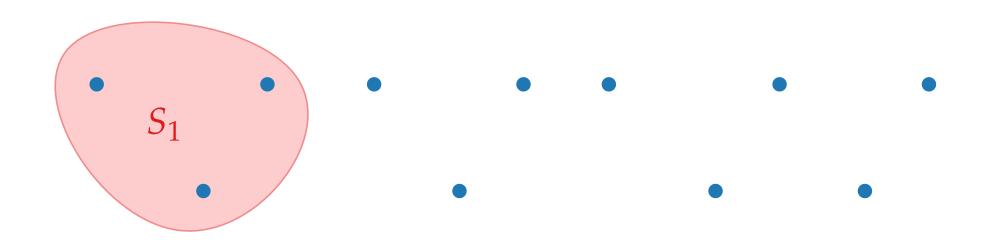
Approximation Algorithms

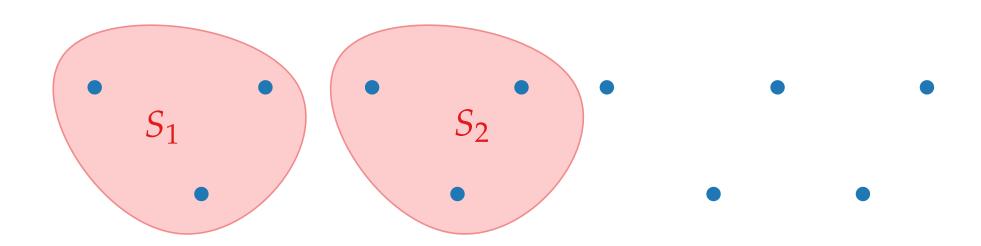
Lecture 2: SetCover and ShortestSuperString

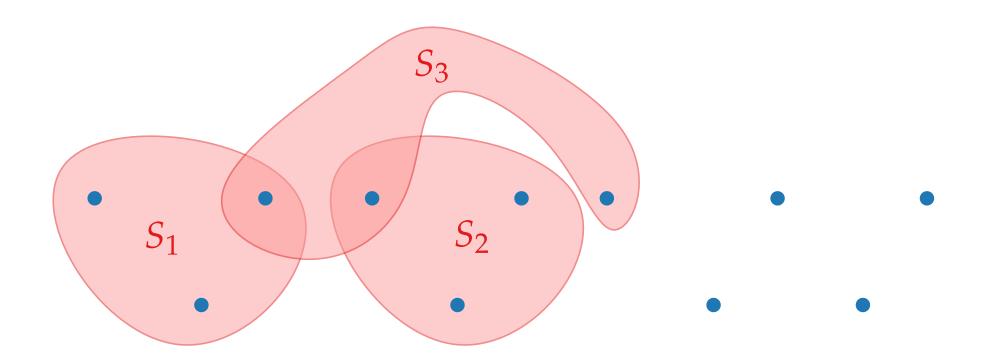
Part I: SetCover

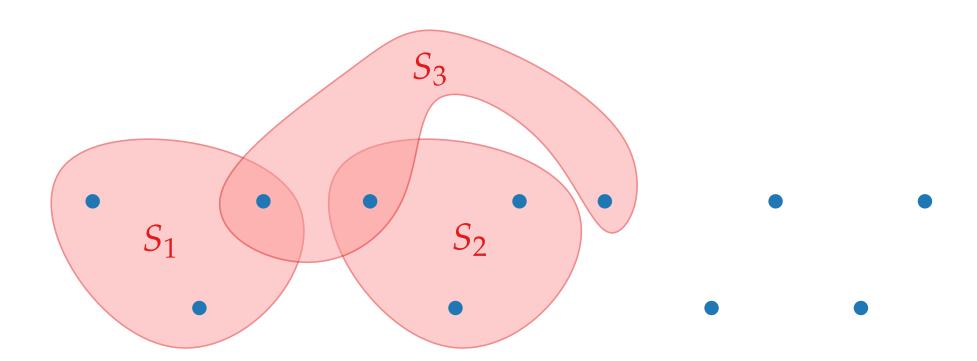
Given a ground set *U*

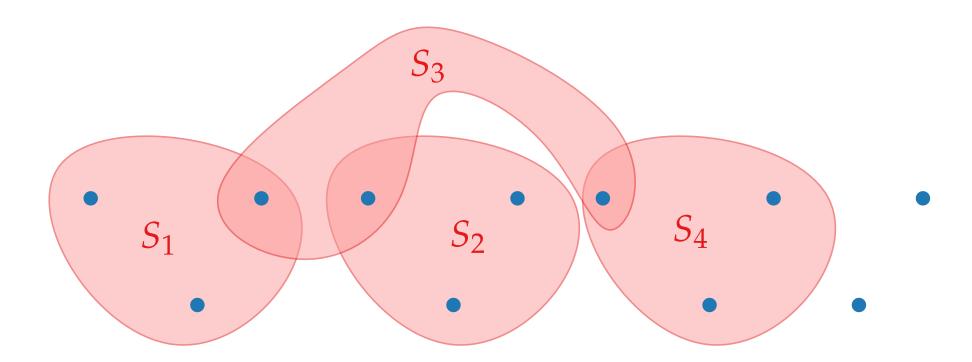
Given a ground set *U*

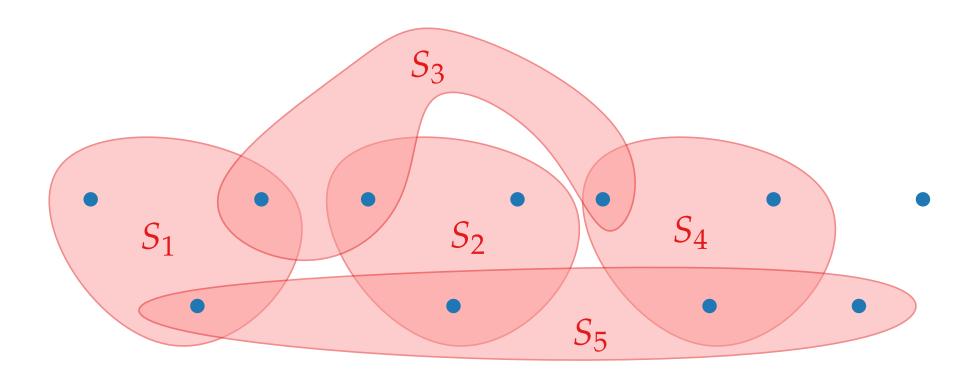


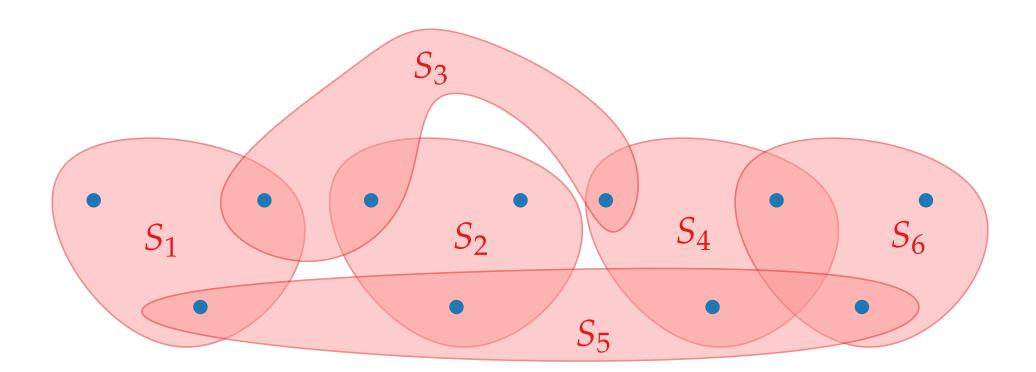




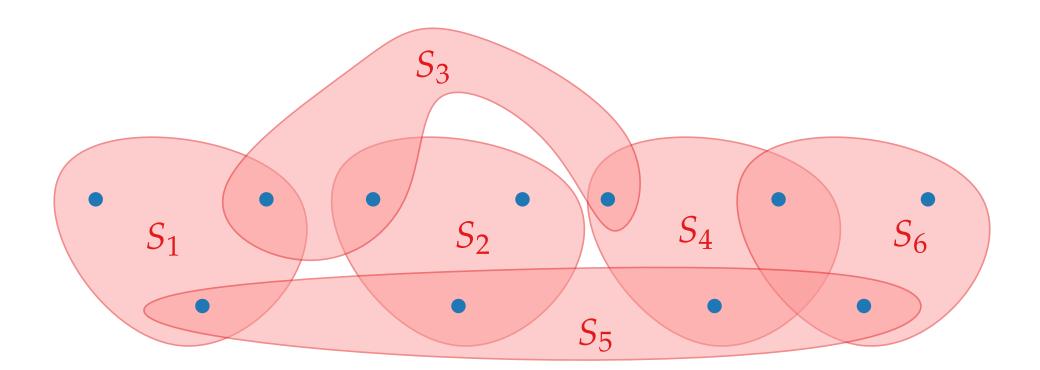




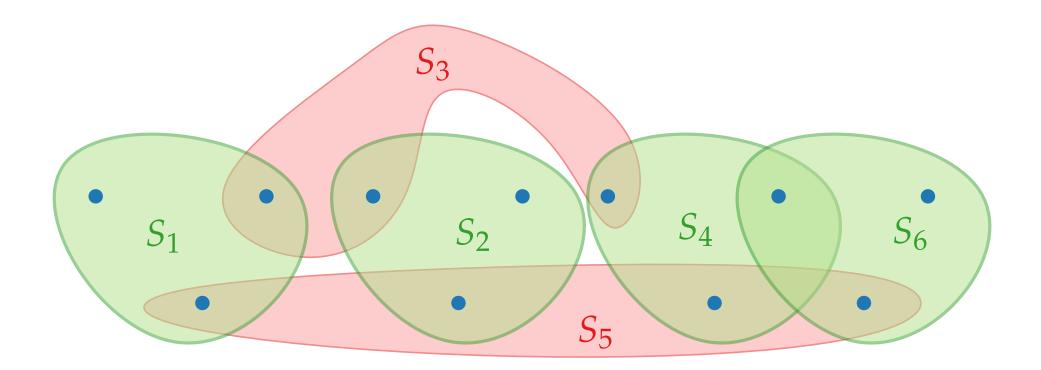




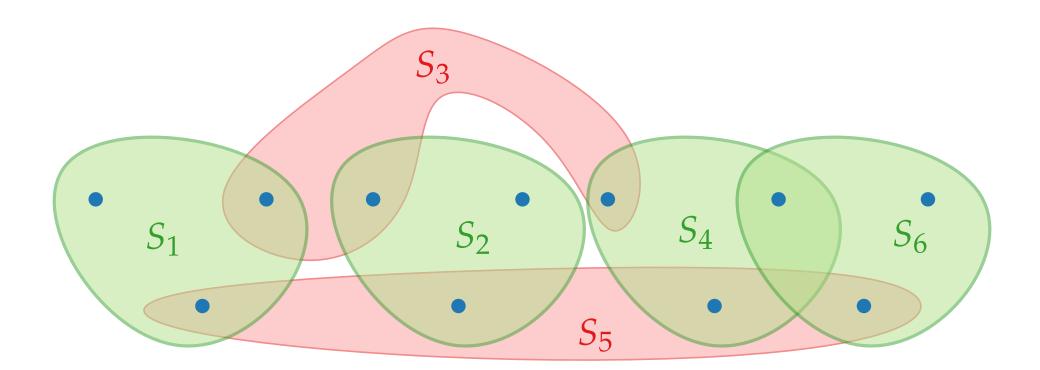
Given a **ground set** U and a family S of **subsets** of U with $\bigcup S = U$.



Given a **ground set** U and a family S of **subsets** of U with $\bigcup S = U$.

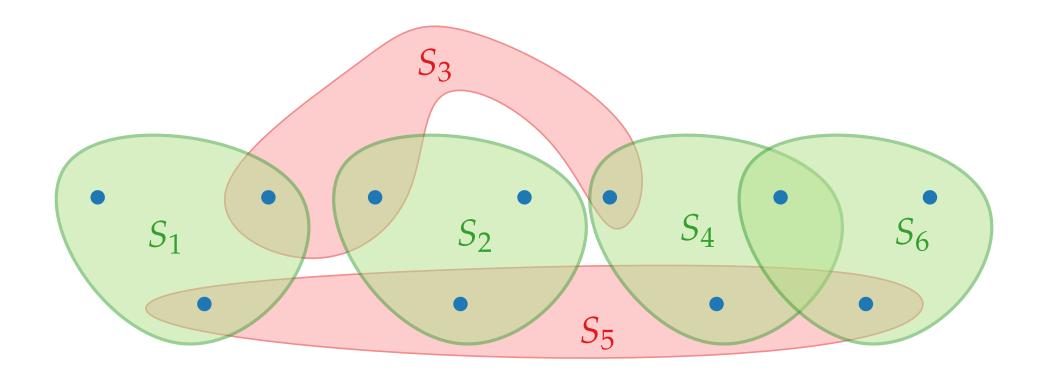


Given a **ground set** U and a family S of **subsets** of U with $\bigcup S = U$.



