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The goal of the research described in this paper is to derive parameters necessary for the
automatic generalization &dnd-covermaps.A digital land-cover mags oftengiven asa

partition of the plane into areas of different class€eneralizing such maps usually

done by aggregatinsmall areas into larger regioriBhis can be modeled using cost
functions in an optimization process, where a major objective is to minimize the class
changesThus, an important input parameter for the aggregation is the information about
possible aggregation partners of individual object classes. This can be coded in terms of a
transition matrix listingcosts that are charged for changing a unit area from osse cla

into another one.

In our case weonsider the problem afeterminingthe transition matricbased ontwo
datasets of different scales. We propose three options to swveroblem 1) the
conventional way where an expert defimegnuallythe transition matrix, 200 derive the
transition matrix from an analysid an overlay of both datasetand 3) an automatic
way where the optimization is iterated while adapting tamsition matrix until the
difference of the intersection aredstwea both datasets before and after the
generalizatioris minimized As underlying aggregatioprocedure we use an approach
based on global combinatorial optimization.

We tested our approach for two German topographic datasets of different origin, which
are gven in the same areal extent and were acquired at scal@@.:4nd 1:2H00,
respectively. The evaluation of our results allows us to conclude that our method is
promising for the derivation of transition mats frommap sampleslin the discussion
we describe the advantages and disadvantages and show options for future work.

Keywords:Multi-scalerepresentatiorgeneralizationaggregationpptimization;
knowledgeacquisition

1. Introduction and related work

A fundamental research topic in cartographyhie derivation of maps in different
scales using generalization processes. The vision in generalization is to provide a base
scale in highest resolution and automatically derive the smaller scale maps from it.
Even if automatic generalization has shown some considerable success in recent
years, this visiormasnot yetbeenreachedMackanes®t al. 2007) Methods for the
automation of individual generalization opBons have been proposed, e.g. line
simplification (Douglas& Peucker 1973)building simplification(Staufenbiel 1973)

road network typification(Richardson& Thomson 1999)ard displacemen{Harrie

1999)1 however, what is still lacking are mmaches for the complex interplay of
different operations when applied to different spatial situations.

The main difficulties rise from the fact that the preconditions for applying an
operation depend on the object and its context. Defining context and constraints for
given generalization tasks has been investigated in a recent project of the EuroSDR
(Foerster& Stoter 2008)In order to satisfy multiplgpossibly competing constraints,



the use of optimization approaches is promisiHgrrie & Weibel 2007) Among
them, the principle of software agents has been proghsedy et al. 1999) as well
as mathematical optimizatiqester 2005and heumstics(Ware& Jones 1998)

The classicaimethodfor area aggregation was presentedvap Oosterom
(1995)71 the secalled GARtree. In a regiofgrowing approach, areas that are too
small to be represented and visualized in the target scale are merged with
neighbouring areas. The selection of the neighbours depends on different criteria,
mainly geometric and semantic constraints, e.g. length of commaondayy.
Recently,Haunert(2008) introduced a global optimization approach for the problem
of area aggregation in order to overcome fundamental restrictions that a mere local
aggregation has. He used mathematical programming in order to be able to define
both soft and hard constraints for the underlying problem. Instead of determining the
optimal ®lution with mixed-integer programming also heuristics like simulated
annealing can be applied, which have the advantage of computational efficiency.

A basic problem in aggregation is to define the compatibility or similarity of
object classes. Differematuthors have proposed methods to derive such measures from
given data modelqRodriguez& Egenhofer 2004)Yaolin et al. 2002). Schwering
(2008) reviews different approaches for defining semantic similarity measures. For
the definition of semantic similarity between object classes ontdlaggd Kavouras
et al. 2005) and instancévased approaches are propos@du¢kham & Worboys
2005) (Kieler et al. 2007)

In our case the differences between the datasets result both from different
underlying ontologiesnd from different (but related) scales. Thus, especially-phrt
relationships are relevant for the different concdpaaons of the data in the
datasets.

Thus, in the context of aggregation the issue of similarity has to be discussed
thoroughly: on the one hand, an object should be merged itgittnost similar
neighbour in order to assure that the general spatialtisitudoes not change too
drastically. However, in the course of aggregation some objects may completely
disappear, without being able to identify a semantically similar neighbour. Consider
e.g. a building in a forest, which will be merged with the foresa an smaller scales
T although their object classes are semantically very different. Thus, merging also
reflects the preservation and enhancement of dominant and important features in a
local environmentTherefore, in the remainder of the paper we wdlllonger use the
notion of similarity matrices, but scalensition matrices instead.

