## Approximation Algorithms Lecture 9: MINIMUM-DEGREE SPANNING TREE via Local Search Part I:

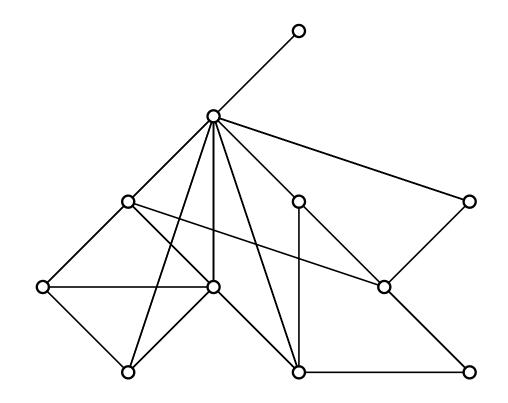
#### MINIMUM-DEGREE SPANNING TREE

Philipp Kindermann

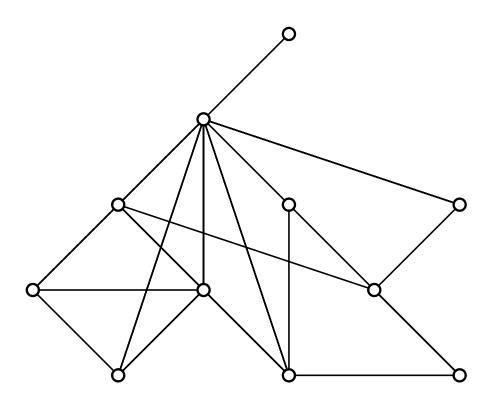
Summer Semester 2020

#### **Given:** A connected graph G = (V, E)

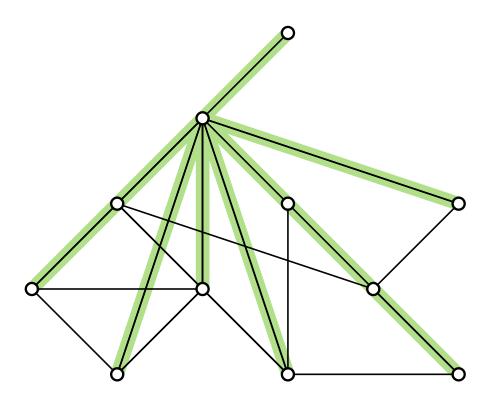
#### **Given:** A connected graph G = (V, E)



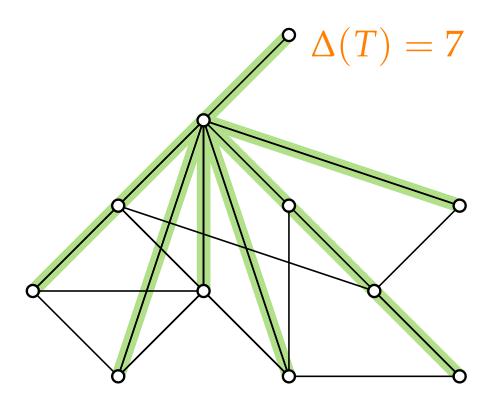
Given: Task:



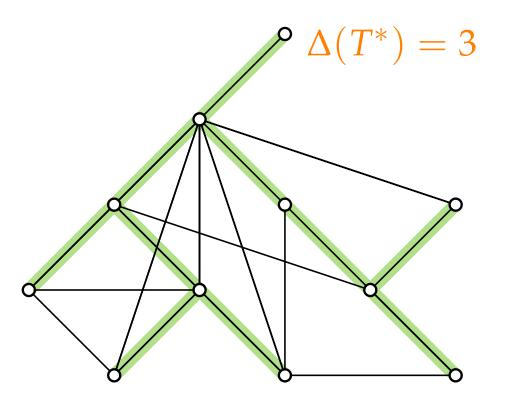
Given: Task:



Given: Task:

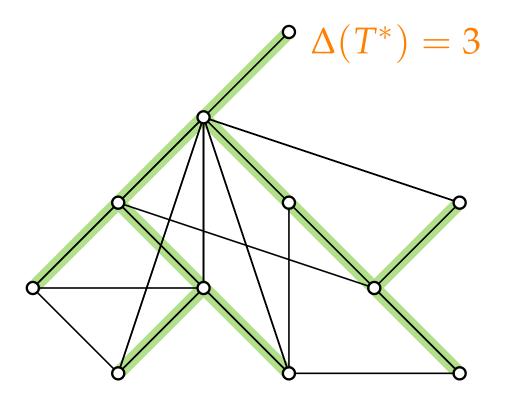


Given: Task:



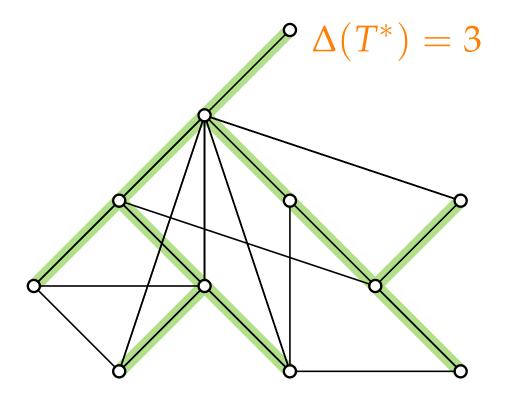
Given: Task:





Given: Task:





Given: Task:

A connected graph G = (V, E)Find a spanning tree *T* which has the minimum maximum degree  $\Delta(T)$  among all spanning trees of *G*.

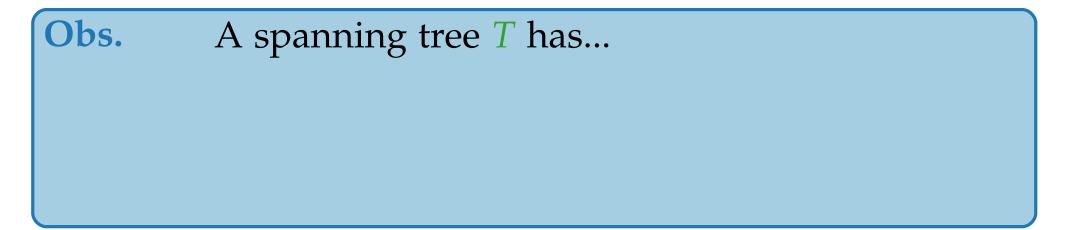
 $(T^*) = 3$ 

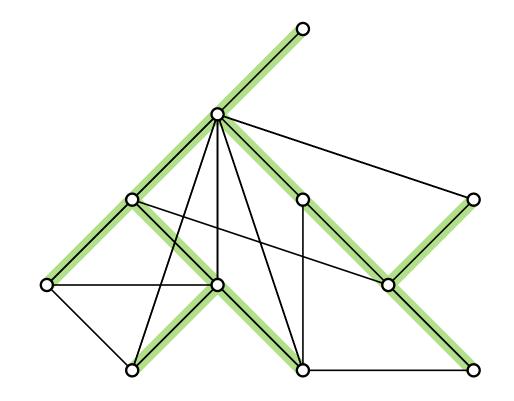


Why?

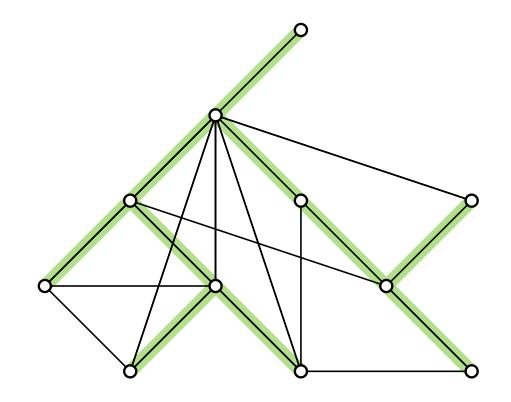
Special case of Hamiltonian Path!



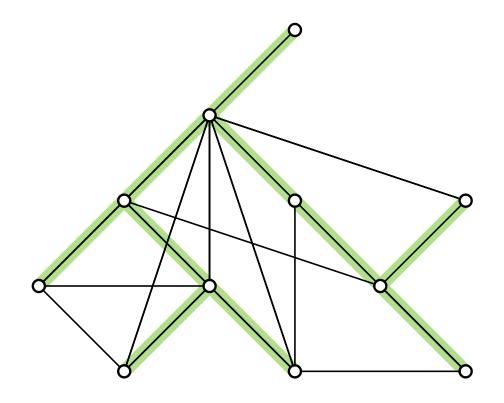


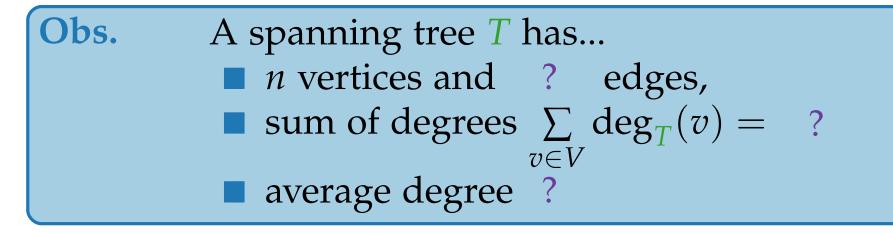


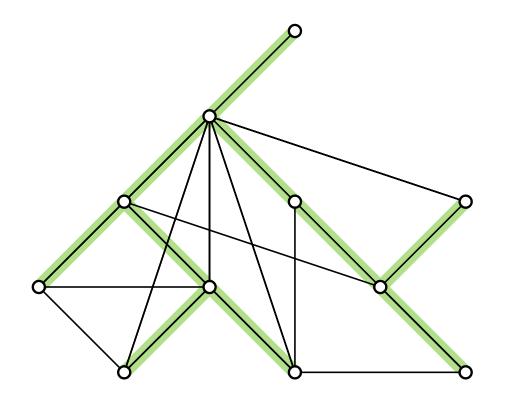
# **Obs.**A spanning tree *T* has...**I** *n* vertices and ? edges,



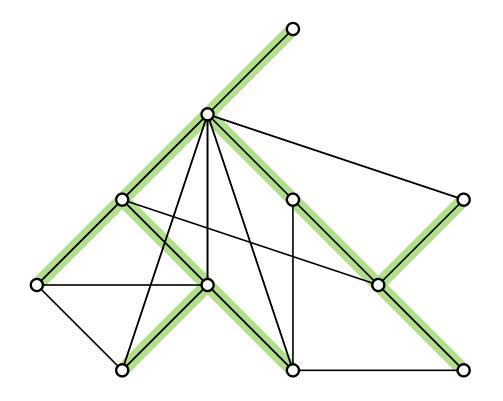
**Obs.**A spanning tree *T* has... $\square$  *n* vertices and? edges, $\square$  sum of degrees $\sum_{v \in V} deg_T(v) =$ ?



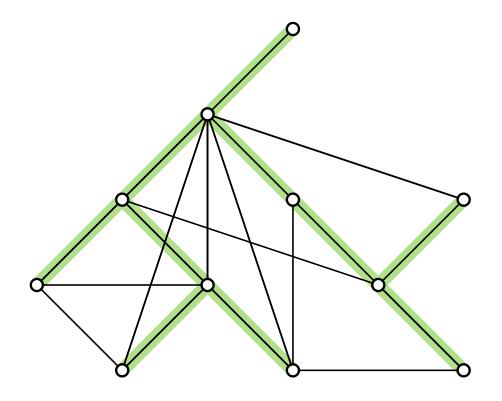




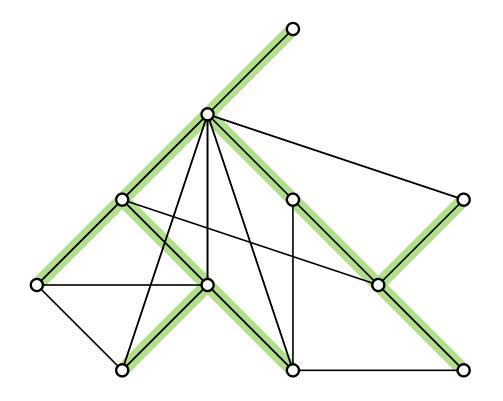
**Obs.**A spanning tree *T* has... $\square$  *n* vertices and n - 1 edges, $\square$  sum of degrees  $\sum_{v \in V} \deg_T(v) = ?$  $\square$  average degree ?



**Obs.**A spanning tree *T* has...n vertices and n - 1 edges,sum of degrees  $\sum_{v \in V} \deg_T(v) = 2n - 2$ ,average degree ?

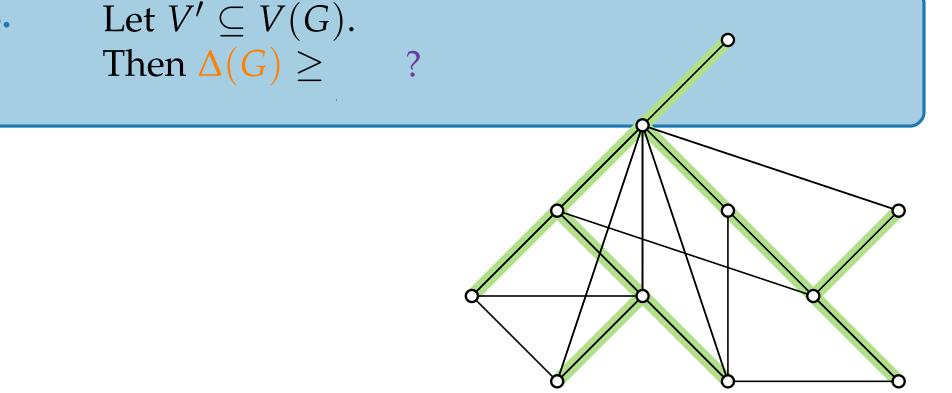


**Obs.**A spanning tree *T* has...n vertices and n - 1 edges,sum of degrees  $\sum_{v \in V} \deg_T(v) = 2n - 2$ ,average degree < 2.

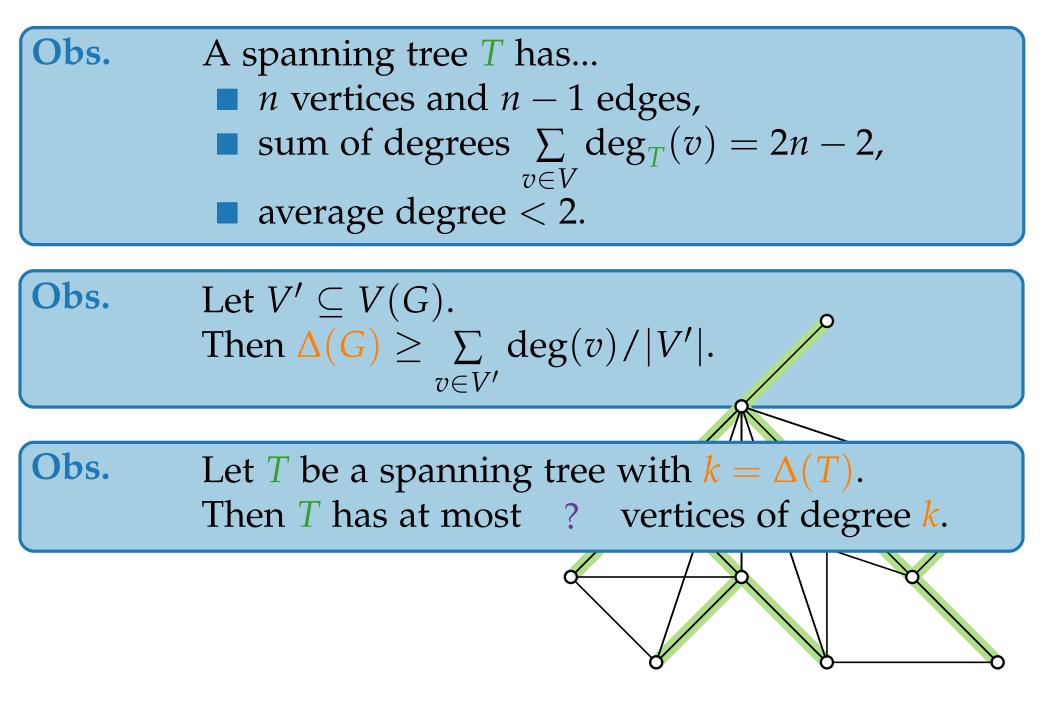


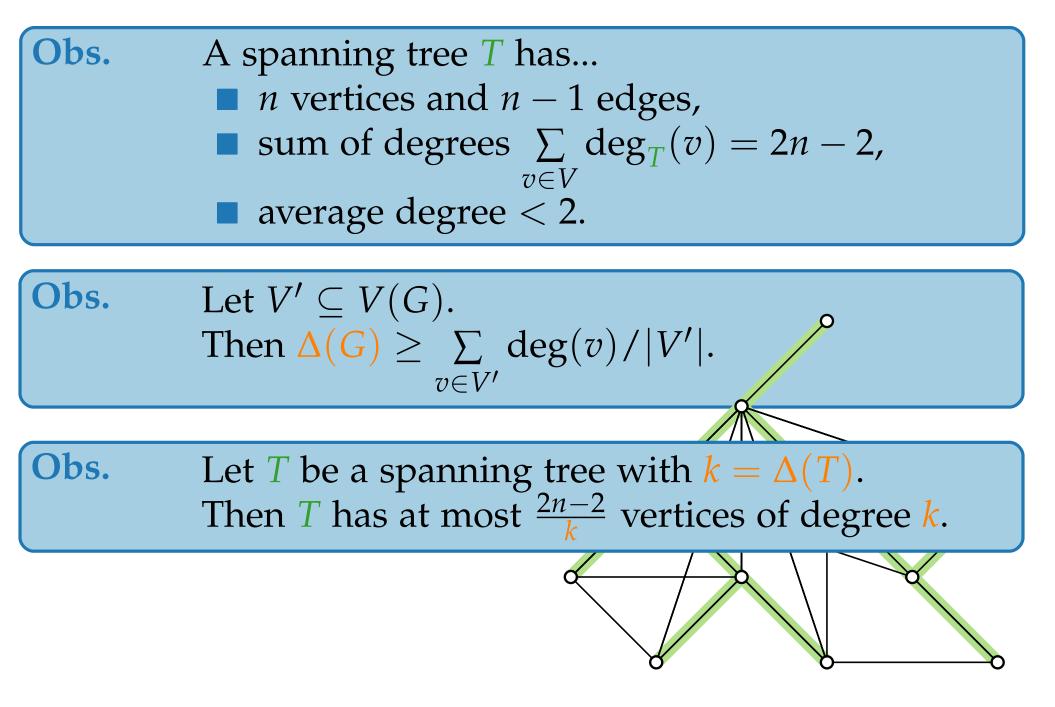
**Obs.** A spanning tree *T* has... *n* vertices and n - 1 edges, sum of degrees  $\sum_{v \in V} \deg_T(v) = 2n - 2$ , average degree < 2.