Given a **ground set** U and a family S of **subsets** of U with $\bigcup S = U$.

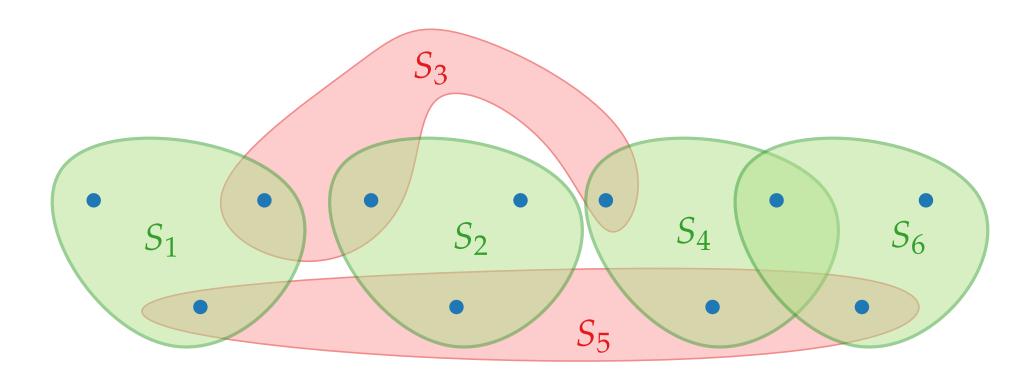
Each $S \in \mathcal{S}$ has $\cos c(S) > 0$.



Given a **ground set** U and a family S of **subsets** of U with $\bigcup S = U$.

Each $S \in \mathcal{S}$ has cost c(S) > 0.

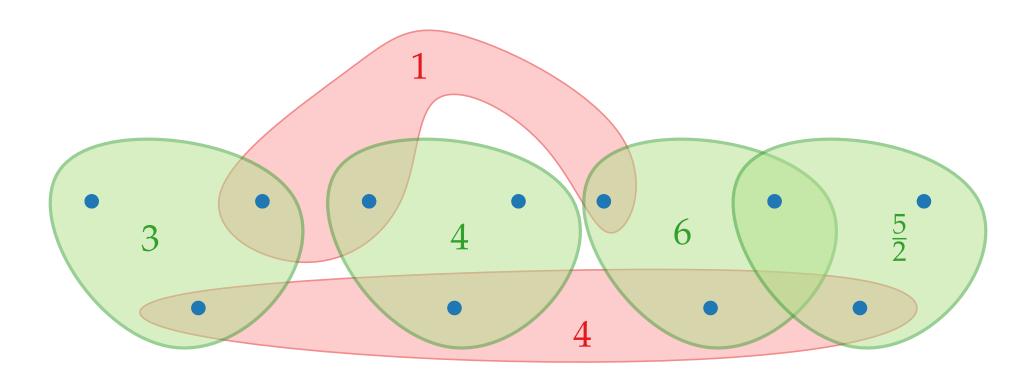
Find a cover $S' \subseteq S$ of U (i.e. with $\bigcup S' = U$) of minimal cardinality. total cost $c(S') := \sum_{S \in S'} c(S)$.



Given a **ground set** U and a family S of **subsets** of U with $\bigcup S = U$.

Each $S \in \mathcal{S}$ has cost c(S) > 0.

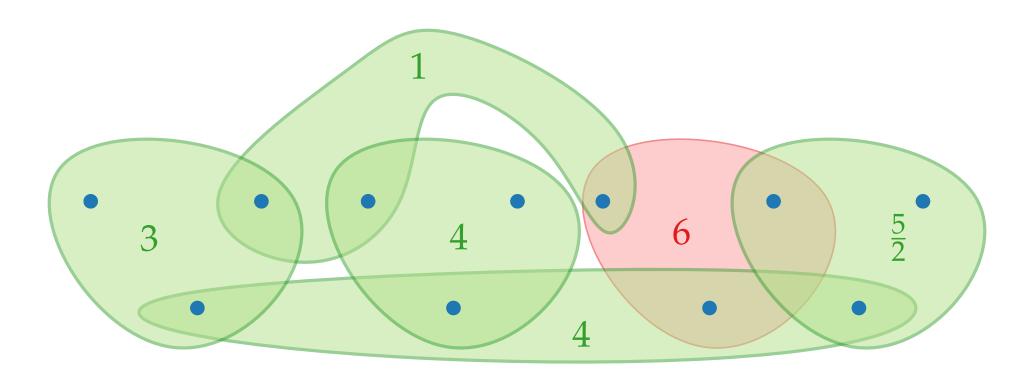
Find a cover $S' \subseteq S$ of U (i.e. with $\bigcup S' = U$) of minimal cardinality. total cost $c(S') := \sum_{S \in S'} c(S)$.



Given a **ground set** U and a family S of **subsets** of U with $\bigcup S = U$.

Each $S \in \mathcal{S}$ has cost c(S) > 0.

Find a cover $S' \subseteq S$ of U (i.e. with $\bigcup S' = U$) of minimal cardinality. total cost $c(S') := \sum_{S \in S'} c(S)$.

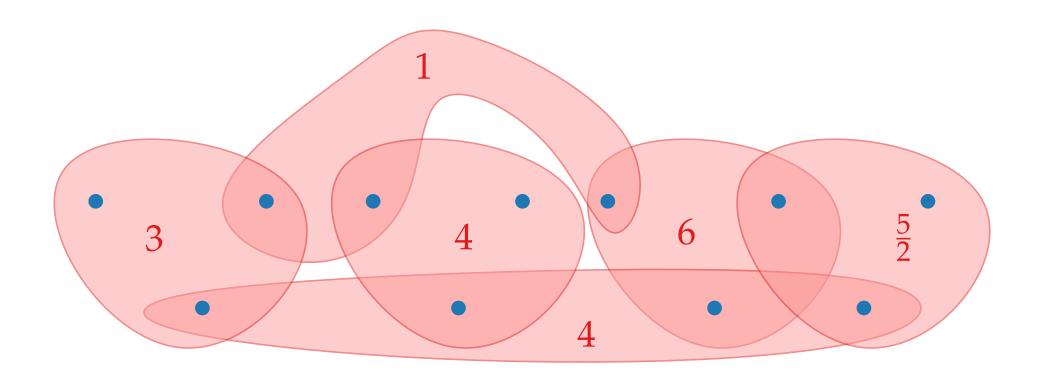


Approximation Algorithms

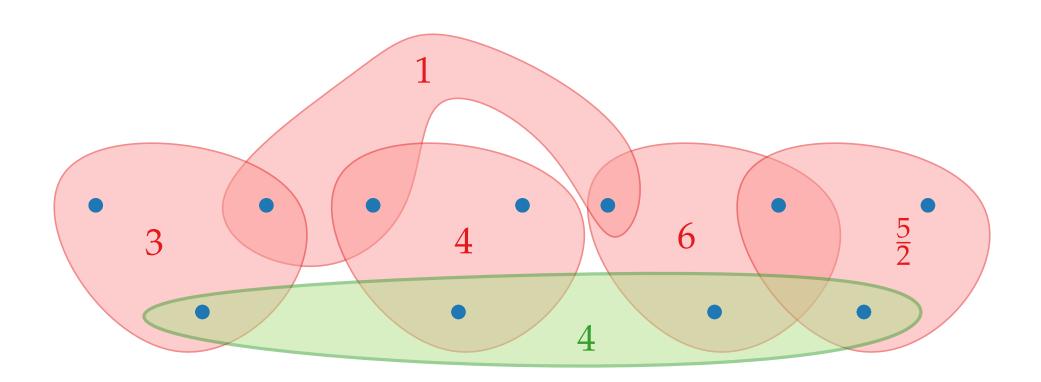
Lecture 2: SetCover and ShortestSuperString

Part II:
Greedy for SetCover

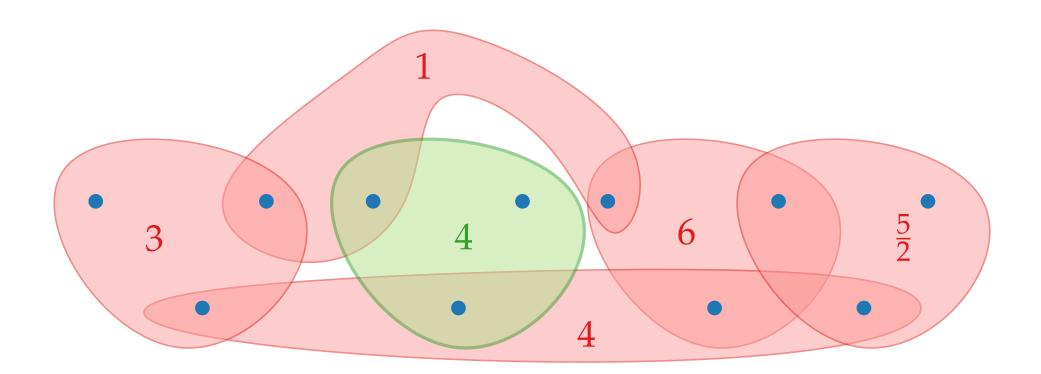
What is the real cost of picking a set?

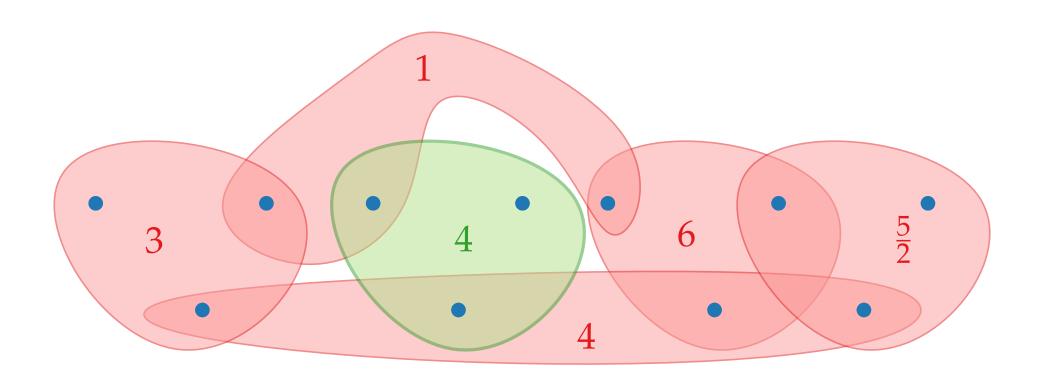


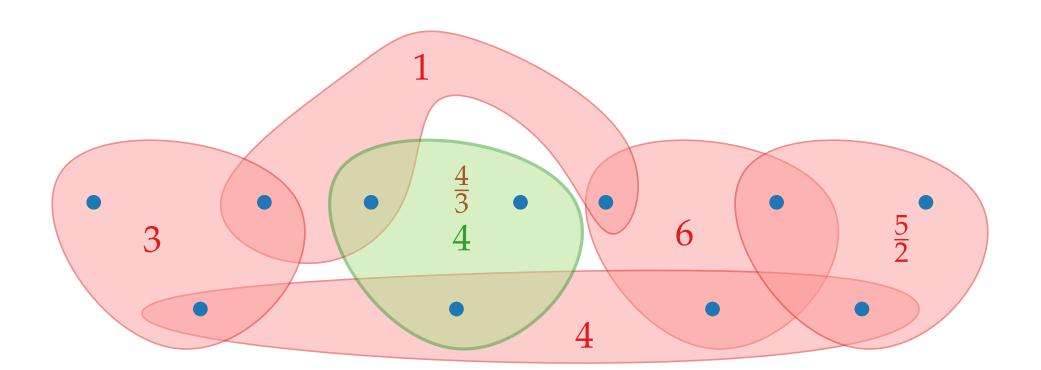
What is the real cost of picking a set?

