
ACM SIGSPATIAL GIS ’09
Seattle, November 4-6, 2009

Claus Brenner
Institut für Kartographie

und Geoinformatik
Universität Hannover

Vehicle Localization
by Matching Triangulated Point Patterns

Jan-Henrik Haunert
Institut für Informatik
Universität Würzburg



Introduction

Point pattern matching
∙ given two point sets
∙ find corresponding points based on geometric configuration



Introduction

Point pattern matching
∙ given two point sets
∙ find corresponding points based on geometric configuration



Introduction

∙ fingerprint verification

Applications of point pattern matching



Applications of point pattern matching

∙ orientation of star cameras

image source: NASA

Introduction



Applications of point pattern matching

?

Introduction

∙ here: vehicle positioning



Applications of point pattern matching

?

Introduction

∙ here: vehicle positioning

– GPS is not always/everywhere available
– positioning a vehicle with only one system (GPS) is risky if

it drives autonomously



Applications of point pattern matching

?

Introduction

∙ here: vehicle positioning

∙ points may represent any kind of landmarks
∙ here: poles (e.g., of traffic signs) observed with

a vehicle-mounted laser scanner



Applications of point pattern matching

?

Introduction

∙ here: vehicle positioning

∙ points may represent any kind of landmarks
∙ here: poles (e.g., of traffic signs) observed with

a vehicle-mounted laser scanner



?

Introduction

Applications of point pattern matching

∙ here: vehicle positioning

∙ points may represent any kind of landmarks
∙ here: poles (e.g., of traffic signs) observed with

a vehicle-mounted laser scanner



?

Introduction

Applications of point pattern matching

∙ here: vehicle positioning

∙ points may represent any kind of landmarks
∙ here: poles (e.g., of traffic signs) observed with

a vehicle-mounted laser scanner



?

Introduction

Applications of point pattern matching

∙ here: vehicle positioning

∙ points may represent any kind of landmarks
∙ here: poles (e.g., of traffic signs) observed with

a vehicle-mounted laser scanner



?

Introduction

Applications of point pattern matching

∙ here: vehicle positioning



?

Introduction

Applications of point pattern matching

∙ here: vehicle positioning

∙ coordinates may be erroneous
∙ global rigid transformation does not exist



?

Introduction

Applications of point pattern matching

∙ here: vehicle positioning

∙ coordinates may be erroneous
∙ global rigid transformation does not exist



?

Introduction

Applications of point pattern matching

∙ here: vehicle positioning

∙ coordinates may be erroneous
∙ global rigid transformation does not exist



?

Introduction

Applications of point pattern matching

∙ here: vehicle positioning

∙ coordinates may be erroneous
∙ global rigid transformation does not exist



?

Introduction

Applications of point pattern matching

∙ here: vehicle positioning

∙ coordinates may be erroneous
∙ global rigid transformation does not exist



?

Introduction

Applications of point pattern matching

∙ here: vehicle positioning

∙ coordinates may be erroneous
∙ global rigid transformation does not exist



Introduction
Our approach:
∙ triangulate observed points
∙ graph matching: match triangles with triangles in a reference

database based on geometric similarity and neighbourhood
relations



Introduction
Our approach:
∙ triangulate observed points
∙ graph matching: match triangles with triangles in a reference

database based on geometric similarity and neighbourhood
relations

∙ idea to avoid NP-hard graph matching problem
(e.g., subgraph isomorphism problem): only use a triangle strip



Outline

∙ Triangulation Algorithm
∙Matching Problem
∙Matching Algorithm
∙Experimental Results
∙Conclusion/Outlook



Triangulation Algorithm

Input:
∙ point sequence (p1, p2, . . . , pm)

Output:
∙ triangle sequence (t1, t2, . . . , tm−2)

p12 p11

p10

p9

p8

p7

p6p5

p4
p1

p2
p3



Triangulation Algorithm

p1

p2
p3

– Define first triangle as (p1, p2, p3)

– For i = 4 to m append triangle strip by a triangle including pi
and one of the two edges that were added last.



Triangulation Algorithm

p4
p1

p2
p3

– Define first triangle as (p1, p2, p3)

– For i = 4 to m append triangle strip by a triangle including pi
and one of the two edges that were added last.



Triangulation Algorithm

p4
p1

p2
p3

– Define first triangle as (p1, p2, p3)

– For i = 4 to m append triangle strip by a triangle including pi
and one of the two edges that were added last.