Obs.



Obs. A spanning tree *T* has... *n* vertices and n - 1 edges, sum of degrees  $\sum \deg_T(v) = 2n - 2$ ,  $v \in V$ average degree < 2. Obs. Let  $V' \subseteq V(G)$ . Then  $\Delta(G) \geq \sum \deg(v)/|V'|$ .  $v \in V'$ 



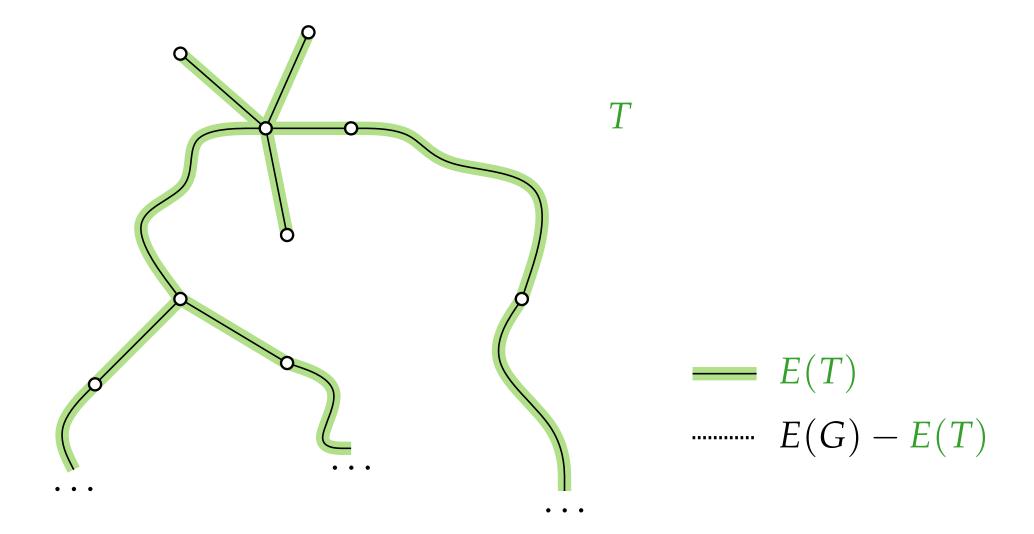


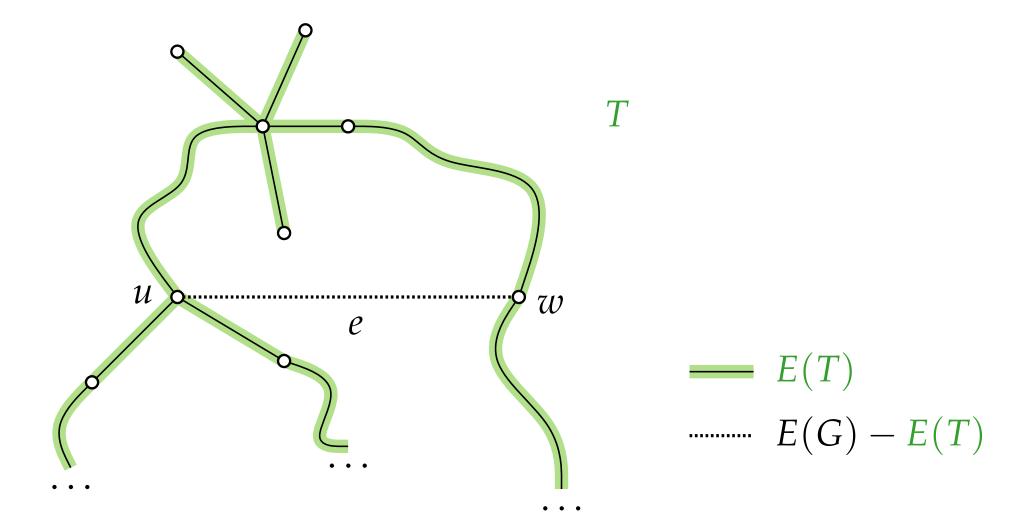
# Approximation Algorithms Lecture 9: MINIMUM-DEGREE SPANNING TREE via Local Search Part II:

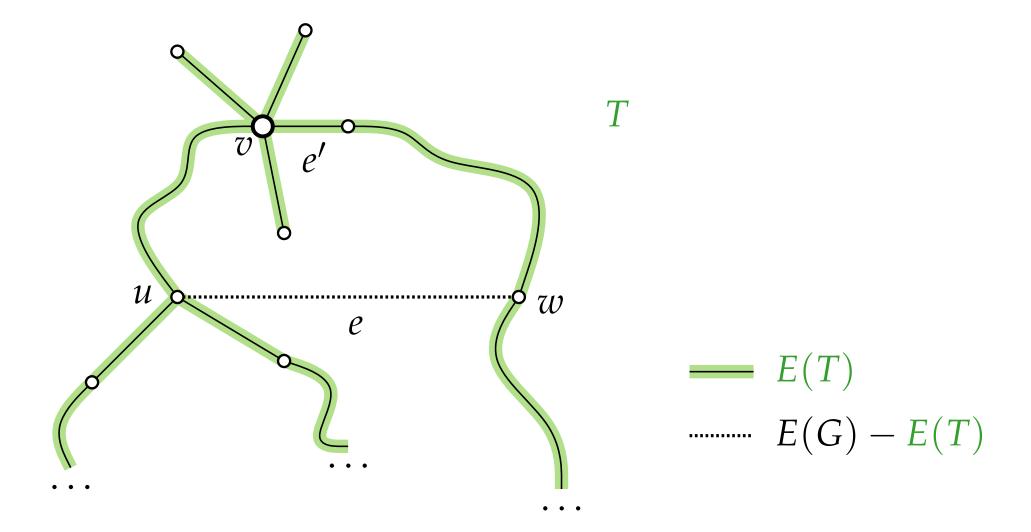
Edge Flips and Local Search

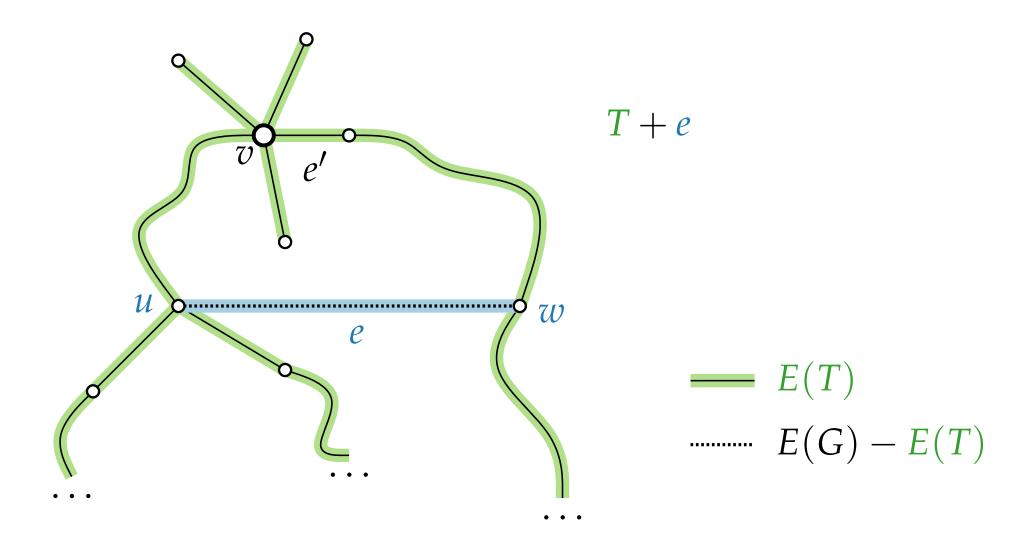
Philipp Kindermann

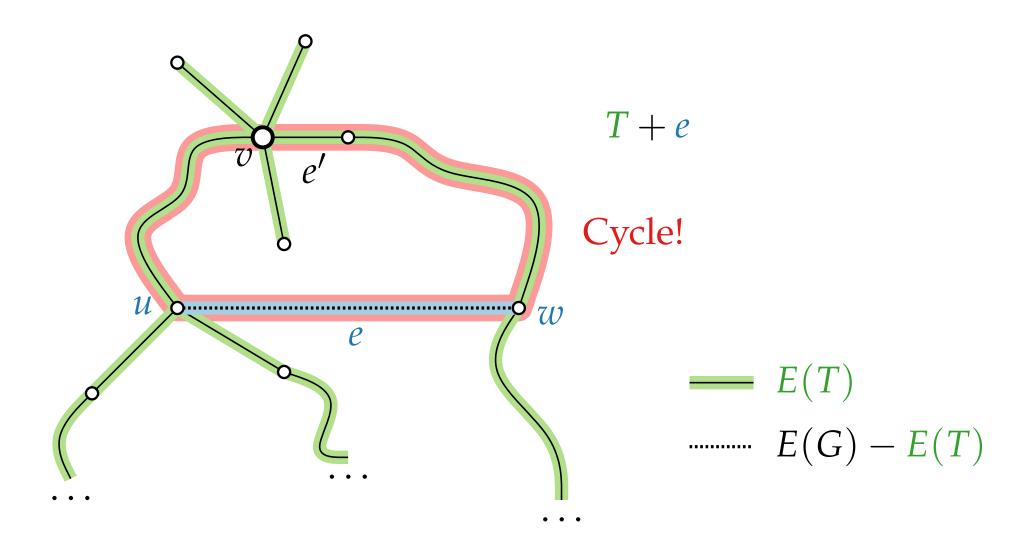
Summer Semester 2020

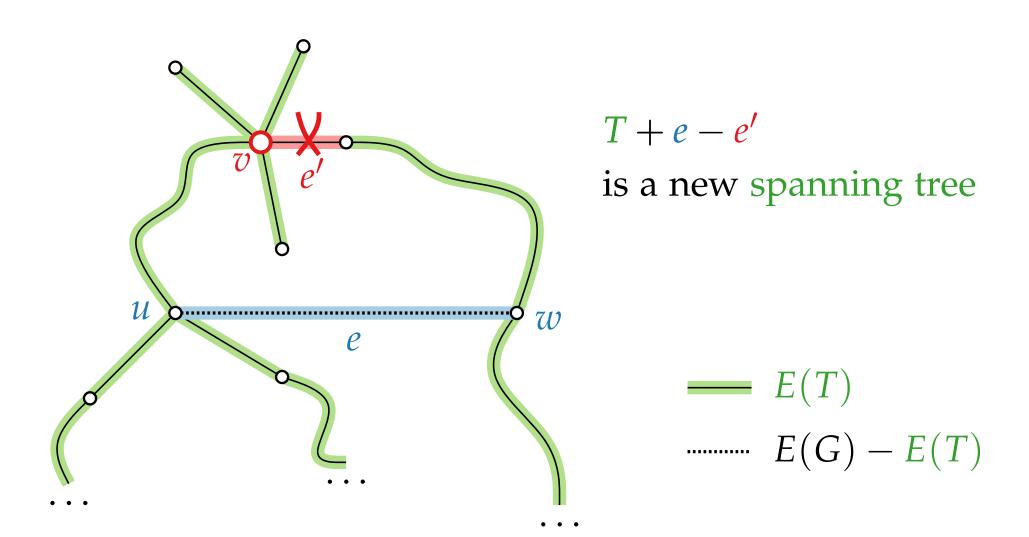




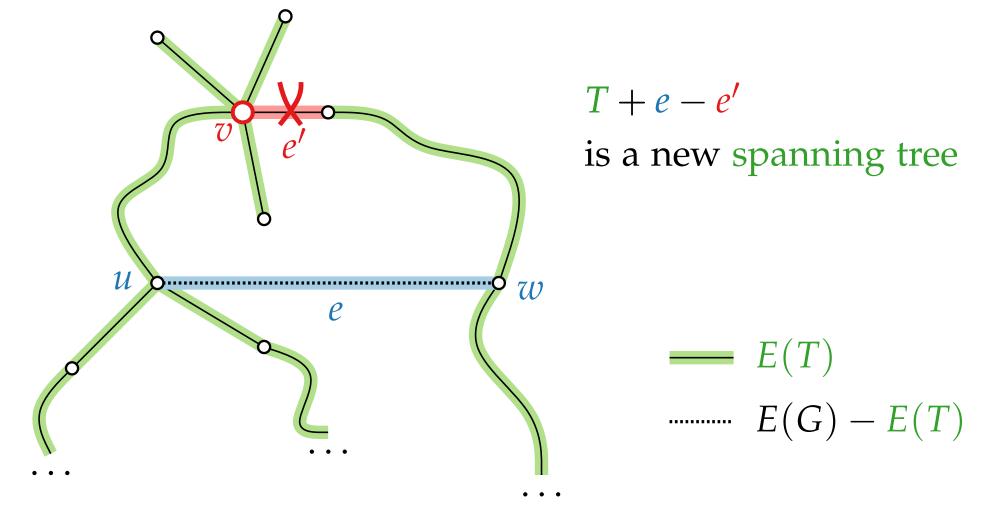




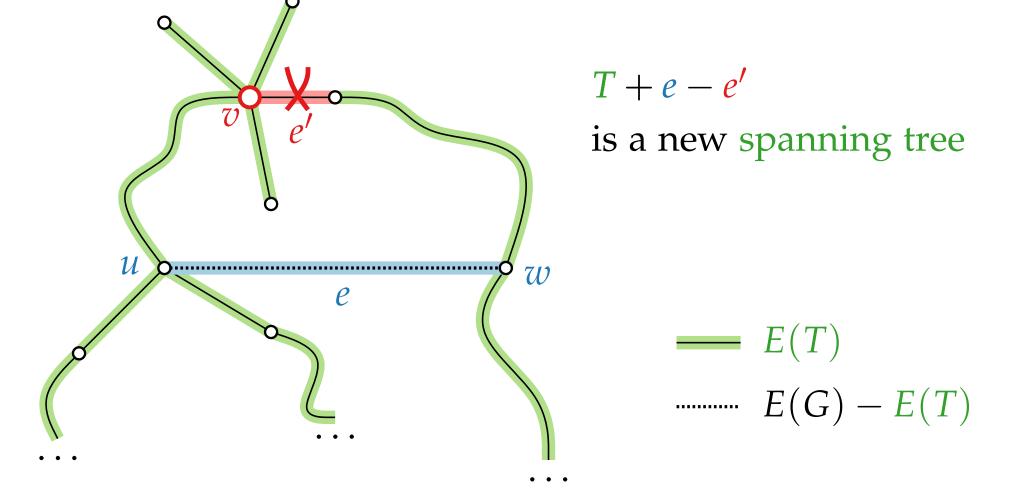




**Def.** An **improving flip** in *T* for a vertex *v* and an edge  $uw \in E(G) \setminus E(T)$  is a flip with  $\deg_T(v) >$ 

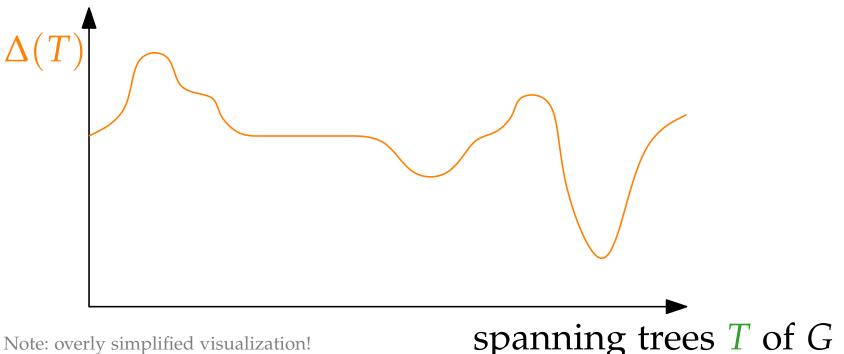


**Def.** An **improving flip** in *T* for a vertex *v* and an edge  $uw \in E(G) \setminus E(T)$  is a flip with  $\deg_T(v) > \max\{\deg_T(u), \deg_T(w)\} + 1.$ 

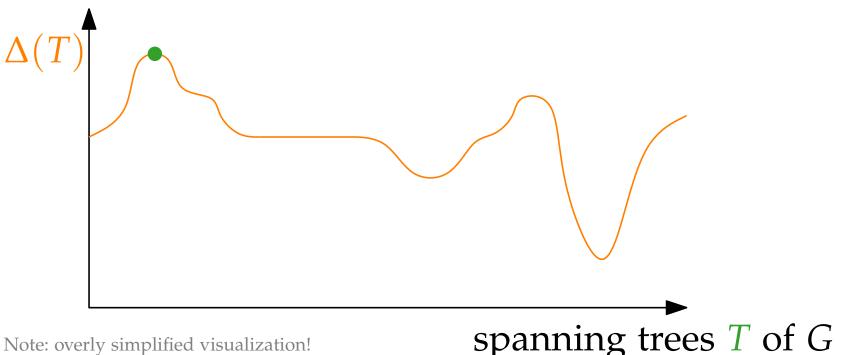


MinDegSpanningTreeLocalSearch(*G*)  $T \leftarrow$  any spanning tree of *G* while  $\exists$  improving flip in *T* for a vertex *v* with  $\deg_T(v) \ge \Delta(T) - \ell$  do do the improving flip

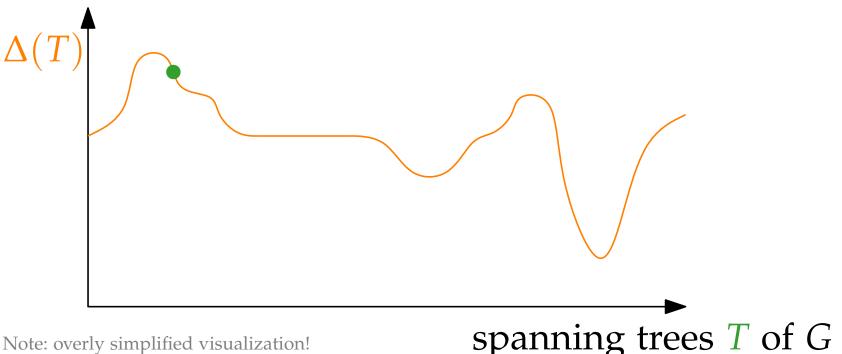
MinDegSpanningTreeLocalSearch(*G*)  $T \leftarrow$  any spanning tree of *G* while  $\exists$  improving flip in *T* for a vertex vwith  $\deg_T(v) \geq \Delta(T) - \ell \operatorname{do}$ do the improving flip