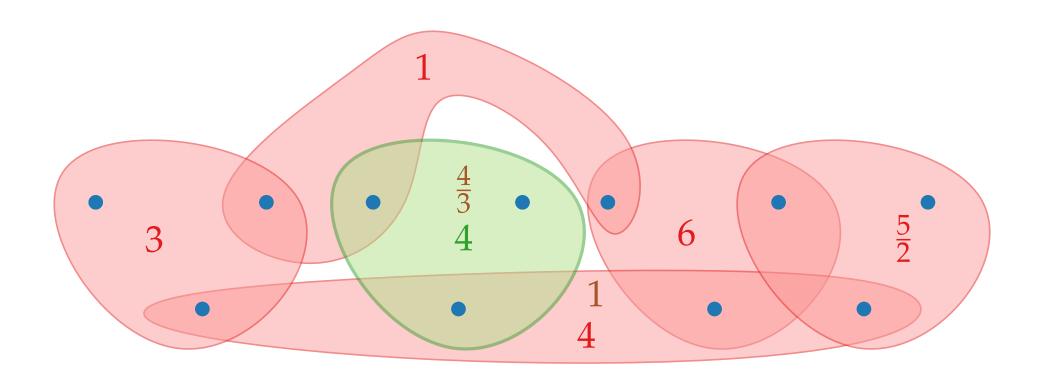


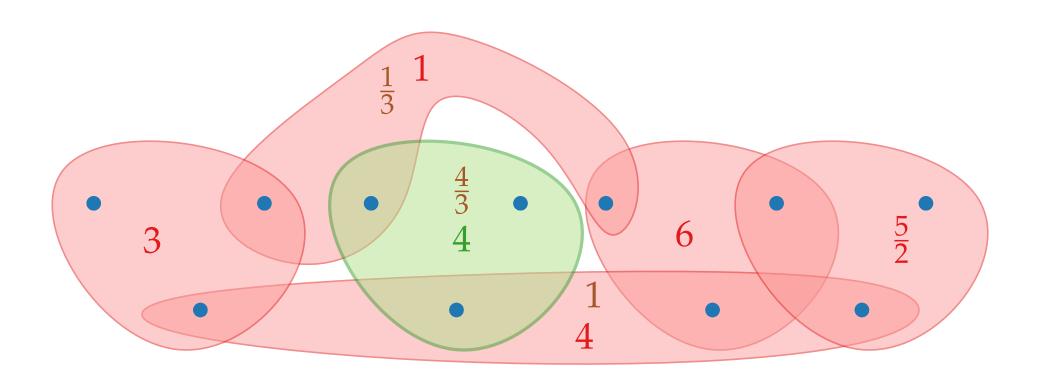
What is the real cost of picking a set?

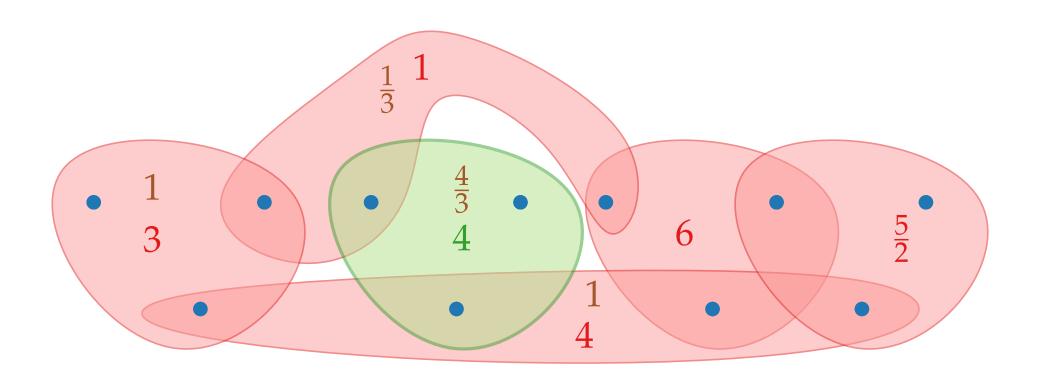


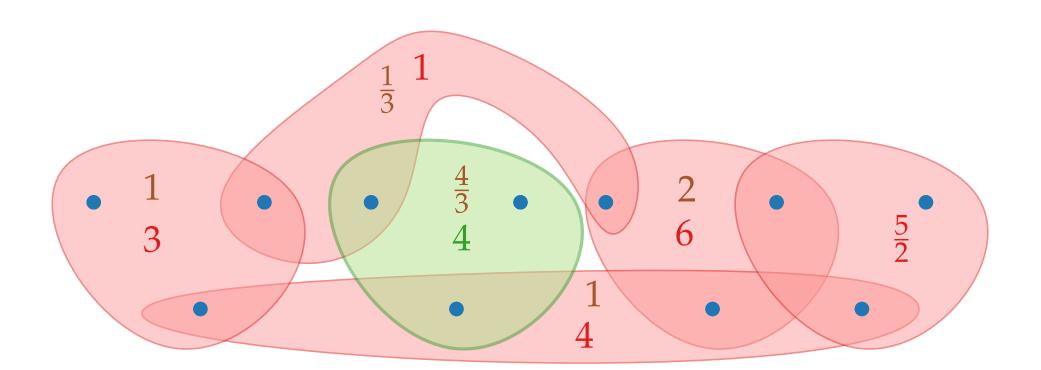


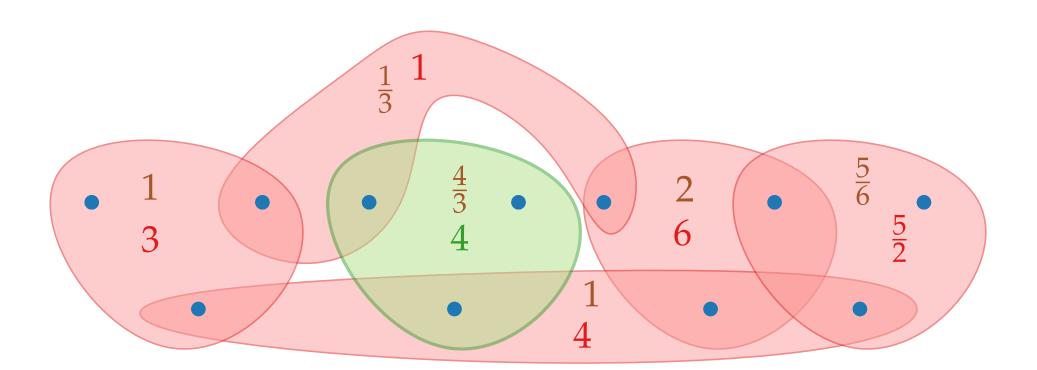




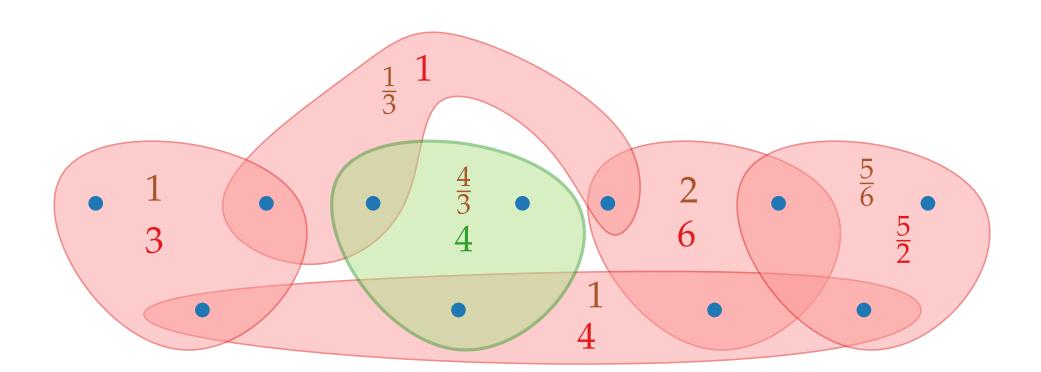


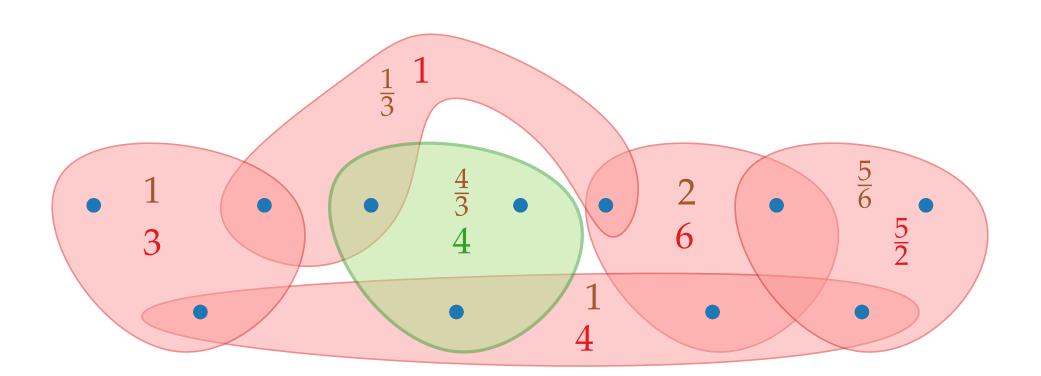


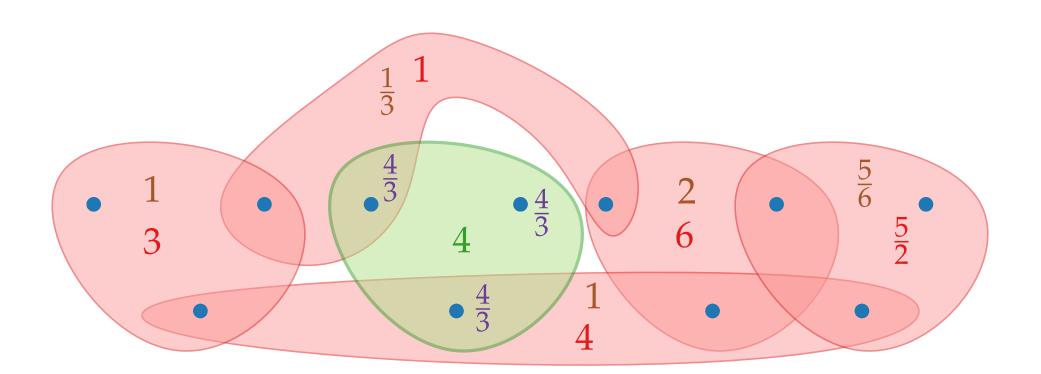


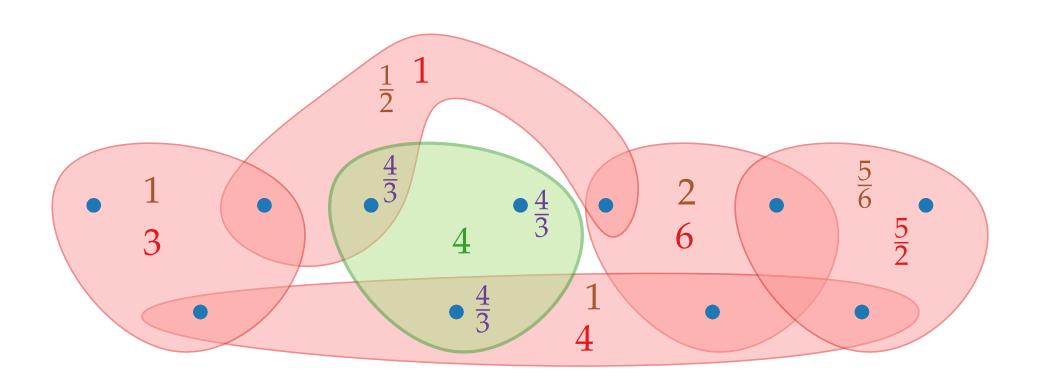


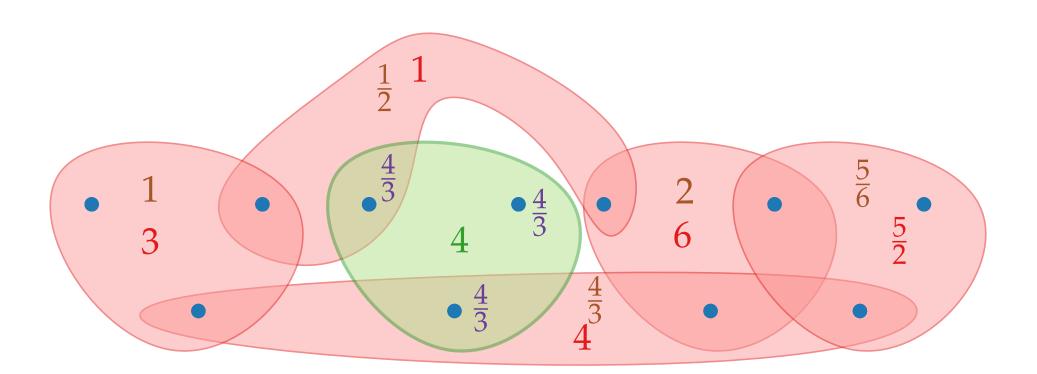
What is the real cost of picking a set? Set with k elements and cost c has unit cost $\frac{c}{k}$. What happens if we "buy" a set?

