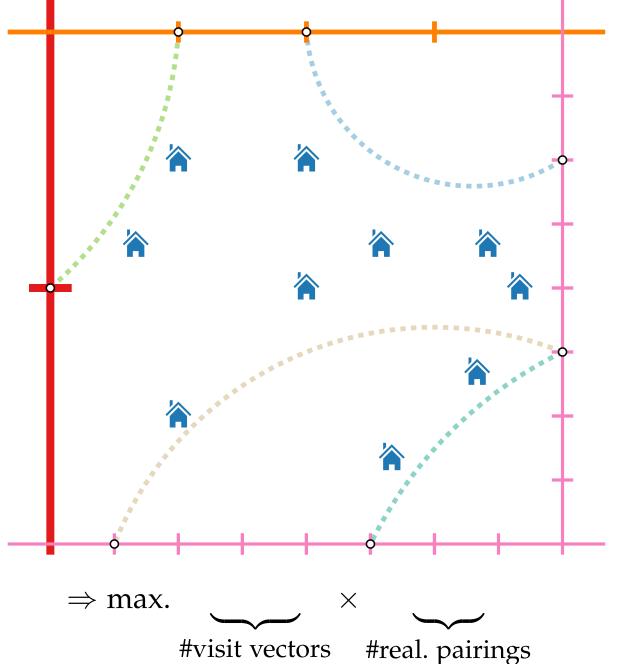


#visit vectors

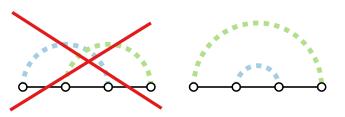
 \Rightarrow max.

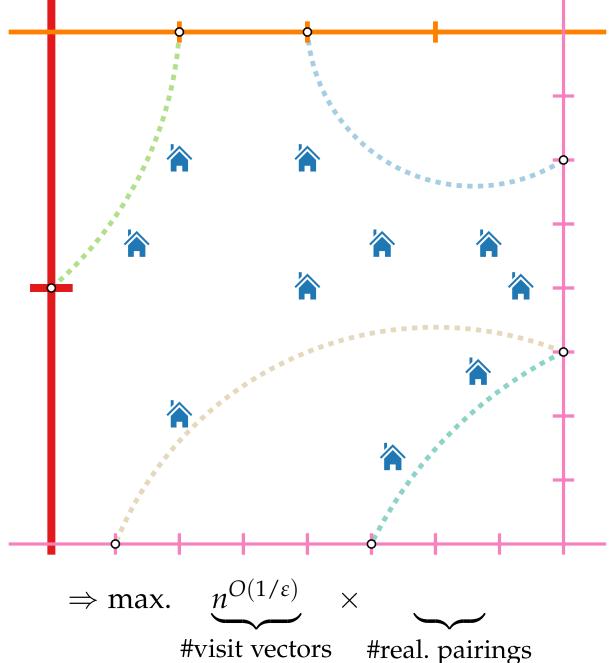
- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals



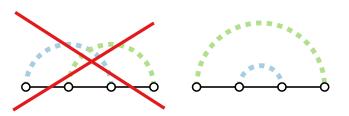


- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals



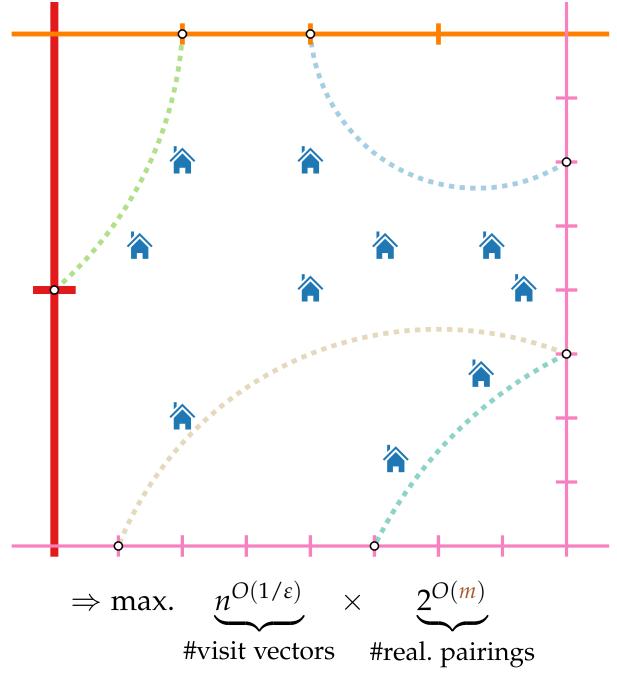


- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals

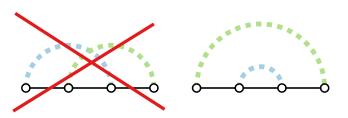


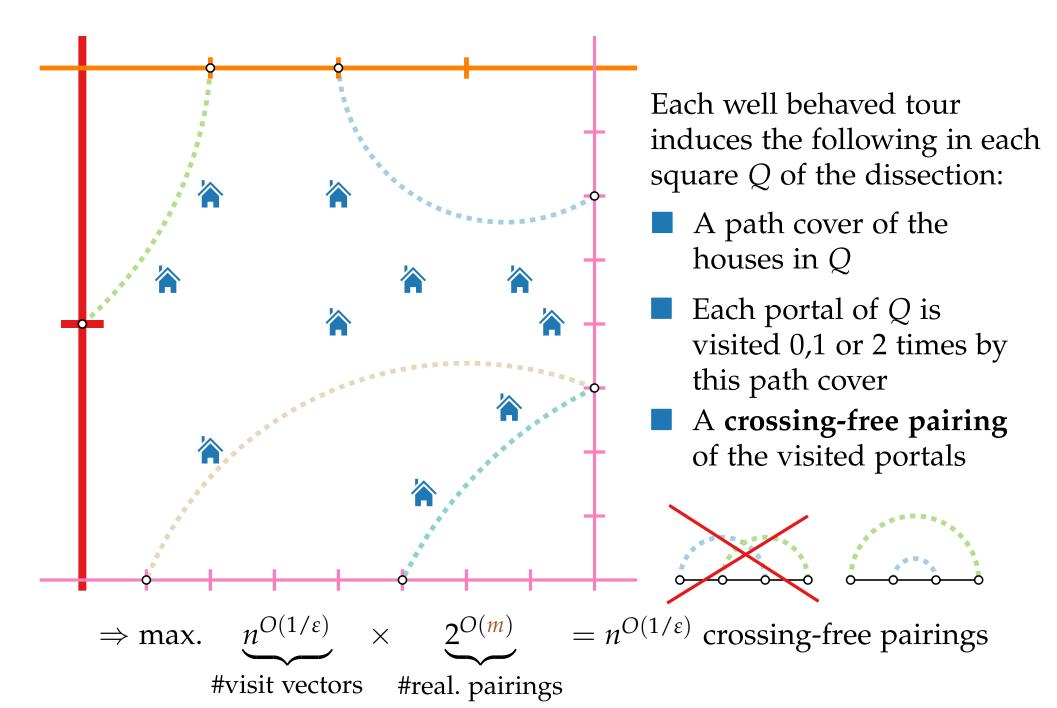
10 - 22

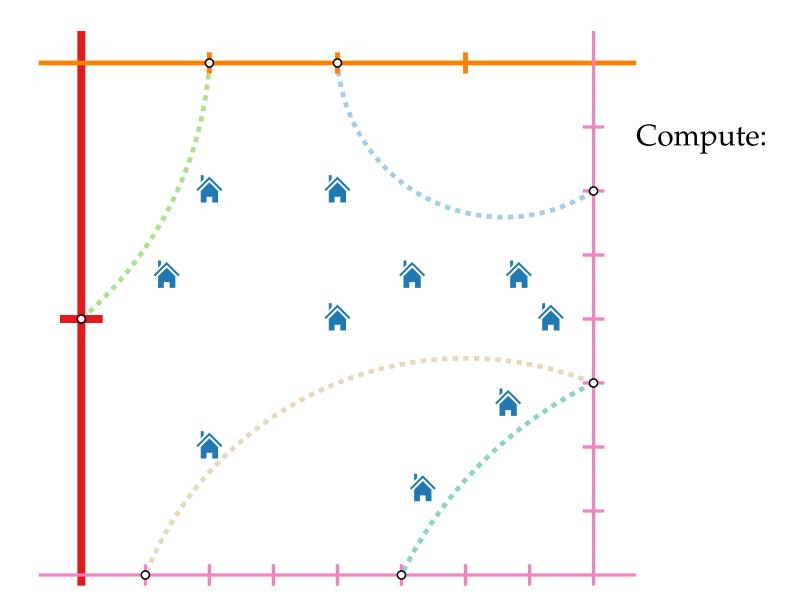
Dynamic Program (I)



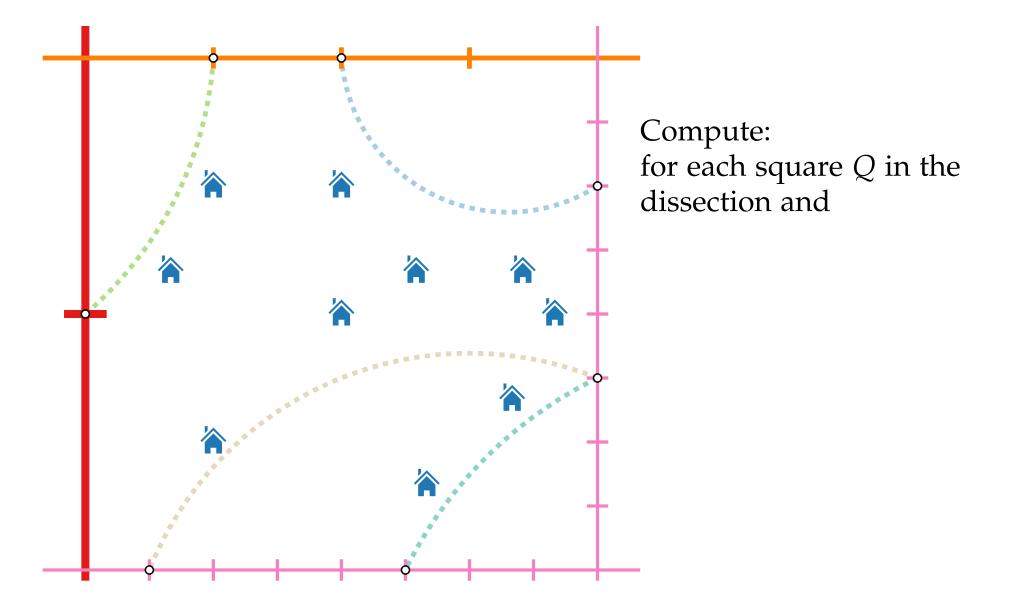
- A path cover of the houses in *Q*
- Each portal of Q is visited 0,1 or 2 times by this path cover
- A crossing-free pairing of the visited portals

