Approximation Algorithms

Lecture 9:
MINIMUM-DEGREE SPANNING TREE
via Local Search

Part I:
MINIMUM-DEGREE SPANNING TREE

Philipp Kindermann Summer Semester 2020

MINIMUM-DEGREE SPANNING IREE

Given: A connected graph G = (V, E)

MINIMUM-DEGREE SPANNING IREE

Given: A connected graph G = (V, E)

MINIMUM-DEGREE SPANNING IREE

Given: A connected graph G = (V, E)
Task: Find a spanning tree T which has the
minimum maximum degree among

all spanning trees of G.

MINIMUM-DEGREE SPANNING IREE

Given: A connected graph G = (V, E)
Task: Find a spanning tree T which has the
minimum maximum degree among

all spanning trees of G.

MINIMUM-DEGREE SPANNING IREE

Given: A connected graph G = (V, E)
Task: Find a spanning tree T which has the
minimum maximum degree among

all spanning trees of G.

MINIMUM-DEGREE SPANNING IREE

Given: A connected graph G = (V, E)
Task: Find a spanning tree T which has the
minimum maximum degree among

all spanning trees of G.

MINIMUM-DEGREE SPANNING IREE

Given: A connected graph G = (V, E)
Task: Find a spanning tree T which has the
minimum maximum degree among

all spanning trees of G.

NP-hard @

MINIMUM-DEGREE SPANNING IREE

Given: A connected graph G = (V, E)
Task: Find a spanning tree T which has the
minimum maximum degree among

all spanning trees of G.

MINIMUM-DEGREE SPANNING IREE

Given: A connected graph G = (V, E)
Task: Find a spanning tree T which has the
minimum maximum degree among

all spanning trees of G.

Special case of
Hamiltonian Path!

Warmup

Warmup

Warmup

Warmup

Warmup

Warmup

Warmup

Warmup

Warmup

Warmup

-

Obs.

A spanning tree | has...
B n vertices and n — 1 edges,

B sum of degrees) deg, (v) =2n —2,
veV

B average degree < 2.

Let V! C V(G).

Then >) deg(v)/|V’.ﬁ<
veV’

Let I be a spanning tree with
Then 7 has at most ? vertices of degree .

AV RN

Warmup

-

Obs.

A spanning tree | has...
B n vertices and n — 1 edges,

B sum of degrees) deg, (v) =2n —2,
veV

B average degree < 2.

Let V! C V(G).

Then >) deg(v)/|V’.ﬁ<
veV’

Let I be a spanning tree with
Then 7T has at most 222 vertices of degree /.

AV RN

Approximation Algorithms

Lecture 9:
MINIMUM-DEGREE SPANNING TREE
via Local Search

Part II.
Edge Flips and Local Search

Philipp Kindermann Summer Semester 2020

Edge Flips

Edge Flips

Edge Flips

Edge Flips

Edge Flips

Edge Flips

TH+e—¢
1S a new spanning tree

Edge Flips

Def. An improving flip in T for a vertex v and an edge
uw € E(G) \ E(T) is a flip with
deg (v) >

TH+e—¢
1S a new spanning tree

Edge Flips

Def. An improving flip in T for a vertex v and an edge
uw € E(G) \ E(T) is a flip with
deg,(v) > max{deg(u),deg (w)} + 1.

TH+e—¢
1S a new spanning tree

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip

A

>
Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip

A

>
Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip

A

>
Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip

A

>
Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip

A

>
Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip

A

>
Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip

A
plateau

v

>
Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip

A
plateau

2

>
Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip

A
plateau

2

>
Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip
local optimum; no more improving flips!

A
plateau

2

>
Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip
local optimum; no more improving flips!

A
plateau

2

global
OPT v~ optimum
>

Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip
local optimum; no more improving flips!

A
plateau

2

_______________________________ ..__________________.-____

global
OPT - *$ "~ optimum
>

Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip

local optimum; no more improving flips!