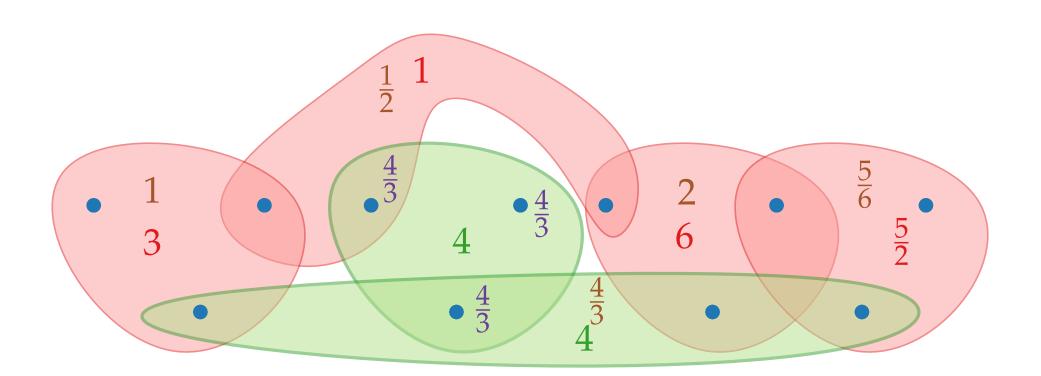


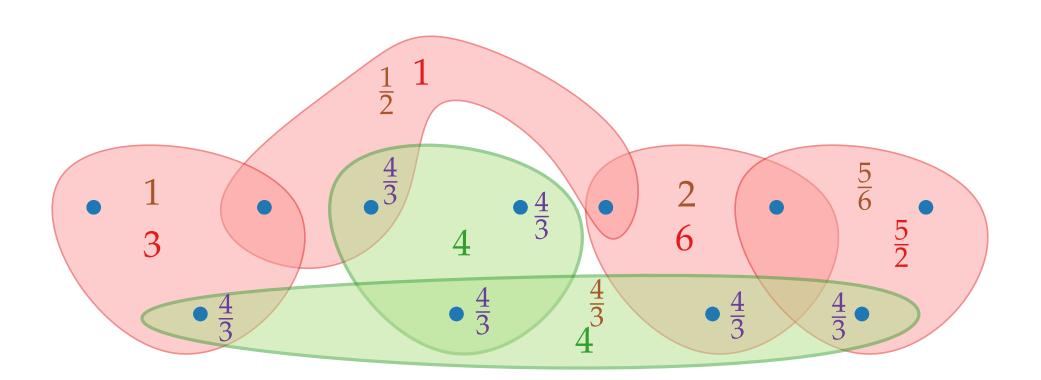


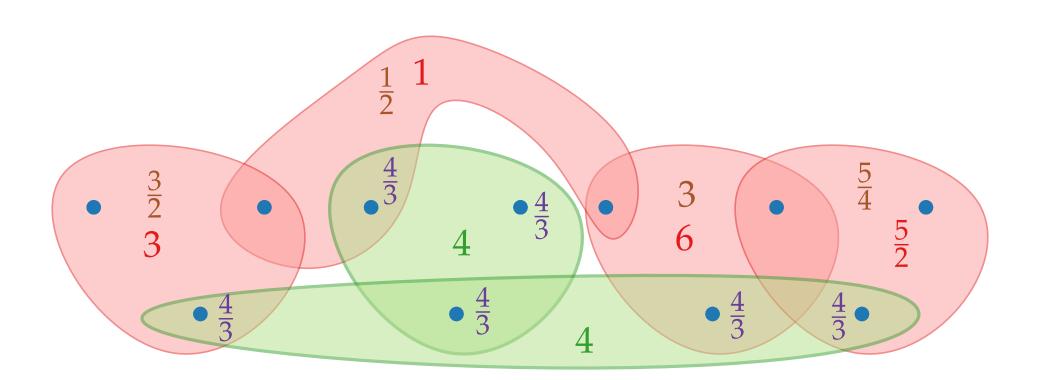


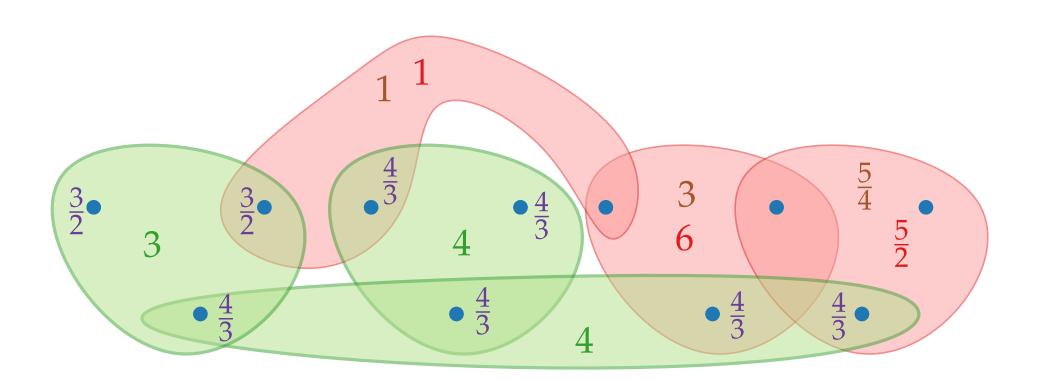


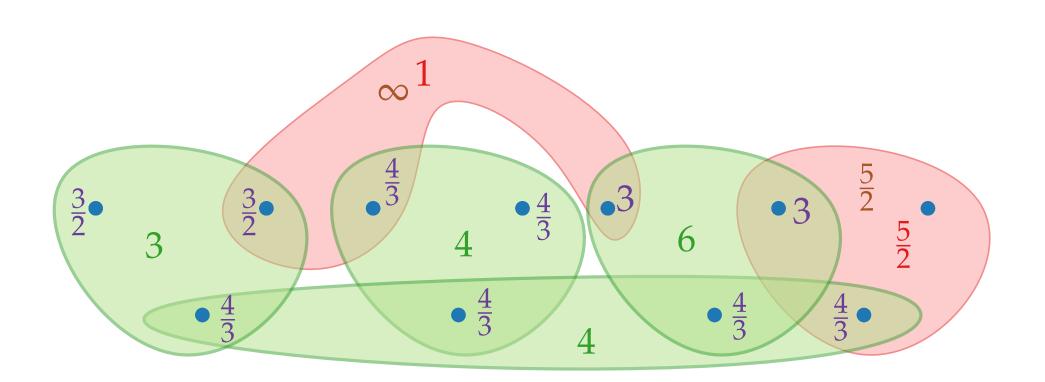


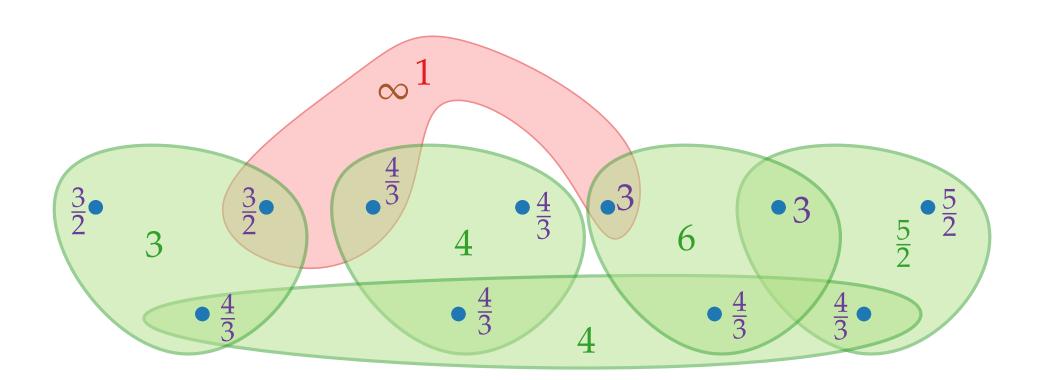




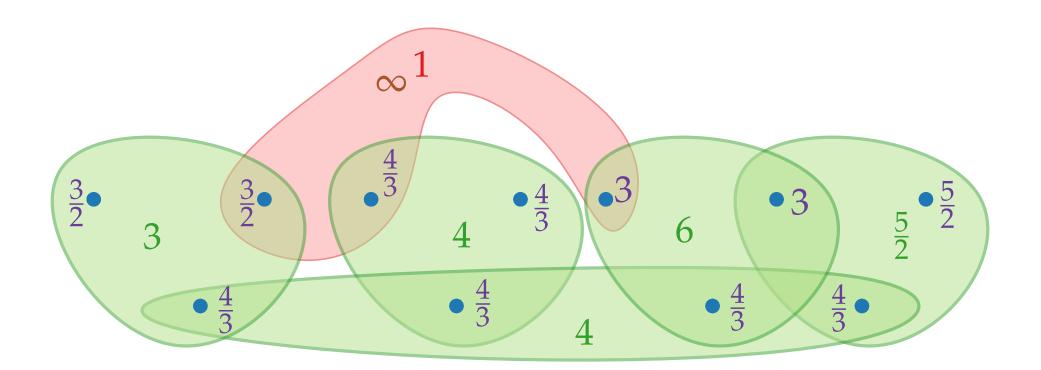








What is the real cost of picking a set? Set with k elements and cost c has unit cost $\frac{c}{k}$. What happens if we "buy" a set? Fix price of elements bought and recompute unit cost. total cost: $\sum_{u \in U} \operatorname{price}(u)$



What is the real cost of picking a set?

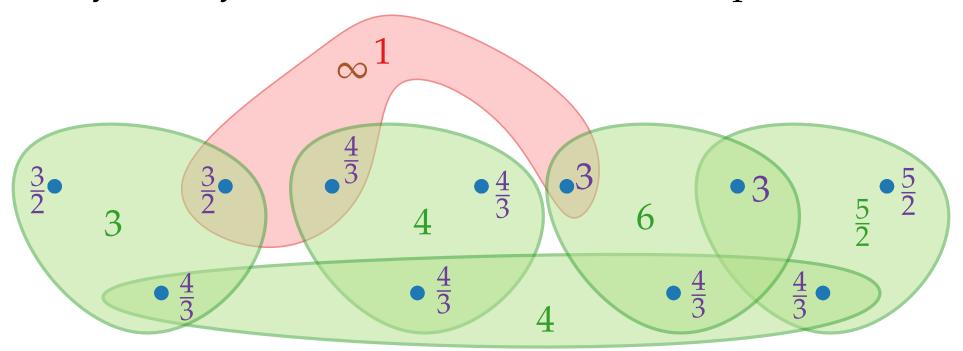
Set with k elements and cost c has unit cost $\frac{c}{k}$.

What happens if we "buy" a set?

Fix price of elements bought and recompute unit cost.

total cost: $\sum_{u \in U} \operatorname{price}(u)$

Greedy: Always choose the set with the cheapest unit cost.



GreedySetCover(*U*, *S*, *c*) $C \leftarrow \emptyset$ $\mathcal{S}' \leftarrow \emptyset$ return S'// Cover of U

```
GreedySetCover(U, S, c)
  C \leftarrow \emptyset
  \mathcal{S}' \leftarrow \emptyset
  while C \neq U do
  return S'
                                                          // Cover of U
```

```
GreedySetCover(U, S, c)
   C \leftarrow \emptyset
   \mathcal{S}' \leftarrow \emptyset
   while C \neq U do
         S \leftarrow \text{Set from } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
   return S'
                                                                    // Cover of U
```

```
GreedySetCover(U, S, c)
   C \leftarrow \emptyset
   \mathcal{S}' \leftarrow \emptyset
   while C \neq U do
         S \leftarrow \text{Set from } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
        foreach u \in S \setminus C do
   return S'
                                                                   // Cover of U
```

```
GreedySetCover(U, S, c)
   C \leftarrow \emptyset
   S' \leftarrow \emptyset
   while C \neq U do
         S \leftarrow \text{Set from } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
         foreach u \in S \setminus C do
            price(u) \leftarrow \frac{c(S)}{|S \setminus C|}
   return S'
                                                                     // Cover of U
```

```
GreedySetCover(U, S, c)
   C \leftarrow \emptyset
   S' \leftarrow \emptyset
   while C \neq U do
         S \leftarrow \text{Set from } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
         foreach u \in S \setminus C do
            price(u) \leftarrow \frac{c(S)}{|S \setminus C|}
         C \leftarrow C \cup S
   return S'
                                                                      // Cover of U
```

```
GreedySetCover(U, S, c)
   C \leftarrow \emptyset
   S' \leftarrow \emptyset
   while C \neq U do
         S \leftarrow \text{Set from } S \text{ that minimizes } \frac{c(S)}{|S \setminus C|}
         foreach u \in S \setminus C do
            price(u) \leftarrow \frac{c(S)}{|S \setminus C|}
         C \leftarrow C \cup S
         S' \leftarrow S' \cup \{S\}
   return \mathcal{S}'
                                                                        // Cover of U
```

Approximation Algorithms

Lecture 2:

SetCover and ShortestSuperString

Part III: Analysis

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k).$$

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq$

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq$

Proof.