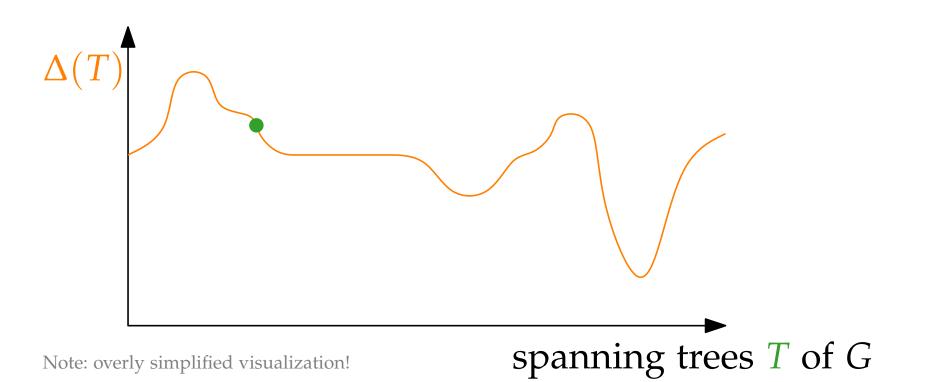
MinDegSpanningTreeLocalSearch(*G*)  $T \leftarrow$  any spanning tree of *G* while  $\exists$  improving flip in *T* for a vertex vwith  $\deg_T(v) \geq \Delta(T) - \ell \operatorname{do}$ do the improving flip



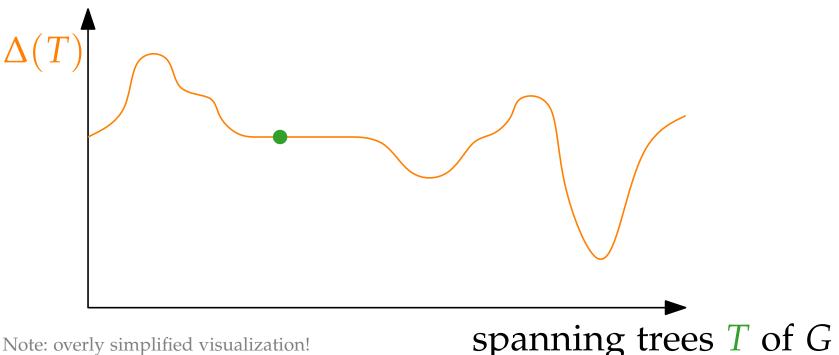
MinDegSpanningTreeLocalSearch(*G*)  $T \leftarrow$  any spanning tree of *G* while  $\exists$  improving flip in *T* for a vertex vwith  $\deg_T(v) \geq \Delta(T) - \ell \operatorname{do}$ do the improving flip



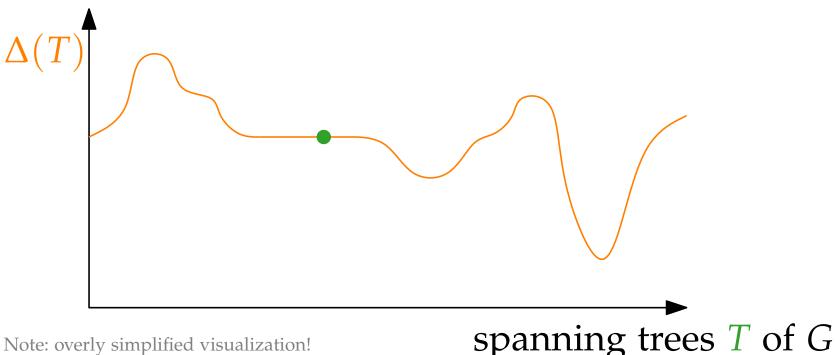
MinDegSpanningTreeLocalSearch(*G*)  $T \leftarrow$  any spanning tree of *G* while  $\exists$  improving flip in *T* for a vertex *v* with  $\deg_T(v) \ge \Delta(T) - \ell$  do do the improving flip



MinDegSpanningTreeLocalSearch(*G*)  $T \leftarrow$  any spanning tree of *G* while  $\exists$  improving flip in *T* for a vertex vwith  $\deg_T(v) \geq \Delta(T) - \ell \operatorname{do}$ do the improving flip

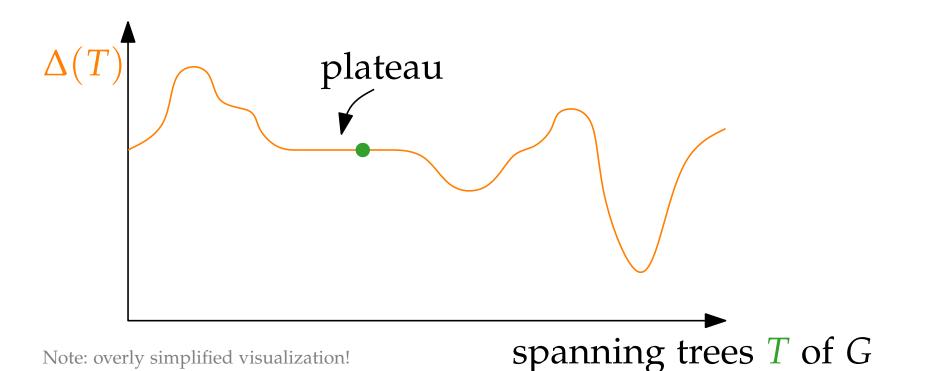


MinDegSpanningTreeLocalSearch(*G*)  $T \leftarrow$  any spanning tree of *G* while  $\exists$  improving flip in *T* for a vertex vwith  $\deg_T(v) \geq \Delta(T) - \ell \operatorname{do}$ do the improving flip



Note: overly simplified visualization!

MinDegSpanningTreeLocalSearch(*G*)  $T \leftarrow$  any spanning tree of *G* while  $\exists$  improving flip in *T* for a vertex *v* with  $\deg_T(v) \ge \Delta(T) - \ell$  do | do the improving flip

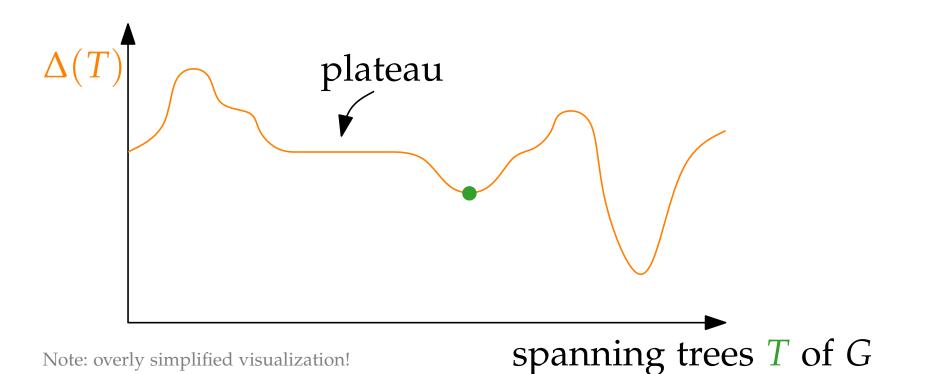


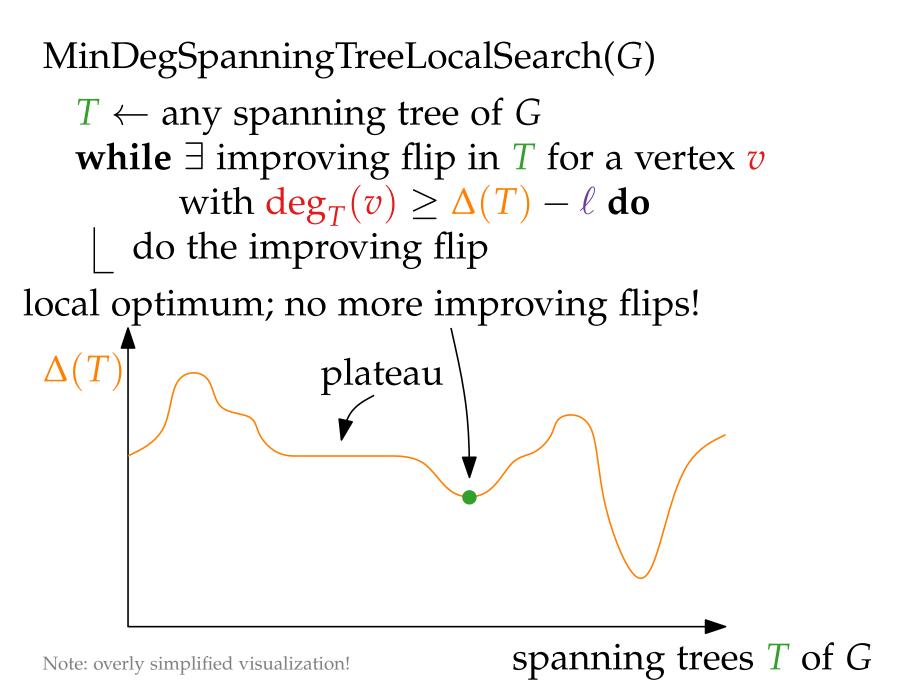
MinDegSpanningTreeLocalSearch(*G*)  $T \leftarrow$  any spanning tree of G while  $\exists$  improving flip in *T* for a vertex vwith  $\deg_T(v) \geq \Delta(T) - \ell$  do do the improving flip

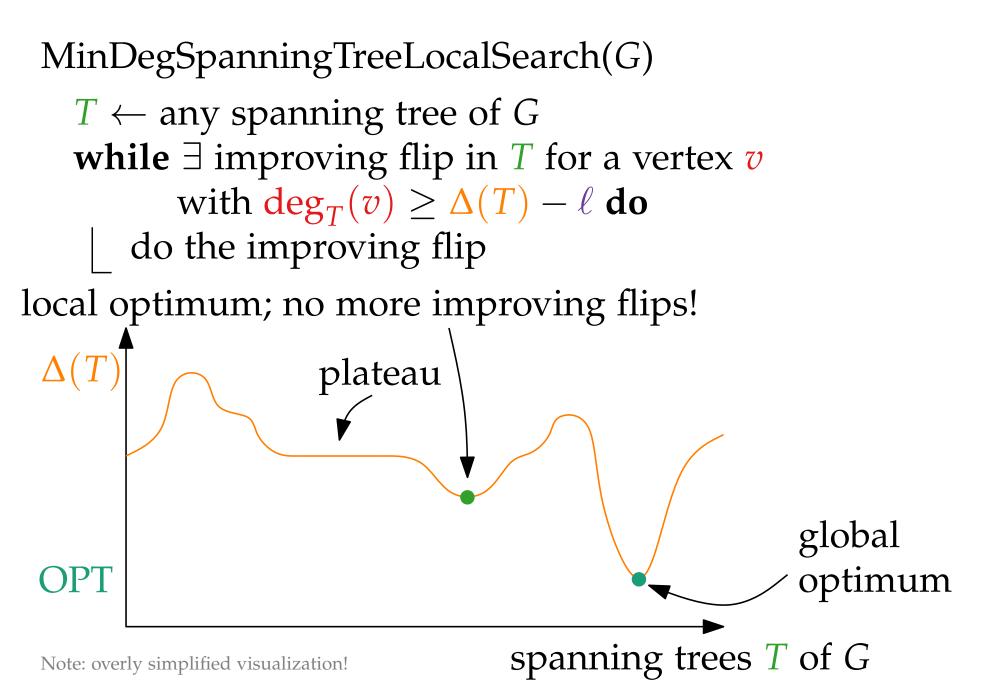


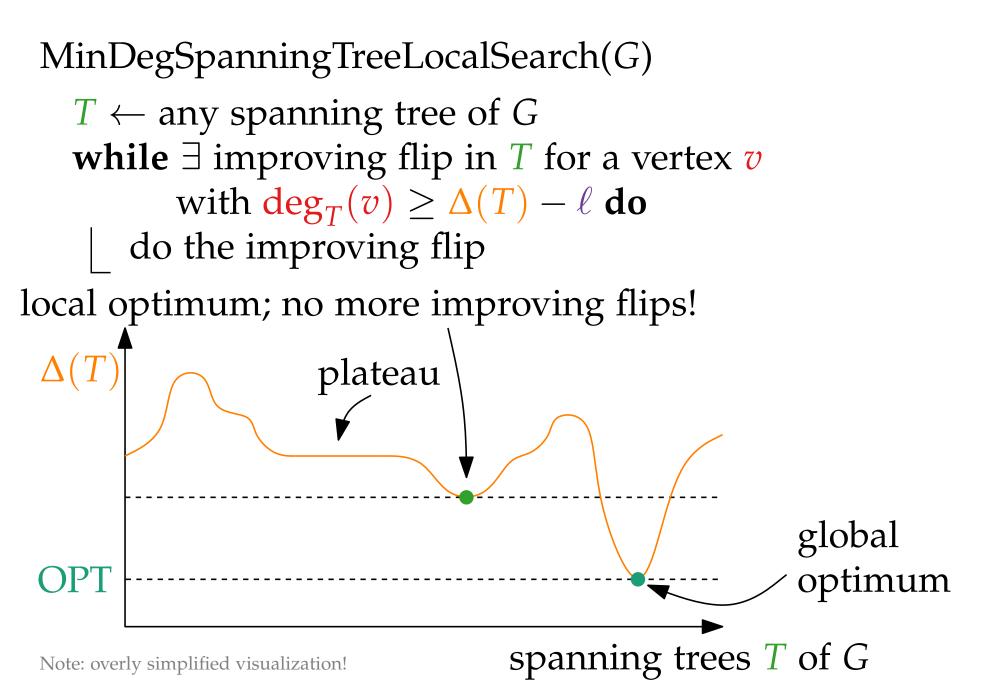
Note: overly simplified visualization!

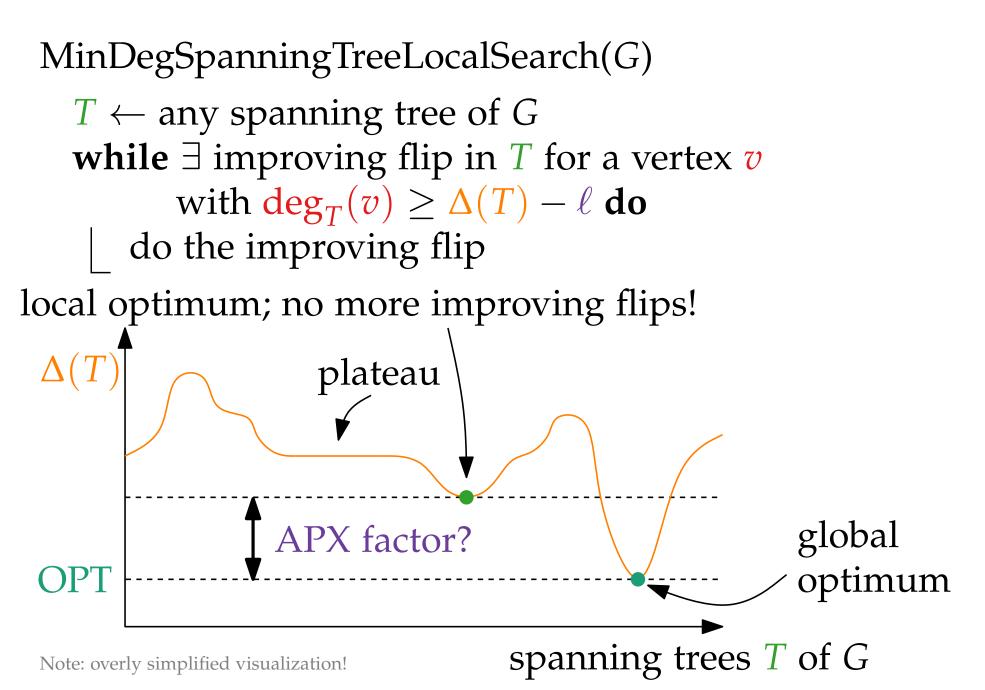
MinDegSpanningTreeLocalSearch(*G*)  $T \leftarrow$  any spanning tree of *G* while  $\exists$  improving flip in *T* for a vertex *v* with  $\deg_T(v) \ge \Delta(T) - \ell$  do | do the improving flip