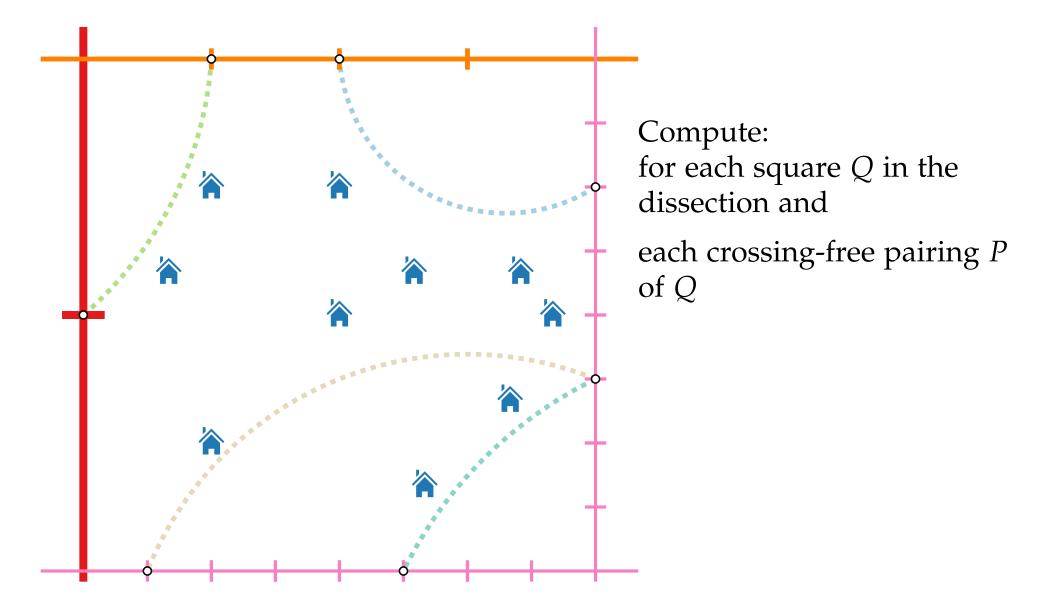


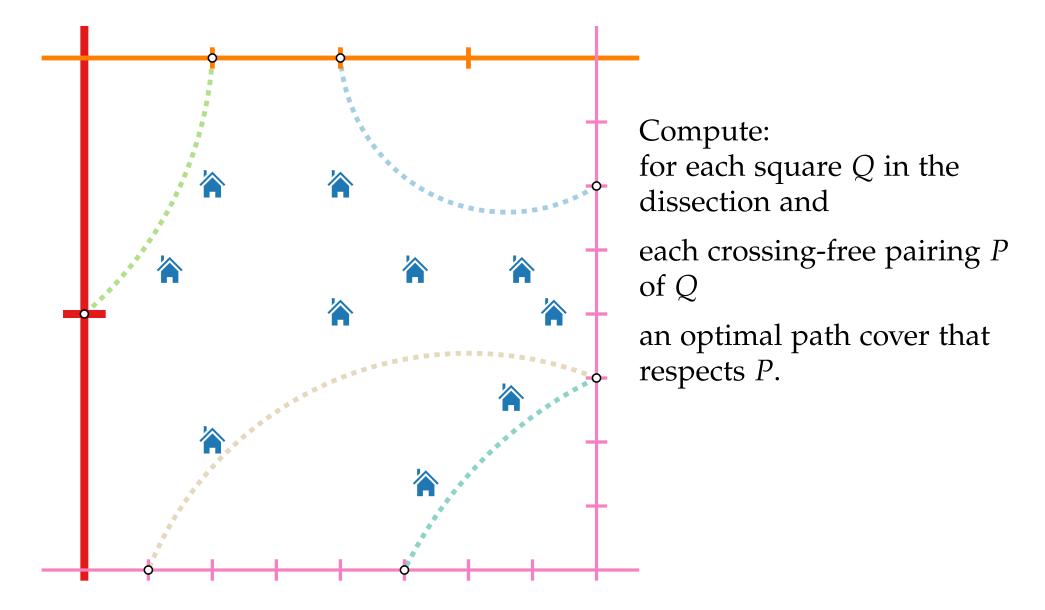


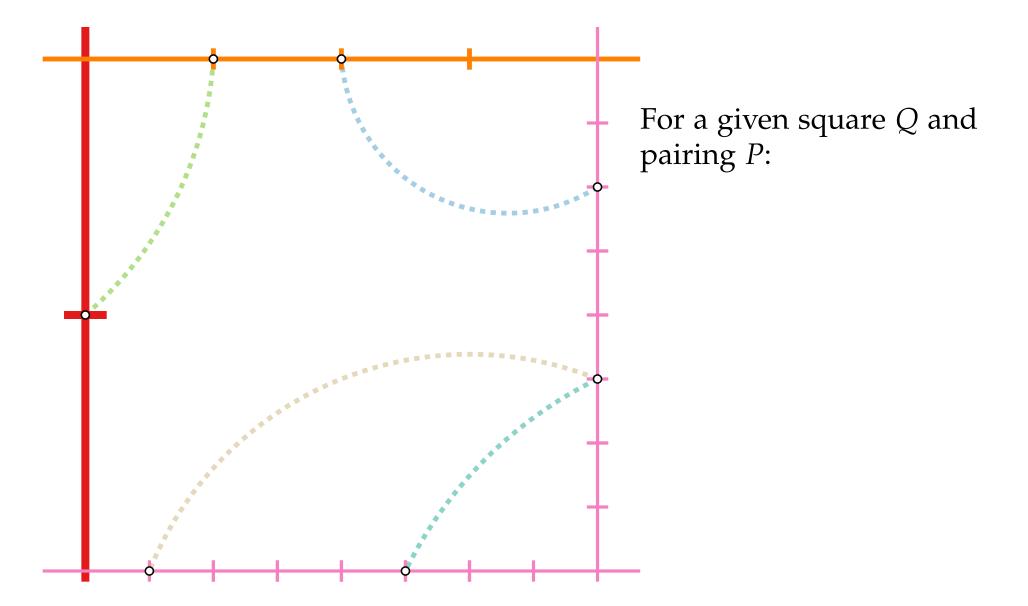


11 - 1

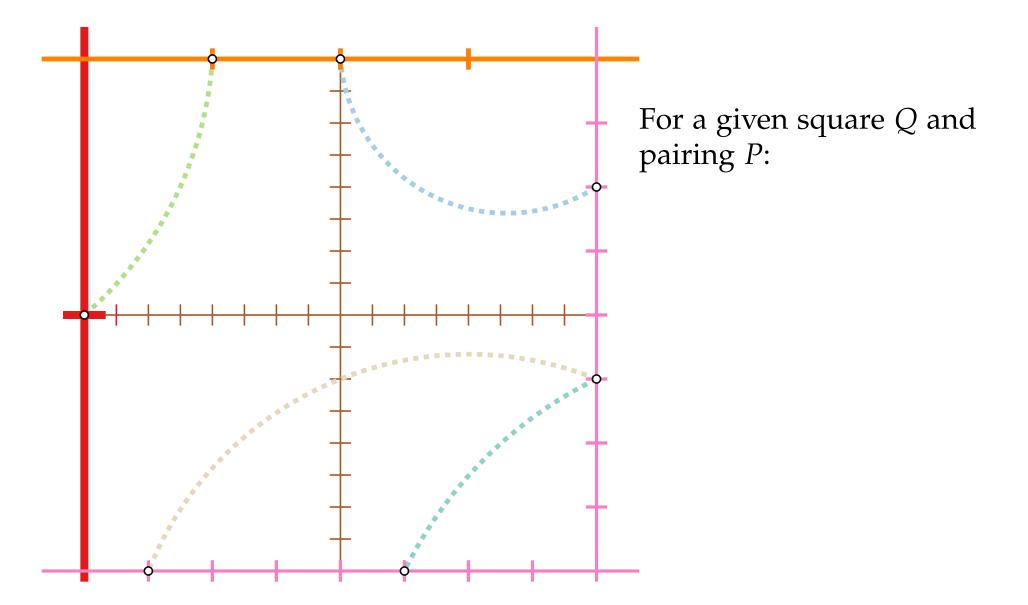




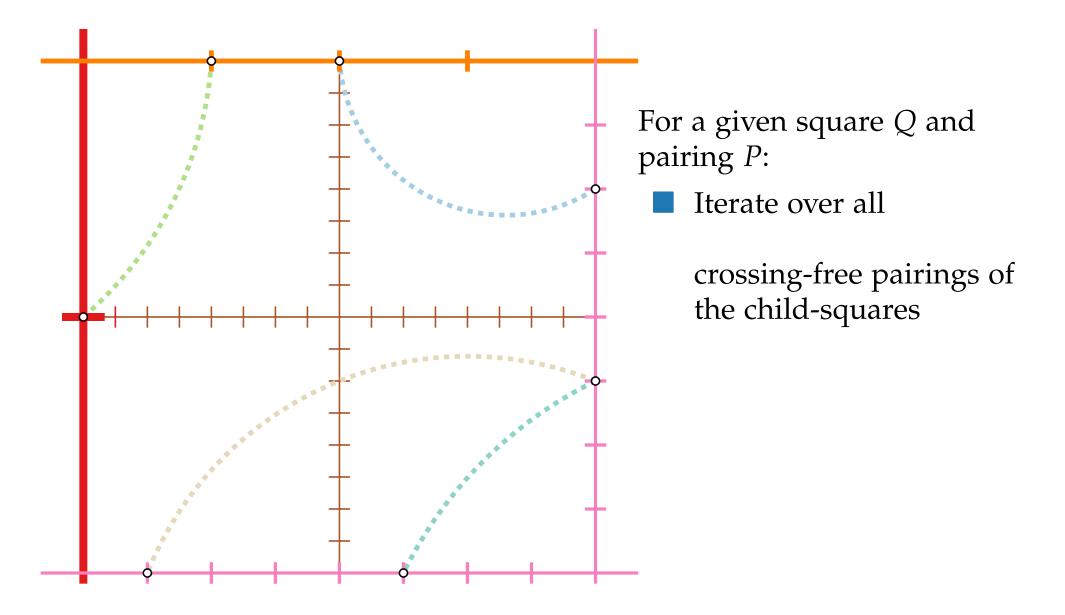