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq$

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq$

Proof. Alg. buys $u_j \Rightarrow$

= j - 1 elements of *S* already bought

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq$

- = j 1 elements of *S* already bought
- $\ell j + 1$ elements of *S* not yet bought

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq$

- = j 1 elements of *S* already bought
- $\ell j + 1$ elements of *S* not yet bought
- **unit cost for** *S*:

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq$

- = j 1 elements of *S* already bought
- $\ell j + 1$ elements of *S* not yet bought
- unit cost for $S: c(S)/(\ell-j+1)$

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

- = j 1 elements of *S* already bought
- $\ell j + 1$ elements of *S* not yet bought
- unit cost for $S: c(S)/(\ell-j+1)$

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq$

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot H_{\ell}.$

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_i) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot H_{\ell}.$

Proof.

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot H_{\ell}.$

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol.

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot H_{\ell}.$

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. OPT = $\sum_{i=1}^m c(S_i)$

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot H_{\ell}.$

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. OPT = $\sum_{i=1}^m c(S_i)$ price(U) =

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot H_{\ell}.$

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. OPT = $\sum_{i=1}^m c(S_i)$ price $(U) = \sum_{u \in U} \operatorname{price}(u) \le$

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. price(S) := $\sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot H_{\ell}$.

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. $OPT = \sum_{i=1}^m c(S_i)$ price $(U) = \sum_{u \in U} \operatorname{price}(u) \leq \sum_{i=1}^m \operatorname{price}(S_i)$

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot H_{\ell}.$

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. OPT = $\sum_{i=1}^m c(S_i)$ price $(U) = \sum_{u \in U} \operatorname{price}(u) \leq \sum_{i=1}^m \operatorname{price}(S_i)$ $\leq \sum_{i=1}^m c(S_i) \cdot H_k =$

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Lemma. Let $S \in \mathcal{S}$ and u_1, \ldots, u_ℓ be the elements of S in the order they are covered ("bought") by GreedySetCover. Then $\operatorname{price}(u_j) \leq c(S)/(\ell-j+1)$.

Lemma. $\operatorname{price}(S) := \sum_{i=1}^{\ell} \operatorname{price}(u_i) \leq c(S) \cdot H_{\ell}.$

Proof. Let $\{S_1, \ldots, S_m\}$ be opt. sol. $OPT = \sum_{i=1}^m c(S_i)$ price $(U) = \sum_{u \in U} \operatorname{price}(u) \leq \sum_{i=1}^m \operatorname{price}(S_i)$ $\leq \sum_{i=1}^m c(S_i) \cdot H_k = OPT \cdot H_k$

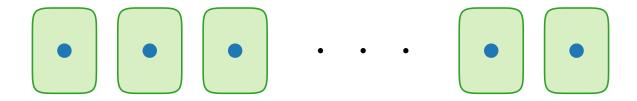
Analysis sharp?

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k).$$

Analysis sharp?

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.



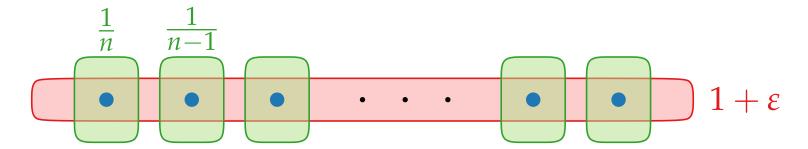
Analysis sharp?

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

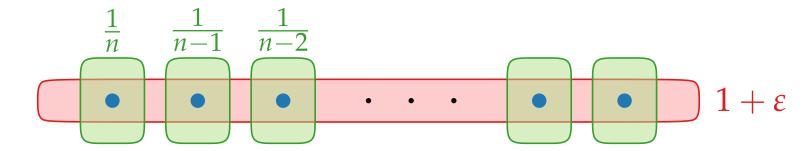
Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

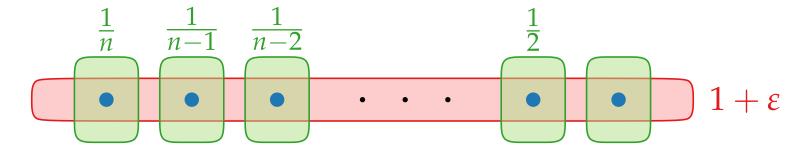
$$H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k).$$



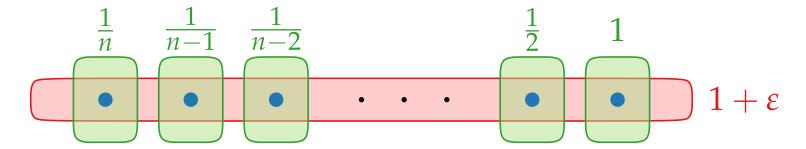
$$H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k).$$



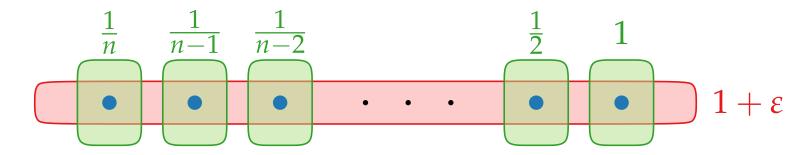
$$H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k).$$



$$H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k).$$



$$H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k).$$

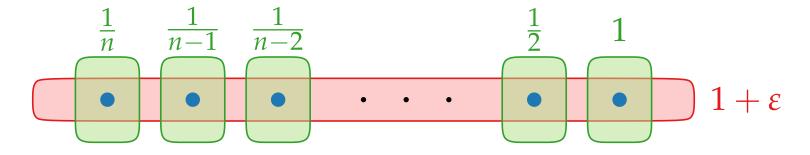


$$price(U) = H_n$$

$$OPT = 1 + \varepsilon$$

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k).$$



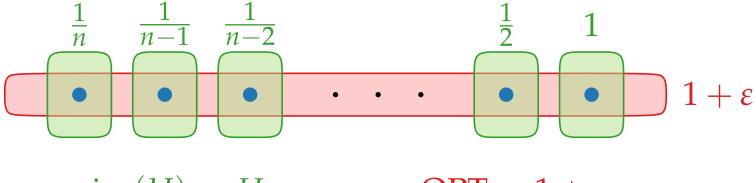
$$price(U) = H_n$$

$$OPT = 1 + \varepsilon$$

better?

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k).$$



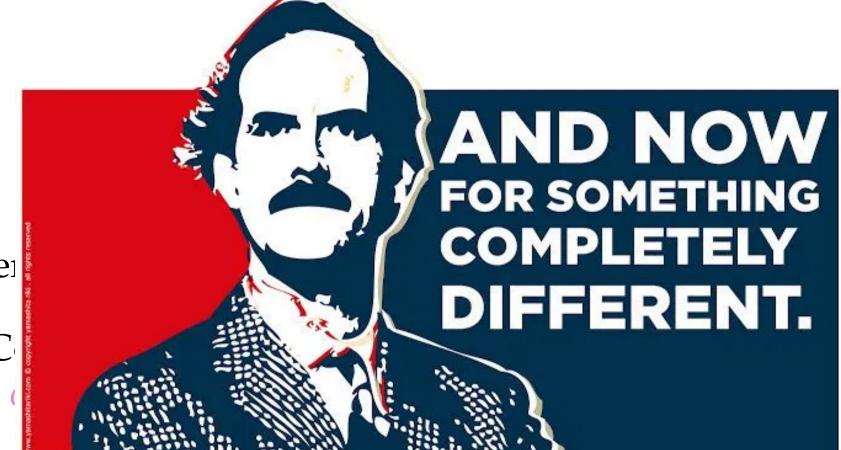
 $price(U) = H_n$

 $OPT = 1 + \varepsilon$

better?

SetCover cannot be approximated within factor $(1 - o(1)) \cdot \log(n)$ (unless P=NP)

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and $H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k)$.

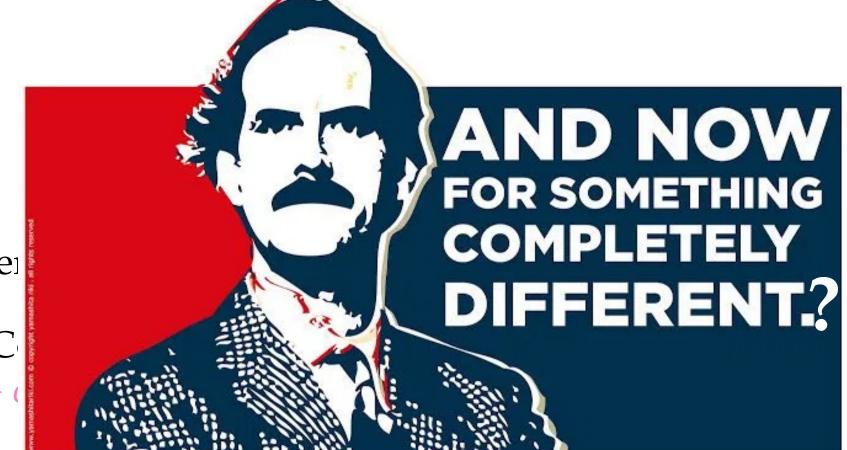


bette

SETC

Theorem. GreedySetCover is a factor- H_k -approximation algorithm for SetCover, where k is the cardinality of the largest set in S and

$$H_k := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{k} = O(\log k).$$



bette

SETC

Approximation Algorithms

Lecture 2: SetCover and ShortestSuperString

Part IV:
SHORTESTSUPERSTRING

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a **shortest string** s (superstring) such that each s_i , i = 1, ..., n is a substring of s.

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a **shortest string** s (superstring) such that each s_i , i = 1, ..., n is a substring of s.

Example. $U := \{cbaa, abc, bcb\}$ cbaabcb

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a **shortest string** s (superstring) such that each s_i , i = 1, ..., n is a substring of s.

Example. $U := \{cbaa, abc, bcb\}$ cbaabcb

abc

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a **shortest string** s (superstring) such that each s_i , i = 1, ..., n is a substring of s.

Example.

$$U := \{cbaa, abc, bcb\}$$
 cbaabcb

abc bcb

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a **shortest string** s (superstring) such that each s_i , i = 1, ..., n is a substring of s.

Example.

 $U := \{cbaa, abc, bcb\}$ cbaabcb

abc bcb cbaa

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a **shortest string** s (superstring) such that each s_i , i = 1, ..., n is a substring of s.

Example.

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a **shortest string** s (superstring) such that each s_i , i = 1, ..., n is a substring of s.

Example.

Given a set $\{s_1, \ldots, s_n\} \subseteq \Sigma^+$ of strings over a finite alphabet Σ .

Find a **shortest string** s (superstring) such that each s_i , i = 1, ..., n is a substring of s.

Example.

 $U := \{cbaa, abc, bcb\}$ cbaabcb

"covers" all strings in *U*

W.l.o.g.: No string s_i is a substring of any other string s_j .

abcbaa abc bcb cbaa

Set Cover Instance: ground set U, set family S, costs c.

SetCover Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \ldots, s_n\}$

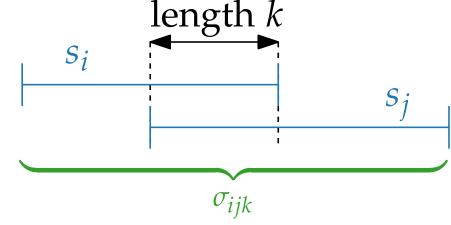
SetCover Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \ldots, s_n\}$

SetCover Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \ldots, s_n\}$

SetCover Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \ldots, s_n\}$

Set Cover Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \ldots, s_n\}$

Set Cover Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \ldots, s_n\}$



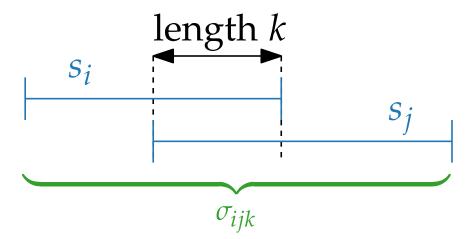
Set Cover Instance: ground set U, set family S, costs c.

ground set $U := \{s_1, \ldots, s_n\}$

A string σ_{ijk} has prefix s_i and suffix s_j where s_i and s_j

overlap on k characters.