Triangulation Algorithm

p4
p1

p2
p3

– Define first triangle as (p1, p2, p3)

– For i = 4 to m append triangle strip by a triangle including pi
and one of the two edges that were added last.

If exactly one candidate triangle overlaps the last triangle then
select the other candidate triangle



Triangulation Algorithm

p4
p1

p2
p3

If exactly one candidate triangle overlaps the last triangle then
select the other candidate triangle

– Define first triangle as (p1, p2, p3)

– For i = 4 to m append triangle strip by a triangle including pi
and one of the two edges that were added last.



Triangulation Algorithm

p5

p4
p1

p2
p3

If exactly one candidate triangle overlaps the last triangle then
select the other candidate triangle

– Define first triangle as (p1, p2, p3)

– For i = 4 to m append triangle strip by a triangle including pi
and one of the two edges that were added last.



Triangulation Algorithm

p5

p4
p1

p2
p3

If exactly one candidate triangle overlaps the last triangle then
select the other candidate triangle

– Define first triangle as (p1, p2, p3)

– For i = 4 to m append triangle strip by a triangle including pi
and one of the two edges that were added last.



Triangulation Algorithm

p6p5

p4
p1

p2
p3

If exactly one candidate triangle overlaps the last triangle then
select the other candidate triangle

else
maximize the minimum angle

– Define first triangle as (p1, p2, p3)

– For i = 4 to m append triangle strip by a triangle including pi
and one of the two edges that were added last.



Triangulation Algorithm

p6p5

p4
p1

p2
p3

If exactly one candidate triangle overlaps the last triangle then
select the other candidate triangle

else
maximize the minimum angle

– Define first triangle as (p1, p2, p3)

– For i = 4 to m append triangle strip by a triangle including pi
and one of the two edges that were added last.



Triangulation Algorithm

p7

p6p5

p4
p1

p2
p3

If exactly one candidate triangle overlaps the last triangle then
select the other candidate triangle

else
maximize the minimum angle

– Define first triangle as (p1, p2, p3)

– For i = 4 to m append triangle strip by a triangle including pi
and one of the two edges that were added last.



Triangulation Algorithm

p8

p7

p6p5

p4
p1

p2
p3

If exactly one candidate triangle overlaps the last triangle then
select the other candidate triangle

else
maximize the minimum angle

– Define first triangle as (p1, p2, p3)

– For i = 4 to m append triangle strip by a triangle including pi
and one of the two edges that were added last.



Triangulation Algorithm

p9

p8

p7

p6p5

p4
p1

p2
p3

If exactly one candidate triangle overlaps the last triangle then
select the other candidate triangle

else
maximize the minimum angle

– Define first triangle as (p1, p2, p3)

– For i = 4 to m append triangle strip by a triangle including pi
and one of the two edges that were added last.



Triangulation Algorithm

p10

p9

p8

p7

p6p5

p4
p1

p2
p3

If exactly one candidate triangle overlaps the last triangle then
select the other candidate triangle

else
maximize the minimum angle



Triangulation Algorithm

p11

p10

p9

p8

p7

p6p5

p4
p1

p2
p3

If exactly one candidate triangle overlaps the last triangle then
select the other candidate triangle

else
maximize the minimum angle



Triangulation Algorithm
p12 p11

p10

p9

p8

p7

p6p5

p4
p1

p2
p3

If exactly one candidate triangle overlaps the last triangle then
select the other candidate triangle

else
maximize the minimum angle



Matching Problem

p5

p4
p1

p2
p3

observed triangles T

reference triangles T ′



Matching Problem

p5

p4
p1

p2
p3

observed triangles T

reference triangles T ′ = all possible triangles of three reference points



Matching Problem

p5

p4
p1

p2
p3 Find a set of triangle matches � ∈ T ×T ′.

observed triangles T

reference triangles T ′



Matching Problem

p5

p4
p1

p2
p3

candidate matches

Find a set of triangle matches � ∈ T ×T ′.

For each match (t, t′) ∈ � the triangles t
and t′ must be sufficiently similar.∣∣longest side of t− longest side of t′

∣∣ ≤ "∣∣2nd longest side of t− 2nd longest side of t′
∣∣ ≤ "∣∣3rd longest side of t− 3rd longest side of t′
∣∣ ≤ "

Constraint 1:

observed triangles T

reference triangles T ′



Matching Problem

p5

p4
p1

p2
p3 Find a set of triangle matches � ∈ T ×T ′.