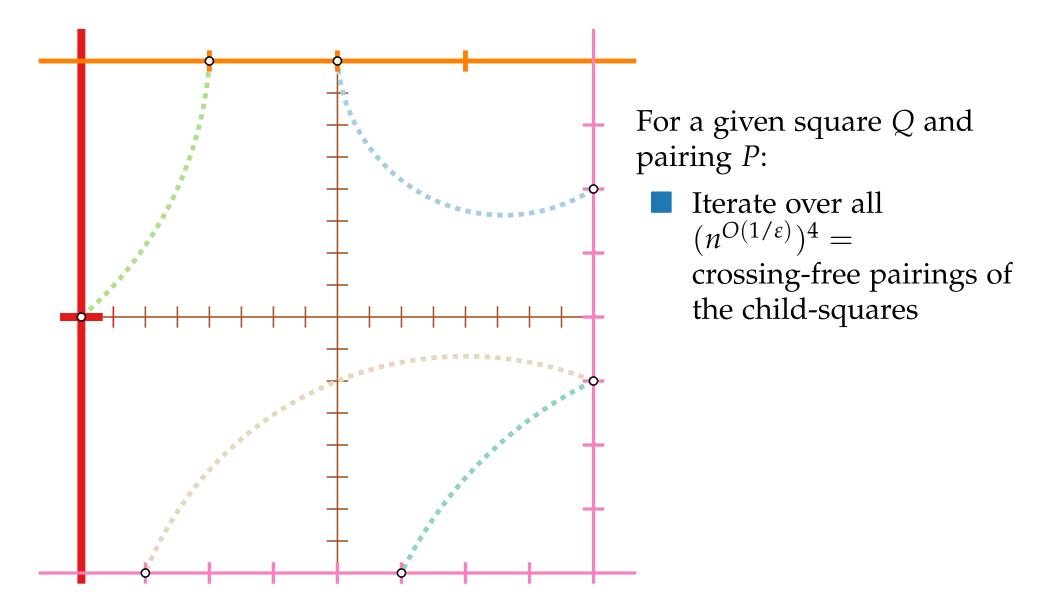


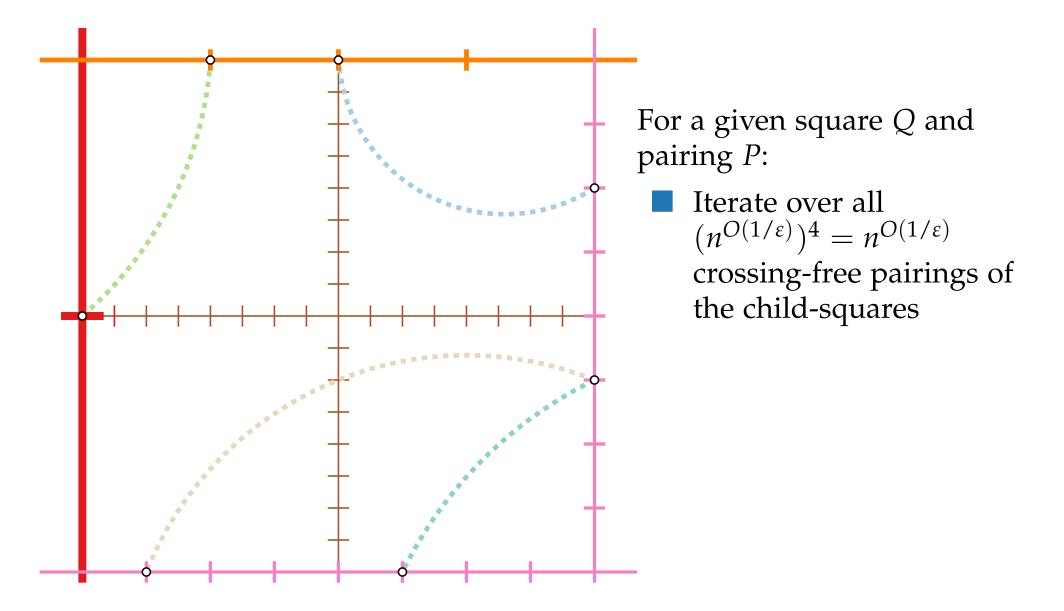
12 - 1

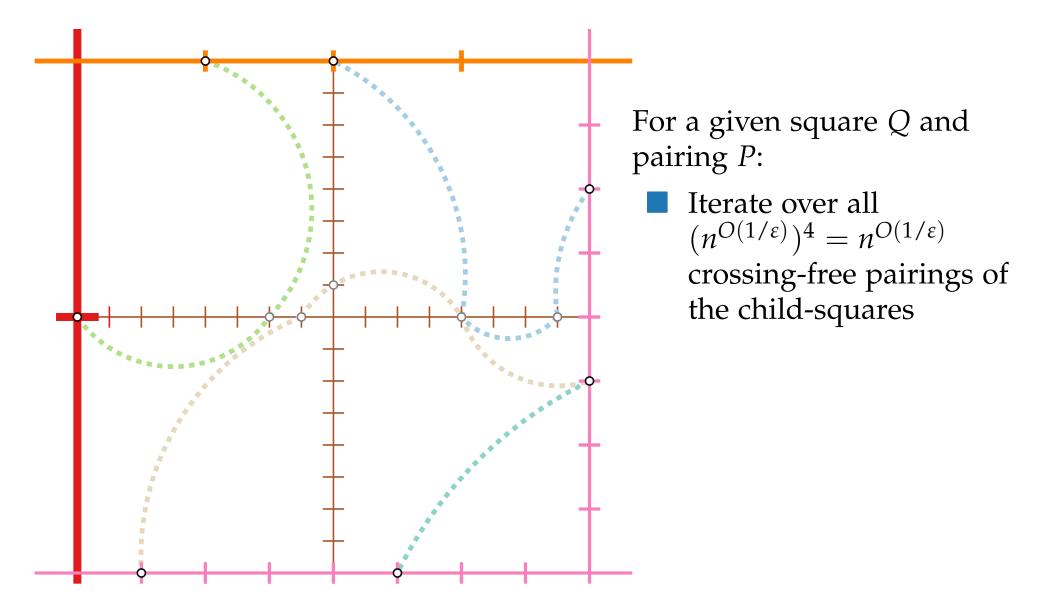


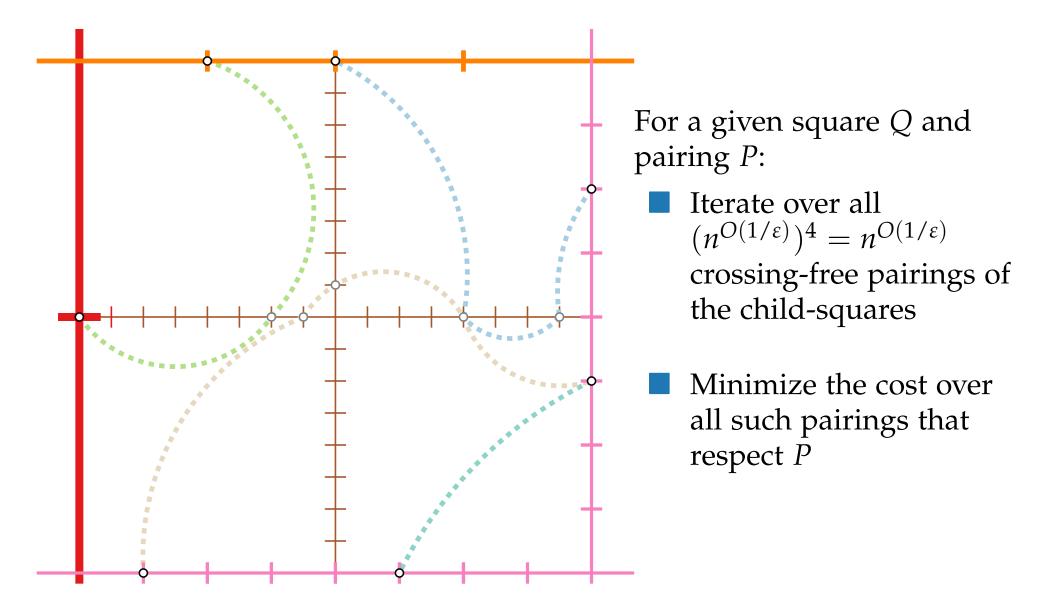
12 - 2

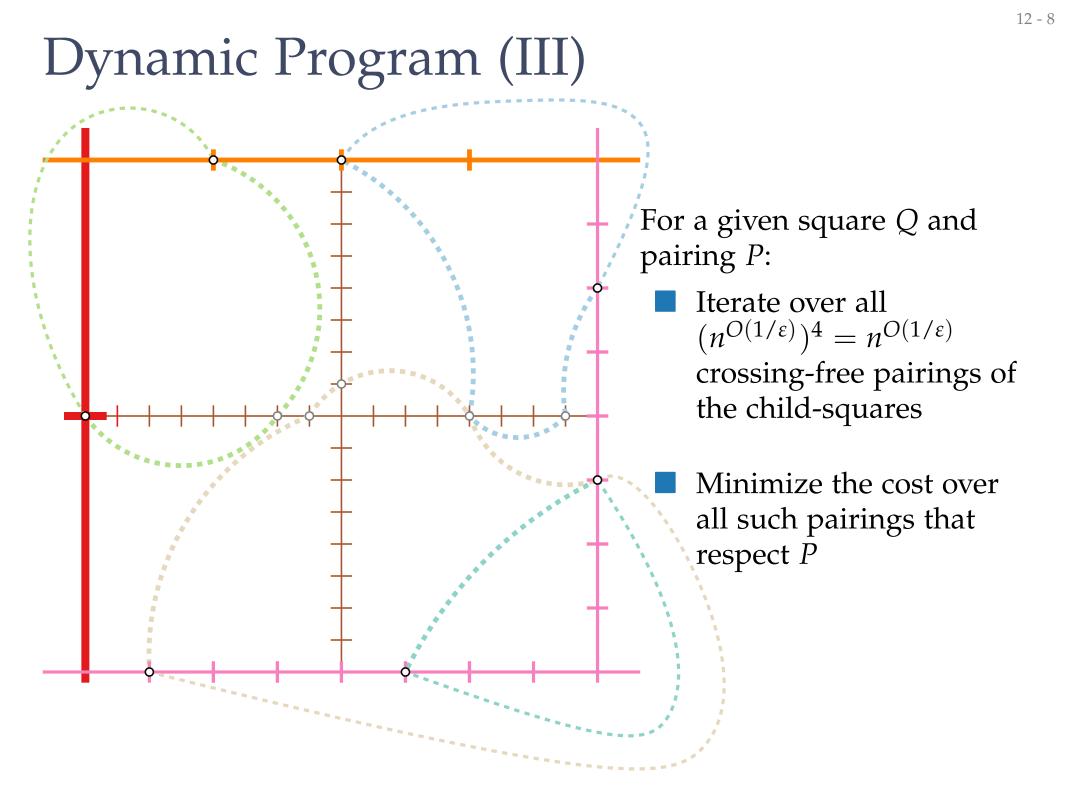


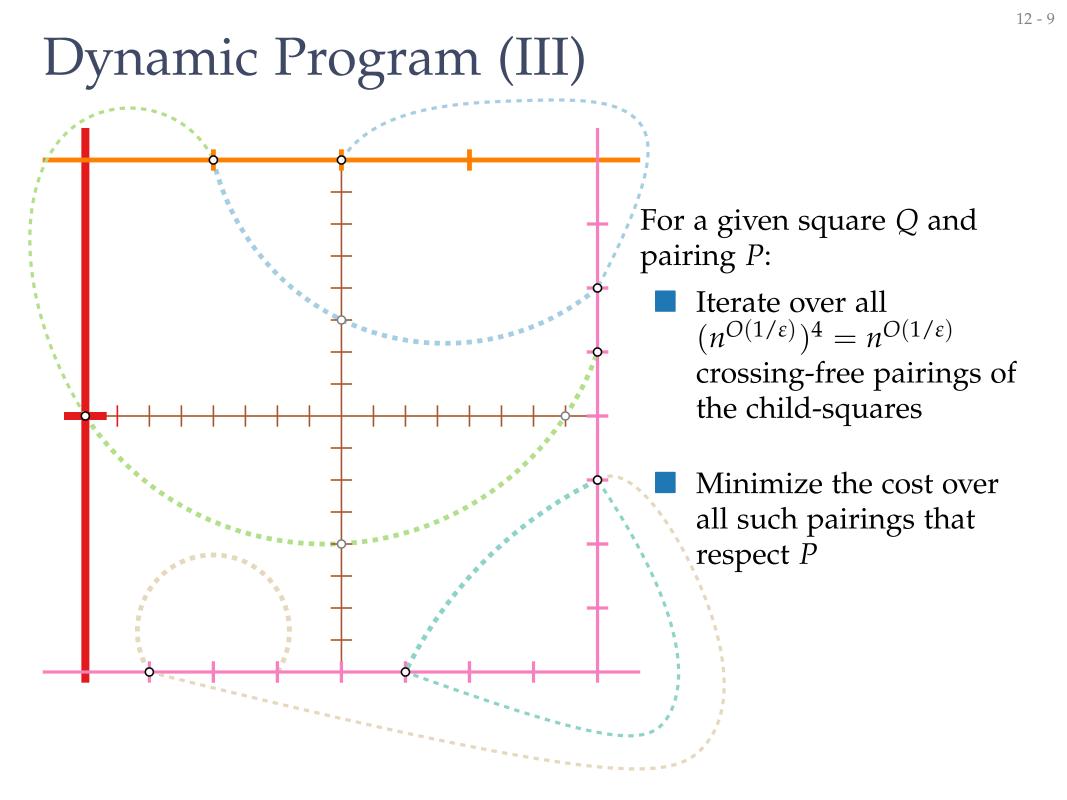