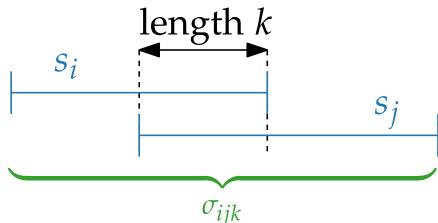
 s_i : cabab s_i : ababc



Set Cover Instance: ground set U, set family S, costs c. ground set $U := \{s_1, \ldots, s_n\}$

A string σ_{ijk} has prefix s_i and suffix s_j where s_i and s_j overlap on k characters.

 s_i : cabab s_j : ababc cabab ababc



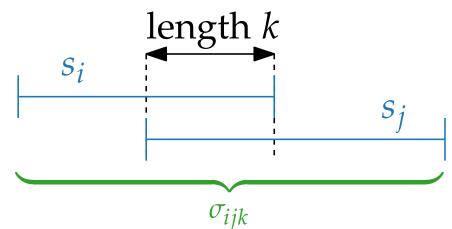
Set Cover Instance: ground set U, set family S, costs c.

ground set $U := \{s_1, \ldots, s_n\}$

A string σ_{ijk} has prefix s_i and suffix s_j where s_i and s_j

overlap on k characters.

```
s_i: cabab s_j: ababc cabab ababc
```



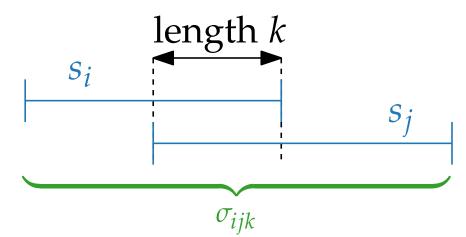
Set Cover Instance: ground set U, set family S, costs c.

```
ground set U := \{s_1, \ldots, s_n\}
```

A string σ_{ijk} has prefix s_i and suffix s_j where s_i and s_j

overlap on k characters.

```
s_i: cabab s_j: ababc cabab ababc \sigma_{ij2}: cabababc
```



Set Cover Instance: ground set U, set family S, costs c.

ground set $U := \{s_1, \ldots, s_n\}$

A string σ_{ijk} has prefix s_i and suffix s_j where s_i and s_j

overlap on k characters.

```
s_i: cabab s_j: ababc cabab ababc ababc ababc \sigma_{ij2}: cabababc
```

 σ_{ijk}

 S_i

length *k*

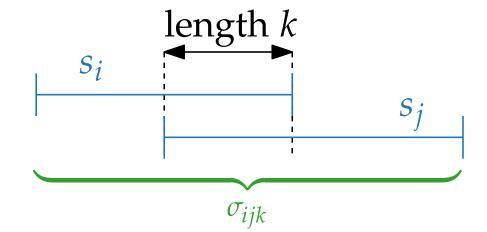
SetCover Instance: ground set U, set family S, costs c.

ground set $U := \{s_1, \ldots, s_n\}$

A string σ_{ijk} has prefix s_i and suffix s_j where s_i and s_j

overlap on k characters.

```
s_i: cabab s_j: ababc cabab ababc ababc \sigma_{ij2}: cabababc \sigma_{ij4}: cababc
```



SetCover Instance: ground set U, set family S, costs c.

ground set $U := \{s_1, \ldots, s_n\}$

A string σ_{ijk} has prefix s_i and suffix s_j where s_i and s_j

overlap on k characters.

 $s_i: {\sf cabab} \quad s_j: {\sf ababc} \quad s_i$ length k so ababc cabab cababc $\sigma_{ij2}: {\sf cabababc} \quad \sigma_{ij4}: {\sf cababc} \quad \sigma_{ij4}: {\sf cababc} \quad \sigma_{ijk}$

 $S(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\}$ contains the elements of the ground set covered by σ_{ijk} .

SetCover Instance: ground set U, set family S, costs c.

ground set $U := \{s_1, \ldots, s_n\}$

A string σ_{ijk} has prefix s_i and suffix s_j where s_i and s_j

overlap on k characters.

 s_i : cabab s_j : ababc cabab ababc σ_{ij2} : cabababc σ_{ij4} : cababc σ_{ij4} : cababc

 $S(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\}$ contains the elements of the ground set covered by σ_{ijk} .

 $c\left(S(\sigma_{ijk})\right) = |\sigma_{ijk}|$ (number of characters in σ_{ijk})

SSS as a SetCover Problem

SetCover Instance: ground set U, set family S, costs c.

ground set $U := \{s_1, \ldots, s_n\}$

A string σ_{ijk} has prefix s_i and suffix s_j where s_i and s_j

overlap on k characters.

 s_i : cabab s_j : ababc cabab ababc σ_{ij2} : cabababc σ_{ij4} : cababc σ_{ij4} : cababc

 $S(\sigma_{ijk}) = \{s \in U \mid s \text{ substring of } \sigma_{ijk}\}$ contains the elements of the ground set covered by σ_{ijk} .

$$c\left(S(\sigma_{ijk})\right) = |\sigma_{ijk}|$$
 (number of characters in σ_{ijk})
 $S = \{S(\sigma_{ijk}) \mid k > 0\}$ (possibly $i = j$)

Approximation Algorithms

Lecture 2:

SetCover and ShortestSuperString

Part V:

Solving ShortestSuperString via SetCover

Philipp Kindermann

Summer Semester 2020

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U and OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then:

 $OPT_{SSS} \leq OPT_{SC}$

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U and OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then:

$$OPT_{SSS} \leq OPT_{SC}$$

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of U.

Lemma. Let $\overrightarrow{OPT}_{SSS}$ be the length of a shortest superstring of U and $\overrightarrow{OPT}_{SC}$ be the minimum cost of the corresponding SetCover instance. Then:

$$OPT_{SSS} \leq OPT_{SC}$$

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of U.

 $s := \pi_1 \circ \cdots \circ \pi_k$ is a superstring of U of length

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U and OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then:

$$OPT_{SSS} \leq OPT_{SC}$$

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of U.

 $s := \pi_1 \circ \cdots \circ \pi_k$ is a superstring of U of length $\sum_{i=1}^k |\pi_i| = \sum_{i=1}^k c(S(\pi_i)) = \text{OPT}_{SC}$.

Lemma. Let OPT_{SSS} be the length of a shortest superstring of U and OPT_{SC} be the minimum cost of the corresponding SetCover instance. Then:

$$OPT_{SSS} \leq OPT_{SC}$$

Proof.

Consider an optimal set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ of U.

 $s := \pi_1 \circ \cdots \circ \pi_k$ is a superstring of U of length $\sum_{i=1}^k |\pi_i| = \sum_{i=1}^k c(S(\pi_i)) = \text{OPT}_{SC}$.

Thus, $OPT_{SSS} \leq |s| = OPT_{SC}$.

Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof. Consider optimal superstring *s*.

Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof. Consider optimal superstring *s*.

Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

Construct set cover with cost $\leq 2|s| = 2 \cdot OPT_{SSS}$.

S

Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

Construct set cover with cost $\leq 2|s| = 2 \cdot \text{OPT}_{SSS}$.

 s_{b_1}

leftmost occurence of a string $s_{b_1} \in U$.

Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring *s*.

Construct set cover with cost $\leq 2|s| = 2 \cdot OPT_{SSS}$.

 s_{b_1}

 \blacksquare leftmost occurrence of another string in U.

Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

Construct set cover with cost $\leq 2|s| = 2 \cdot \text{OPT}_{SSS}$.

 s_{b_1}

leftmost occurence of *another* string in *U*.

Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

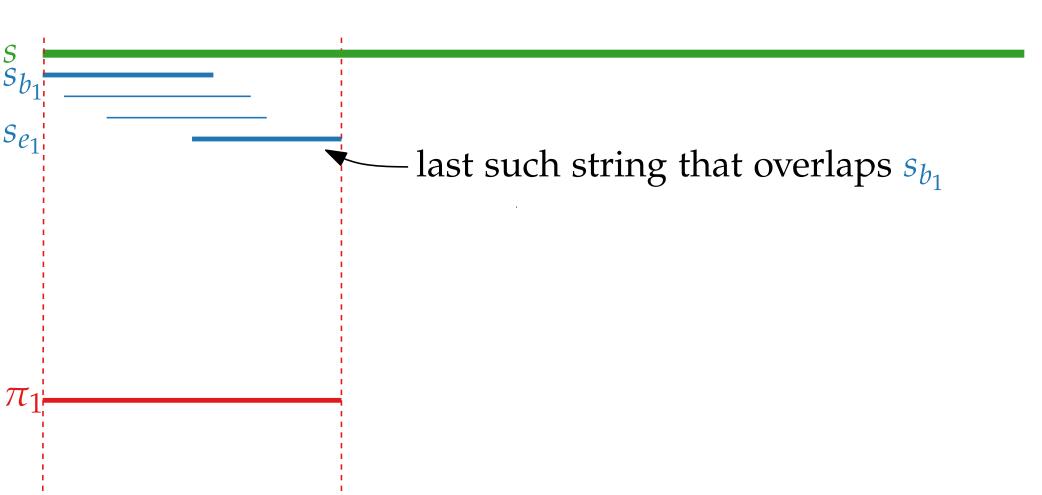
Consider optimal superstring s.

Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring *s*.