A
plateau
______________________________ DA W
I APX factor? global
0 S o4~ optimum
>

Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do

| do the improving flip 2 Termination?

local optimum; no more improving flips!
A
plateau

2

______________________________ DA W A
I APX factor? global
0 S o4~ optimum
>

Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip 2 Termination?

local ()Aptlmum, no more improving flips! B Running Time?

plateau

2

______________________________ DA W A
I APX factor? global
0 S o4~ optimum
>

Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do
| do the improving flip 2 Termination?

local ()Aptlmum, no more improving flips! B Running Time?

plateau m ?

2

______________________________ DA W A
I APX factor? global
0 S o4~ optimum
>

Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do

| do the improving flip 2 Termination?

local optimum; no more improving flips!

A B Running Time?
pvlﬁteau B /= |logn|
______________________________ D7 W
I APX factor? global
0 S o4~ optimum
>

Note: overly simplified visualization! Spannlng treeS T Of G

L.ocal Search

MinDegSpanningTreeLocalSearch(G)

I' - any spanning tree ot G
while J improving flip in T for a vertex v
with deg..(v) > — (¢ do

| do the improving flip 2 Termination?

local optimum; no more improving flips!

A B Running Time?
plateau B /= |logn|
V¥ B Approx.-Faktor?
______________________________ DOZZ W A
I APX factor? global
O] ol B *$ -~ optimum
>

Note: overly simplified visualization! Spannlng treeS T Of G

Example

<

Example

choose any
— >
spanning tree

Example

choose any
— >
spanning tree

Example

choose any
— >
spanning tree

Example

choose any
— >

spanning tree

impro

SEamm=®

5
S et
Y .

.

.
ol
‘e

-m—

Example

choose any
— >

spanning tree

impro

SEamm=®

5
S et
Y .

.

.
ol
‘e

-m—

Example

choose any
— >

spanning tree

impro

SEamm=®

.
e
[\
PrL

g ammm-

-m—

Example

choose any
— >

spanning tree

impro

SEamm=®

5
S et
2 .

.

.
ol
‘e

S et
2 .
-, ammm-

Example

choose any
— >

spanning tree

impro

SEamm=®

5
S et
2 .

.

.
ol
‘e

. .
%
3
P
.

Example

choose any
— >

panning tree

L e

SEamm=®

.
’ ..
S et
& L

.

. e

.
3 -
.

Example

choose any
— >

panning tree

L e

SEamm=®

.
’ ..
S et
& L

.

. e

.
3 -
.

Example

choose any
— >

panning tree

. -

SEamm=®

.
’ ..
S et
& L

.

. e

.
3 -
.

Approximation Algorithms

Lecture 9:
MINIMUM-DEGREE SPANNING TREE
via Local Search

Part I1I:
Lower Bound

Philipp Kindermann Summer Semester 2020

Decomposition

| E\@ o

Decomposition

| E\@ o

Decomposition

B Removing k edges decomposes T into k + 1 components

T Y
7 A

Decomposition

B Removing k edges decomposes T into k + 1 components

Decomposition

B Removing k edges decomposes T into k + 1 components
B [’ := {edges is G btw. different components C; # C;}.

Decomposition

B Removing k edges decomposes T into k + 1 components

B [’ := {edges is G btw. different components C; # C;}.
B 5 := vertex cover of E’.

! C; oot o G
> Cs .

Cs :

Decomposition

B Removing k edges decomposes T into k + 1 components

B [’ := {edges is G btw. different components C; # C;}.
B 5 := vertex cover of E’.

" (¢ aoF o &2
: 2
> Cy .
Cs .

B E(T")NE >k for opt. spanning tree T*

Decomposition

B Removing k edges decomposes T into k + 1 components

B [’ := {edges is G btw. different components C; # C;}.
B 5 := vertex cover of E’.

" (¢ aoF o &2
: 2
> Cy .
Cs .