The hypothesis of our paper is based on these observations: Using existing
datasets of different scale but similar thematic contents and a given optimal
aggregation dwene can reveal thescaletransition relationships between different
datasets. The resulting relationships can be used for the generalization of other high
resolution datasets later on.

The paper is structured as follows. First the aggregaahemebasedon
global optimization is presented (Section Zhen we describe the datasets that are
used in this study, and the necessary preprocessing steps (Section 3). Then we present
our strateges for the determination of théransition matricesn Section 4. Th
presentation and evaluation of the results obtained in our experimental tests is given
in Section 5. Section 6 summarizes the achievement and gives an outlook on future
work.



2. Aggregation procedure based on global optimization

We now sketch our method farea aggregation; for a more detailed presentation we
refer to Haunert (2008).

Aggregation means to replace a set of input objects by a smaller set of output
objects such that there exists a mémpne mapping between the elements of both
sets. In our cse both the input objects and the output objects are areas, each
belonging to a single larcbver class. Both the input dataset and the output dataset
are planar partitions, that is, there are no gaps and no overlapping areas. The output
areas must satisfigard size constraints defined for the target scale, more precisely,
they must not be smaller than a certain size.

In order to ensure that all output areas are large enough, we usually need to
accept class changes, for example, a small forest area matorisedggregated with
its surrounding farmland areas, resulting in a large farmland area. Obviously, the
amount of such class changes should be kept small, that is, large areas should keep
their classes.

There are a few area aggregation methods that eerssze constraints, for
example, the method ganOosterom (1995) iteratively merges pairs of areas until all
areas are large enough. In each step of this proceksatemportant areas merged
with its most compatible neighbauboth the importancena the compatibility can be
defined based on different criteria, for example, the sizes and the classes of the areas.

Though the method of vabosterom (1995) yields areas of sufficient size we
observed a severe drawback: even if we apply-tlased compgdility measuresthe
classes change a lot. Always selecting the most compatible neighbour is greedy and
may yield bad output maps. Due to this reason we developed a new aggregation
method by combinatorial optimization that minimizes class changes wisleirg
output areas of sufficient size (Haunert 2008). Additionally, our method allows the
compactness of areas to be maximized, which is necessary to obtain geometrically
simple shapes. We tested different combinatorial optimization methods including an
exact approach (mixeititeger programming) and heuristics (for example, simulated
annealing), see Haunert (2007) for a comparison. In contrast to our exact approach,
our heuristic approaches offered negatimal solutions in modest time. Therefore, we
appied the simulated annealing method in the experiments presented in this paper.

We now discuss the objective functitimat we applied in our optimization
approach. In order to quantify class changes, we introaletass distanad I'> > R}
with T = {y4,v., ..., Yk} being the set of all object classes. With this distance we
express the global cost for class changes as

—_ !
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with V being the set of all areas in the input dataset) — R* their size,

y:V - T their class beforaggregation, angt’:V — I their class after aggregation.

The class distanceé reflects thescaletransition relationshifpetweenobject classes,
which in some cases also reflects the semantic similarityghanging an area from
farmland to a similaclass such as grassland is cheap but changing the same area to
settlement is expensive. Defining appropriate class distances, however, is a difficult
process Existing approachege.g. Yaolin et al. 2002yely on class hierarchies and
attributes, which magot be defined in the given data model. Therefore, we approach



the problem of deriving class distances by analyzing given map samples, see
Section4.

In addition to class distances we consider the compactness of shapes. We
define the cost for theon-compactness of an output region by

¢ = perimeter?.

We denote the total cost for naompact regions, that is, the suncafver all
outputregions, as,,ncomp- NOte that, with this cost function, there is no bias towards
larger or smaller output regions: For a single square of unit size we would charge the
COSt froncomp = € = 4* = 16. If we cover the same space by four squares of size ¥4,

each square would caiiiute a cost of = 22 = 4, thus again the total cost would be
froncomp = 4c = 16. The size of the shapes in the solution does not gffggt, -
To express a traegeff between both objectives we define the cost

f=5"feaass+ 1—5 'fnoncomp’

with s € 0,1 being a weight factor.