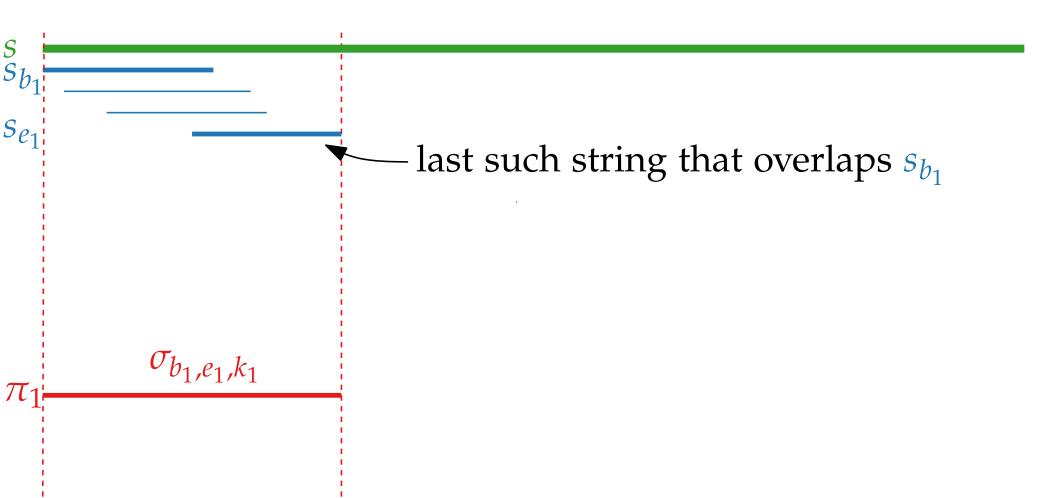


Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

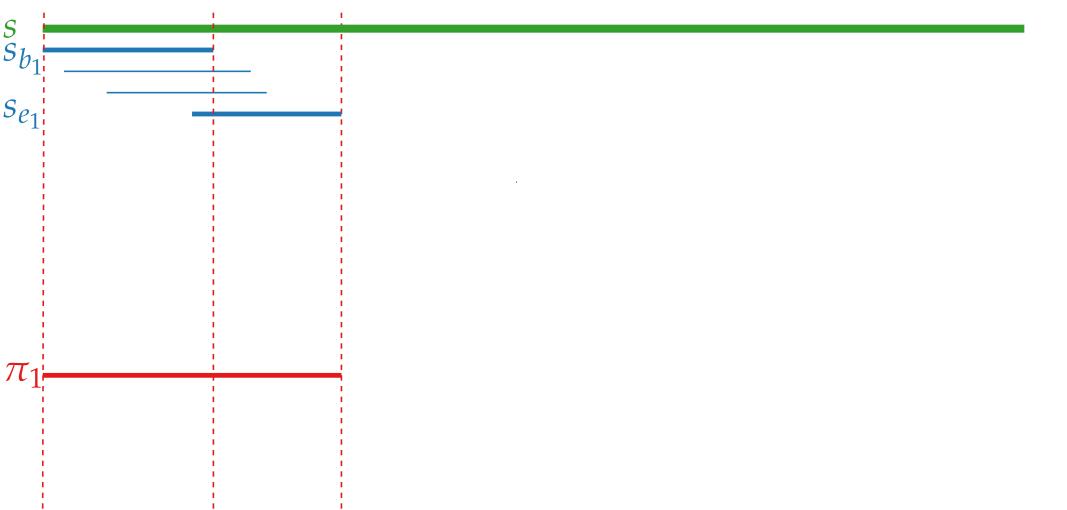


Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

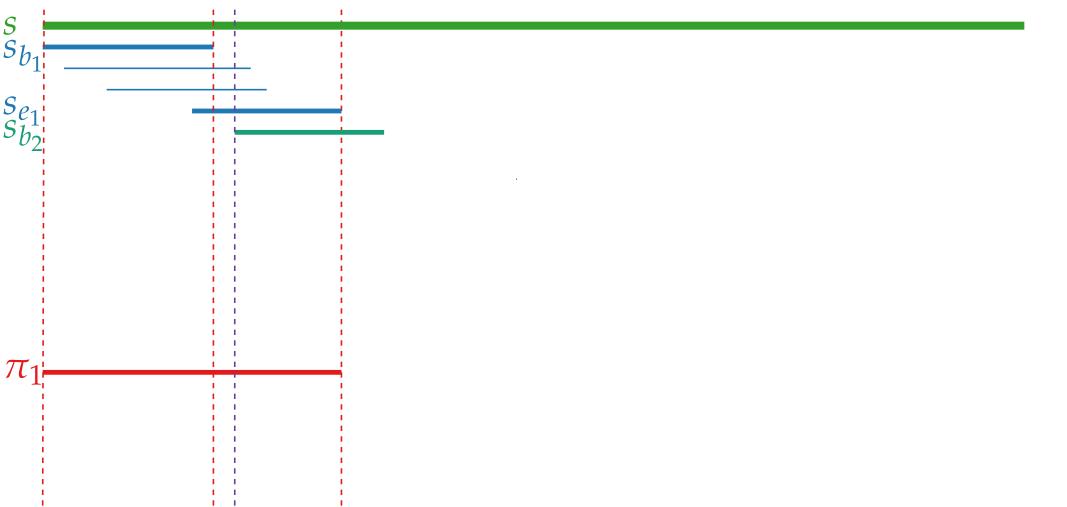


Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

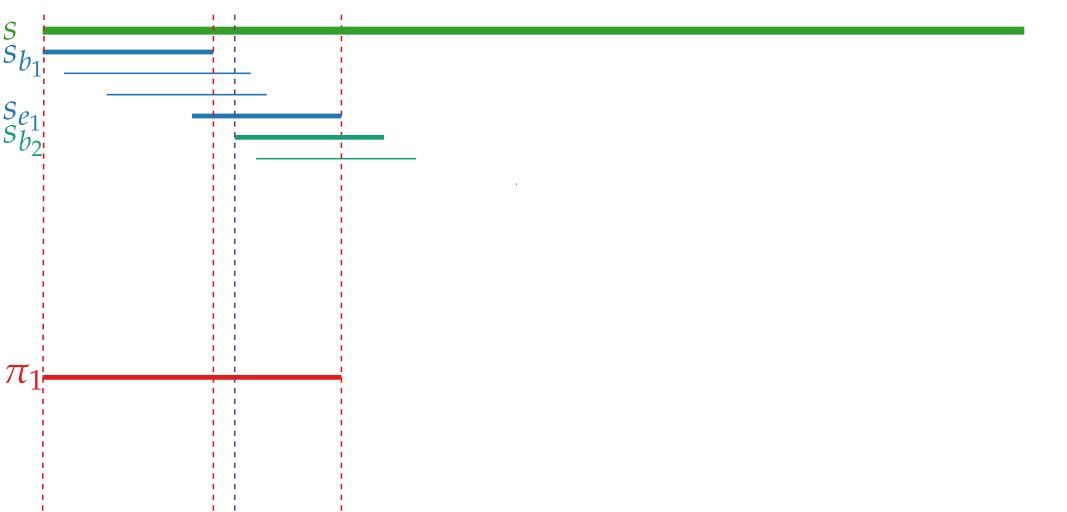


Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

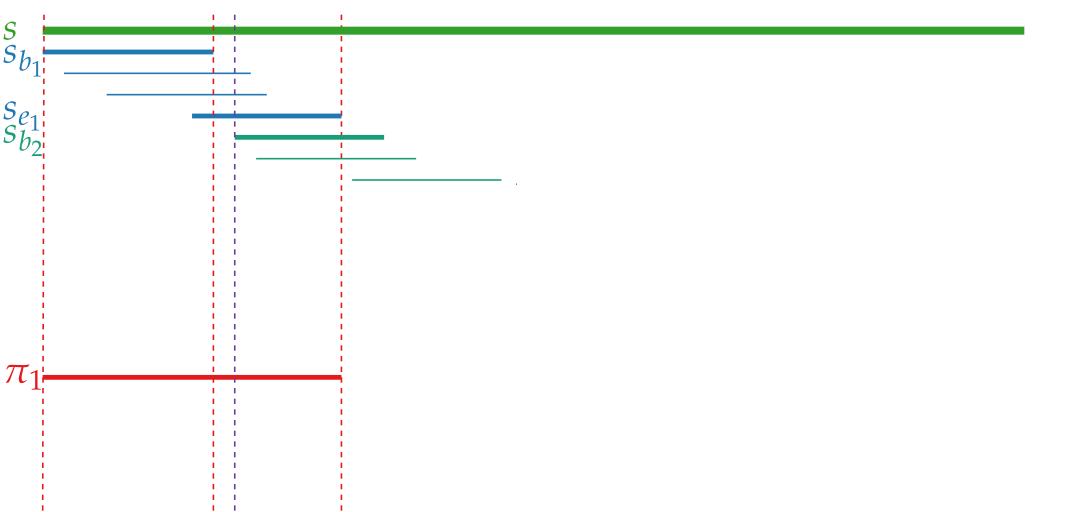


Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

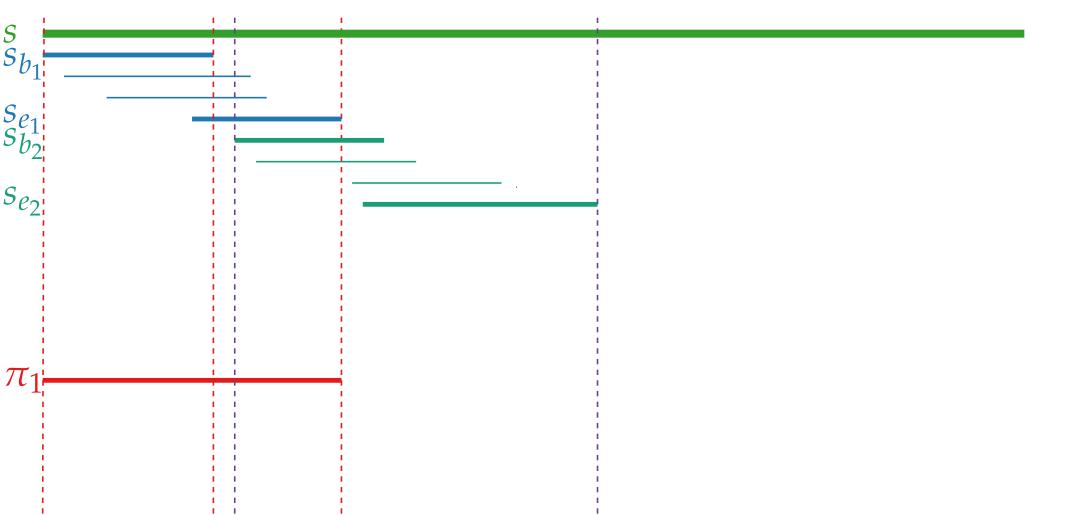


Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

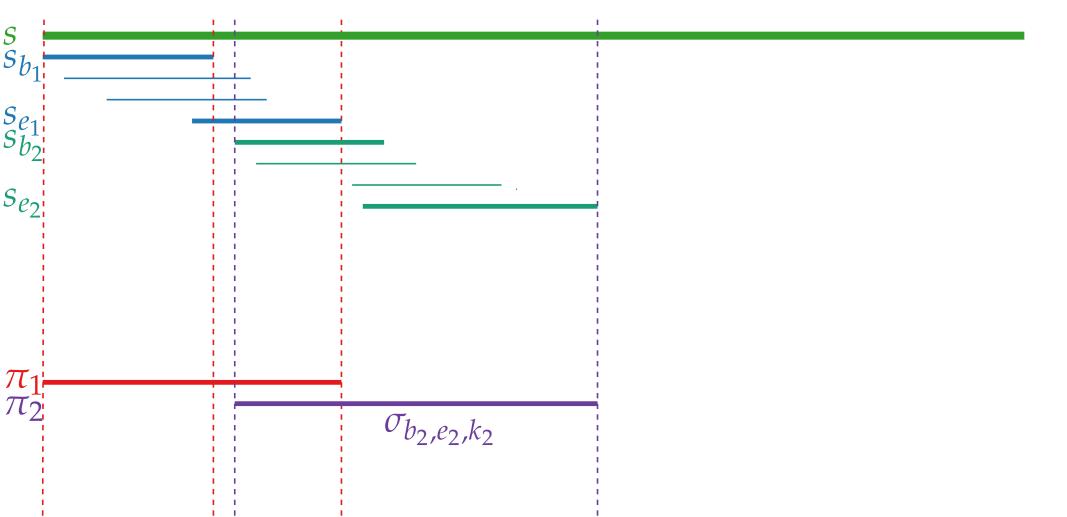


Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

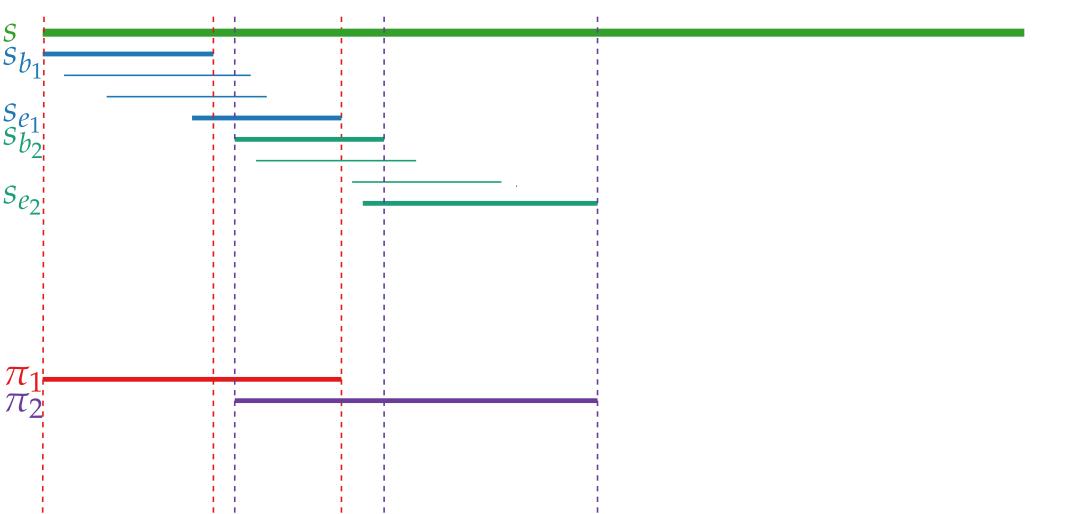


Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

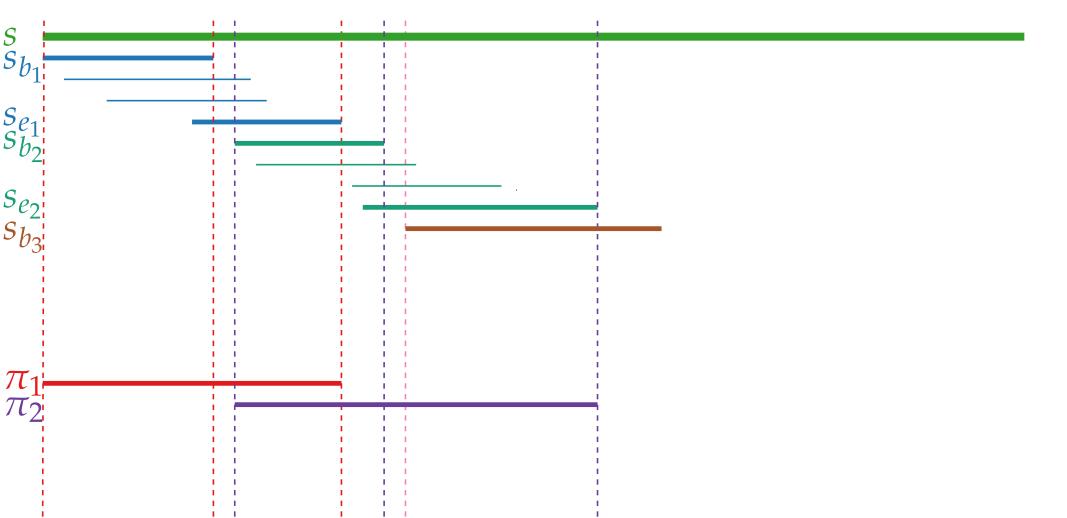


Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

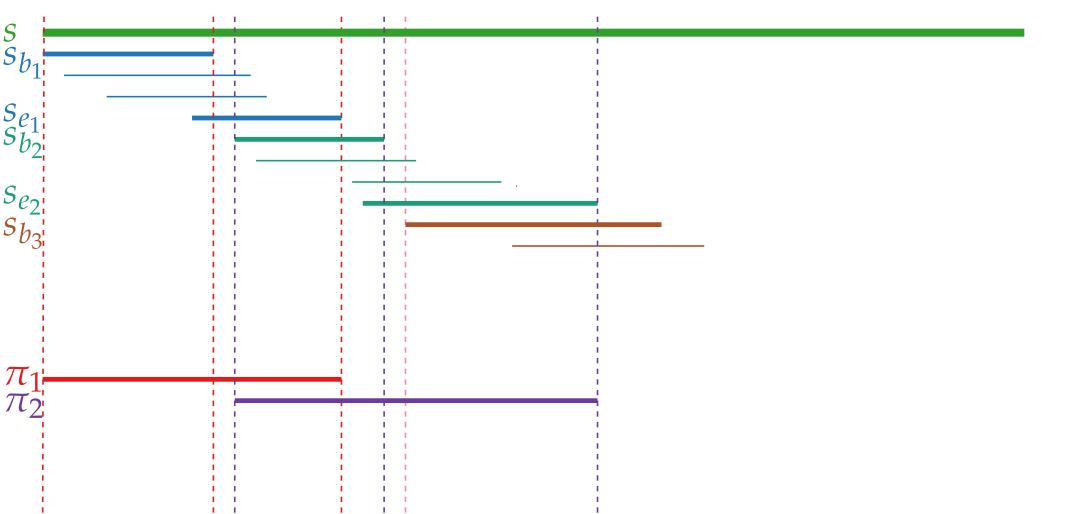


Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

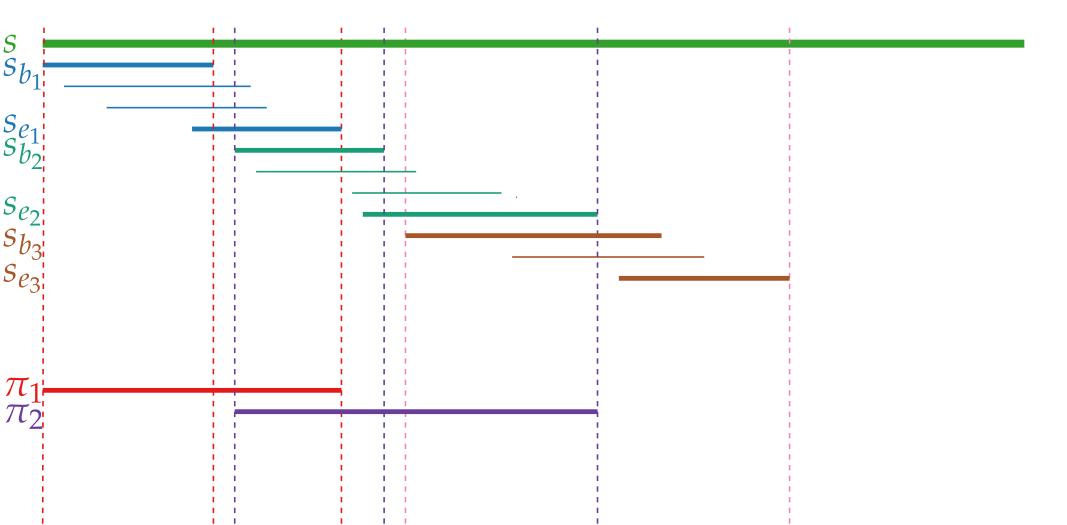


Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

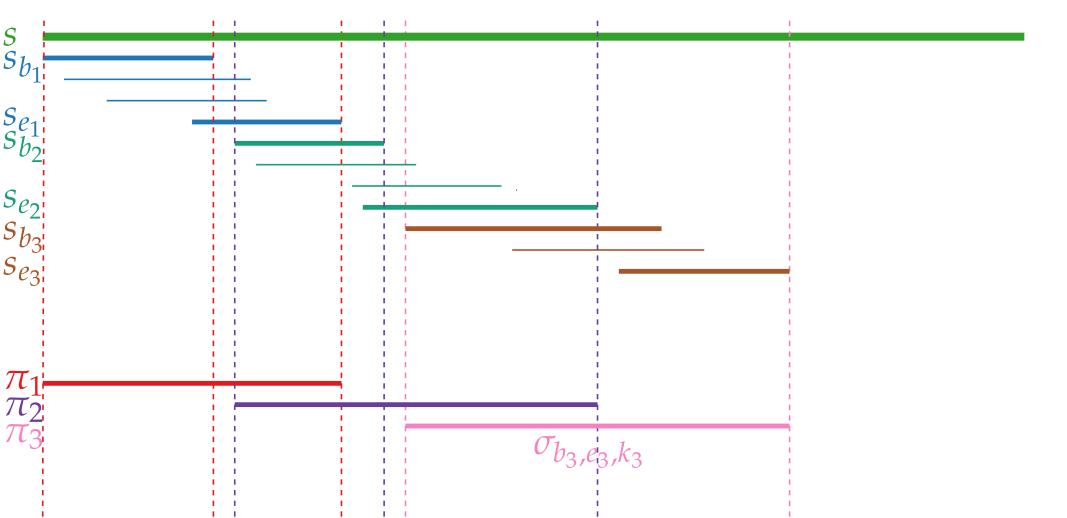


Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.



Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

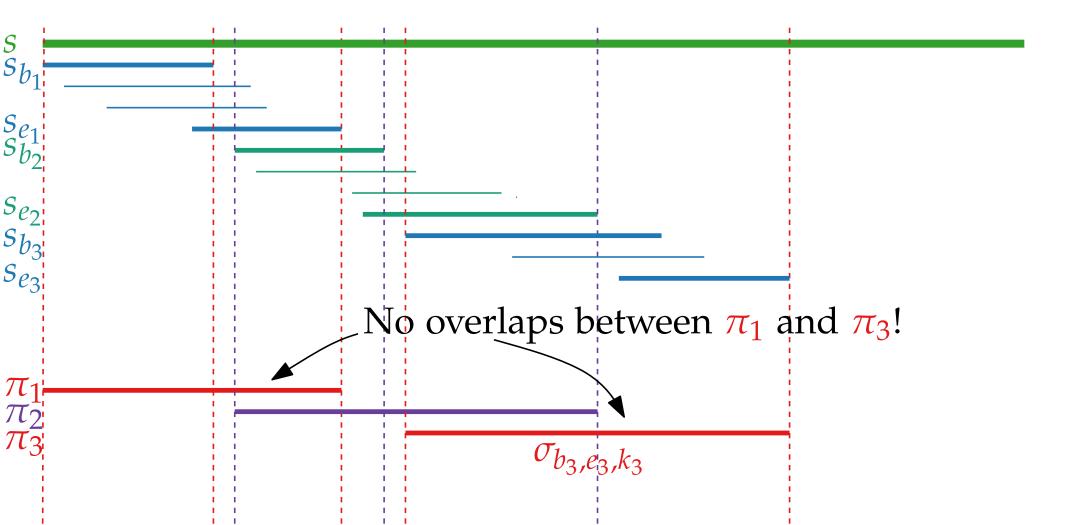


Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.

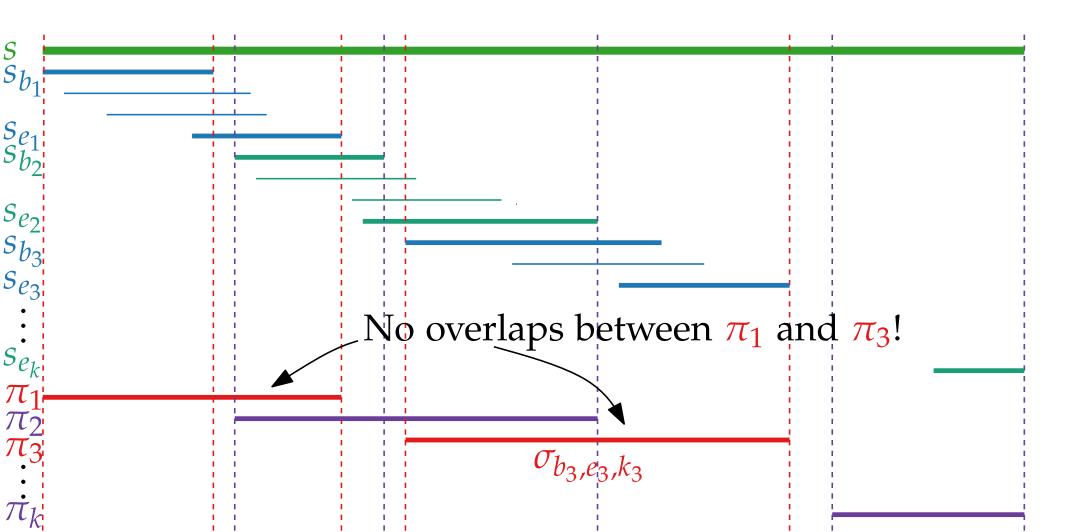


Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Consider optimal superstring s.



Lemma.

 $OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Each string $s_i \in U$ is a substring of some π_i .

Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is a solution for the SetCover instance with cost $\sum_i |\pi_i|$.

Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is a solution for the SetCover instance with cost $\sum_i |\pi_i|$.

Substrings π_i , π_{i+2} do not overlap.

Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is a solution for the SetCover instance with cost $\sum_i |\pi_i|$.