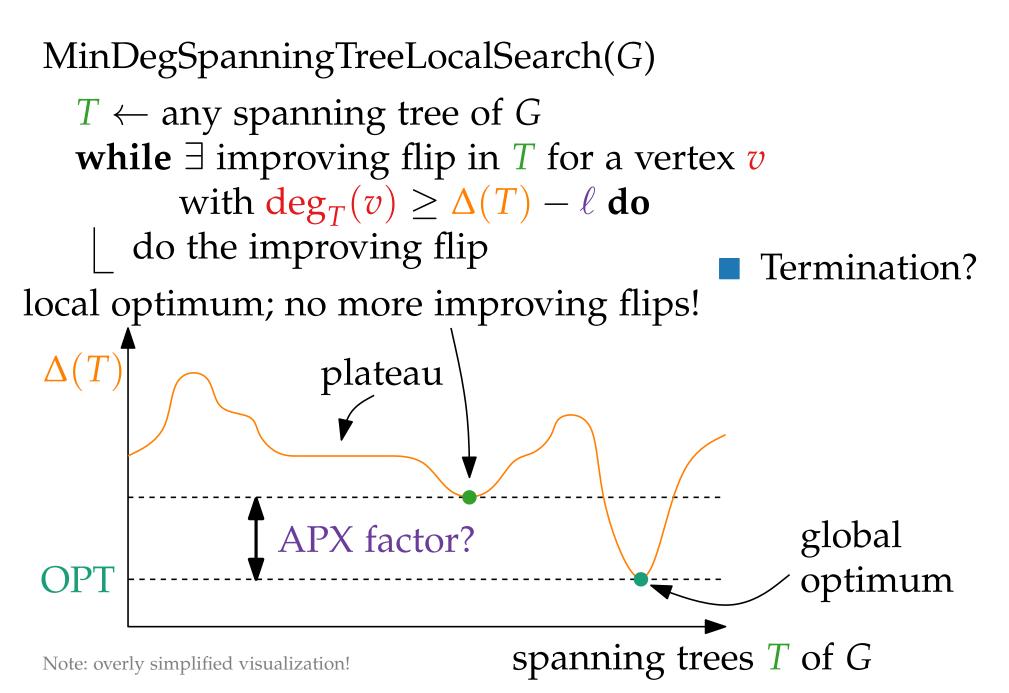


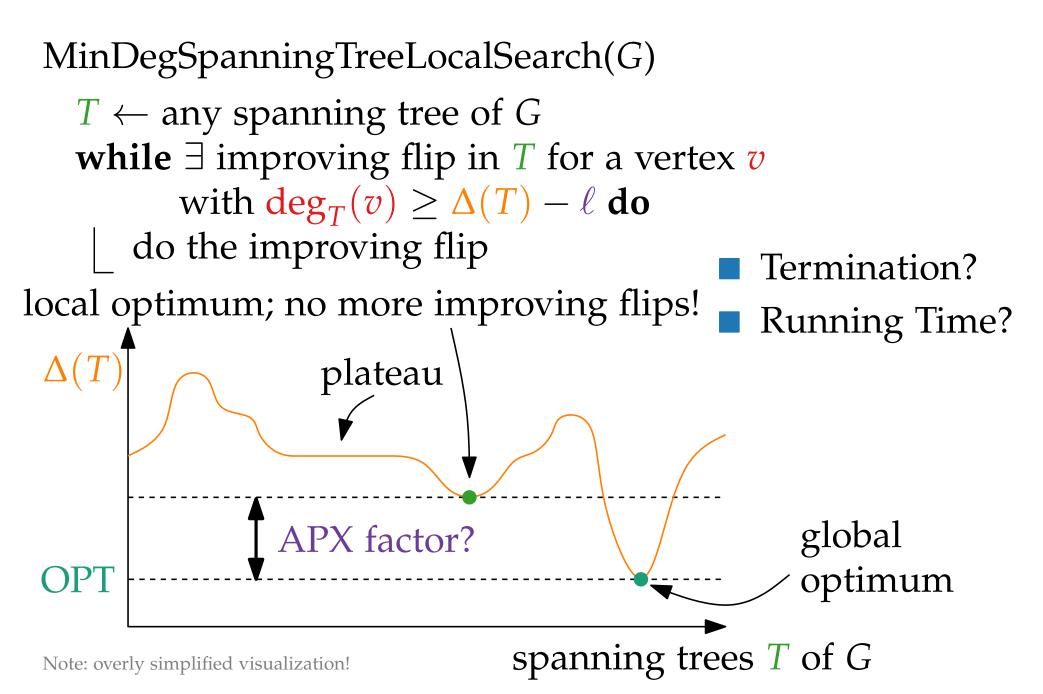


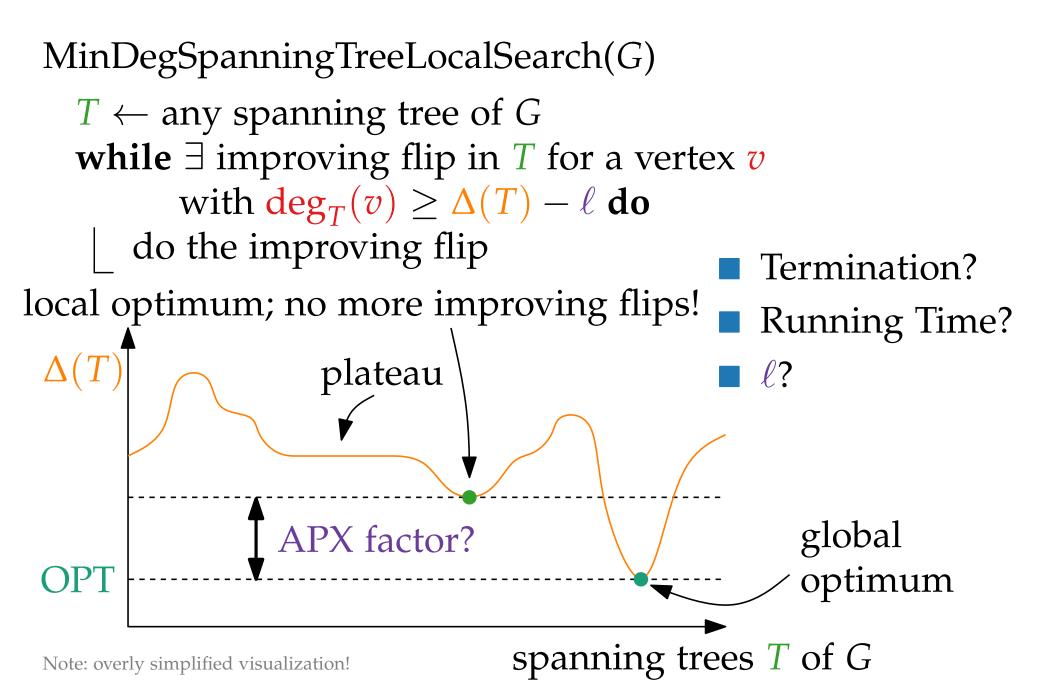


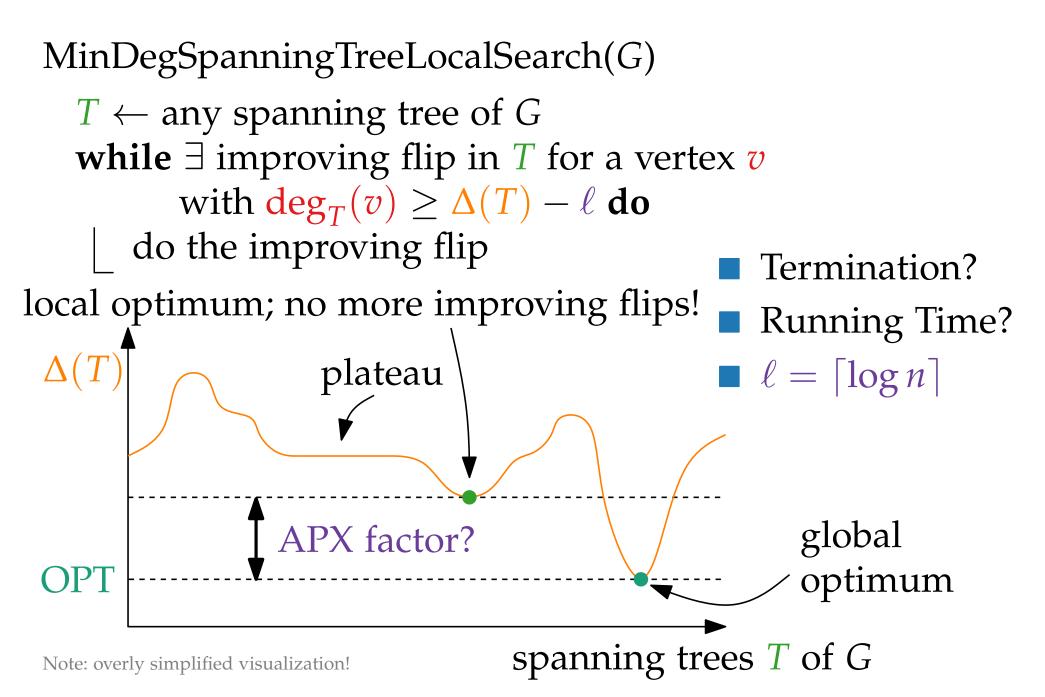


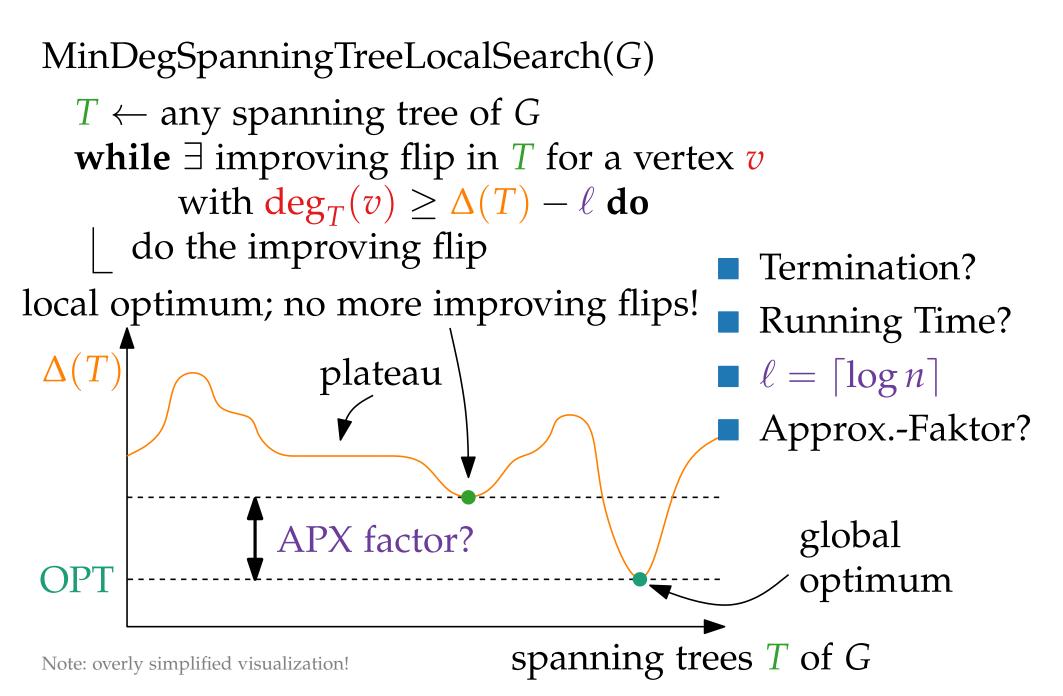




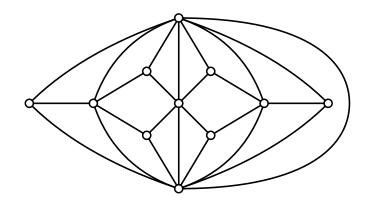
















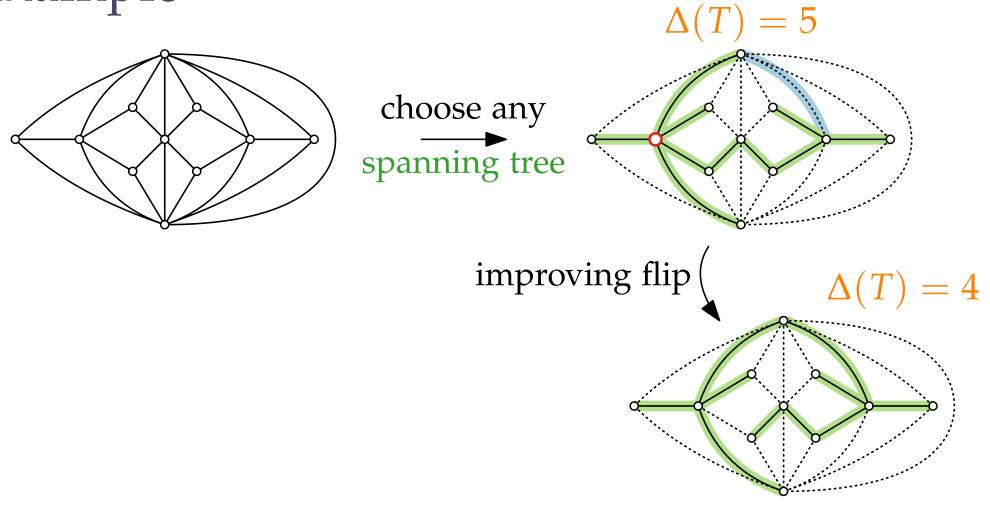




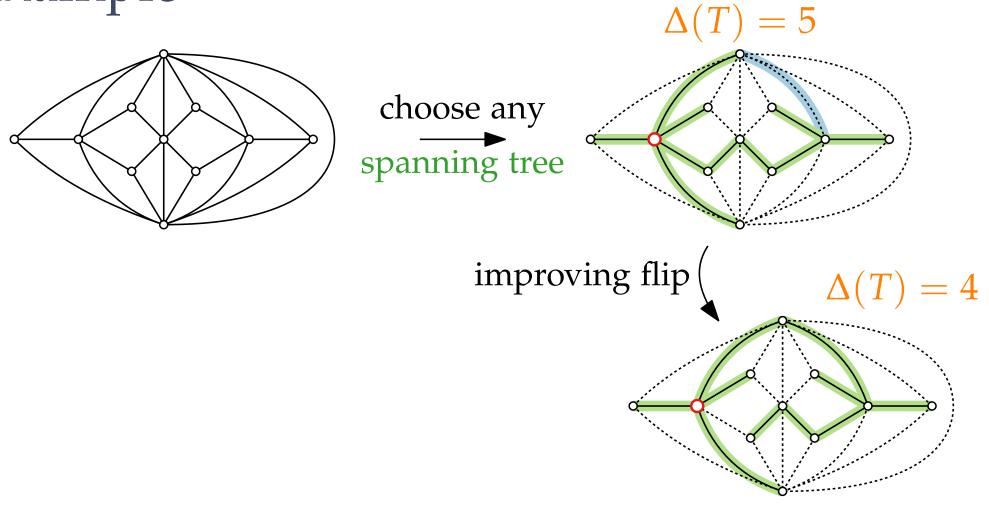




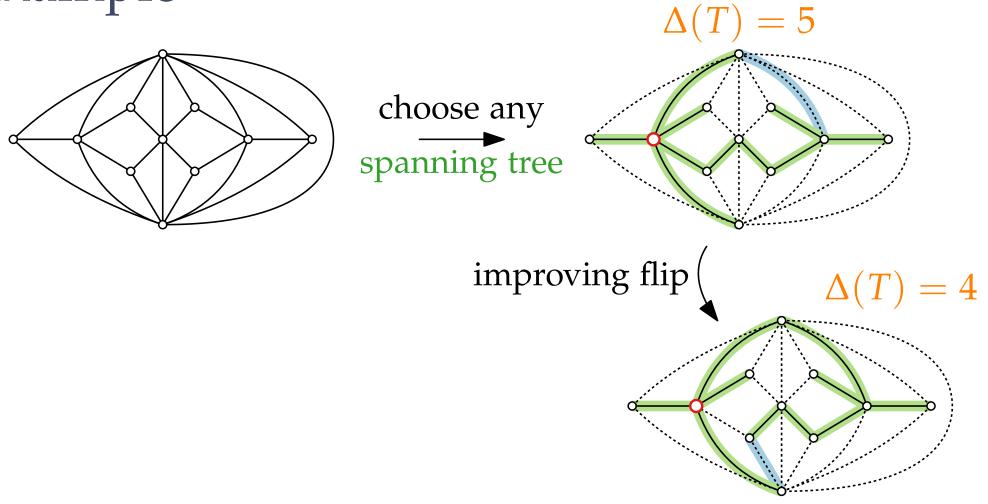




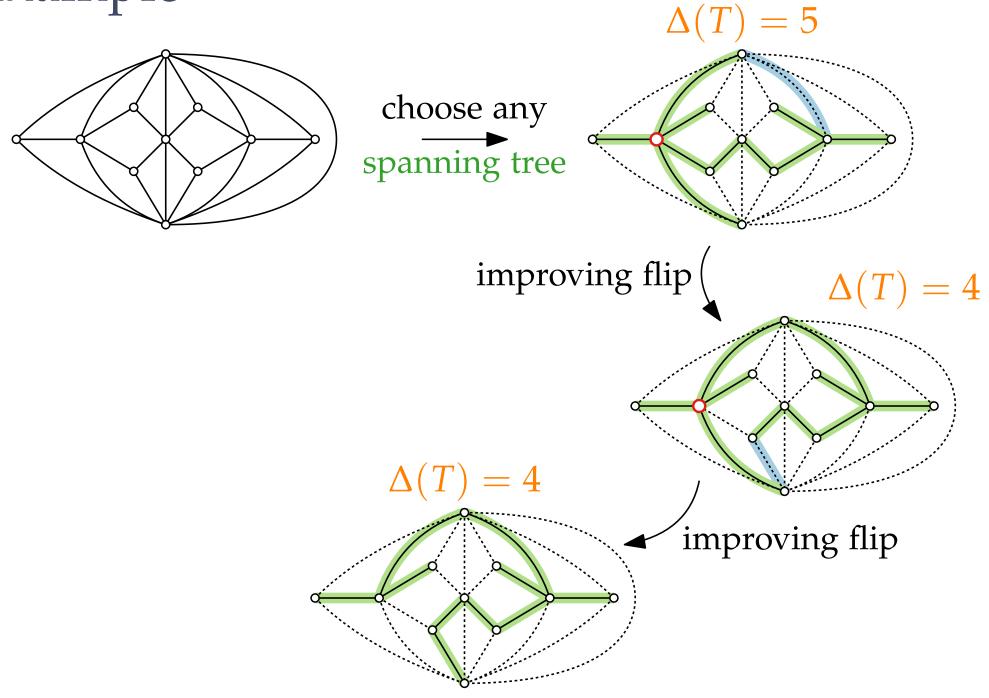




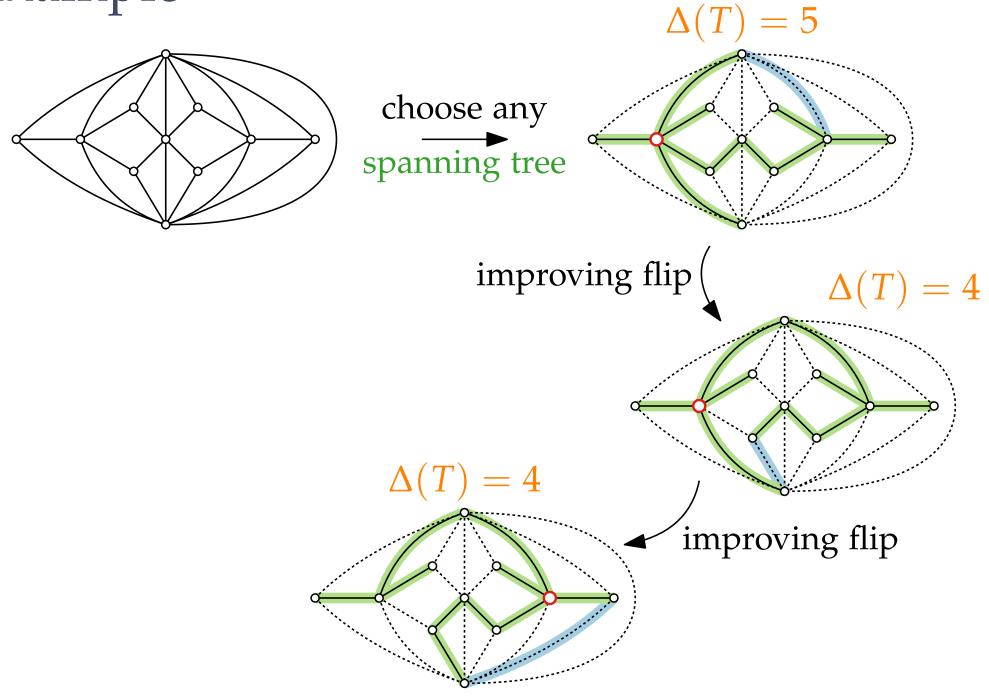




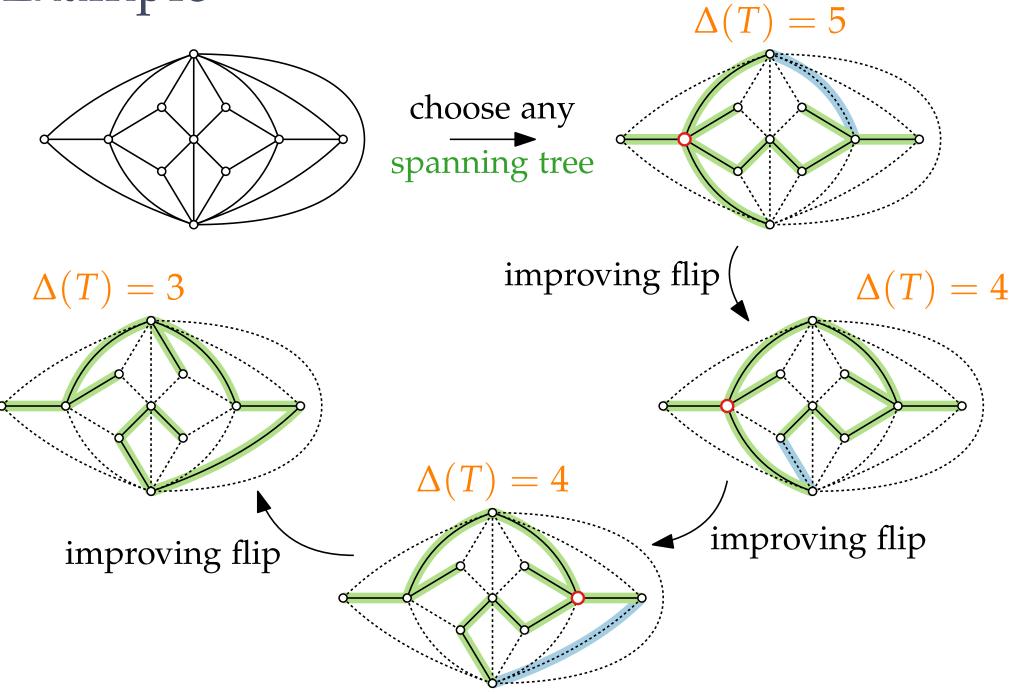




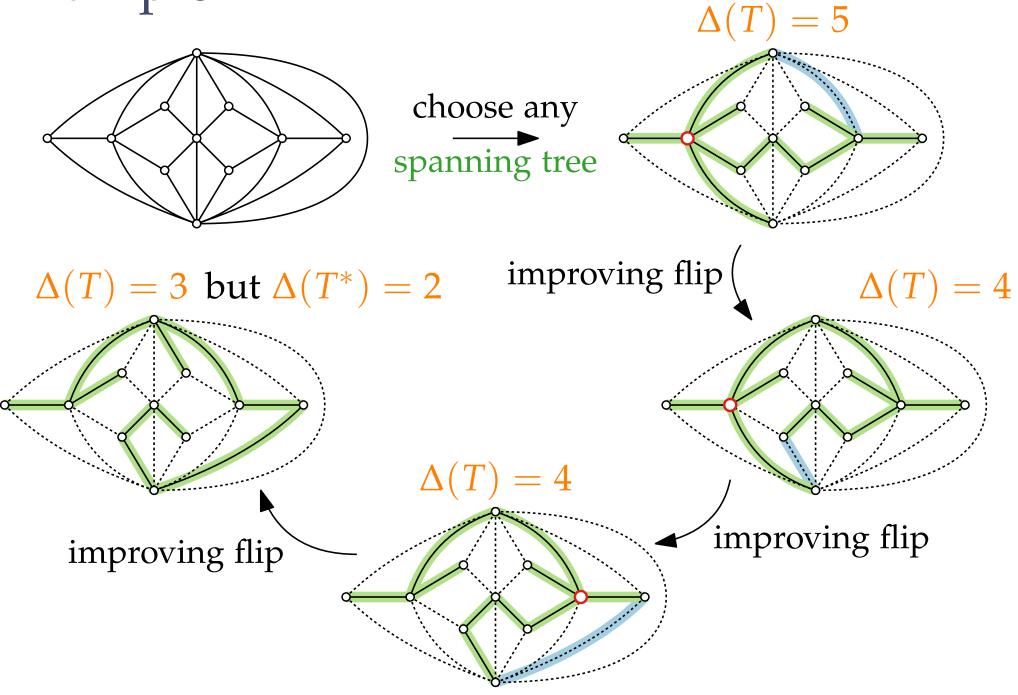




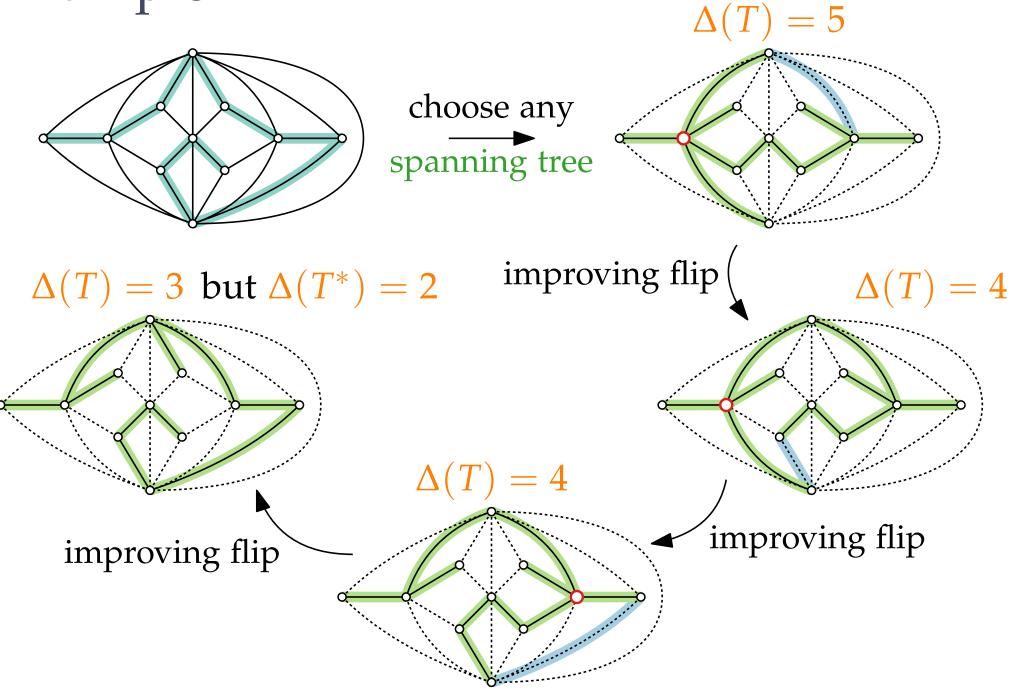










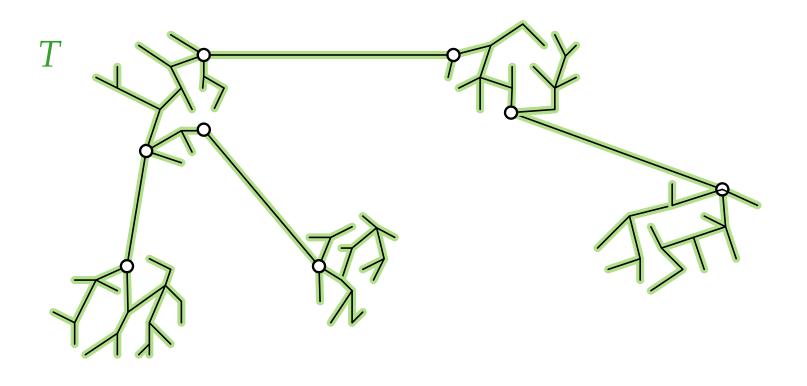


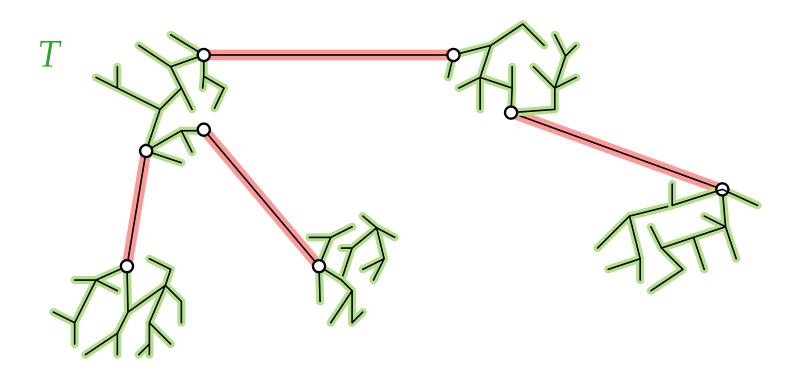
# Approximation Algorithms Lecture 9: MINIMUM-DEGREE SPANNING TREE via Local Search

#### Part III: Lower Bound

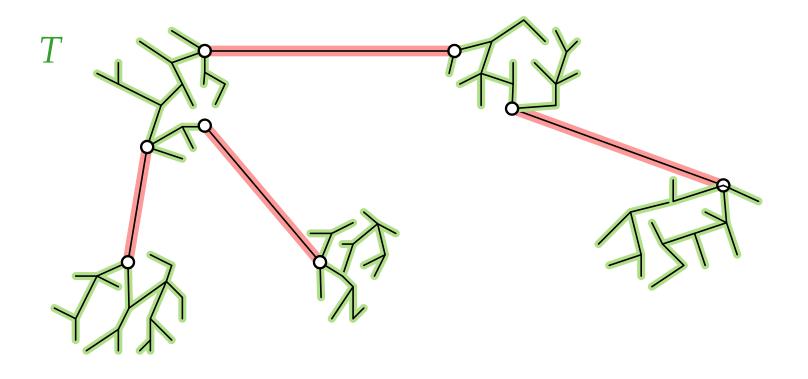
Philipp Kindermann

Summer Semester 2020

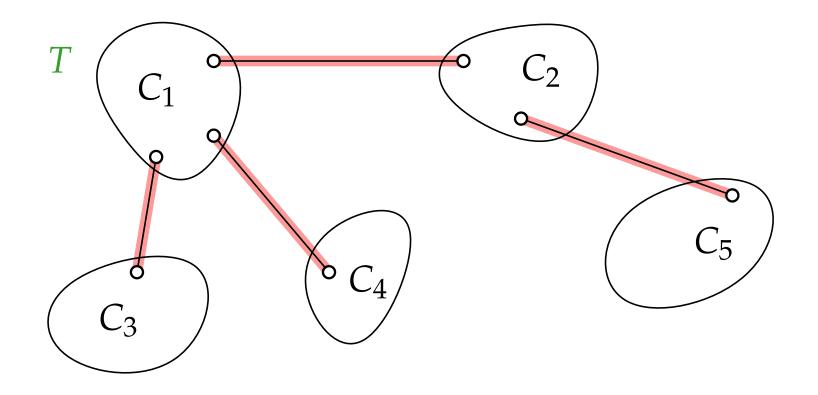




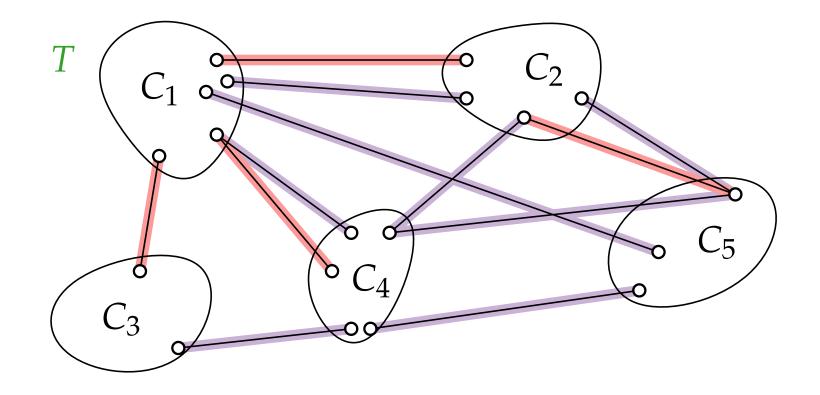
Removing *k* edges decomposes *T* into k + 1 components



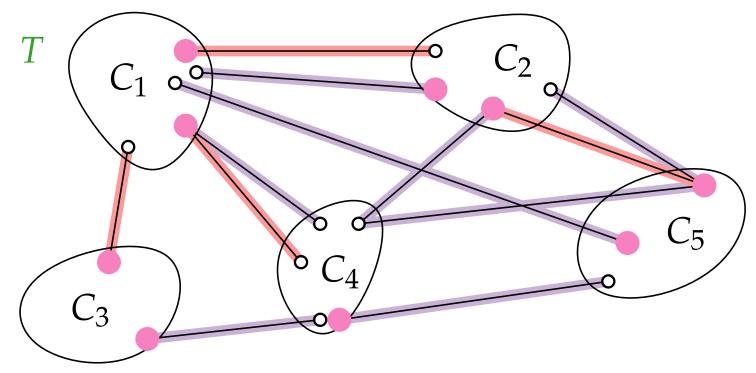
Removing *k* edges decomposes *T* into k + 1 components



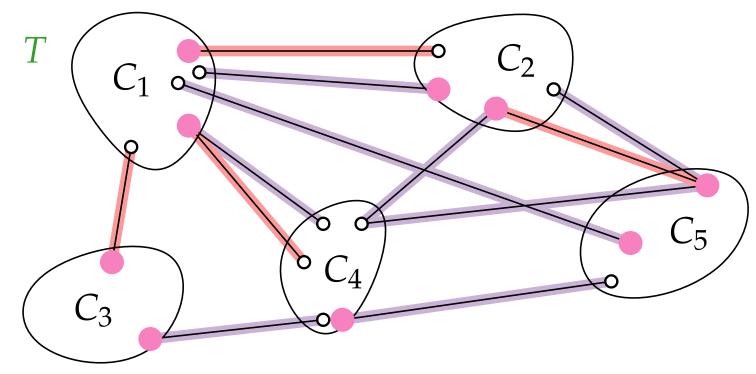
Removing *k* edges decomposes *T* into *k* + 1 components
*E'* := {edges is *G* btw. different components *C<sub>i</sub>* ≠ *C<sub>j</sub>*}.