B E(T")NE >k for opt. spanning tree T*
mY .deg,(v) >k

Decomposition = Lower Bound for OPT

B Removing k edges decomposes T into k + 1 components
B [’ := {edges is G btw. different components C; # C;}.
B 5 := vertex cover of E’.

O

Ci ooF L 2.
> C) .

T
Cs 5

B E(T")NE >k for opt. spanning tree T*

Lemma 1.
mY .deg,(v) >k _ OPT >

Decomposition = Lower Bound for OPT

B Removing k edges decomposes T into k + 1 components

B [’ := {edges is G btw. different components C; # C;}.
B 5 := vertex cover of E’.

O

C; 0o} o
> Cs .

T
Cs 5

B E(T")NE >k for opt. spanning tree T*

Lemma 1.

Approximation Algorithms

Lecture 9:
MINIMUM-DEGREE SPANNING TREE
via Local Search

Part 1V:
More Lemmas

Philipp Kindermann Summer Semester 2020

More Lemmas

More Lemmas

Let 5; be the vertices v in T with deg(v) > i.

More Lemmas

Let 5; be the vertices v in T with deg(v) > i.

T\F\%f N

More [Lemmas

Let 5; be the vertices v in T with deg(v) > i.
Let E; be the edges in T incident to

T\F\%f N

More [Lemmas

Let 5; be the vertices v in T with deg(v) > i.
Let E; be the edges in T incident to

T\F\%f N

More Lemmas

Let 5; be the vertices v in T with deg(v) > i.
Let E; be the edges in T incident to

/

T?\% N

U

U

More Lemmas

Let

: : : . =
be the vertices v in T with deg,(v) > i. _.

Let E; be the edges in T incident to

T?\%f N

More Lemmas

—
Let 5; be the vertices v in T with deg(v) >1i.
Let E; be the edges in T incident to .

T?\%f N

More Lemmas

— D) ..
Let 5; be the vertices v in T with deg;(v) >1i. . o _ V(CE)
Let £; be the edges in T incident to = E; = E(T)
[Lemma 2. There is some i > —{+1 with | | <2 \]

/

T?\% N

More Lemmas

— D) DR
Let 5; be the vertices v in T with deg;(v) >1i. . o _ V(CE)
Let £; be the edges in T incident to = E; = E(T)
[Lemma 2. There is some i > —{+1 with | | <2 \]

Proof. | | > 2f] |

/

T?\% N

More Lemmas

— D) DR
Let 5; be the vertices v in T with deg;(v) >1i. . o _ V(CE)
Let £; be the edges in T incident to = E; = E(T)
[Lemma 2. There is some i > —{+1 with | | <2 \]

Proof. | | > 2f] |= 2[logy]| |

= [logy n]

/

T?\% N

More Lemmas

= D) ...
Let 5; be the vertices v in T with deg;(v) >1i. . o _ V(CE)
Let £; be the edges in T incident to = E; = E(T)
[Lemma 2. There is some i > — /(41 with | | <2 \]
Proof. | | > 2f] |= 2“082”H | > n|

¢ = [logp n]

/

T?\% N

More Lemmas

= D) ...
Let 5; be the vertices v in T with deg;(v) >1i. . o _ V(CE)
Let £; be the edges in T incident to = E; = E(T)
[Lemma 2. There is some i > — /(41 with | | <2 \]
Proof. | | > 2f] = 2l1og]| | > n é
¢ = [logp n]

/

T?\% N

More Lemmas

More Lemmas

More Lemmas

More Lemmas

Proof. (i) |E;| >

More Lemmas

Proof. (i) |E;| > i|5

vertex-deg

More Lemmas

Proof. (i) |E;| > i|5;

vertex-deg counted twice?

—

5

—1)

More Lemmas

‘Lemma 3. For i > — 0 +1,

@) 5| > (i-1)] [+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T'\ E; is incident to a node of

Proof. (i) |E;| > 1|5 — (—-1)=(0GE-1)5]+1

vertex-deg counted twice?