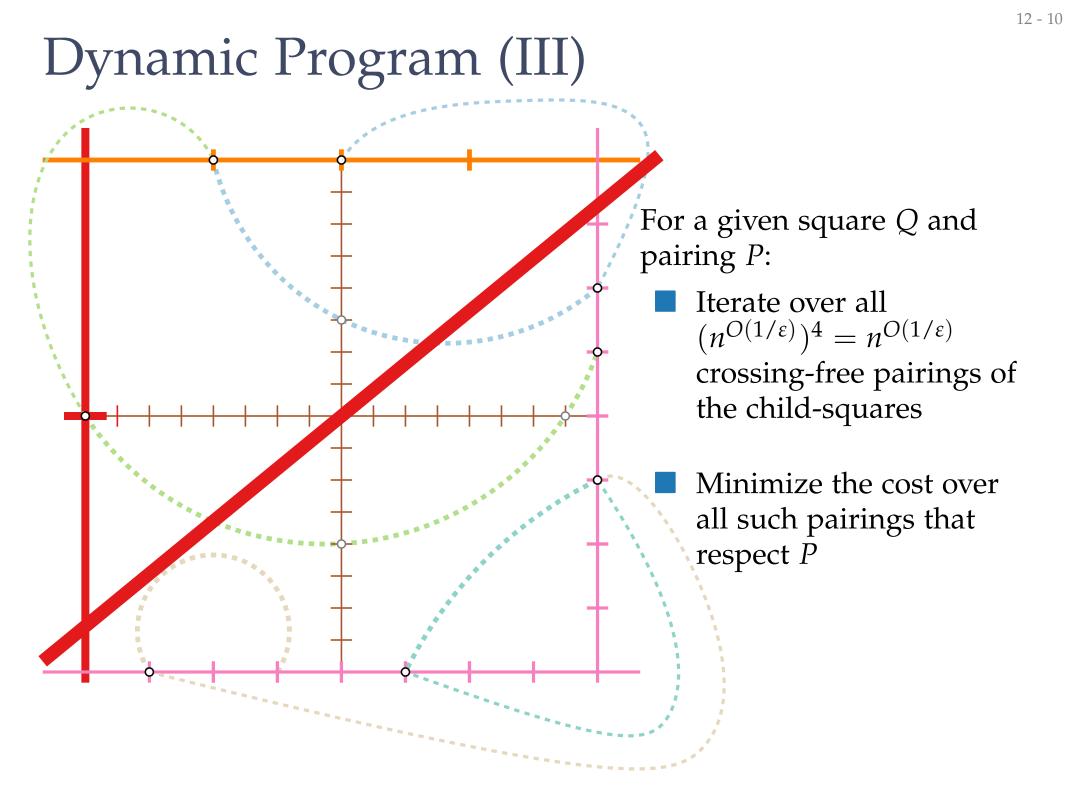


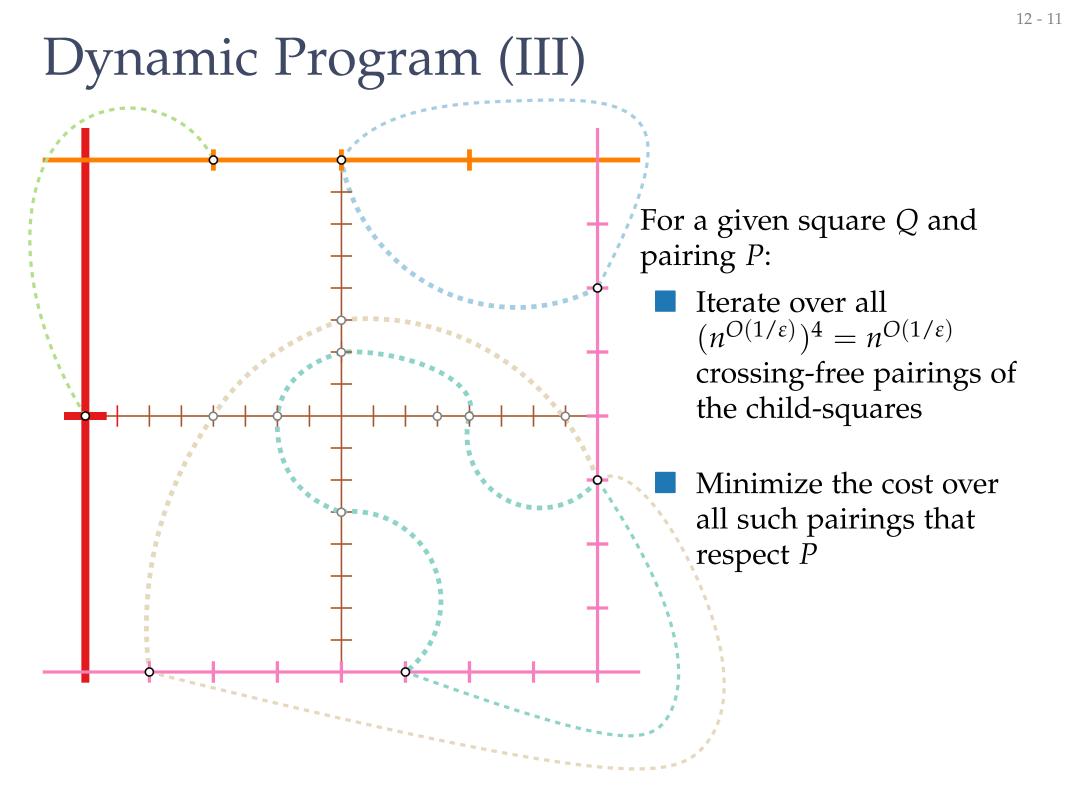


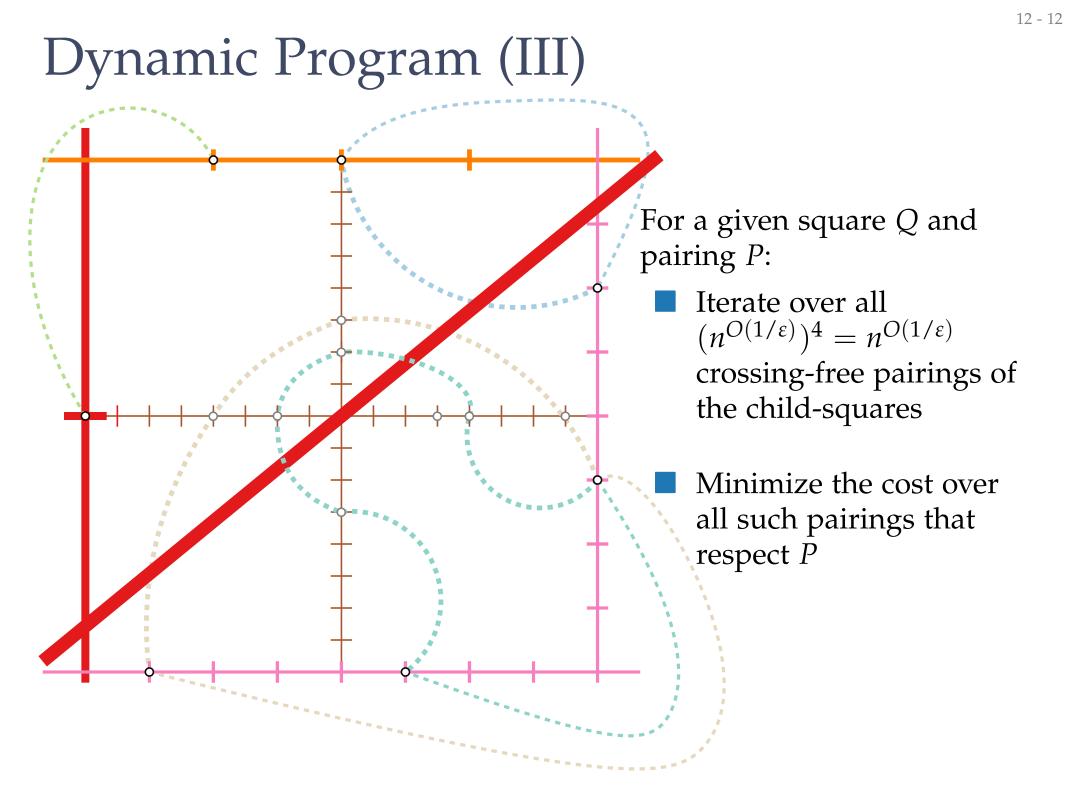


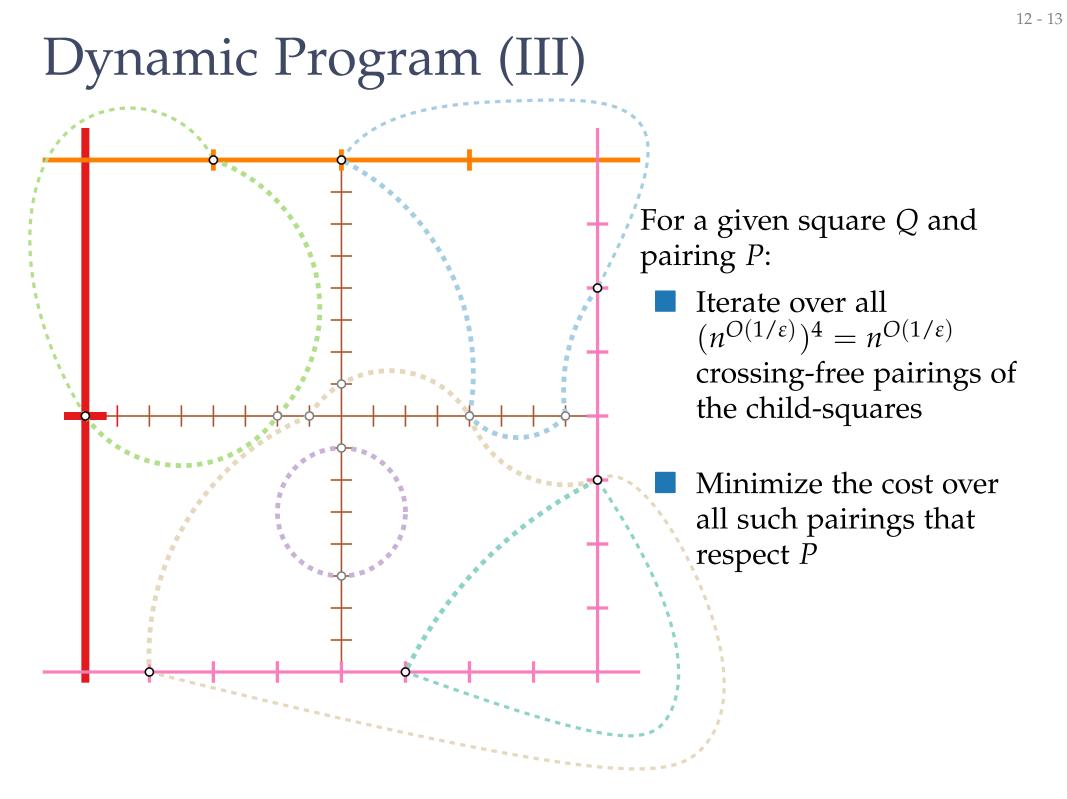


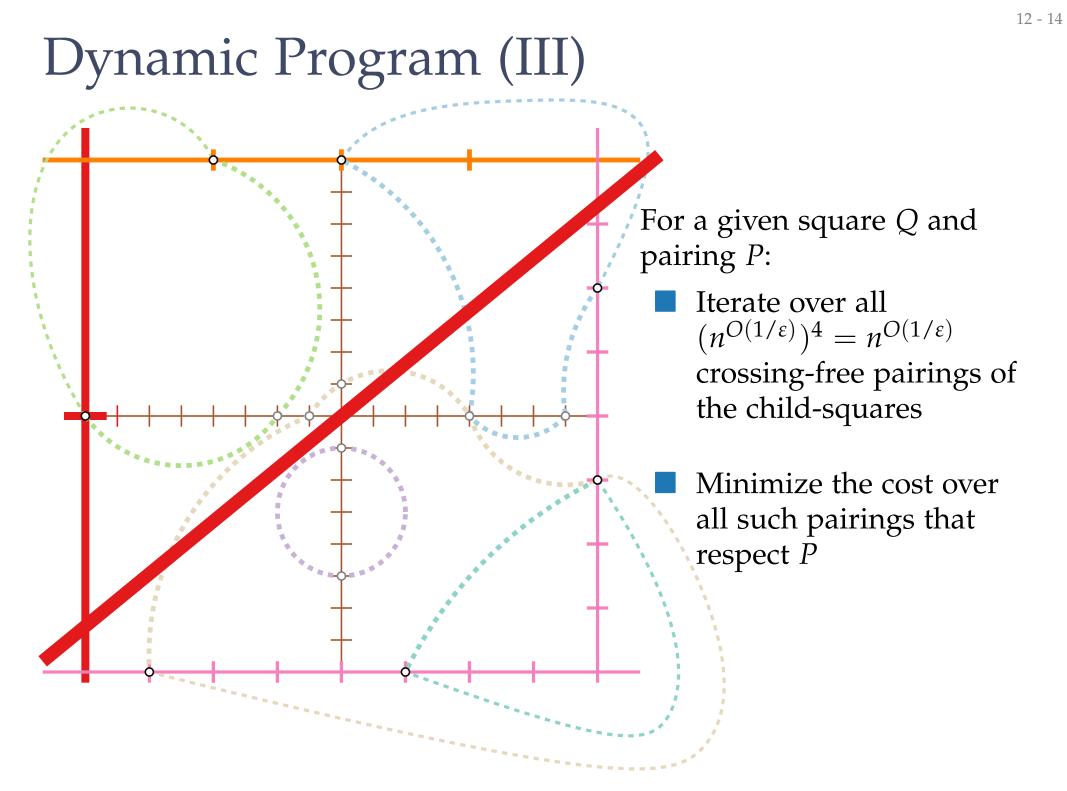