Removing *k* edges decomposes *T* into *k* + 1 components *E'* := {edges is *G* btw. different components C<sub>i</sub> ≠ C<sub>j</sub>}. *S* := vertex cover of *E'*.

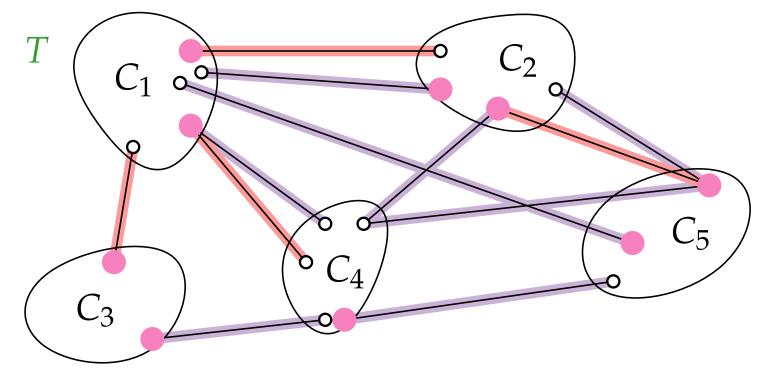


Removing *k* edges decomposes *T* into *k* + 1 components *E'* := {edges is *G* btw. different components *C<sub>i</sub>* ≠ *C<sub>j</sub>*}. *S* := vertex cover of *E'*.



•  $E(T^*) \cap E' \ge k$  for opt. spanning tree  $T^*$ 

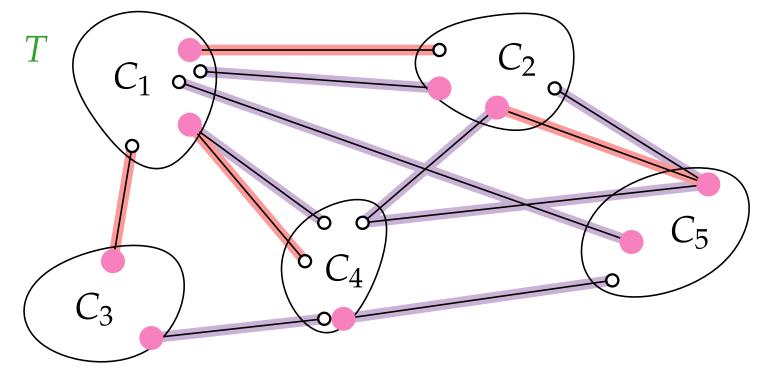
Removing *k* edges decomposes *T* into *k* + 1 components *E'* := {edges is *G* btw. different components *C<sub>i</sub>* ≠ *C<sub>j</sub>*}. *S* := vertex cover of *E'*.



- $E(T^*) \cap E' \ge k$  for opt. spanning tree  $T^*$
- $\square \sum_{v \in S} \deg_{T^*}(v) \ge k$

### Decomposition $\Rightarrow$ Lower Bound for OPT

Removing *k* edges decomposes *T* into *k* + 1 components *E'* := {edges is *G* btw. different components *C<sub>i</sub>* ≠ *C<sub>j</sub>*}. *S* := vertex cover of *E'*.

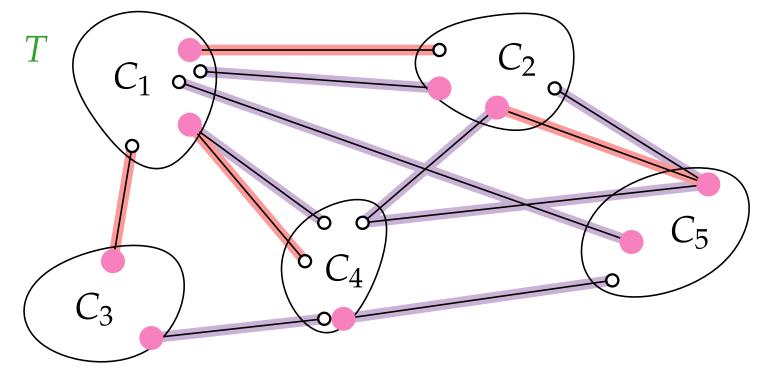


*E*(*T*\*) ∩ *E'* ≥ *k* for opt. spanning tree *T*\*
∑<sub>v∈S</sub> deg<sub>T\*</sub>(v) ≥ *k*

**Lemma 1.**  $\Rightarrow$  OPT  $\geq$ 

### Decomposition $\Rightarrow$ Lower Bound for OPT

Removing *k* edges decomposes *T* into *k* + 1 components *E'* := {edges is *G* btw. different components *C<sub>i</sub>* ≠ *C<sub>j</sub>*}. *S* := vertex cover of *E'*.



Lemma 1.