/

T?\% N

More Lemmas

‘Lemma 3. For i > — 0 +1,

@) 5| > (i-1)] [+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T'\ E; is incident to a node of

Proof. (i) |E;| > 1|5 — (—-1)=(0GE-1)5]+1

vertex-deg counted twice?
(i)

/

T?\% N

More Lemmas

Proof. (i) |E;| > i|5;

— (]5/]=1)

vertex-deg counted twice?

(i =1)|5[+1
(i)

:r% m
¥ A0

More Lemmas

‘Lemma 3. For i > — 0 +1,

@) 5| > (i-1)] [+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T'\ E; is incident to a node of

Proof. (i) |E;| > 1|5 — (—-1)=(0GE-1)5]+1

vertex-deg counted twice?
(i)

T% @
g A

R

More Lemmas

‘Lemma 3. For i > — 0 +1,

@) 5| > (i-1)] [+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T'\ E; is incident to a node of

Proof. (i) |E;| > 1|5 — (—-1)=(0GE-1)5]+1

vertex-deg counted twice?
(i)

g @
/
0
/
/
/
J/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
J/
0
?’ S{\

R

More [Lemmas

‘Lemma 3. For i > — 0 +1,

@) 5| > (i-1)] [+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T'\ E; is incident to a node of

Proof. (i) |E;| > 1|5 — (—-1)=(0GE-1)5]+1
(i1)

vertex-deg counted twice?

More [Lemmas

‘Lemma 3. For i > — 0 +1,

@) 5| > (i-1)] [+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T'\ E; is incident to a node of

Proof. (i) |E;| > 1|5 — (—-1)=(0GE-1)5]+1
(i1)

vertex-deg counted twice?

More [Lemmas

‘Lemma 3. For i > — 0 +1,

@) 5| > (i-1)] [+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T'\ E; is incident to a node of

Proof. (i) |E;| > 1|5 — (—-1)=(0GE-1)5]+1

vertex-deg counted twice?

(ii) Otherwise, there is an improving flip for v €

Approximation Algorithms

Lecture 9:
MINIMUM-DEGREE SPANNING TREE
via Local Search

Part V:
Approximation Factor

Philipp Kindermann Summer Semester 2020

Approximation Factor

1 i [Fiirer & Raghavachari:
Approximation Factor SR it

; . |Flirer & Raghavachari:
Approximation Factor SODA'92, | A/04]

Theorem. Let I be a locally optimal spanning tree.
Then /(1) <2-0PT 4 ¢, where ¢ = |log, n|.
Proof. Let 5, be the vertices v in T with deg,(v) > i.

Let E; be the edges in T incident to

; . |Flirer & Raghavachari:
Approximation Factor SODA'92, | A/04]

Theorem. Let I be a locally optimal spanning tree.
Then /(1) <2-0PT 4 ¢, where ¢ = |log, n|.
Proof. Let 5, be the vertices v in T with deg,(v) > i.

Let E; be the edges in T incident to
[Lemma 1. OPT > k/| |, where k = [removed edge|.]

. . |[Fiirer & Raghavachari:
Approximation Factor SODA92, 1 404]
Theorem. Let I be a locally optimal spanning tree.

Then /(1) <2-0PT 4 ¢, where ¢ = |log, n|.

Proof.

Let 5, be the vertices v in T with deg,(v) > i.

Let E; be the edges in T incident to

Lemma 1.

\¥

OPT > k/| |, where k = |removed edge|.

VAN

Lemma 2.

\¥

Thereisani > /(| | —¢+1 with | | <2

|Fiirer & Raghavachari:

Approximation Factor SODA92, [A04]

Theorem. Let T be a locally optimal spanning tree.
Then <2-0PT + /¢, where ¢ = |log, n].
Proof. Let 5, be the vertices v in T with deg,(v) > i.

Let E; be the edges in T incident to
‘Lemma 1. OPT > k/| |, where k = |removed edge|.