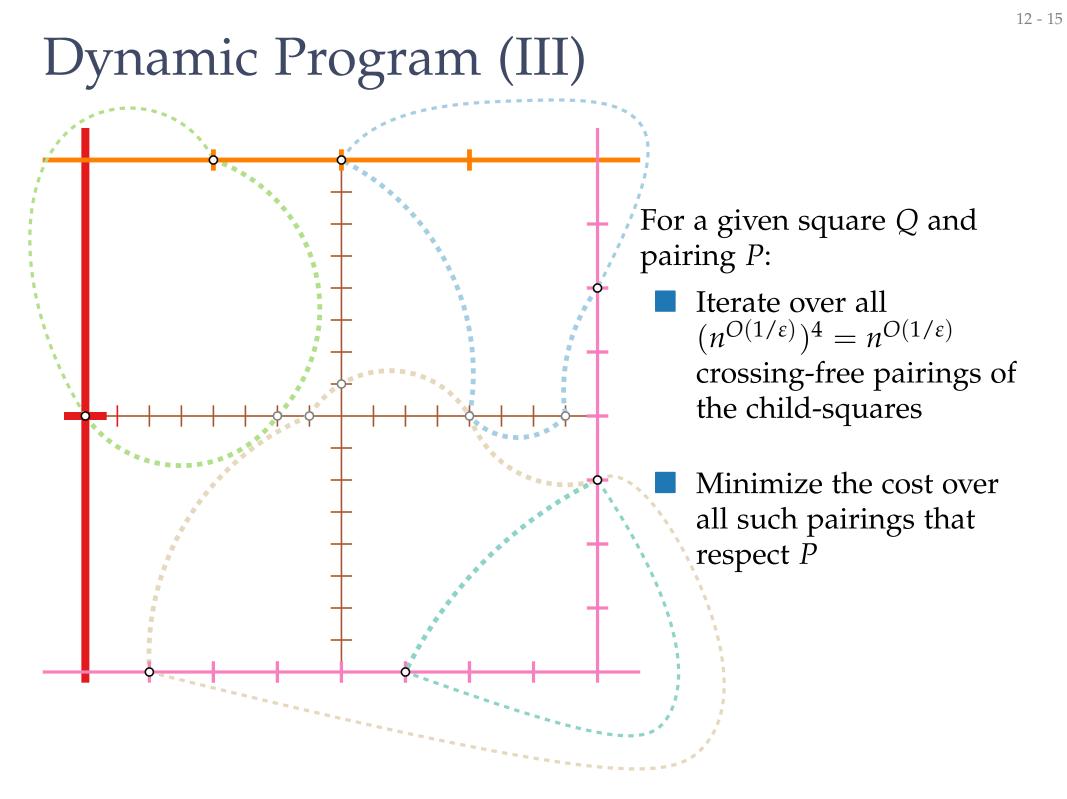


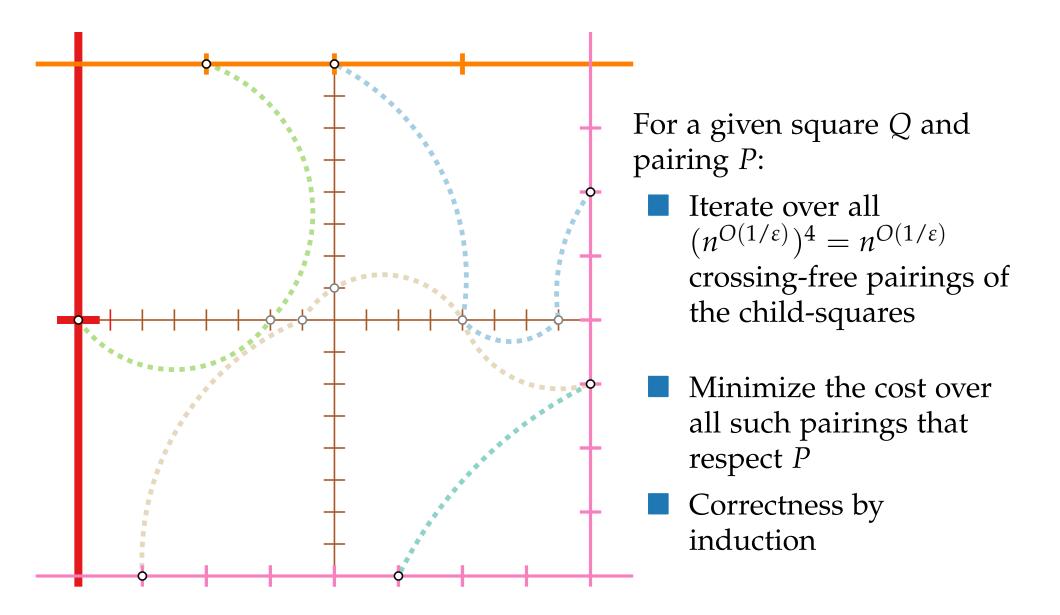




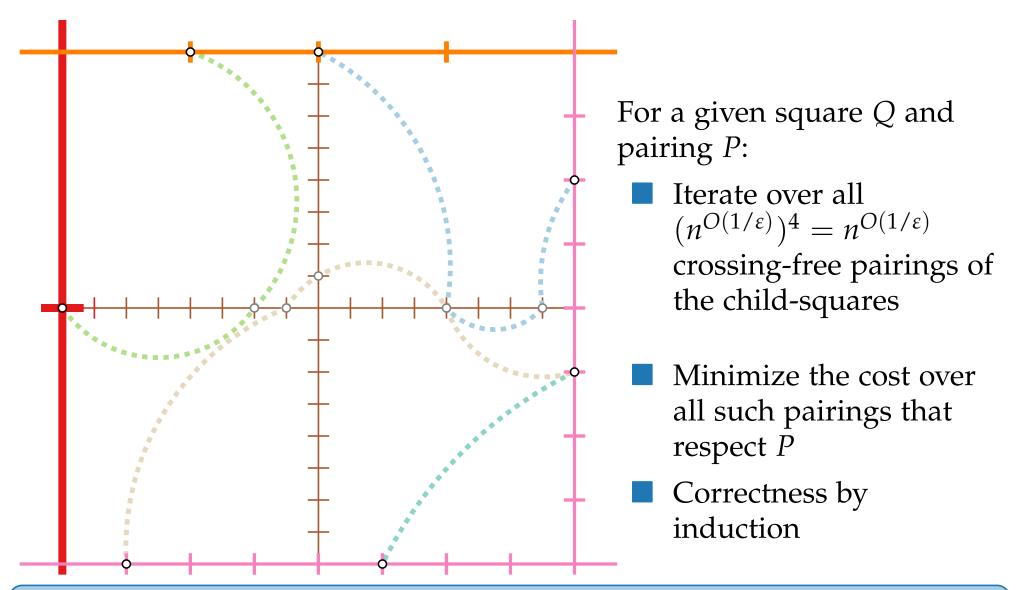








Dynamic Program (III)



Lemma. An optimal well behaved tour can be computed in $2^{O(m)} = n^{O(1/\varepsilon)}$ time.