 $\Rightarrow$  OPT  $\geq k/|S|$ 

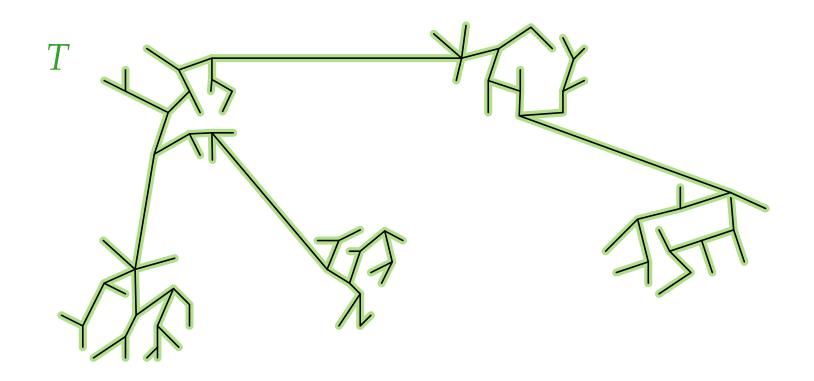
•  $E(T^*) \cap E' \ge k$  for opt. spanning tree  $T^*$ •  $\sum_{v \in S} \deg_{T^*}(v) \ge k$ 

# Approximation Algorithms Lecture 9: MINIMUM-DEGREE SPANNING TREE via Local Search

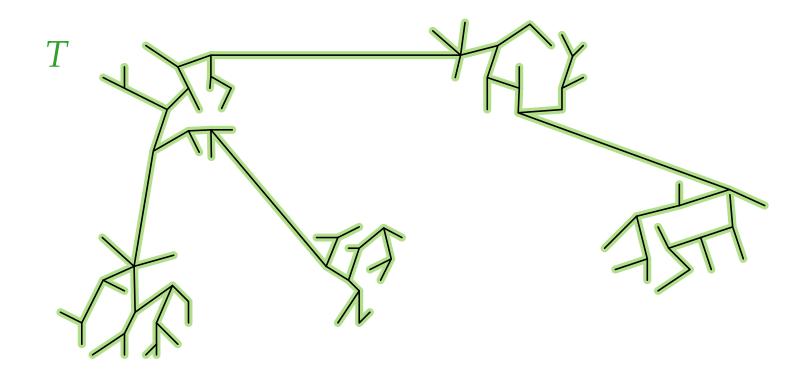
#### Part IV: More Lemmas

Philipp Kindermann

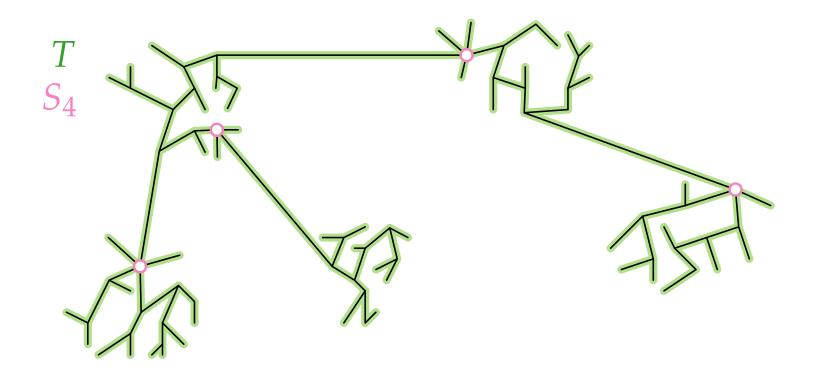
Summer Semester 2020



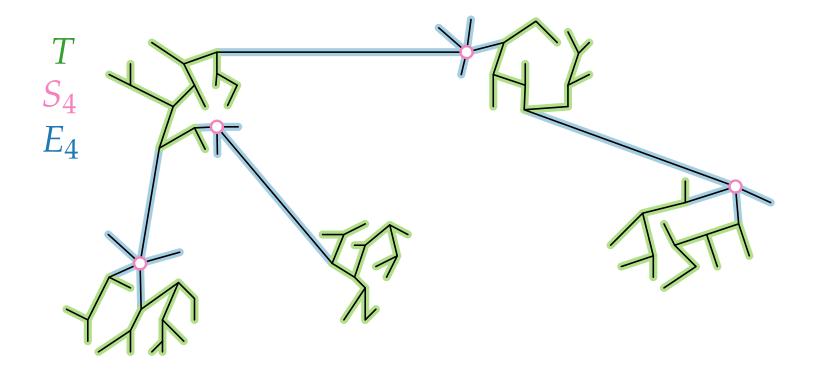
Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ .



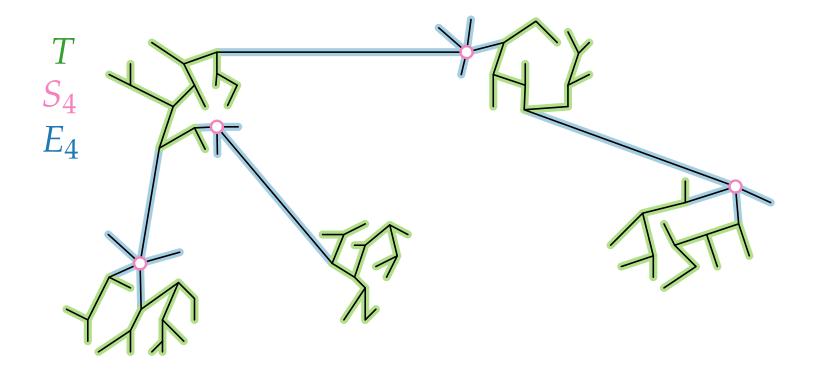
Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ .



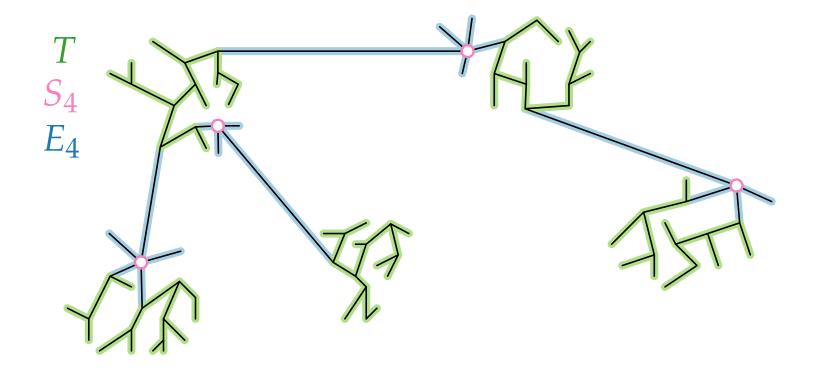
Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ . Let  $E_i$  be the edges in T incident to  $S_i$ .



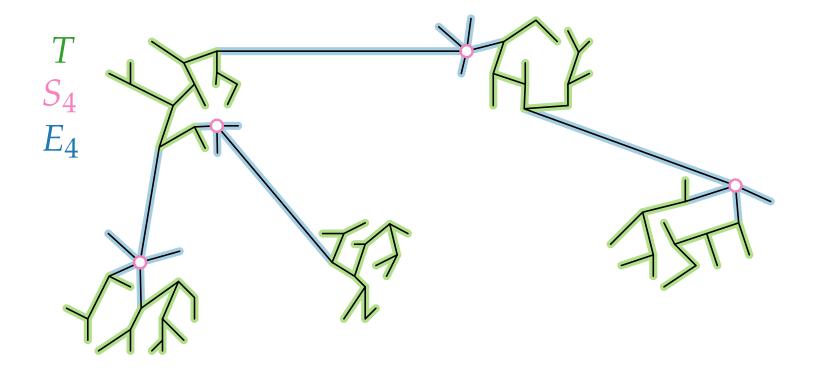
Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ . Let  $E_i$  be the edges in T incident to  $S_i$ .



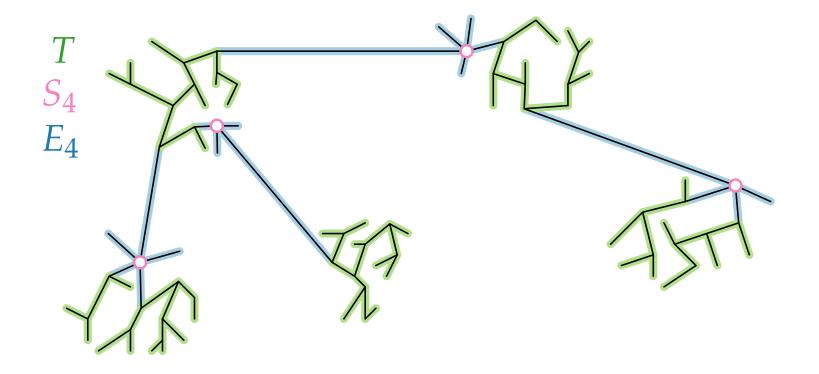
Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ .  $\Rightarrow S_1 \supseteq S_2 \supseteq \dots$ Let  $E_i$  be the edges in T incident to  $S_i$ .



Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ .  $\Rightarrow S_1 \supseteq S_2 \supseteq \dots$ Let  $E_i$  be the edges in T incident to  $S_i$ .

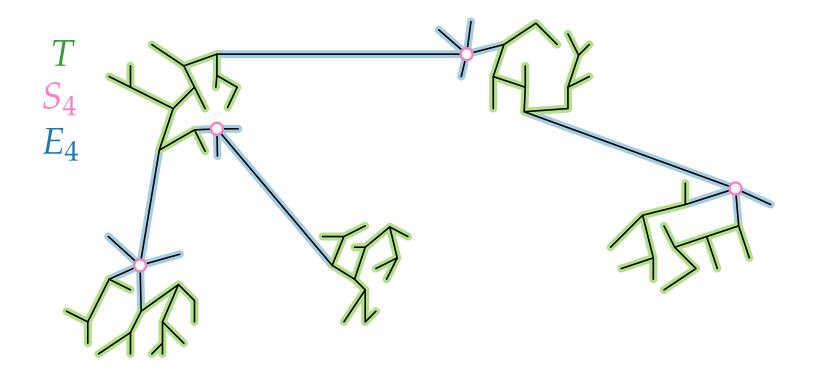


Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ .  $\Rightarrow S_1 \supseteq S_2 \supseteq \dots$ Let  $E_i$  be the edges in T incident to  $S_i$ .  $\Rightarrow E_1 = E(T)$ 

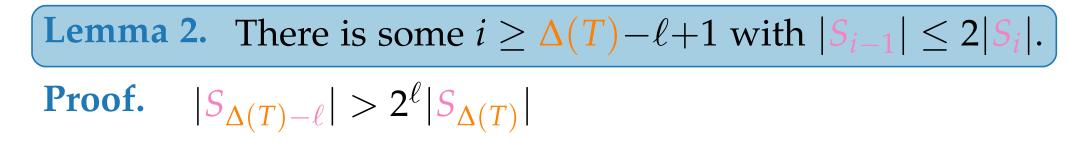


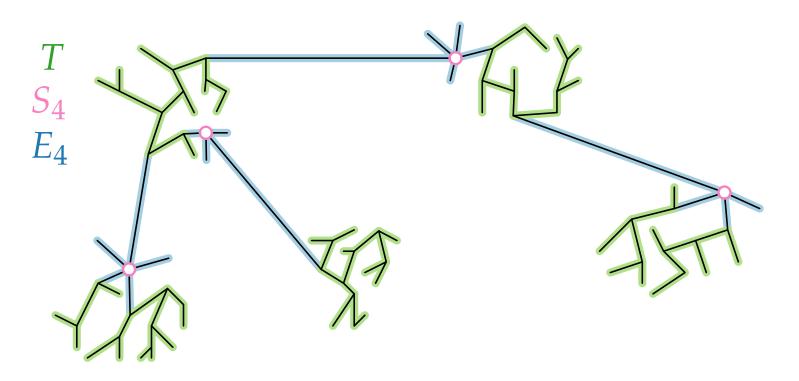
Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ .  $\Rightarrow S_1 \supseteq S_2 \supseteq \dots$ Let  $E_i$  be the edges in T incident to  $S_i$ .  $\Rightarrow E_1 = E(T)$ 

**Lemma 2.** There is some  $i \ge \Delta(T) - \ell + 1$  with  $|S_{i-1}| \le 2|S_i|$ .

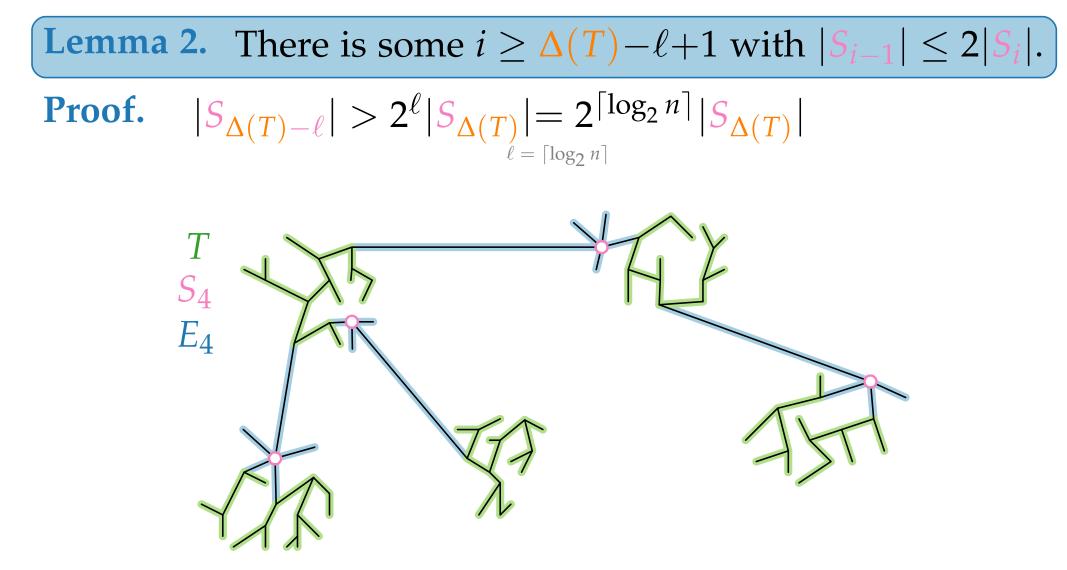


Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ .  $\Rightarrow S_1 \supseteq S_2 \supseteq \dots$   $\Rightarrow S_1 = V(G)$ Let  $E_i$  be the edges in T incident to  $S_i$ .  $\Rightarrow E_1 = E(T)$ 

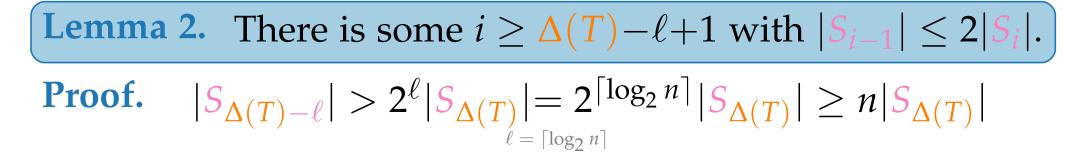


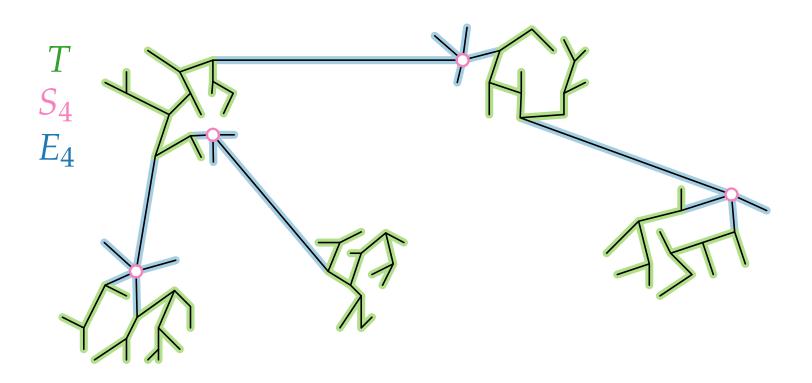


Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ .  $\Rightarrow S_1 \supseteq S_2 \supseteq \dots$   $\Rightarrow S_1 = V(G)$ Let  $E_i$  be the edges in T incident to  $S_i$ .  $\Rightarrow E_1 = E(T)$ 



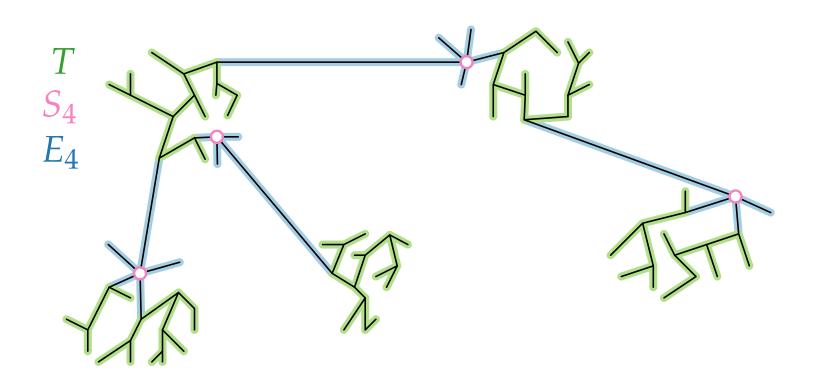
Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ .  $\Rightarrow S_1 \supseteq S_2 \supseteq \dots$ Let  $E_i$  be the edges in T incident to  $S_i$ .  $\Rightarrow E_1 = E(T)$ 



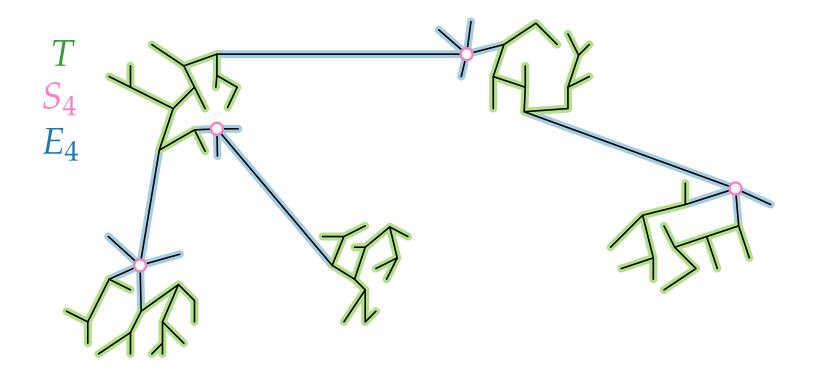


Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ .  $\Rightarrow S_1 \supseteq S_2 \supseteq \dots$ Let  $E_i$  be the edges in T incident to  $S_i$ .  $\Rightarrow E_1 = E(T)$ 

