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The goal of the research described in this paper is to derive parameters necessary for the 

automatic generalization of land-cover maps. A digital land-cover map is often given as a 

partition of the plane into areas of different classes. Generalizing such maps is usually 

done by aggregating small areas into larger regions. This can be modeled using cost 

functions in an optimization process, where a major objective is to minimize the class 

changes. Thus, an important input parameter for the aggregation is the information about 

possible aggregation partners of individual object classes. This can be coded in terms of a 

transition matrix listing costs that are charged for changing a unit area from one class 

into another one. 

In our case we consider the problem of determining the transition matrix based on two 

datasets of different scales. We propose three options to solve the problem: 1) the 

conventional way where an expert defines manually the transition matrix, 2) to derive the 

transition matrix from an analysis of an overlay of both datasets, and 3) an automatic 

way where the optimization is iterated while adapting the transition matrix until the 

difference of the intersection areas between both datasets before and after the 

generalization is minimized. As underlying aggregation procedure we use an approach 

based on global combinatorial optimization. 

We tested our approach for two German topographic datasets of different origin, which 

are given in the same areal extent and were acquired at scales 1:1,000 and 1:25,000, 

respectively. The evaluation of our results allows us to conclude that our method is 

promising for the derivation of transition matrices from map samples. In the discussion 

we describe the advantages and disadvantages and show options for future work. 
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1. Introduction  and related work 

A fundamental research topic in cartography is the derivation of maps in different 

scales using generalization processes. The vision in generalization is to provide a base 

scale in highest resolution and automatically derive the smaller scale maps from it. 

Even if automatic generalization has shown some considerable success in recent 

years, this vision has not yet been reached (Mackaness et al.  2007). Methods for the 

automation of individual generalization operations have been proposed, e.g. line 

simplification (Douglas & Peucker 1973), building simplification (Staufenbiel 1973), 

road network typification (Richardson & Thomson 1999), and displacement (Harrie 

1999) ï however, what is still lacking are approaches for the complex interplay of 

different operations when applied to different spatial situations.  

The main difficulties rise from the fact that the preconditions for applying an 

operation depend on the object and its context. Defining context and constraints for 

given generalization tasks has been investigated in a recent project of the EuroSDR 

(Foerster & Stoter 2008). In order to satisfy multiple, possibly competing constraints, 



the use of optimization approaches is promising (Harrie & Weibel 2007). Among 

them, the principle of software agents has been proposed (Lamy et al. 1999), as well 

as mathematical optimization (Sester 2005) and heuristics (Ware & Jones 1998).  

The classical method for area aggregation was presented by van Oosterom 

(1995) ï the so-called GAP-tree. In a region-growing approach, areas that are too 

small to be represented and visualized in the target scale are merged with 

neighbouring areas. The selection of the neighbours depends on different criteria, 

mainly geometric and semantic constraints, e.g. length of common boundary. 

Recently, Haunert (2008) introduced a global optimization approach for the problem 

of area aggregation in order to overcome fundamental restrictions that a mere local 

aggregation has. He used mathematical programming in order to be able to define 

both soft and hard constraints for the underlying problem. Instead of determining the 

optimal solution with mixed-integer programming also heuristics like simulated 

annealing can be applied, which have the advantage of computational efficiency.  

A basic problem in aggregation is to define the compatibility or similarity of 

object classes. Different authors have proposed methods to derive such measures from 

given data models ((Rodriguez & Egenhofer 2004), (Yaolin et al. 2002)). Schwering 

(2008) reviews different approaches for defining semantic similarity measures. For 

the definition of semantic similarity between object classes ontology-based (Kavouras 

et al. 2005) and instance-based approaches are proposed ((Duckham & Worboys 

2005), (Kieler et al. 2007)).  

In our case the differences between the datasets result both from different 

underlying ontologies and from different (but related) scales. Thus, especially part-of 

relationships are relevant for the different conceptualizations of the data in the 

datasets. 