In contrast to our exact optimization approach by mixgeger
programming, our simulateghnealing does not guarantee results that stisetligfy
the size constraints. It is possible, however, to pemaéigions that are too small and
thereby to generate solutions in which most output areas have the required size. We
do this by adding a term in the cost function. Bdie the required size in the target
scale. For a region of siz¢ with W < 8 a penaly equal tof — W is charged. We
denote the sum of all such penaltiegas. The cost function becomes

flzr'fsize'l' 1—-7r -f,

with r € 0,1 being a weight factor.

The simulatedannealing method requires additional parameters which are
usually determined through experiments: the initial temperafyre the final
temperaturd, and the number of iteratiors

The requirements for the application of this algorithm are twofoktly, the
object classes of input and target scale have to be the same. Settundbta has to
be given in terms of an area partition

3. Presentation and preprocessing of the test data

3.1 Test datasets

For our investigations we used two topographitaskets from different origins and

with different resolutions (see Figure Durtest area has axtent of approximately

3 km x 2 km and is located in Goslar, a city in Lower SaxorigermanyOn the one

hand we used the German digital cadastral infaonasystem ALK (Automated
CadastreMap) with ascaleof 1:1,000 and on the other hand the official German
topographic database ATKIS with a&cale of 1:25000. Both datasets are
independently captured, maintainethd updated. Each dataset contains area, li

and point objects. Besides the geometric description, each object is also described
semantically using the object classes and attributes described in the respective object



catalogies. The classificatianin the twoobjectcataloguesare similari since both
datasets describe topographic objeptsthey aredifferent.

As the data does not satisfy the requirements of our aggregation approach we
preprocessed the data according to our neBuse individual processing steps are
presented in the following section.

3.2 Preprocessing steps of the input data

The preprocessing was divided into two parts. The first part considesemntic

level. The given object classes of both involved datalifits in the detail leveldue

to the different scalesALK contains 95 classes, whereas ATKIS contains 22 classes.
As the datasets are provided and acquired by different organizations, also different
object catalogues are usedls discussed above, for ouggregation algorithm the
object classes in both datasets have to be idertleatewe had todefinenew object
classegrom the existing classes of both datasetd came up with6 common object
classegseeTable J).

The second part of preprocessingasried out on the geometrical level. Since
our approach is restricted to area objects, the data has to be preprocessed in order to
form aplanarpartition. That means that overlapping areas and gaps in between have
to beeliminated The next preprocessinsteps were only accomplished to the large
scale ALK dataset. In order to reduce the number of the involved objects, all adjacent
objects of the same object class were merged. This lead to larger connected regions

Some object classes in the lagmale @tasetdo not exist anymore in the
smallscale dataset. Often object classes remain but a change of the geometry type is
possible, e.g. a change from an area to a line or even to a point. In theciage
dataset, narrow and elongated objects like ropaths and rivers are represented as
areas, whereas they are represented as lines in thessalalldatset. In order to
make the datets more compatible, we eliminated all narrow objects by applying a
collapse operator (see Figure (Baunert& Sester 2008)This operator comprises
two steps. In the first step all objects of the aforementioned object classes were
merged and a skeleton was condddrom the resulting area. This operation leads to
a decomposition into multiple fragments on both sides of the centreline. Subsequently
each fragment can be merged with the adjacent polygon. After the collapse, a line
simplification processfollows. With this step smoother polygon boundaries are
obtained. We applied the line simplification algorithm to all ALK objects (see Figure
2). With these preprocessing stepge number of ALK objects decreasiedm 8172
to 3797 objects.



(b)
Figure 1.(a) The originabatasetsALK (1:1,000)and (b) ATKIS(1:25,000)



Table 1.Definition of new common object classes from individaaiginal object
classesin the tablethe numberof objects andhe totalsizein the corresponding
objectclasses are listed

Object #ALK ALKsize #ATKIS  ATKIS size Textual description
classes [m?] [m?]
0900 2132 556,336 - - Residential buildings
1100 90 352,309 1 3,387 Public buildings and open space
1300 750 1,111,388 95 1,194,455 Residential area
1400 386 229,145 116 1,133,078 Commercial and service area
1700 32 92,936 3 77,002 Trade and industrial area
17 39,952 1 10,223 Recreation area
7 76,345 15 124,099  Sports area
129 584,185 34 275,646 Green space
2500 45 12,928 - - Supply and waste management
63 159,571 12 153,786  Square
6 91,942 5 87,833 Railway area
9 21,544 24 25,972  Unused area
30 677,811 61 1,089,066 Grassland
77 1,188,142 85 1,045,026 Forest
15 22,489 - - Historical site
8800 9 26,302 7 23,752 Lake