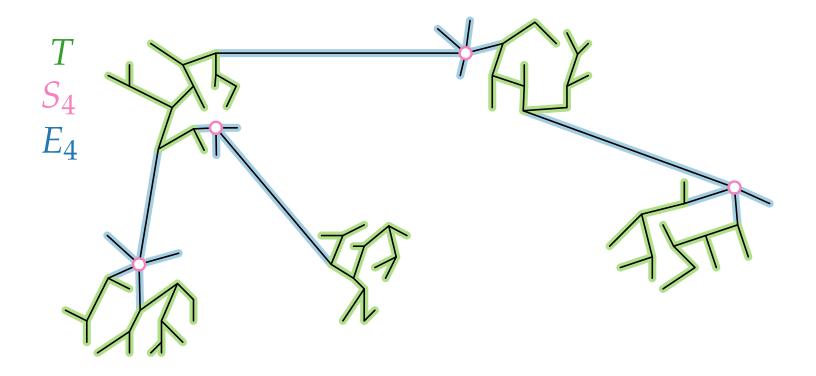
**Lemma 2.** There is some  $i \ge \Delta(T) - \ell + 1$  with  $|S_{i-1}| \le 2|S_i|$ . **Proof.**  $|S_{\Delta(T)-\ell}| > 2^{\ell} |S_{\Delta(T)}| = 2^{\lceil \log_2 n \rceil} |S_{\Delta(T)}| \ge n |S_{\Delta(T)}| \checkmark$ 

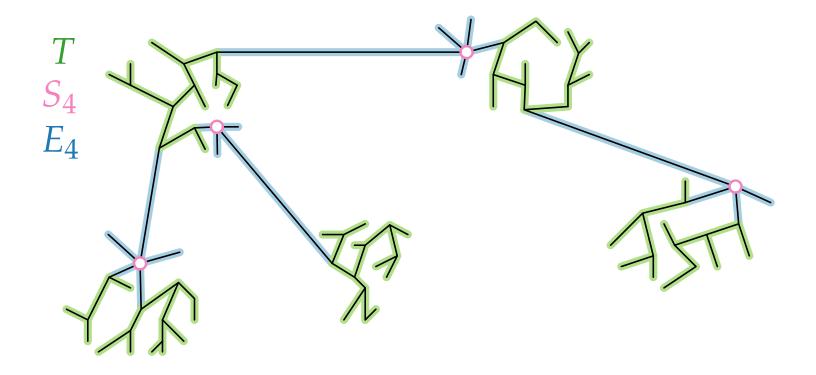


#### Lemma 3. For $i \ge \Delta(T) - \ell + 1$ ,



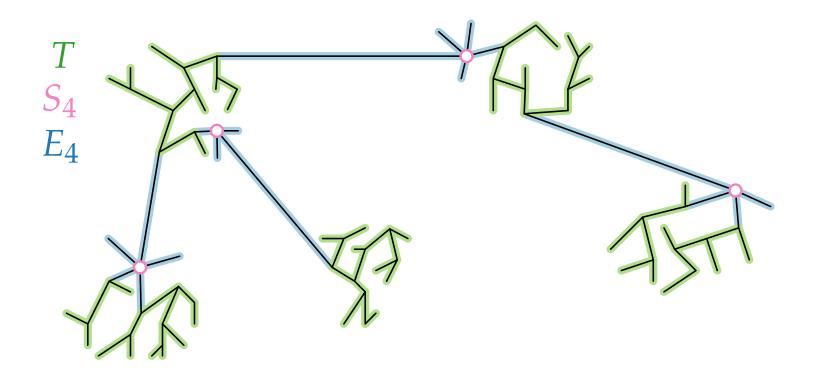
Lemma 3. For 
$$i \ge \Delta(T) - \ell + 1$$
,  
(i)  $|E_i| \ge (i-1)|S_i| + 1$ ,





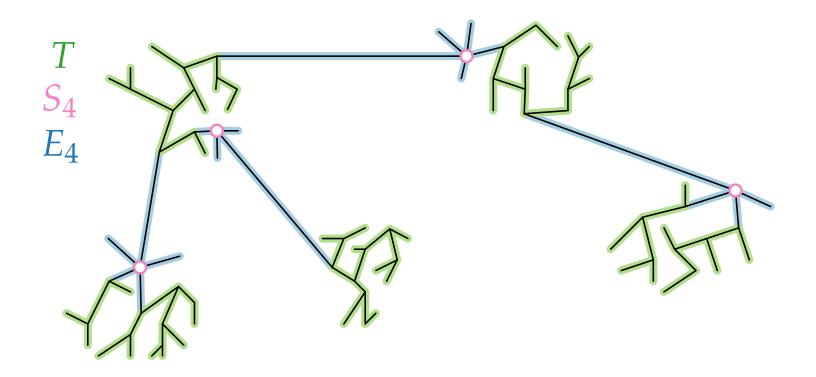
**Lemma 3.** For  $i \ge \Delta(T) - \ell + 1$ , (i)  $|E_i| \ge (i-1)|S_i| + 1$ , (ii) Each  $e \in E(G) \setminus E_i$  connecting distinct components of  $T \setminus E_i$  is incident to a node of  $S_{i-1}$ .

**Proof.** (i)  $|E_i| \geq$ 



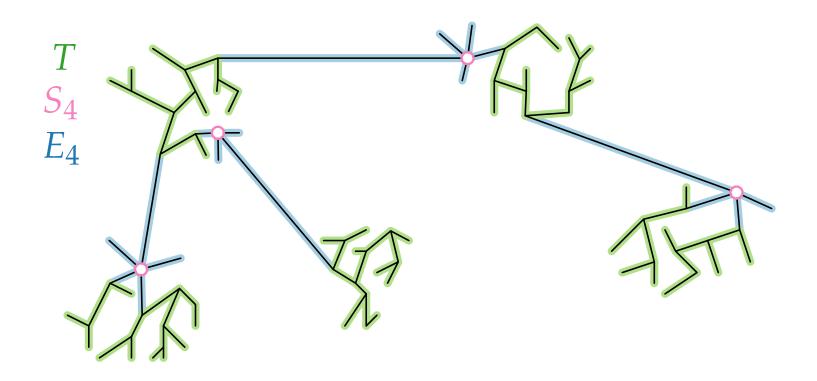
**Lemma 3.** For  $i \ge \Delta(T) - \ell + 1$ , (i)  $|E_i| \ge (i-1)|S_i| + 1$ , (ii) Each  $e \in E(G) \setminus E_i$  connecting distinct components of  $T \setminus E_i$  is incident to a node of  $S_{i-1}$ .

**Proof.** (i)  $|E_i| \ge i |S_i|$ 



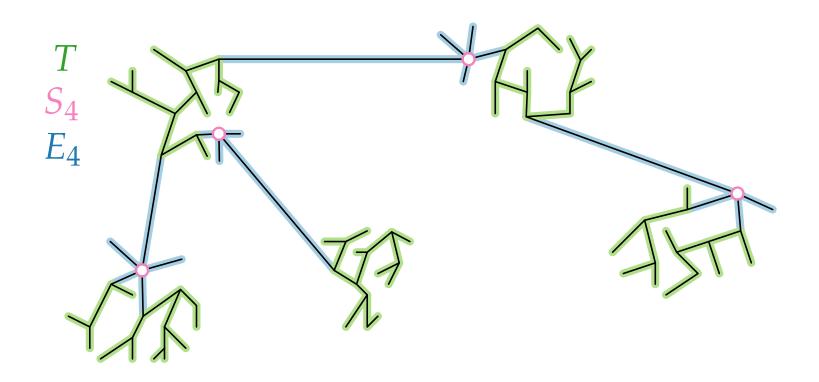
**Lemma 3.** For  $i \ge \Delta(T) - \ell + 1$ , (i)  $|E_i| \ge (i-1)|S_i| + 1$ , (ii) Each  $e \in E(G) \setminus E_i$  connecting distinct components of  $T \setminus E_i$  is incident to a node of  $S_{i-1}$ .

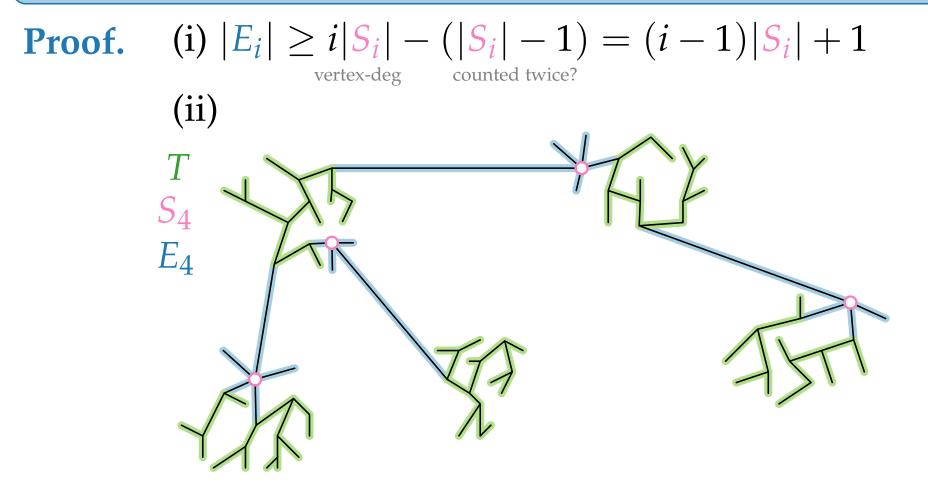
**Proof.** (i)  $|E_i| \ge i|S_i| - (|S_i| - 1)$ 

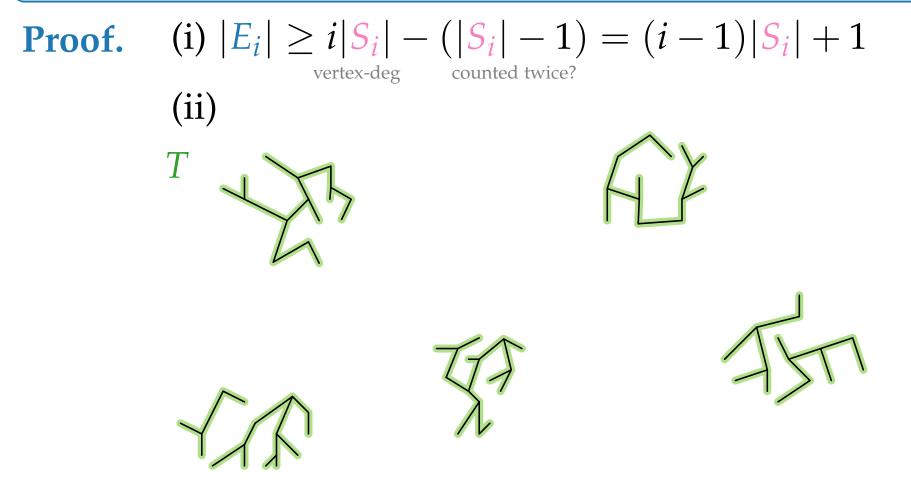


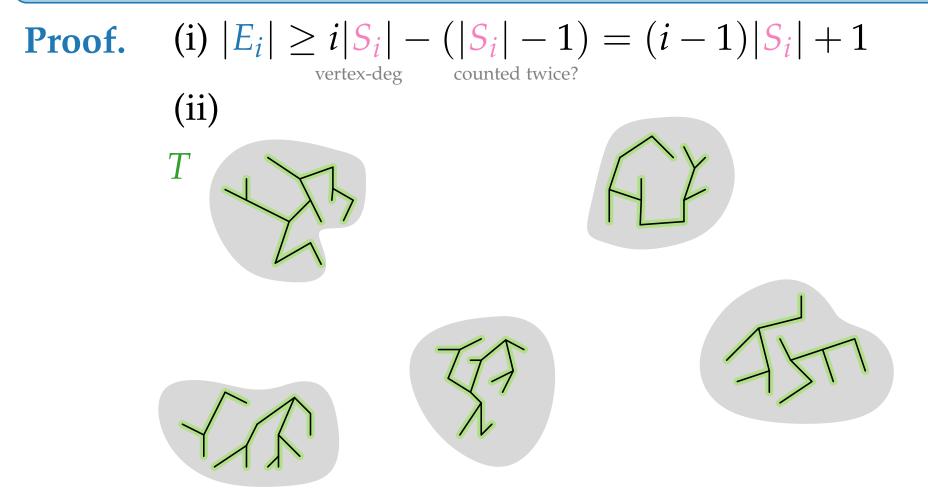
**Lemma 3.** For  $i \ge \Delta(T) - \ell + 1$ , (i)  $|E_i| \ge (i-1)|S_i| + 1$ , (ii) Each  $e \in E(G) \setminus E_i$  connecting distinct components of  $T \setminus E_i$  is incident to a node of  $S_{i-1}$ .

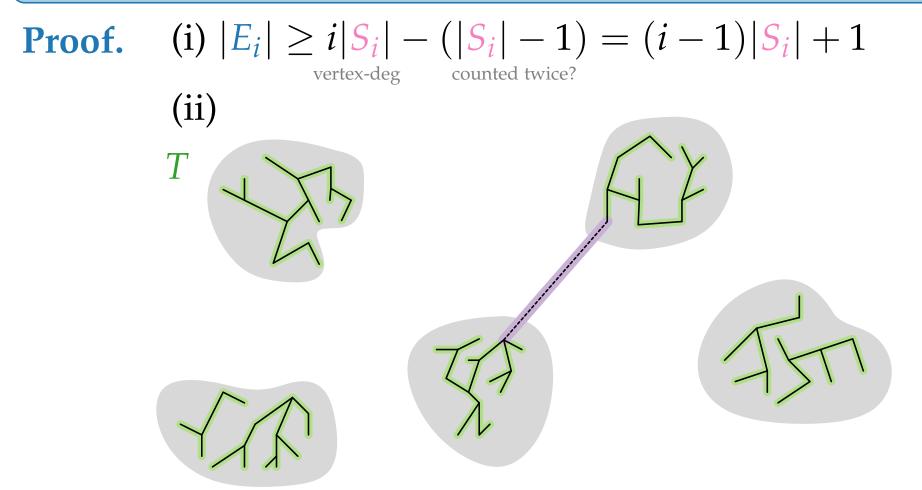
**Proof.** (i)  $|E_i| \ge i |S_i| - (|S_i| - 1) = (i - 1) |S_i| + 1$ 

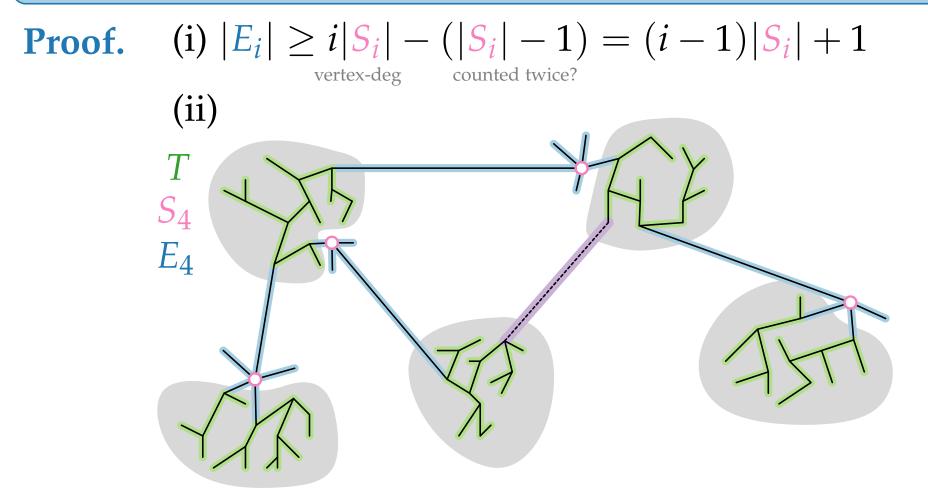


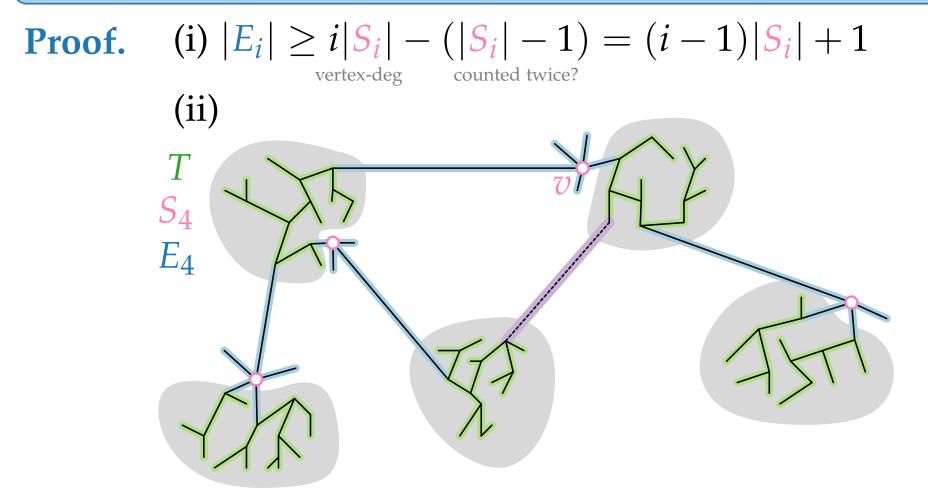


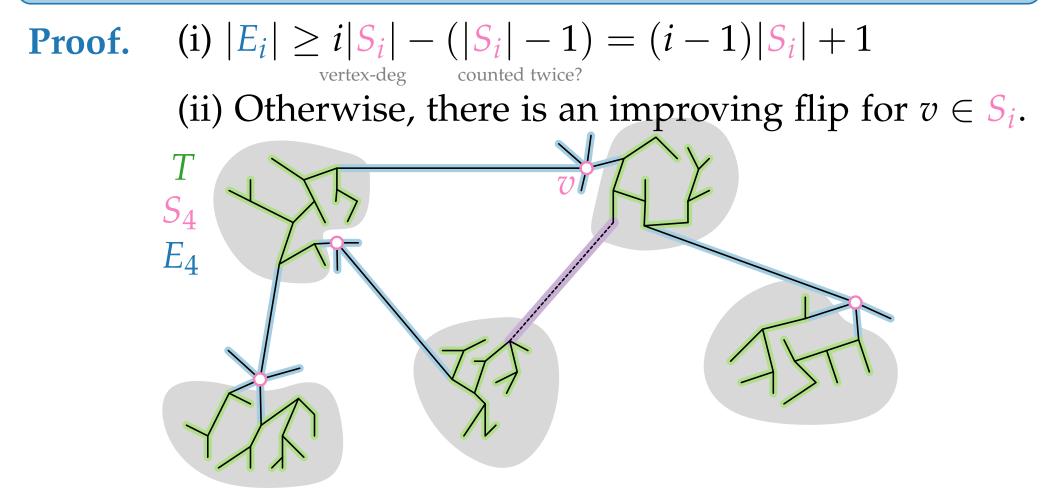












# Approximation Algorithms Lecture 9: MINIMUM-DEGREE SPANNING TREE via Local Search

#### Part V: Approximation Factor

Philipp Kindermann

Summer Semester 2020

[Fürer & Raghavachari: SODA'92, JA'94]

#### **Theorem.** Let *T* be a locally optimal spanning tree. Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$ , where $\ell = \lceil \log_2 n \rceil$ .