\¥

‘Lemma 2. There is an i > — /(41 with | | <2] .

‘Lemma 3. For i > — /7 +1,

@) 5| > (i-1)] [+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T'\ E; is incident to a node of

\¥ J

J

\

: : |Fiirer & Raghavachari:
Approximation Factor SODA92, [A04]
Theorem. Let T be a locally optimal spanning tree.

Then <2-0PT + /¢, where ¢ = |log, n].
Proof. Let 5, be the vertices v in T with deg,(v) > i.

Let E; be the edges in T incident to
‘Lemma 1. OPT > k/| |, where k = |removed edge|.

\¥

J

/fLemma 2. Thereisani > — /(41 with | | <2] .
Lemma 3. For i > —(+1, :

@) 5| > (i-1)] [+1,
(ii) Each ¢ € E(G) \ E; connecting distinct components
of T'\ E; is incident to a node of

k>Remove E; for this 1!

: : |Fiirer & Raghavachari:
Approximation Factor SODA92, [A04]
Theorem. Let I be a locally optimal spanning tree.

Then <2-0PT + /¢, where ¢ = |log, n].
Proof. Let 5, be the vertices v in T with deg,(v) > i.

Let E; be the edges in T incident to
‘Lemma 1. OPT > k/| |, where k = |removed edge|.

\¥

/(Lemma 2. Thereisani > — /(41 with | | <2] .

‘Lemma 3. For i > — 0 +1, \

Q) 5] > (i—1)] |+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

J

\

J

k>Remove E; for this i! = ' is vertex cover edges btw. comp

: : |Fiirer & Raghavachari:
Approximation Factor SODA92, [A04]
Theorem. Let I be a locally optimal spanning tree.

Then <2-0PT + /¢, where ¢ = |log, n].
Proof. Let 5, be the vertices v in T with deg,(v) > i.

Let E; be the edges in T incident to
‘Lemma 1. OPT > k/| |, where k = |removed edge|.

\¥

/(Lemma 2. Thereisani > — /(41 with | | <2] .

‘Lemma 3. For i > — 0 +1, \

Q) 5] > (i—1)] |+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

J

\

J

k>Remove E; for this i! = ' is vertex cover edges btw. comp
OPT > & ol

Lemma 1

: : |Fiirer & Raghavachari:
Approximation Factor SODA92, [A04]
Theorem. Let I be a locally optimal spanning tree.

Then <2-0PT + /¢, where ¢ = |log, n].
Proof. Let 5, be the vertices v in T with deg,(v) > i.

Let E; be the edges in T incident to
‘Lemma 1. OPT > k/| |, where k = |removed edge|.

\¥

/(Lemma 2. Thereisani > — /(41 with | | <2] .

‘Lemma 3. For i > — 0 +1, \

Q) 5] > (i—1)] |+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T\ E; is incident to a node of

J

\

J

k>Remove E; for this i! = ' is vertex cover edges btw. comp

OPT > ’k’ _ IE]|

Lemma 1

: : |Fiirer & Raghavachari:
Approximation Factor SODA92, [A04]
Theorem. Let I be a locally optimal spanning tree.

Then <2-0PT + /¢, where ¢ = |log, n].
Proof. Let 5, be the vertices v in T with deg,(v) > i.

Let E; be the edges in T incident to
‘Lemma 1. OPT > k/| |, where k = |removed edge|.

\¥

/(Lemma 2. Thereisani > — /(41 with | | <2] .

‘Lemma 3. For i > — 0 +1, \

Q) 5] > (i—1)] |+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T\ E; is 1nc1dent to a node of

J

\

J

k>Remove E; for this i! & is vertex cover edges btw. comp

OPT > ’k’ _ |Ei] > (i ‘1)\ ’H‘l

Lemma 1 Lemma 3

: : |Fiirer & Raghavachari:
Approximation Factor SODA92, [A04]
Theorem. Let I be a locally optimal spanning tree.