Thus, in the context of aggregation the issue of similarity has to be discussed 

thoroughly: on the one hand, an object should be merged with its most similar 

neighbour in order to assure that the general spatial situation does not change too 

drastically. However, in the course of aggregation some objects may completely 

disappear, without being able to identify a semantically similar neighbour. Consider 

e.g. a building in a forest, which will be merged with the forest area in smaller scales 

ï although their object classes are semantically very different. Thus, merging also 

reflects the preservation and enhancement of dominant and important features in a 

local environment. Therefore, in the remainder of the paper we will no longer use the 

notion of similarity matrices, but scale-transition matrices instead.  

The hypothesis of our paper is based on these observations: Using existing 

datasets of different scale but similar thematic contents and a given optimal 

aggregation scheme can reveal the scale-transition relationships between different 

datasets. The resulting relationships can be used for the generalization of other high 

resolution datasets later on. 

The paper is structured as follows. First the aggregation scheme based on 

global optimization is presented (Section 2). Then we describe the datasets that are 

used in this study, and the necessary preprocessing steps (Section 3). Then we present 

our strategies for the determination of the transition matrices in Section 4. The 

presentation and evaluation of the results obtained in our experimental tests is given 

in Section 5. Section 6 summarizes the achievement and gives an outlook on future 

work. 



2. Aggregation procedure based on global optimization 

We now sketch our method for area aggregation; for a more detailed presentation we 

refer to Haunert (2008). 

Aggregation means to replace a set of input objects by a smaller set of output 

objects such that there exists a many-to-one mapping between the elements of both 

sets. In our case both the input objects and the output objects are areas, each 

belonging to a single land-cover class. Both the input dataset and the output dataset 

are planar partitions, that is, there are no gaps and no overlapping areas. The output 

areas must satisfy hard size constraints defined for the target scale, more precisely, 

they must not be smaller than a certain size. 

In order to ensure that all output areas are large enough, we usually need to 

accept class changes, for example, a small forest area may need to be aggregated with 

its surrounding farmland areas, resulting in a large farmland area. Obviously, the 

amount of such class changes should be kept small, that is, large areas should keep 

their classes. 

There are a few area aggregation methods that ensure size constraints, for 

example, the method of van Oosterom (1995) iteratively merges pairs of areas until all 

areas are large enough. In each step of this process the least important area is merged 

with its most compatible neighbour; both the importance and the compatibility can be 

defined based on different criteria, for example, the sizes and the classes of the areas. 

Though the method of van Oosterom (1995) yields areas of sufficient size we 

observed a severe drawback: even if we apply class-based compatibility measures, the 

classes change a lot. Always selecting the most compatible neighbour is greedy and 

may yield bad output maps. Due to this reason we developed a new aggregation 

method by combinatorial optimization that minimizes class changes while ensuring 

output areas of sufficient size (Haunert 2008). Additionally, our method allows the 

compactness of areas to be maximized, which is necessary to obtain geometrically 

simple shapes. We tested different combinatorial optimization methods including an 

exact approach (mixed-integer programming) and heuristics (for example, simulated 

annealing), see Haunert (2007) for a comparison. In contrast to our exact approach, 

our heuristic approaches offered near-optimal solutions in modest time. Therefore, we 

applied the simulated annealing method in the experiments presented in this paper. 

We now discuss the objective function that we applied in our optimization 

approach. In order to quantify class changes, we introduce a class distance  

with  being the set of all object classes. With this distance we 

express the global cost for class changes as 

 

 

 

with being the set of all areas in the input dataset, their size,  

their class before aggregation, and their class after aggregation. 

The class distance  reflects the scale-transition relationship between object classes, 

which in some cases also reflects the semantic similarity, i.e. changing an area from 

farmland to a similar class such as grassland is cheap but changing the same area to 

settlement is expensive. Defining appropriate class distances, however, is a difficult 

process. Existing approaches (e.g. Yaolin et al. 2002) rely on class hierarchies and 

attributes, which may not be defined in the given data model. Therefore, we approach 



the problem of deriving class distances by analyzing given map samples, see 

Section 4. 

In addition to class distances we consider the compactness of shapes. We 

define the cost for the non-compactness of an output region by 

 

. 

 

We denote the total cost for non-compact regions, that is, the sum of over all 

output regions, as . Note that, with this cost function, there is no bias towards 

larger or smaller output regions: For a single square of unit size we would charge the 

cost . If we cover the same space by four squares of size ¼, 

each square would contribute a cost of , thus again the total cost would be 

. The size of the shapes in the solution does not affect . 

