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∙ here: vehicle positioning

– GPS is not always/everywhere available
– positioning a vehicle with only one system (GPS) is risky if

it drives autonomously
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Introduction
Our approach:
∙ triangulate observed points
∙ graph matching: match triangles with triangles in a reference

database based on geometric similarity and neighbourhood
relations

∙ idea to avoid NP-hard graph matching problem
(e.g., subgraph isomorphism problem): only use a triangle strip
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Triangulation Algorithm

Input:
∙ point sequence (p1, p2, . . . , pm)

Output:
∙ triangle sequence (t1, t2, . . . , tm−2)

p12 p11
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p8
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p6p5

p4
p1

p2
p3
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– Define first triangle as (p1, p2, p3)

– For i = 4 to m append triangle strip by a triangle including pi
and one of the two edges that were added last.
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A triangle t ∈ T must not be matched to
more than one reference triangle.

Find a set of triangle matches � ∈ T ×T ′.
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Matching Problem

p5

p4
p1

p2
p3

observed triangles T

reference triangles T ′

For each two matches (a, a′) ∈ � and
(b, b′) ∈ � the triangles a′ and b′ must
share an edge if a and b share an edge.

Find a set of triangle matches � ∈ T ×T ′.

Constraint 3:



Matching Problem
observed triangles T

triangles in T that are matched
ti1 ti2 ti3 ti4

Some triangles in T cannot be matched, therefore:

∙maximize ∣�∣ (= number of matches)
∙ among solutions maximizing ∣�∣ maximize quality of matches
∙ additional constraints to ensure that solutions for different

components “fit together”



tij and tij+1
must not be matched to the same reference triangle.

Constraint 4:

Constraint 5:
If tij and tij+1

do not share an edge then
the matched reference triangles must not share an edge.

Matching Problem

Constraint 6:
If tij and tij+1

do not share an edge then
the distances between tij and tij+1

must be sufficiently similar to
the distances between the matched reference triangles.
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Set up directed acyclic graph Gmatch(Vmatch, Amatch):
∙ Vmatch contains a node for each candidate match
∙ Vmatch can be found by applying range queries to kd-tree

(one query for each triangle in T )

Search path of maximum weight in Gmatch:
∙ solution by dynamic programming in O(∣Vmatch∣ + ∣Amatch∣) time

∙Amatch contains an arc for each pair of candidate matches
that satisfies constraints 1–6

Matching Algorithm



Experimental Results

Streetmapper system:
∙ 4 laser scanners
∙GPS
∙ odometer
∙ IMU
∙ used to create reference

point set



Experimental Results

Reference dataset:
∙ 22 km track in Hannover,

Germany
∙ 2658 reference points
∙ 643247 reference triangles



Experimental Results

Test samples matched with reference set:
∙ 88 sub-tracks of the whole track
∙ noise added

�s = 5 cm per m

�d = 0.2 m

�� = 0.5∘

�� = 0.1∘ per m
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" 0.25 m 0.50 m 0.75 m 1.00 m
unmatched triangles 91.5% 55.6% 12.7% 3.5%
correctly matched triangles 7.8% 44.1% 86.9% 96.0%
incorrectly matched triangles 0.7% 0.3% 0.4% 0.5%
avg. # cand. matches / triangle 1.5 9.2 26.7 58.1
avg. solution time 0.04s 0.41s 2.75s 11.88s
instances where majority of
matches is correct

77.1% 96.4% 97.6% 96.4%

very high success rate in reasonable time

Experiments with different error tolerances:

All experiments run on Windows PC with 64 bits, 8 GB RAM, 2.93 GHz CPU



Conclusion

∙ new deterministic and efficient method for point pattern
matching
∙ robust against different errors, e.g., trajectory deformation
∙ geometric configurations of observed landmarks are unique,

i.e., they allow us to unambiguously determine our location



Outlook

∙ tests with low-cost sensors
∙ consider more objects than poles, i.e., other point features,

planes, road markings



Thank You!

Outlook