Then <2-0PT + /¢, where ¢ = |log, n].
Proof. Let 5, be the vertices v in T with deg,(v) > i.

Let E; be the edges in T incident to
‘Lemma 1. OPT > k/| |, where k = |removed edge|.

\¥

/(Lemma 2. Thereisani > — /(41 with | | <2] .

‘Lemma 3. For i > — 0 +1, \

Q) 5] > (i—1)] |+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T\ E; is 1nc1dent to a node of

J

\

J

k>Remove E; for this i! & is vertex cover edges btw. comp

OPT > ’k’ _ E] 5 (‘1)\ ’\+1 N (i—12)|| ||+1

Lemma 1 Lemma 3 Lemma 2

: : |Fiirer & Raghavachari:
Approximation Factor SODA92, [A04]
Theorem. Let I be a locally optimal spanning tree.

Then <2-0PT + /¢, where ¢ = |log, n].
Proof. Let 5, be the vertices v in T with deg,(v) > i.

Let E; be the edges in T incident to
‘Lemma 1. OPT > k/| |, where k = |removed edge|.

\¥

/(Lemma 2. Thereisani > — /(41 with | | <2] .

‘Lemma 3. For i > — 0 +1, \

Q) 5] > (i—1)] |+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T\ E; is 1nc1dent to a node of

J

\

k>Remove E; for this T is vertex cover edges btw. comp.
OPT > ,k, _ B > G ‘1>\ ’\+1 N (i—12>|| ||+1 > (-1

Lemma 1 Lemma 3 Lemma 2

: : |Fiirer & Raghavachari:
Approximation Factor SODA92, [A04]
Theorem. Let I be a locally optimal spanning tree.

Then <2-0PT + /¢, where ¢ = |log, n].
Proof. Let 5, be the vertices v in T with deg,(v) > i.

Let E; be the edges in T incident to
‘Lemma 1. OPT > k/| |, where k = |removed edge|.

\¥

/(Lemma 2. Thereisani > — /(41 with | | <2] .

‘Lemma 3. For i > — 0 +1, \

Q) 5] > (i—1)] |+1,

(ii) Each ¢ € E(G) \ E; connecting distinct components
of T\ E; is 1nc1dent to a node of

J

\

k>Remove E; for this TN is vertex cover edges btw. comp.
OPT > ’k’ — LB 5 ‘1)\ ’\+1 ~ (i—12)|| ||+1 > (:;1) < | 2—6)

Lemma 1 Lemma 3 Lemma 2 |:|

Approximation Algorithms

Lecture 9:
MINIMUM-DEGREE SPANNING TREE
via Local Search

Part VI:
Termination, Running Time & Extensions

Philipp Kindermann Summer Semester 2020

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree efficiently.

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree efficiently.

Proof.

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree efficiently.

Proof. Via potential function ®(T) measuring the value of
a solution where (hopetully):

B each iteration decreases the potential of a solution.

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree efficiently.

Proof. Via potential function ®(T) measuring the value of
a solution where (hopetully):

B each iteration decreases the potential of a solution.

B the function is bounded both from above and below.

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree efficiently.

Proof. Via potential function ®(T) measuring the value of
a solution where (hopetully):

B each iteration decreases the potential of a solution.

B the function is bounded both from above and below.

B executing f(n) iterations would exceed this lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree after at most f(n) iterations.

Proof. Via potential function ®(T) measuring the value of
a solution where (hopetully):

B each iteration decreases the potential of a solution.

B the function is bounded both from above and below.

B executing f(n) iterations would exceed this lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree after at most f(n) iterations.

Proof. Via potential function ®(T) measuring the value of
a solution where (hopefully): ®(T) =Y, V(G 3 egr(v)

B each iteration decreases the potential of a solutlon

B the function is bounded both from above and below.