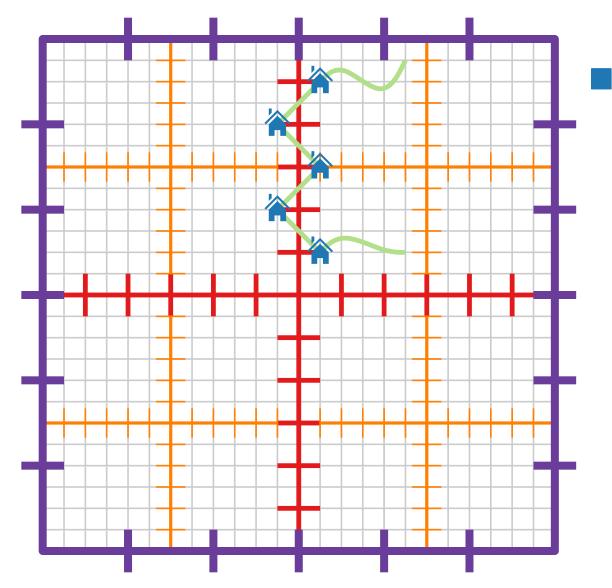
Approximation Algorithms

Lecture 10: PTAS for EuclideanTSP

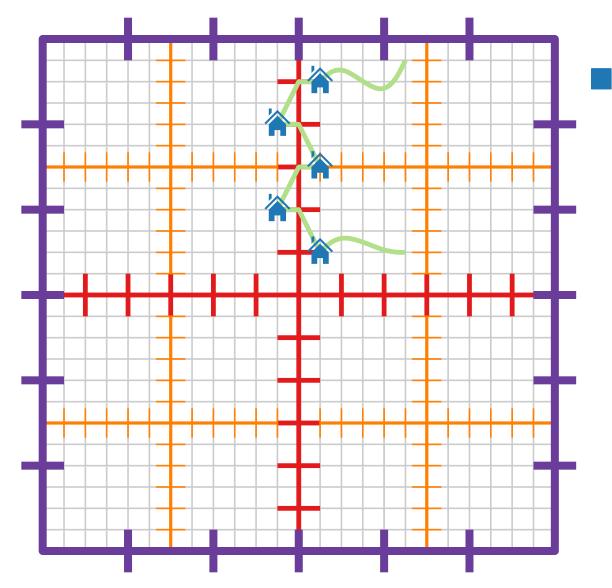
Part V: Shifted Dissections

Philipp Kindermann

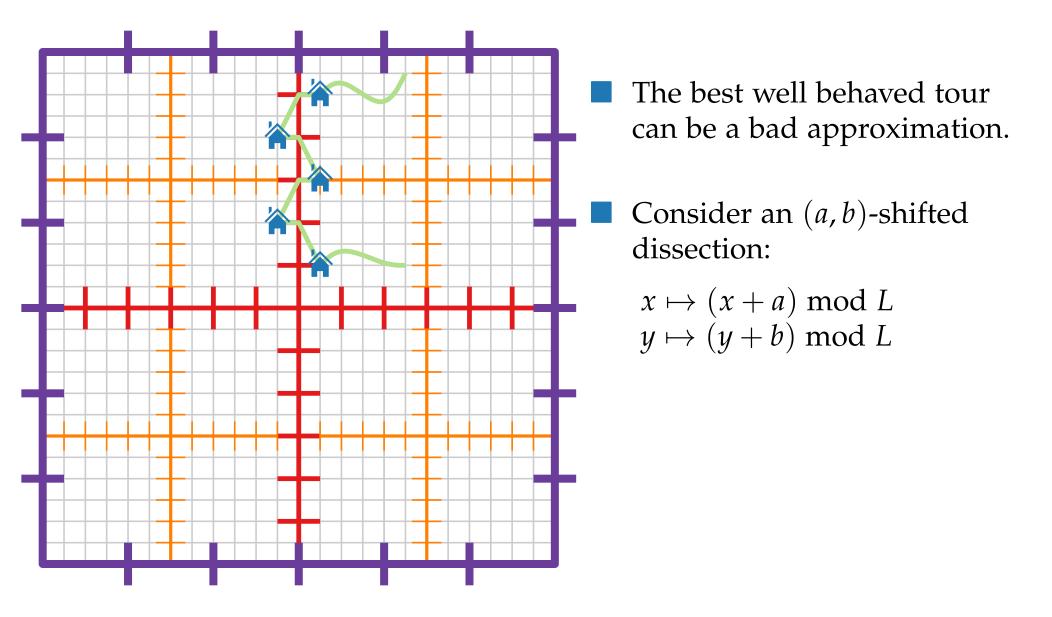
Summer Semester 2020

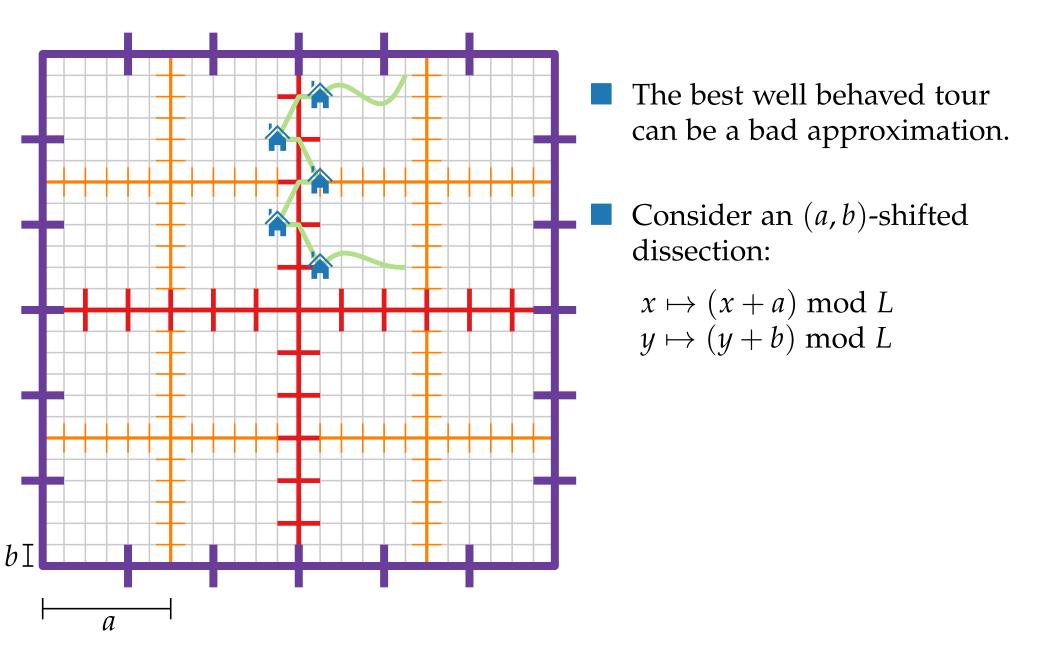


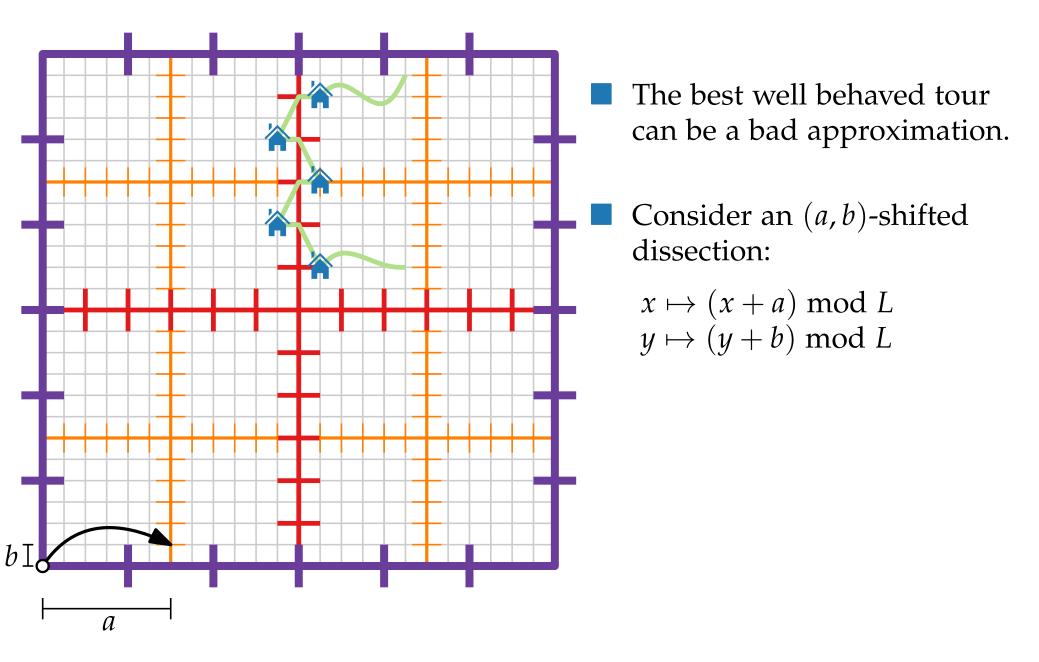
The best well behaved tour can be a bad approximation.

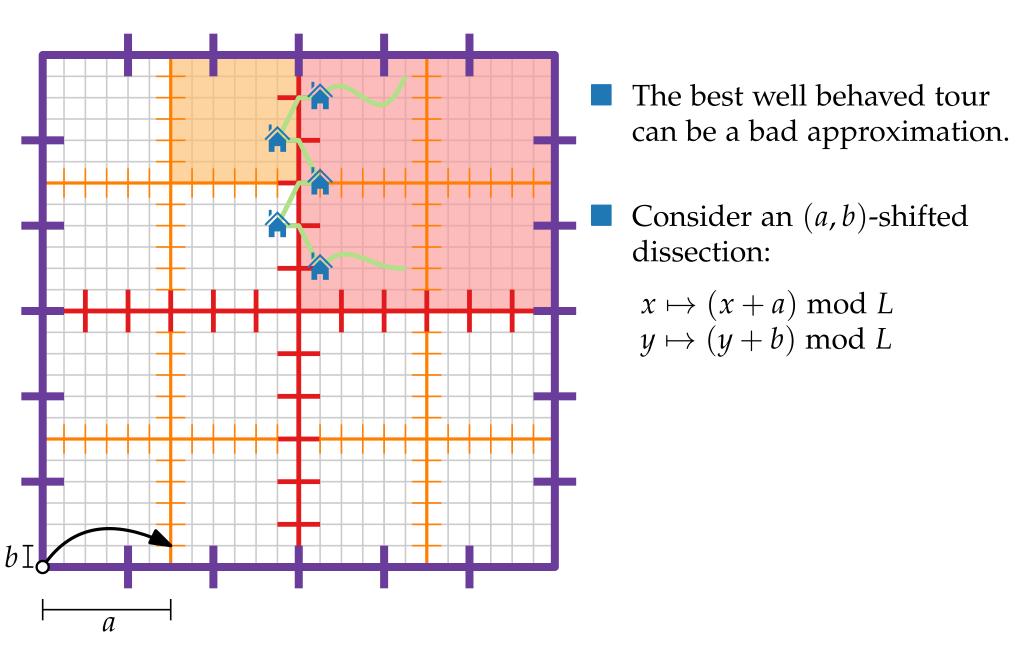


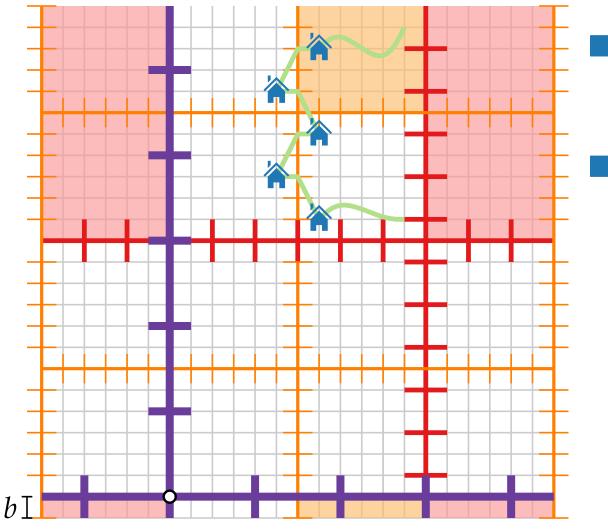
The best well behaved tour can be a bad approximation.