For each match (t, t′) ∈ � the triangles t
and t′ must be sufficiently similar.∣∣longest side of t− longest side of t′

∣∣ ≤ "∣∣2nd longest side of t− 2nd longest side of t′
∣∣ ≤ "∣∣3rd longest side of t− 3rd longest side of t′
∣∣ ≤ "

observed triangles T

reference triangles T ′

candidate matches

Constraint 1:



Matching Problem

p5

p4
p1

p2
p3

For each match (t, t′) ∈ � the triangles t
and t′ must be sufficiently similar.∣∣longest side of t− longest side of t′

∣∣ ≤ "∣∣2nd longest side of t− 2nd longest side of t′
∣∣ ≤ "∣∣3rd longest side of t− 3rd longest side of t′
∣∣ ≤ "

Find a set of triangle matches � ∈ T ×T ′.
observed triangles T

reference triangles T ′

candidate matches

Constraint 1:



Matching Problem

p5

p4
p1

p2
p3

A triangle t ∈ T must not be matched to
more than one reference triangle.

Find a set of triangle matches � ∈ T ×T ′.
observed triangles T

reference triangles T ′

Constraint 2:



Matching Problem

p5

p4
p1

p2
p3

observed triangles T

reference triangles T ′

For each two matches (a, a′) ∈ � and
(b, b′) ∈ � the triangles a′ and b′ must
share an edge if a and b share an edge.

Find a set of triangle matches � ∈ T ×T ′.

Constraint 3:



Matching Problem
observed triangles T

triangles in T that are matched
ti1 ti2 ti3 ti4

Some triangles in T cannot be matched, therefore:

∙maximize ∣�∣ (= number of matches)
∙ among solutions maximizing ∣�∣ maximize quality of matches
∙ additional constraints to ensure that solutions for different

components “fit together”



tij and tij+1
must not be matched to the same reference triangle.

Constraint 4:

Constraint 5:
If tij and tij+1

do not share an edge then
the matched reference triangles must not share an edge.

Matching Problem

Constraint 6:
If tij and tij+1

do not share an edge then
the distances between tij and tij+1

must be sufficiently similar to
the distances between the matched reference triangles.



Matching Algorithm

∙ build an index (a three-dimensional kd-tree) that references
each triangle in T ′ by its side lengths

Offline:

Online:
∙ triangulate observed point set→ T

∙ search path of maximum weight in Gmatch→ �

∙ set up directed acyclic graph Gmatch based on T and T ′



Matching Algorithm

∙ build an index (a three-dimensional kd-tree) that references
each triangle in T ′ by its side lengths

Offline:

Online:

∙ set up directed acyclic graph Gmatch based on T and T ′

∙ triangulate observed point set→ T

∙ search path of maximum weight in Gmatch→ �



Set up directed acyclic graph Gmatch(Vmatch, Amatch):
∙ Vmatch contains a node for each candidate match
∙ Vmatch can be found by applying range queries to kd-tree

(one query for each triangle in T )

Matching Algorithm



Set up directed acyclic graph Gmatch(Vmatch, Amatch):
∙ Vmatch contains a node for each candidate match
∙ Vmatch can be found by applying range queries to kd-tree

(one query for each triangle in T )

Matching Algorithm



Set up directed acyclic graph Gmatch(Vmatch, Amatch):
∙ Vmatch contains a node for each candidate match
∙ Vmatch can be found by applying range queries to kd-tree

(one query for each triangle in T )

Matching Algorithm



Set up directed acyclic graph Gmatch(Vmatch, Amatch):
∙ Vmatch contains a node for each candidate match
∙ Vmatch can be found by applying range queries to kd-tree

(one query for each triangle in T )

Matching Algorithm



Set up directed acyclic graph Gmatch(Vmatch, Amatch):
∙ Vmatch contains a node for each candidate match
∙ Vmatch can be found by applying range queries to kd-tree

(one query for each triangle in T )

Matching Algorithm



Set up directed acyclic graph Gmatch(Vmatch, Amatch):
∙ Vmatch contains a node for each candidate match
∙ Vmatch can be found by applying range queries to kd-tree

(one query for each triangle in T )
∙Amatch contains an arc for each pair of candidate matches

that satisfies constraints 1–6

Matching Algorithm



Set up directed acyclic graph Gmatch(Vmatch, Amatch):
∙ Vmatch contains a node for each candidate match
∙ Vmatch can be found by applying range queries to kd-tree