To express a trade-off between both objectives we define the cost 

 

, 

 

with  being a weight factor. 

In contrast to our exact optimization approach by mixed-integer 

programming, our simulated annealing does not guarantee results that strictly satisfy 

the size constraints. It is possible, however, to penalize regions that are too small and 

thereby to generate solutions in which most output areas have the required size. We 

do this by adding a term in the cost function. Let  be the required size in the target 

scale. For a region of size with a penalty equal to is charged. We 

denote the sum of all such penalties as . The cost function becomes 

 

 , 

 

with  being a weight factor.  

The simulated-annealing method requires additional parameters which are 

usually determined through experiments: the initial temperature , the final 

temperature , and the number of iterations . 

The requirements for the application of this algorithm are twofold: firstly, the 

object classes of input and target scale have to be the same. Secondly, the data has to 

be given in terms of an area partition. 

3. Presentation and preprocessing of the test data 

3.1 Test datasets 

For our investigations we used two topographic datasets from different origins and 

with different resolutions (see Figure 1). Our test area has an extent of approximately 

3 km x 2 km and is located in Goslar, a city in Lower Saxony in Germany. On the one 

hand we used the German digital cadastral information system ALK (Automated 

Cadastre Map) with a scale of 1:1,000 and on the other hand the official German 

topographic database ATKIS with a scale of 1:25,000. Both datasets are 

independently captured, maintained, and updated. Each dataset contains area, line, 

and point objects. Besides the geometric description, each object is also described 

semantically using the object classes and attributes described in the respective object 



catalogues. The classifications in the two object catalogues are similar ï since both 

datasets describe topographic objects, yet they are different. 

As the data does not satisfy the requirements of our aggregation approach we 

preprocessed the data according to our needs. These individual processing steps are 

presented in the following section. 

3.2 Preprocessing steps of the input data 

The preprocessing was divided into two parts. The first part considers the semantic 

level. The given object classes of both involved datasets differ in the detail level, due 

to the different scales: ALK contains 95 classes, whereas ATKIS contains 22 classes. 

As the datasets are provided and acquired by different organizations, also different 

object catalogues are used. As discussed above, for our aggregation algorithm the 

object classes in both datasets have to be identical. Hence we had to define new object 

classes from the existing classes of both datasets and came up with 16 common object 

classes (see Table 1). 

The second part of preprocessing is carried out on the geometrical level. Since 

our approach is restricted to area objects, the data has to be preprocessed in order to 

form a planar partition. That means that overlapping areas and gaps in between have 

to be eliminated. The next preprocessing steps were only accomplished to the large-

scale ALK dataset. In order to reduce the number of the involved objects, all adjacent 

objects of the same object class were merged. This lead to larger connected regions. 

Some object classes in the large-scale dataset do not exist anymore in the 

small-scale dataset. Often object classes remain but a change of the geometry type is 

possible, e.g. a change from an area to a line or even to a point. In the large-scale 

dataset, narrow and elongated objects like roads, paths and rivers are represented as 

areas, whereas they are represented as lines in the small-scale dataset. In order to 

make the datasets more compatible, we eliminated all narrow objects by applying a 

collapse operator (see Figure 2) (Haunert & Sester 2008). This operator comprises 

two steps. In the first step all objects of the aforementioned object classes were 

merged and a skeleton was constructed from the resulting area. This operation leads to 

a decomposition into multiple fragments on both sides of the centreline. Subsequently 

each fragment can be merged with the adjacent polygon. After the collapse, a line 

simplification process follows. With this step smoother polygon boundaries are 

obtained. We applied the line simplification algorithm to all ALK objects (see Figure 

2). With these preprocessing steps the number of ALK objects decreased from 8,172 

to 3,797 objects. 
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Figure 1. (a) The original datasets ALK (1:1,000) and (b) ATKIS (1:25,000). 



Table 1. Definition of new common object classes from individual original object 

classes: in the table, the number of objects and the total size in the corresponding 

object classes are listed. 

 
 

 

 
(a)                 (b)           (c) 

Figure 2: Enlarged parts of: (a) The original ALK dataset including narrow polygons, 

like roads (light grey), paths (dark red) and rivers (blue). (b) Triangulation-based 

skeleton for the narrow polygons. (c) Resulting map after collapse operator and line 

simplification. 