B executing f(n) iterations would exceed this lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree after at most f(n) iterations.
Proof. Via potential function ®(T) measuring the value of
a solution where (hopefully): ®(T) =Y, V(G 3 egr(v)
B each iteration decreases the potential of a solutlon g
LLemma. After each flip T — T/, D(T') < (1 — 25)d(T). }é’
o
T

B the function is bounded both from above and below.

B executing f(n) iterations would exceed this lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree after at most f(n) iterations.
Proof. Via potential function ®(T) measuring the value of
a solution where (hopefully): ®(T) =Y, V(G 3 egr(v)
B each iteration decreases the potential of a solutlon g
LLemma. After each flip T — T/, D(T') < (1 — 25)d(T). }é’
o
T

B the function is bounded both from above and below.

>

LLemma. For each spanning tree T, ©(T) € [3n,n3"|.

J

B executing f(n) iterations would exceed this lower bound.

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree after at most f(n) iterations.
Proof. Via potential function ®(T) measuring the value of
a solution where (hopefully): ®(T) =Y, V(G 3 egr(v)
B each iteration decreases the potential of a solutlon g
LLemma. After each flip T — T/, D(T') < (1 — 25)d(T). }é’
o
T

B the function is bounded both from above and below.

>

LLemma. For each spanning tree T, ©(T) € [3n,n3"|.

J

B executing f(n) iterations would exceed this lower bound.
How does ®(T) change?

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree after at most f(n) iterations.

Proof. Via potential function ®(T) measuring the value of
a solution where (hopefully): O(T) =Y, V(C) 3degr(v)

B each iteration decreases the potential of a solution.

LLemma. After each flip T — T/, D(T') < (1 — 25)d(T). }

B the function is bounded both from above and below.

Homework

>

LLemma. For each spanning tree T, ©(T) € [3n,n3"|.

J

B executing f(n) iterations would exceed this lower bound.
How does ®(T) change?

decreases by: (1 — ﬁ)f (n)

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree after at most f(n) iterations.

Proof. Via potential function ®(T) measuring the value of
a solution where (hopefully): O(T) =Y, V(C) 3degr(v)

B each iteration decreases the potential of a solution.

LLemma. After each flip T — T/, D(T') < (1 — 25)d(T). }

B the function is bounded both from above and below.

Homework

>

LLemma. For each spanning tree T, ©(T) € [3n,n3"|.

J

B executing f(n) iterations would exceed this lower bound.
How does ®(T) change?

decreases by: (1 — 5=5)/ (n)

27n3
1+x<er

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree after at most f(n) iterations.
Proof. Via potential function ®(T) measuring the value of
a solution where (hopefully): O(T) = Loev(c 3 egr(v)
B each iteration decreases the potential of a solutlon :;3
LLemma. After each flip T — T/, D(T') < (1 — 25)d(T). }?g
)
T

B the function is bounded both from above and below.

>

LLemma. For each spanning tree T, ©(T) € [3n,n3"|.

J

B executing f(n) iterations would exceed this lower bound.
How does ®(T) change?

decreases by: (1 — ﬁ)f(”) < (e_ﬁ)f(")

1+x<er

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree after at most f(n) iterations.
Proof. Via potential function ®(T) measuring the value of
a solution where (hopefully): O(T) = Loev(c 3 egr(v)
B each iteration decreases the potential of a solutlon g
LLemma. After each flip T — T/, D(T') < (1 — 25)d(T). }?g
)
T

B the function is bounded both from above and below.

>

LLemma. For each spanning tree T, ©(T) € [3n,n3"|.

J

B executing f(n) iterations would exceed this lower bound.
How does ®(T) change?

2
decreases by: (1 — ﬁ)f(”) < (e_ﬁ)f(")
Goal: After f(n) iterations: ®(T) =n < 3n

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree after at most f(n) iterations.

Proof. Via potential function ®(T) measuring the value of
a solution where (hopefully): O(T) =Y, V(C) 3degr(v)

B each iteration decreases the potential of a solution.