(one query for each triangle in T )

Search path of maximum weight in Gmatch:
∙ solution by dynamic programming in O(∣Vmatch∣ + ∣Amatch∣) time

∙Amatch contains an arc for each pair of candidate matches
that satisfies constraints 1–6

Matching Algorithm



Experimental Results

Streetmapper system:
∙ 4 laser scanners
∙GPS
∙ odometer
∙ IMU
∙ used to create reference

point set



Experimental Results

Reference dataset:
∙ 22 km track in Hannover,

Germany
∙ 2658 reference points
∙ 643247 reference triangles



Experimental Results

Test samples matched with reference set:
∙ 88 sub-tracks of the whole track
∙ noise added

�s = 5 cm per m

�d = 0.2 m

�� = 0.5∘

�� = 0.1∘ per m



Experimental Results

" 0.25 m 0.50 m 0.75 m 1.00 m

Experiments with different error tolerances:

All experiments run on Windows PC with 64 bits, 8 GB RAM, 2.93 GHz CPU



Experimental Results

" 0.25 m 0.50 m 0.75 m 1.00 m
unmatched triangles 91.5% 55.6% 12.7% 3.5%
correctly matched triangles 7.8% 44.1% 86.9% 96.0%
incorrectly matched triangles 0.7% 0.3% 0.4% 0.5%

Experiments with different error tolerances:

All experiments run on Windows PC with 64 bits, 8 GB RAM, 2.93 GHz CPU



Experimental Results

" 0.25 m 0.50 m 0.75 m 1.00 m
unmatched triangles 91.5% 55.6% 12.7% 3.5%
correctly matched triangles 7.8% 44.1% 86.9% 96.0%
incorrectly matched triangles 0.7% 0.3% 0.4% 0.5%
avg. # cand. matches / triangle 1.5 9.2 26.7 58.1

Experiments with different error tolerances:

All experiments run on Windows PC with 64 bits, 8 GB RAM, 2.93 GHz CPU



Experimental Results

" 0.25 m 0.50 m 0.75 m 1.00 m
unmatched triangles 91.5% 55.6% 12.7% 3.5%
correctly matched triangles 7.8% 44.1% 86.9% 96.0%
incorrectly matched triangles 0.7% 0.3% 0.4% 0.5%
avg. # cand. matches / triangle 1.5 9.2 26.7 58.1
avg. solution time 0.04s 0.41s 2.75s 11.88s

Experiments with different error tolerances:

All experiments run on Windows PC with 64 bits, 8 GB RAM, 2.93 GHz CPU



Experimental Results

" 0.25 m 0.50 m 0.75 m 1.00 m
unmatched triangles 91.5% 55.6% 12.7% 3.5%
correctly matched triangles 7.8% 44.1% 86.9% 96.0%
incorrectly matched triangles 0.7% 0.3% 0.4% 0.5%
avg. # cand. matches / triangle 1.5 9.2 26.7 58.1
avg. solution time 0.04s 0.41s 2.75s 11.88s
instances where majority of
matches is correct

77.1% 96.4% 97.6% 96.4%

Experiments with different error tolerances:

All experiments run on Windows PC with 64 bits, 8 GB RAM, 2.93 GHz CPU



Experimental Results

" 0.25 m 0.50 m 0.75 m 1.00 m
unmatched triangles 91.5% 55.6% 12.7% 3.5%
correctly matched triangles 7.8% 44.1% 86.9% 96.0%
incorrectly matched triangles 0.7% 0.3% 0.4% 0.5%
avg. # cand. matches / triangle 1.5 9.2 26.7 58.1
avg. solution time 0.04s 0.41s 2.75s 11.88s
instances where majority of
matches is correct

77.1% 96.4% 97.6% 96.4%

very high success rate in reasonable time

Experiments with different error tolerances:

All experiments run on Windows PC with 64 bits, 8 GB RAM, 2.93 GHz CPU



Conclusion

∙ new deterministic and efficient method for point pattern
matching
∙ robust against different errors, e.g., trajectory deformation
∙ geometric configurations of observed landmarks are unique,

i.e., they allow us to unambiguously determine our location



Outlook

∙ tests with low-cost sensors
∙ consider more objects than poles, i.e., other point features,

planes, road markings



Thank You!

Outlook