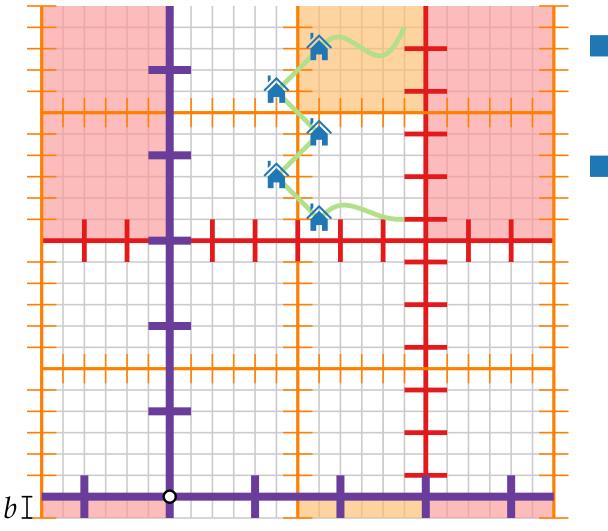


а

The best well behaved tour can be a bad approximation.

Consider an (*a*, *b*)-shifted dissection:

 $\begin{array}{l} x \mapsto (x+a) \bmod L \\ y \mapsto (y+b) \bmod L \end{array}$

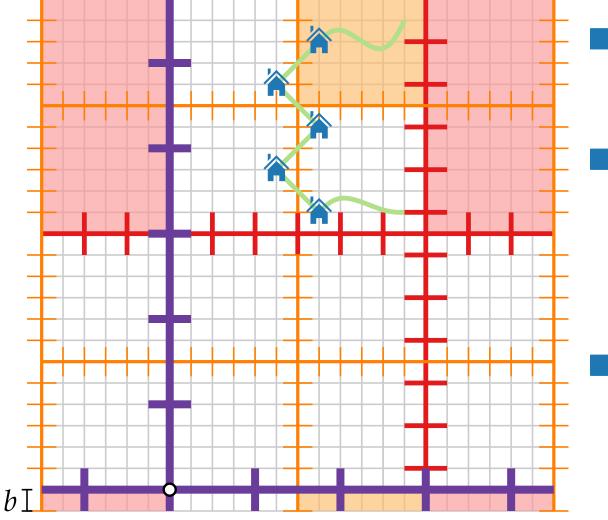


а

The best well behaved tour can be a bad approximation.

Consider an (*a*, *b*)-shifted dissection:

 $\begin{array}{l} x \mapsto (x+a) \bmod L \\ y \mapsto (y+b) \bmod L \end{array}$



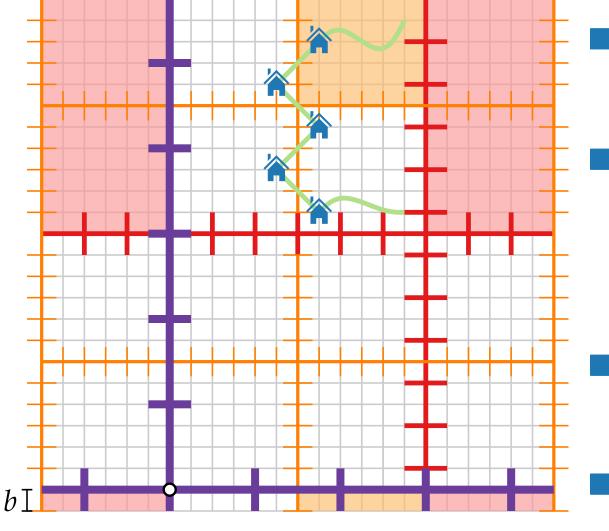
а

The best well behaved tour can be a bad approximation.

Consider an (*a*, *b*)-shifted dissection:

 $\begin{array}{l} x \mapsto (x+a) \bmod L \\ y \mapsto (y+b) \bmod L \end{array}$

Squares in the dissection tree are "wrapped around".



а

The best well behaved tour can be a bad approximation.

Consider an (*a*, *b*)-shifted dissection:

 $\begin{array}{l} x \mapsto (x+a) \bmod L \\ y \mapsto (y+b) \bmod L \end{array}$

Squares in the dissection tree are "wrapped around".

Dynamic program must be modified accordingly.

Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid.

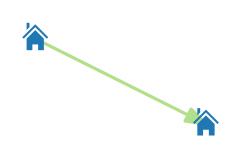
Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

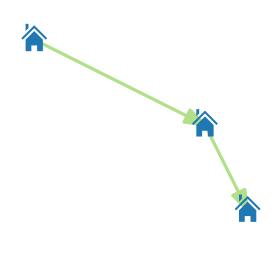
Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.



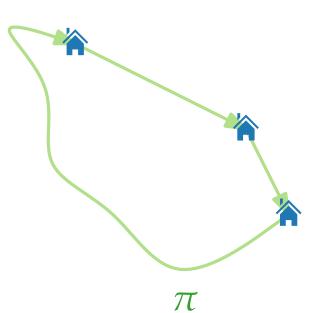
Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.



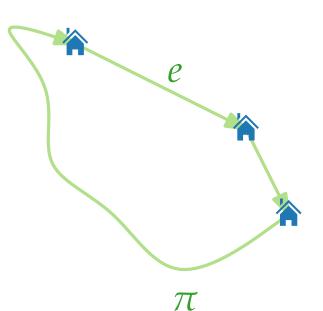
Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.



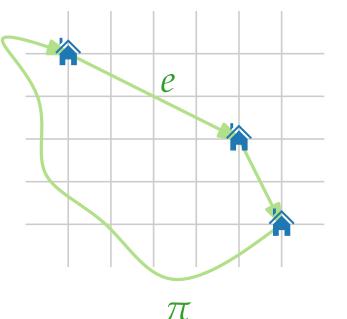
Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.



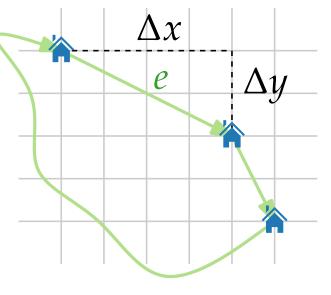
Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.



Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

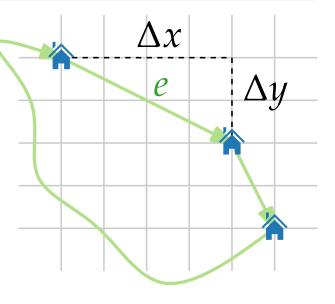
Proof.



Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

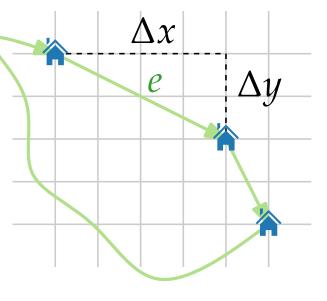
- Consider a tour as an ordered cyclic sequence.
- Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.



Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

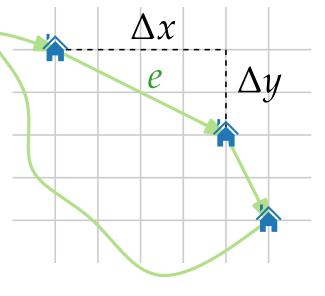
- Consider a tour as an ordered cyclic sequence.
- Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.



Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

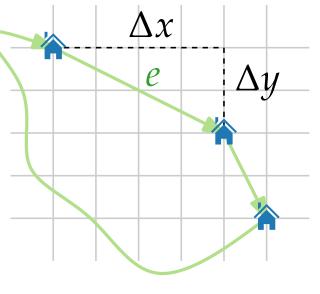
- Consider a tour as an ordered cyclic sequence.
- Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.



Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.



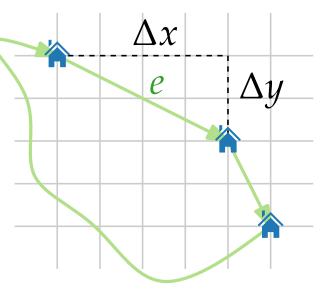
 $N_e^2 \leq (\Delta x + \Delta y)^2 \leq$

Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
- Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
- Crossings at the endpoint of an edge are counted for the next edge.

(AM-GM)



15 - 14

Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

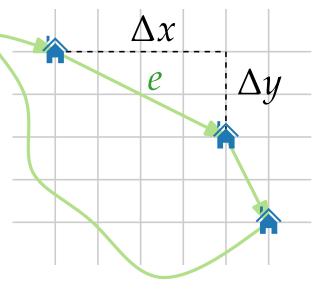
Y

 $\boldsymbol{\chi}$

 \mathcal{X}

Y

- Consider a tour as an ordered cyclic sequence.
 - Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge.



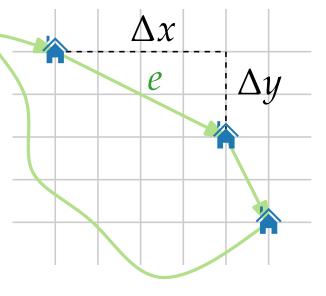
(AM-GM) $N_e^2 \le (\Delta x + \Delta y)^2 \lt$

Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
 - Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge.

(AM-GM)



15 - 16

Y $N_e^2 \le (\Delta x + \Delta y)^2 \lt$ ${\mathcal X}$ Y ${\mathcal X}$

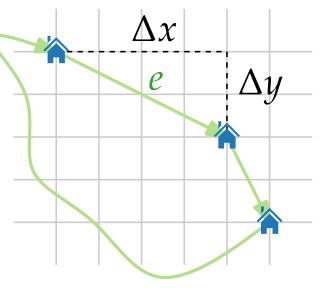
Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
 - Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge.

 $N_e^2 \le (\Delta x + \Delta y)^2 \lt$

(AM-GM)



15 - 17

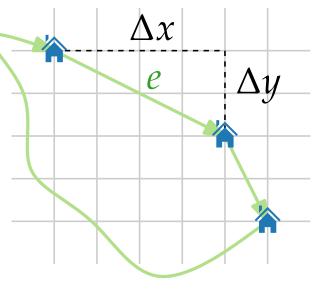
Y \mathcal{X} Y ${\mathcal X}$

Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
 - Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge.

(AM-GM)



15 - 18

y x yxy \mathcal{X} Y \mathcal{X}

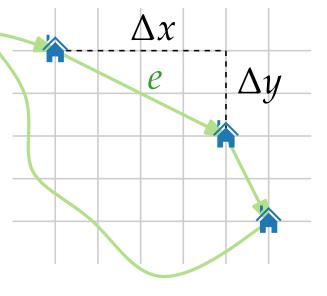
Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

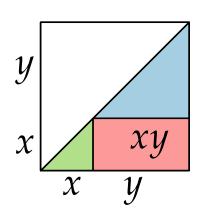
- Consider a tour as an ordered cyclic sequence.
 - Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge.

 $N_e^2 \le (\Delta x + \Delta y)^2 \lt$

(AM–GM)



15 - 19



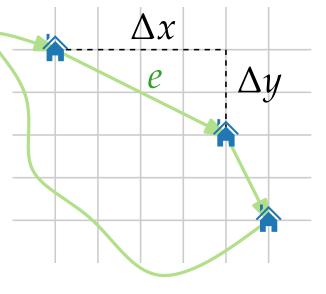
Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

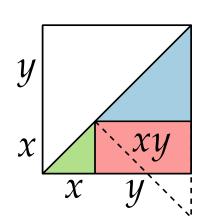
- Consider a tour as an ordered cyclic sequence.
 - Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge.