 

  



 
Figure 3: Preprocessed ALK data, after collapsed narrow polygons and simplified 

polygon borders. 

4. Determination of transition matrices  

The transition matrix between the involved object classes is an important control 

parameter for the aggregation process. It defines the class distance  and thereby the 

cost for class change . In this section we present three options to derive this 

matrix. The underlying assumptions and objectives of these options are different, and 

thus will also lead to different results, described in section 5. 

 

1) Typically an expert sets up a transition matrix  manually based on his/her 

experience with the generation of a generalized dataset. In this case the 

major goal is to preserve similar object classes and thus enhance the 

underlying structure of the large-scale dataset. To this end, the expert first 

has to decide which object classes are similar, and therefore are assigned 

low cost values in the transition matrix, and which ones are important and 

have to be preserved and thus are assigned high costs. The higher the costs, 

the more expensive the class change will be. After defining suitable costs 

for specific class changes, the generalized dataset will be produced. Based 

on the resulting outcomes, modifications in the cost functions can be made 

and an iteration of the process started. 

A positive aspect of this method is that the method will end up with a 

satisfying map, as the expert is in the loop to optionally modify the cost 

functions to change the result. On the negative side, however, the process is 

time consuming as ultimately for each generalization task an expert is 

needed who is familiar with the specifications and meaning of the involved 

data. As this is not affordable when it comes to the processing of increasing 

numbers of datasets (e.g. integrated via Web-services) we propose two 

other options for automatically deriving transition matrices.  

 

2) Sometimes we have, in addition to the dataset that we want to generalize, 

also a dataset in the target scale (e.g. consider the topographic map series of 



National Mapping Agencies). In this case the scale transition matrix can be 

learned from the two datasets. The first idea is to reveal the relationships 

between the object classes using a geometric overlay of the datasets (this 

idea will be refined in case 3). To this end we calculate the intersection 

areas between the objects of both datasets. We summarize the results in the 

intersection matrix , where each of its cells  contains the total area 

of changes from class  to . Then we convert these values into 

percentages , where  and  is the 

total area size of all objects of object class . Subsequently, we set up the 

transition matrix  in order to get a low cost value for a high intersection 

rate and vice versa, with .  

This way of determining class correspondences to reflect the class 

transitions has both advantages and disadvantages. On the positive side is 

the simple and straightforward computation of the cost values for the 

transition matrix. On the negative side, it is not guaranteed that the result 

does completely reflect the underlying class correspondences. If, for 

example, the target dataset does not reflect the dominant object classes of 

the source dataset, we may lose these object classes. Furthermore, the 

intersection matrix describes the global percentages of the class transitions 

over the whole dataset ï it may, however, lead to the fact that the object 

classes with higher likelihood are dominating the other possible transitions, 

leading to a different distribution in the resulting object classes.  

 

3) In order to avoid the disadvantage of the second approach, we propose to 

imitate the iterative learning process of an expert. Therefore we use the 

derived relationships between the given datasets from the second approach 

as reference and then iteratively adapt the result of the aggregation to the 

real situation ï both with respect to the number and area size of the 

resulting object classes, and their relative distribution. If the total area size 

of the aggregated solution concerning the individual object classes is higher 

than in the target dataset, the likelihood of transition has to be reduced. This 

is done in an adaptive way. We start the aggregation process with an initial 

transition matrix . Then we improve the transition matrix during the 

following iterative process, until the defined stop criterion is fulfilled: 

 

a. Calculation of the intersection matrix according to approach (2). 

b. Aggregation using simulated annealing with transition matrix ; as a 

result we obtain a new intersection matrix ;  iteration step. 

c. Calculation of the difference matrix . 

d. Set  to the maximal value of  at value of . We assume 

that the algorithm produces a too high class change , thus we can 

improve it by increasing the cost for this class change. 

e. Increase the cost for this class change by a constant factor . As a 

result we obtain a new transition matrix , with . 

f. If  is greater than a certain threshold, repeat the procedure from 

step (b) with the modified transition matrix  As result we obtain a 

new intersection matrix . 