[Fürer & Raghavachari: SODA'92, JA'94]

| Theorem | <b>m.</b> Let <i>T</i> be a locally optimal spanning tree.                         |
|---------|------------------------------------------------------------------------------------|
|         | Then $\Delta(T) \leq 2 \cdot OPT + \ell$ , where $\ell = \lceil \log_2 n \rceil$ . |

**Proof.** Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ . Let  $E_i$  be the edges in T incident to  $S_i$ .

[Fürer & Raghavachari: SODA'92, JA'94]

| Theorem. | Let <i>T</i> be a locally optimal spanning tree.<br>Then $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$ , where $\ell = \lceil \log_2 n \rceil$ . |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Proof.   | Let $S_i$ be the vertices $v$ in $T$ with $\deg_T(v) \ge i$ .                                                                                 |

Let  $E_i$  be the edges in T incident to  $S_i$ .

**Lemma 1.** OPT  $\geq k/|S|$ , where k = |removed edge|.

[Fürer & Raghavachari: SODA'92, JA'94]

**Theorem.** Let *T* be a locally optimal spanning tree. Then  $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$ , where  $\ell = \lceil \log_2 n \rceil$ .

**Proof.** Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ . Let  $E_i$  be the edges in T incident to  $S_i$ .

**Lemma 1.** OPT  $\geq k/|S|$ , where k = |removed edge|.

**Lemma 2.** There is an  $i \ge \Delta(T) - \ell + 1$  with  $|S_{i-1}| \le 2|S_i|$ .

**Theorem.** Let *T* be a locally optimal spanning tree. Then  $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$ , where  $\ell = \lceil \log_2 n \rceil$ .

**Proof.** Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ . Let  $E_i$  be the edges in T incident to  $S_i$ .

**Lemma 1.** OPT  $\geq k/|S|$ , where k = |removed edge|.

**Lemma 2.** There is an  $i \ge \Delta(T) - \ell + 1$  with  $|S_{i-1}| \le 2|S_i|$ .

**Theorem.** Let *T* be a locally optimal spanning tree. Then  $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$ , where  $\ell = \lceil \log_2 n \rceil$ . **Proof.** Let *S<sub>i</sub>* be the vertices *v* in *T* with deg<sub>T</sub>(*v*)  $\geq i$ .

Let  $E_i$  be the edges in *T* incident to  $S_i$ .

**Lemma 1.** OPT  $\geq k/|S|$ , where k = |removed edge|.

**Lemma 2.** There is an 
$$i \ge \Delta(T) - \ell + 1$$
 with  $|S_{i-1}| \le 2|S_i|$ .

Lemma 3. For 
$$i \ge \Delta(T) - \ell + 1$$
,

(i)  $|E_i| \ge (i-1)|S_i| + 1$ ,

(ii) Each  $e \in E(G) \setminus E_i$  connecting distinct components of  $T \setminus E_i$  is incident to a node of  $S_{i-1}$ .

Remove  $E_i$  for this *i*!

**Theorem.** Let *T* be a locally optimal spanning tree. Then  $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$ , where  $\ell = \lceil \log_2 n \rceil$ . Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ . Proof. Let  $E_i$  be the edges in T incident to  $S_i$ . **Lemma 1.** OPT  $\geq k/|S|$ , where k = |removed edge|. **Lemma 2.** There is an  $i \ge \Delta(T) - \ell + 1$  with  $|S_{i-1}| \le 2|S_i|$ . Lemma 3. For  $i \ge \Delta(T) - \ell + 1$ , (i)  $|E_i| \ge (i-1)|S_i| + 1$ , (ii) Each  $e \in E(G) \setminus E_i$  connecting distinct components of  $T \setminus E_i$  is incident to a node of  $S_{i-1}$ . -Remove  $E_i$  for this  $i! \stackrel{\checkmark}{\Rightarrow} S_{i-1}$  is vertex cover edges btw. comp.

 $OPT \geq \frac{k}{|S|}$ 

Lemma 1

**Theorem.** Let *T* be a locally optimal spanning tree. Then  $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$ , where  $\ell = \lceil \log_2 n \rceil$ . Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ . Proof. Let  $E_i$  be the edges in T incident to  $S_i$ . **Lemma 1.** OPT  $\geq k/|S|$ , where k = |removed edge|. **Lemma 2.** There is an  $i \ge \Delta(T) - \ell + 1$  with  $|S_{i-1}| \le 2|S_i|$ . Lemma 3. For  $i \ge \Delta(T) - \ell + 1$ , (i)  $|E_i| \ge (i-1)|S_i| + 1$ , (ii) Each  $e \in E(G) \setminus E_i$  connecting distinct components of  $T \setminus E_i$  is incident to a node of  $S_{i-1}$ . Remove  $E_i$  for this  $i! \xrightarrow{I} S_{i-1}$  is vertex cover edges btw. comp.

Lemma 1

**Theorem.** Let *T* be a locally optimal spanning tree. Then  $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$ , where  $\ell = \lceil \log_2 n \rceil$ . Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ . Proof. Let  $E_i$  be the edges in T incident to  $S_i$ . **Lemma 1.** OPT  $\geq k/|S|$ , where k = |removed edge|. **Lemma 2.** There is an  $i \ge \Delta(T) - \ell + 1$  with  $|S_{i-1}| \le 2|S_i|$ . **Lemma 3.** For  $i \ge \Delta(T) - \ell + 1$ , (i)  $|E_i| \ge (i-1)|S_i| + 1$ , (ii) Each  $e \in E(G) \setminus E_i$  connecting distinct components of  $T \setminus E_i$  is incident to a node of  $S_{i-1}$ . Remove  $E_i$  for this  $i! \stackrel{\bullet}{\Rightarrow} S_{i-1}$  is vertex cover edges btw. comp.  $OPT \ge \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|}$ 

Lemma 3

**Theorem.** Let *T* be a locally optimal spanning tree. Then  $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$ , where  $\ell = \lceil \log_2 n \rceil$ . Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ . Proof. Let  $E_i$  be the edges in T incident to  $S_i$ . **Lemma 1.** OPT  $\geq k/|S|$ , where k = |removed edge|. **Lemma 2.** There is an  $i \ge \Delta(T) - \ell + 1$  with  $|S_{i-1}| \le 2|S_i|$ . **Lemma 3.** For  $i \ge \Delta(T) - \ell + 1$ , (i)  $|E_i| \ge (i-1)|S_i| + 1$ , (ii) Each  $e \in E(G) \setminus E_i$  connecting distinct components of  $T \setminus E_i$  is incident to a node of  $S_{i-1}$ . Remove  $E_i$  for this  $i! \stackrel{\bullet}{\Rightarrow} S_{i-1}$  is vertex cover edges btw. comp.  $OPT \ge \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{|S_{i-1}|}$ Lemma 1

**Theorem.** Let *T* be a locally optimal spanning tree. Then  $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$ , where  $\ell = \lceil \log_2 n \rceil$ . Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ . **Proof.** Let  $E_i$  be the edges in T incident to  $S_i$ . **Lemma 1.** OPT  $\geq k/|S|$ , where k = |removed edge|. **Lemma 2.** There is an  $i \ge \Delta(T) - \ell + 1$  with  $|S_{i-1}| \le 2|S_i|$ . **Lemma 3.** For  $i \ge \Delta(T) - \ell + 1$ , (i)  $|E_i| \ge (i-1)|S_i| + 1$ , (ii) Each  $e \in E(G) \setminus E_i$  connecting distinct components of  $T \setminus E_i$  is incident to a node of  $S_{i-1}$ . Remove  $E_i$  for this  $i! \stackrel{\bullet}{\Rightarrow} S_{i-1}$  is vertex cover edges btw. comp.  $OPT \ge \frac{k}{|S|} = \frac{|E_i|}{S_{i-1}} \ge \frac{(i-1)|S_i|+1}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{2|S_i|}$ Lemma 1 Lemma 2

**Theorem.** Let *T* be a locally optimal spanning tree. Then  $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$ , where  $\ell = \lceil \log_2 n \rceil$ . Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ . **Proof.** Let  $E_i$  be the edges in T incident to  $S_i$ . **Lemma 1.** OPT  $\geq k/|S|$ , where k = |removed edge|. **Lemma 2.** There is an  $i \ge \Delta(T) - \ell + 1$  with  $|S_{i-1}| \le 2|S_i|$ . Lemma 3. For  $i \ge \Delta(T) - \ell + 1$ , (i)  $|E_i| \ge (i-1)|S_i| + 1$ , (ii) Each  $e \in E(G) \setminus E_i$  connecting distinct components of  $T \setminus E_i$  is incident to a node of  $S_{i-1}$ . Remove  $E_i$  for this  $i! \Rightarrow S_{i-1}$  is vertex cover edges btw. comp.  $OPT \ge \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{2|S_i|} > \frac{(i-1)}{2}$ Lemma 2 Lemma 3 Lemma 1

**Theorem.** Let *T* be a locally optimal spanning tree. Then  $\Delta(T) \leq 2 \cdot \text{OPT} + \ell$ , where  $\ell = \lceil \log_2 n \rceil$ . Let  $S_i$  be the vertices v in T with  $\deg_T(v) \ge i$ . **Proof.** Let  $E_i$  be the edges in T incident to  $S_i$ . **Lemma 1.** OPT  $\geq k/|S|$ , where k = |removed edge|. **Lemma 2.** There is an  $i \ge \Delta(T) - \ell + 1$  with  $|S_{i-1}| \le 2|S_i|$ . Lemma 3. For  $i \geq \Delta(T) - \ell + 1$ , (i)  $|E_i| \ge (i-1)|S_i| + 1$ , (ii) Each  $e \in E(G) \setminus E_i$  connecting distinct components of  $T \setminus E_i$  is incident to a node of  $S_{i-1}$ . Remove  $E_i$  for this  $i! \Rightarrow S_{i-1}$  is vertex cover edges btw. comp.  $OPT \ge \frac{k}{|S|} = \frac{|E_i|}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{|S_{i-1}|} \ge \frac{(i-1)|S_i|+1}{2|S_i|} > \frac{(i-1)}{2} \ge \frac{(\Delta(T)-\bar{\ell})}{2}$ Lemma 2 Lemma 1 Lemma 3

# **Approximation Algorithms** Lecture 9: MINIMUM-DEGREE SPANNING TREE via Local Search Part VI:

Termination, Running Time & Extensions

Philipp Kindermann

Summer Semester 2020

**Theorem.** The algorithm finds a locally optimal spanning tree efficiently.

**Theorem.** The algorithm finds a locally optimal spanning tree efficiently.

**Proof.** 

**Theorem.** The algorithm finds a locally optimal spanning tree efficiently.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):

each iteration decreases the potential of a solution.

**Theorem.** The algorithm finds a locally optimal spanning tree efficiently.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):

each iteration decreases the potential of a solution.

• the function is bounded both from above and below.

**Theorem.** The algorithm finds a locally optimal spanning tree efficiently.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):

each iteration decreases the potential of a solution.

• the function is bounded both from above and below.

• executing f(n) iterations would exceed this lower bound.

**Theorem.** The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):

each iteration decreases the potential of a solution.

• the function is bounded both from above and below.

• executing f(n) iterations would exceed this lower bound.

**Theorem.** The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):  $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$ 

each iteration decreases the potential of a solution.

• the function is bounded both from above and below.

• executing f(n) iterations would exceed this lower bound.

**Theorem.** The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):  $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$ 

each iteration decreases the potential of a solution.

**Lemma.** After each flip  $T \to T'$ ,  $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$ .

the function is bounded both from above and below.

• executing f(n) iterations would exceed this lower bound.

Homework

**Theorem.** The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):  $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$ 

each iteration decreases the potential of a solution.

**Lemma.** After each flip 
$$T \to T'$$
,  $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$ .

the function is bounded both from above and below.

**Lemma.** For each spanning tree T,  $\Phi(T) \in [3n, n3^n]$ .

• executing f(n) iterations would exceed this lower bound.

Homework

**Theorem.** The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):  $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$ 

each iteration decreases the potential of a solution.

**Lemma.** After each flip 
$$T \to T'$$
,  $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$ .

Homework

the function is bounded both from above and below.

**Lemma.** For each spanning tree T,  $\Phi(T) \in [3n, n3^n]$ .

• executing f(n) iterations would exceed this lower bound. How does  $\Phi(T)$  change?

**Theorem.** The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):  $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$ 

each iteration decreases the potential of a solution.

**Lemma.** After each flip 
$$T \to T'$$
,  $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$ .

• the function is bounded both from above and below.

**Lemma.** For each spanning tree T,  $\Phi(T) \in [3n, n3^n]$ .

• executing f(n) iterations would exceed this lower bound. How does  $\Phi(T)$  change?

Homework

decreases by:  $(1 - \frac{2}{27n^3})^{f(n)}$ 

**Theorem.** The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):  $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$ 

each iteration decreases the potential of a solution.

**Lemma.** After each flip 
$$T \to T'$$
,  $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$ .

• the function is bounded both from above and below.

**Lemma.** For each spanning tree *T*,  $\Phi(T) \in [3n, n3^n]$ .

• executing f(n) iterations would exceed this lower bound. How does  $\Phi(T)$  change?

Homework

decreases by: 
$$(1 - \frac{2}{27n^3})^{f(n)}$$
  
 $1 + x \le e^x$ 

**Theorem.** The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):  $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$ 

each iteration decreases the potential of a solution.

**Lemma.** After each flip 
$$T \to T'$$
,  $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$ .

Homework

the function is bounded both from above and below.

**Lemma.** For each spanning tree *T*,  $\Phi(T) \in [3n, n3^n]$ .

• executing f(n) iterations would exceed this lower bound. How does  $\Phi(T)$  change? decreases by:  $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)}$  $1 + x \le e^x$ 

**Theorem.** The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):  $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$ 

each iteration decreases the potential of a solution.

**Lemma.** After each flip 
$$T \to T'$$
,  $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$ .

Homework

the function is bounded both from above and below.

**Lemma.** For each spanning tree *T*,  $\Phi(T) \in [3n, n3^n]$ .

• executing f(n) iterations would exceed this lower bound. How does  $\Phi(T)$  change? decreases by:  $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)}$ Goal: After f(n) iterations:  $\Phi(T) = n < 3n$ 

**Theorem.** The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):  $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$ 

each iteration decreases the potential of a solution.

**Lemma.** After each flip 
$$T \to T'$$
,  $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$ .

Homework

the function is bounded both from above and below.

**Lemma.** For each spanning tree *T*,  $\Phi(T) \in [3n, n3^n]$ .

• executing f(n) iterations would exceed this lower bound. Let  $f(n) = \frac{27}{2}n^4 \cdot \ln 3$ . How does  $\Phi(T)$  change? decreases by:  $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)}$ Goal: After f(n) iterations:  $\Phi(T) = n < 3n$ 

**Theorem.** The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):  $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$ 

each iteration decreases the potential of a solution.

**Lemma.** After each flip 
$$T \to T'$$
,  $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$ .

Homework

the function is bounded both from above and below.

**Lemma.** For each spanning tree *T*,  $\Phi(T) \in [3n, n3^n]$ .

• executing f(n) iterations would exceed this lower bound. Let  $f(n) = \frac{27}{2}n^4 \cdot \ln 3$ . How does  $\Phi(T)$  change? decreases by:  $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n \ln 3}$ Goal: After f(n) iterations:  $\Phi(T) = n < 3n$ 

**Theorem.** The algorithm finds a locally optimal spanning tree after at most f(n) iterations.

**Proof.** Via potential function  $\Phi(T)$  measuring the value of a solution where (hopefully):  $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$ 

each iteration decreases the potential of a solution.

**Lemma.** After each flip 
$$T \to T'$$
,  $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$ .

Homework

the function is bounded both from above and below.

**Lemma.** For each spanning tree *T*,  $\Phi(T) \in [3n, n3^n]$ .

• executing f(n) iterations would exceed this lower bound. Let  $f(n) = \frac{27}{2}n^4 \cdot \ln 3$ . How does  $\Phi(T)$  change? decreases by:  $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n \ln 3} = 3^{-n}$ Goal: After f(n) iterations:  $\Phi(T) = n < 3n$ 

| <b>Theorem.</b> The algorithm finds a locally optimal<br>spanning tree after $O(n^4)$ iterations.                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Proof.</b> Via potential function $\Phi(T)$ measuring the value of a solution where (hopefully): $\Phi(T) = \sum_{v \in V(G)} 3^{\deg_T(v)}$     |
|                                                                                                                                                     |
| • each iteration decreases the potential of a solution.<br><b>Lemma.</b> After each flip $T \to T'$ , $\Phi(T') \le (1 - \frac{2}{27n^3})\Phi(T)$ . |
| the function is bounded both from above and below.                                                                                                  |
| <b>Lemma.</b> For each spanning tree <i>T</i> , $\Phi(T) \in [3n, n3^n]$ .                                                                          |
| • executing $f(n)$ iterations would exceed this lower bound                                                                                         |
| Let $f(n) = \frac{27}{2}n^4 \cdot \ln 3$ . How does $\Phi(T)$ change?                                                                               |
| decreases by: $(1 - \frac{2}{27n^3})^{f(n)} \le (e^{-\frac{2}{27n^3}})^{f(n)} = e^{-n\ln 3} = 3^{-1}$                                               |
| Goal: After $f(n)$ iterations: $\Phi(T) = n < 3n$                                                                                                   |

#### Extensions

[Fürer & Raghavachari: SODA'92, JA'94]

**Corollary.** For any constant b > 1 and  $\ell = \lceil \log_b n \rceil$ , the local search algorithm runs in polynomial time and produces a spanning tree *T* with  $\Delta(T) \le b \cdot \text{OPT} + \lceil \log_b n \rceil$ .

#### Extensions

[Fürer & Raghavachari: SODA'92, JA'94]

Homework

**Corollary.** For any constant b > 1 and  $\ell = \lceil \log_b n \rceil$ , the local search algorithm runs in polynomial time and produces a spanning tree *T* with  $\Delta(T) \le b \cdot \text{OPT} + \lceil \log_b n \rceil$ .

**Proof.** Similar to previous pages.

#### Extensions

[Fürer & Raghavachari: SODA'92, JA'94]

**Corollary.** For any constant b > 1 and  $\ell = \lceil \log_b n \rceil$ , the local search algorithm runs in polynomial time and produces a spanning tree *T* with  $\Delta(T) \le b \cdot \text{OPT} + \lceil \log_b n \rceil$ .

**Proof.** Similar to previous pages. Homework

**Theorem.** There is a local search algorithm that runs in  $O(EV\alpha(E, V) \log V)$  time and produces a spanning tree *T* with  $\Delta(T) \leq OPT + 1$ .