LLemma. After each flip T — T/, D(T') < (1 — 25)d(T). }

B the function is bounded both from above and below.

Homework

>

LLemma. For each spanning tree T, ©(T) € [3n,n3"|.

J

B executing f(n) iterations would exceed this lower bound.
Let f(n) = % n*-In3. How does ®(T) change?

decreases by: (1 — 22)f(”) < (e_ﬁ)f(")

7n3

Goal: After f(n) iterations: ®(T) =n < 3n

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree after at most f(n) iterations.

Proof. Via potential function ®(T) measuring the value of
a solution where (hopefully): O(T) =Y, V(C) 3degr(v)

B each iteration decreases the potential of a solution.

LLemma. After each flip T — T/, D(T') < (1 — 25)d(T). }

B the function is bounded both from above and below.

Homework

>

LLemma. For each spanning tree T, ©(T) € [3n,n3"|.

J

B executing f(n) iterations would exceed this lower bound.
Let f(n) = % n*-In3. How does ®(T) change?

decreases by: (1 — 22)f(") < (e_ﬁ)f(ﬂ) _ p—nn3

7n3

Goal: After f(n) iterations: ®(T) =n < 3n

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree after at most f(n) iterations.

Proof. Via potential function ®(T) measuring the value of
a solution where (hopefully): O(T) =Y, V(C) 3degr(v)

B each iteration decreases the potential of a solution.

LLemma. After each flip T — T/, D(T') < (1 — 25)d(T). }

B the function is bounded both from above and below.

Homework

>

LLemma. For each spanning tree T, ©(T) € [3n,n3"|.

J

B executing f(n) iterations would exceed this lower bound.
Let f(n) = % n*-In3. How does ®(T) change?

decreases by: (1 — 22)f(n) < (e_ﬁ)f(”) — ¢ N3 — 3

7n3

Goal: After f(n) iterations: ®(T) =n < 3n]

Termination and Running Time

Theorem. The algorithm finds a locally optimal
spanning tree after ~ O(n*) iterations.

Proof. Via potential function ®(T) measuring the value of
a solution where (hopefully): O(T) =Y, V(C) 3degr(v)

B each iteration decreases the potential of a solution.

LLemma. After each flip T — T/, D(T') < (1 — 25)d(T). }

B the function is bounded both from above and below.

Homework

>

LLemma. For each spanning tree T, ©(T) € [3n,n3"|.

J

B executing f(n) iterations would exceed this lower bound.
Let f(n) = % n*-In3. How does ®(T) change?

decreases by: (1 — 22)f(n) < (e_ﬁ)f(”) — ¢ N3 — 3

7n3

Goal: After f(n) iterations: ®(T) =n < 3n]

: [Fiirer & Raghavachari:
Extensions SODAS?, |04]

: |[Fiirer & Raghavachari:
Extensions SODAS?, | A04]

‘Corollary. For any constant b > 1 and £ = 'log, 1], the
local search algorithm runs in polynomial time

and produces a spanning tree /" with
<b-OPT + |log,n]|.

\ J

Proof. Similar to previous pages. Homework [

. |Fiirer & Raghavachari:
Extensions SODAG?, | A/04]

~\

(Corollary. For any constant b > 1 and ¢ = |log, n|, the
local search algorithm runs in polynomial time
and produces a spanning tree /" with

<b-OPT+ [log, n|.

\. J

Proof. Similar to previous pages. Homework [

\

‘Theorem. There is a local search algorithm that runs in
O(EVa(E,V)logV) time and produces a
spanning tree T with < OPT + 1.

	Minimum-Degree Spanning Tree
	Problem Definition
	Warmup

	Edge Flips and Local Search
	Edge Flips
	Local Search
	Example

	Lower Bound
	Decomposition

	More Lemmas
	Lemma 2
	Lemma 3

	Approximation Factor
	Termination, Running Time & Extensions
	Termination and Running Time
	Extensions