Substrings π_i , π_{i+2} do not overlap.

Each character lies in at most **two** (subsequent) substrings π_j und π_{j+1} .

Lemma.

$OPT_{SC} \leq 2 \cdot OPT_{SSS}$

Proof.

Each string $s_i \in U$ is a substring of some π_j .

 $\{S(\pi_1), \ldots, S(\pi_k)\}$ is a solution for the SetCover instance with cost $\sum_i |\pi_i|$.

Substrings π_i , π_{i+2} do not overlap.

Each character lies in at most **two** (subsequent) substrings π_j und π_{j+1} .

$$\sum_{i} |\pi_{i}| \leq 2|s| = 2 \cdot \text{OPT}_{SSS}$$

1. Construct SetCover instance U, S, c.

- 1. Construct SetCover instance U, S, c.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with algorithm GreedySetCover.

- 1. Construct SetCover instance U, S, c.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

- 1. Construct SetCover instance U, S, c.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

Theorem. This algorithms is a factor- $2\mathcal{H}_n$ -approximation algorithm for SHORTESTSUPERSTRING.

- 1. Construct SetCover instance U, S, c.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

```
Theorem. This algorithms is a factor-2\mathcal{H}_n-approximation algorithm for SHORTESTSUPERSTRING.
```

better?

- 1. Construct SetCover instance U, S, c.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

Theorem. This algorithms is a factor- $2\mathcal{H}_n$ -approximation algorithm for SHORTESTSUPERSTRING.

better?

The best-known approximation factor for ShortestSuperString is $\frac{71}{30} \approx 2.367$.

- 1. Construct SetCover instance U, S, c.
- 2. Compute a set cover $\{S(\pi_1), \ldots, S(\pi_k)\}$ with algorithm GreedySetCover.
- 3. Return $\pi_1 \circ \cdots \circ \pi_k$ as the superstring.

Theorem. This algorithms is a factor- $2\mathcal{H}_n$ -approximation algorithm for SHORTESTSUPERSTRING.

better?

The best-known approximation factor for ShortestSuperString is $\frac{71}{30} \approx 2.367$.

ShortestSuperString cannot be approximation within factor $\frac{333}{332} \approx 1.003$ (unless P=NP).