 $\square N_e^2 \le (\Delta x + \Delta y)^2 \lt$

(AM–GM)



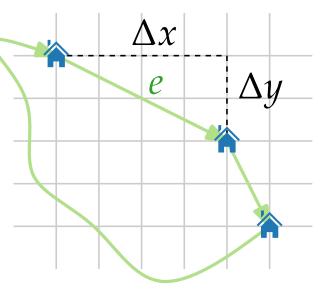
15 - 20



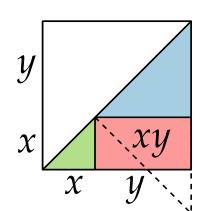
Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
 - Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge.



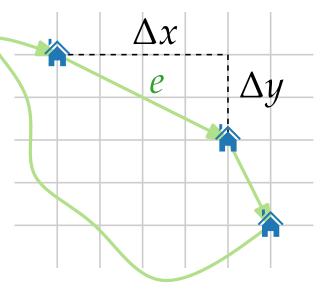
(AM–GM) $N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) =$



Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

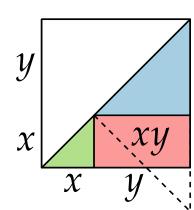
- Consider a tour as an ordered cyclic sequence.
 - Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge.



 π

 $N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2.$

(AM–GM)



 $\blacksquare N(\pi) =$

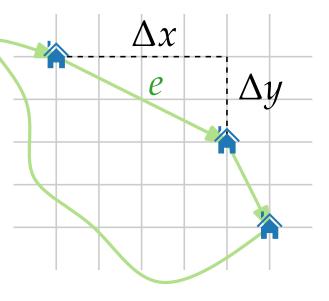
Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

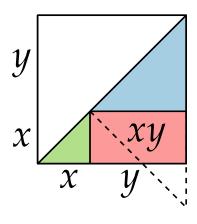
- Consider a tour as an ordered cyclic sequence.
 - Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge.

(AM–GM)

 $N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2.$



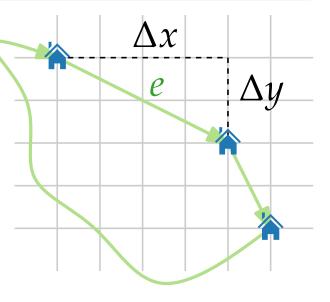
15 - 23



Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
 - Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge.



 π

(AM–GM) $\square N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2.$ $N(\pi) = \sum_{e \in \pi} N_e \leq$

 $\begin{array}{c|c} y \\ x \\ x \\ x \\ x \\ y \\ \ddots \end{array}$

Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

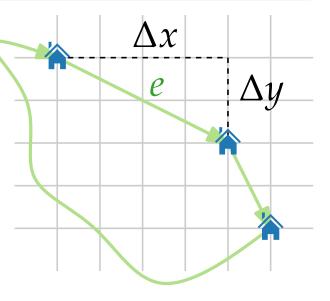
Proof.

 $\chi \chi \gamma$

Y

 ${\mathcal X}$

- Consider a tour as an ordered cyclic sequence.
 - Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge.



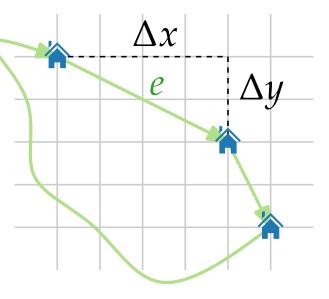
 π

(AM–GM) $N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2.$ $N(\pi) = \sum_{e \in \pi} N_e \leq \sum_{e \in \pi} \sqrt{2|e|^2}$

Lemma. Let π be an optimal tour and $N(\pi)$ be the number of crossings of π with the lines of the $(L \times L)$ -grid. Then we have $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$.

Proof.

- Consider a tour as an ordered cyclic sequence.
 - Each edge *e* generates $N_e \leq \Delta x + \Delta y$ crossings.
 - Crossings at the endpoint of an edge are counted for the next edge.



 π

(AM–GM) $N_e^2 \le (\Delta x + \Delta y)^2 \le 2(\Delta x^2 + \Delta y^2) = 2|e|^2.$ $N(\pi) = \sum_{e \in \pi} N_e \leq \sum_{e \in \pi} \sqrt{2|e|^2} = \sqrt{2} \cdot \text{OPT.}$

Approximation Algorithms

Lecture 10: PTAS for EuclideanTSP

Part VI: Approximation Factor

Philipp Kindermann

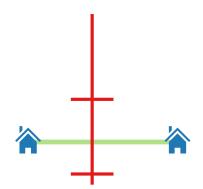
Summer Semester 2020

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformaly at random.

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is $\leq (1 + 2\sqrt{2\varepsilon})$ OPT.

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is $\leq (1 + 2\sqrt{2\varepsilon})$ OPT.

Proof. Consider optimal tour π .



Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is $\leq (1 + 2\sqrt{2\varepsilon})$ OPT.

Proof. Consider optimal tour π . Make π well behaved by moving each intersection point with the $(L \times L)$ -grid to the nearest portal.

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is $\leq (1 + 2\sqrt{2\varepsilon})$ OPT.

Proof.

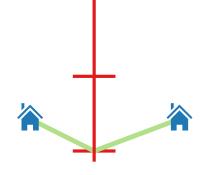
Consider optimal tour π . Make π well behaved by moving each intersection point with the $(L \times L)$ -grid to the nearest portal.

17 - 5

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is $\leq (1 + 2\sqrt{2\varepsilon})$ OPT.

Proof.

Consider optimal tour π . Make π well behaved by moving each intersection point with the $(L \times L)$ -grid to the nearest portal.

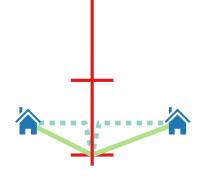


Detour per intersection \leq inter-portal distance.

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is $\leq (1 + 2\sqrt{2\varepsilon})$ OPT.

Proof.

Consider optimal tour π . Make π well behaved by moving each intersection point with the $(L \times L)$ -grid to the nearest portal.



Detour per intersection \leq inter-portal distance.

Consider an intersection point between π and a line *l* of the $(L \times L)$ -grid.

Consider an intersection point between π and a line lof the $(L \times L)$ -grid.

■ With probability *at most* , *l* is a level-*i*-line

- Consider an intersection point between π and a line *l* of the $(L \times L)$ -grid.
- With probability at most $2^i / L$, l is a level-*i*-line

- Consider an intersection point between π and a line *l* of the $(L \times L)$ -grid.
- With probability *at most* 2ⁱ/L, *l* is a level-*i*-line → an increase in tour length by a maximum of (inter-portal distance).

- Consider an intersection point between π and a line *l* of the $(L \times L)$ -grid.
- With probability *at most* 2ⁱ/L, *l* is a level-*i*-line → an increase in tour length by a maximum of L/(2ⁱm) (inter-portal distance).

- Consider an intersection point between π and a line *l* of the $(L \times L)$ -grid.
- With probability *at most* 2ⁱ/L, *l* is a level-*i*-line → an increase in tour length by a maximum of L/(2ⁱm) (inter-portal distance).
 - Thus, the expected increase in tour length due to this intersection is at most:

- Consider an intersection point between π and a line *l* of the $(L \times L)$ -grid.
- With probability *at most* 2ⁱ/L, *l* is a level-*i*-line → an increase in tour length by a maximum of L/(2ⁱm) (inter-portal distance).
 - Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^{k}$$

- Consider an intersection point between π and a line *l* of the $(L \times L)$ -grid.
- With probability *at most* 2ⁱ/L, *l* is a level-*i*-line → an increase in tour length by a maximum of L/(2ⁱm) (inter-portal distance).
 - Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^k \frac{2^i}{L} \cdot$$

- Consider an intersection point between π and a line *l* of the $(L \times L)$ -grid.
- With probability *at most* 2ⁱ/L, *l* is a level-*i*-line → an increase in tour length by a maximum of L/(2ⁱm) (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^{k} \frac{2^{i}}{L} \cdot \frac{L}{2^{i}m} \leq$$

- Consider an intersection point between π and a line *l* of the $(L \times L)$ -grid.
- With probability *at most* 2ⁱ/L, *l* is a level-*i*-line → an increase in tour length by a maximum of L/(2ⁱm) (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most:

$$\sum_{i=0}^{k} \frac{2^{i}}{L} \cdot \frac{L}{2^{i}m} \leq \frac{k+1}{m} \leq \frac{k}{m}$$

- Consider an intersection point between π and a line *l* of the $(L \times L)$ -grid.
- With probability *at most* 2ⁱ/L, *l* is a level-*i*-line → an increase in tour length by a maximum of L/(2ⁱm) (inter-portal distance).
 - Thus, the expected increase in tour length due to this intersection is at most: $m \in [k/\epsilon, 2k/\epsilon]$

$$\sum_{i=0}^{k} \frac{2^{i}}{L} \cdot \frac{L}{2^{i}m} \leq \frac{k+1}{m} \leq \frac{k}{m}$$

- Consider an intersection point between π and a line *l* of the $(L \times L)$ -grid.
- With probability *at most* 2ⁱ/L, *l* is a level-*i*-line → an increase in tour length by a maximum of L/(2ⁱm) (inter-portal distance).
 - Thus, the expected increase in tour length due to this intersection is at most: $m \in [k/\epsilon, 2k/\epsilon]$

$$\sum_{i=0}^{k} \frac{2^{i}}{L} \cdot \frac{L}{2^{i}m} \leq \frac{k+1}{m} \leq 2\varepsilon.$$

- Consider an intersection point between π and a line *l* of the $(L \times L)$ -grid.
- With probability *at most* 2ⁱ/L, *l* is a level-*i*-line → an increase in tour length by a maximum of L/(2ⁱm) (inter-portal distance).
- Thus, the expected increase in tour length due to this intersection is at most: $m \in [k/\epsilon, 2k/\epsilon]$

$$\sum_{i=0}^{k} \frac{2^{i}}{L} \cdot \frac{L}{2^{i}m} \leq \frac{k+1}{m} \leq 2\varepsilon.$$

Summing over all $N(\pi) \leq \sqrt{2} \cdot \text{OPT}$ intersection points, and applying linearity of expectation, provides the claim.

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is $\leq (1 + 2\sqrt{2\varepsilon})$ OPT.

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is $\leq (1 + 2\sqrt{2\varepsilon})$ OPT.

Theorem. There is a *deterministic* algorithm (PTAS) for EUCLIDEANTSP that provides for every $\varepsilon > 0$ a $(1 + \varepsilon)$ -approximation in $n^{O(1/\varepsilon)}$ time.

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is $\leq (1 + 2\sqrt{2\varepsilon})$ OPT.

There is a *deterministic* algorithm (PTAS) for Theorem. EUCLIDEANTSP that provides for every $\varepsilon > 0$ a $(1 + \varepsilon)$ -approximation in $n^{O(1/\varepsilon)}$ time.

Proof.

Try all L^2 many (a, b)-shifted dissections.

Theorem. Let $a, b \in [0, L - 1]$ be chosen independently and uniformaly at random. Then the expected cost of an optimal well behaved tour with respect to the (a, b)-shifted dissection is $\leq (1 + 2\sqrt{2\varepsilon})$ OPT.

Theorem. There is a *deterministic* algorithm (PTAS) for EUCLIDEANTSP that provides for every $\varepsilon > 0$ a $(1 + \varepsilon)$ -approximation in $n^{O(1/\varepsilon)}$ time.

Proof.

Try all L^2 many (a, b)-shifted dissections. By the previous theorem, one of them is good enough.