Figure 2:Enlargedparts of: (a) The original ALK dataset including narrow polygons,
like roads(light grey), paths (dark red) and rigefblue). (b) Triangulationbased
skeleton for thenarrow polygons. (c) Resulting map after collapse operator and line

simplification.
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Figure 3:Preprocsed ALK détaa,fter cc‘)'ilapsedwarrow polygons and simfiled
polygon borders

4. Determination of transition matrices

The transition matrixbetween the involved object classesanimportant control
parametefor the aggregation proceds defines the class distandeand thereby the
cost for class changg,,.s. In this sectionwe presenthree optionsto derivethis
matrix. The undelying assumptions and objectives of thegdionsare different, and
thus will alsolead to different results, described in section 5.

1) Typically an exrt sets up a transitianatrix T; manually based on Hrser
experiencewith the generation of a generalized datasetthis case the
major goalis to preserve similar ¢éct classes and thus enhance th
underlying structure of the largeale dataset. To this endetexpertffirst
hasto decide which object classes are simi&ard thereforeare assigned
low cost values in the transition matrexnd whichonesareimportantand
have to be preservexthdthusare assignetliigh coss. The higher the costs,
the more expensive the class chanvgé be. After defining suitablecosts
for specific class changes, the generalized dataset will be prodtessd
on the resulting outcomemodificationsin the cost functionsan be made
and an iteration of the process started

A positive aspect of this method is that the method will enditip a
satisfying mapas the expert is in the loop aptionally modify the cost
functionsto change the resuldn the negative side, however, the process is
time consuming as ultimatelyof each generalizatiotask an expert is
neededvho is familiar wth the specificatiomand meaning of the involved
data As thisis not affordablevhen it comes to the processingiéreasing
numbes of datasetge.g. integrated via Weservices)we proposetwo
otheroptionsfor automaticallyderiving transition matries.

2) Sometimesve have in addition to the dataset that we want to generalize
alsoa dataset in the target scéeg. consider the topographic map series of



3)

National Mapping Agencies)n this case the scale transition matrix can be
learned fromthe twodatasets. The first idea is to reveal the relationships
between the object classes usmgeometric overlapf the datasetgthis
idea will be refined in case 3.0 this endwe calculate the intersection
areas between the objects of both data¥essunmarizethe resultsn the
intersection matrix,, whereeach of its celld, (i, j) contairs the total area

of changesfrom class y; to y;. Then we convert these values into
percentages(, , where K, i,j = 1y(i,j)/area y; , and area y; is the
total areasizeof all objects ofobject clasy;. Subsequentlywe set up the
transitionmatrix T, in order to get a low cost value for a high intersection
rate and vice versavith T,(i,j) = 100 — K, (i, j).

This way of determinng class corespondencedo reflect the class
transitionshas both advantages and disadvanta@esthepositive side is
the simple and straightforwardcomputation of thecost values for the
transition matrix On the negative side, it is not guaranteed thatresult
does completely reflect the underlying class correspondencéfs for
example,the target datasetoesnot reflect the dominant object classes of
the source datasetye may losethese object classesurthemore, the
intersection matrix describeheglobal percentages of the class transitions
over the whole datasétit may, however, lead to the fact that the object
classes with higher likelihood are dominating the other possible transitions,
leading to a different distribution in the resultioigject classes.

In order to avoid the disadvantage of #exondapproachwe proposeto
imitate the iterativelearning process of an expemhereforewe use the
derived relationships between thwen datasets from the second approach
as referencand then iteratively adapt the result of the aggregatichdo
real situationi both with respect to the number and area size of the
resulting object classes, and their relative distributibthe total area size

of the aggregated solution concernihg tndividual object classés higher
than in the target dataset, the likelihood of transition has to be reduced. This
is done in an adaptive waye start the aggregation process withiritial
transition matrixT,. Then weimprove thetransition matrix during the
following iterative process, until the defined stop criterion is fulfilled:

a. Calculation of thentersectiormatrix I, according taapproach %).

b. Aggregationusingsimulatedannealingwith transitionmatrix T,; as a
result we obtain a neimtersectiommatrix I,,;; n = iteration step

c. Calculation of the difference matrix, = I,, — I,.

d. Sd max to the maximal value ob,, at value ofD,, i,j . We assume
that thealgorithm producesa too highclass changé - j, thus we can
improve it by increasing the cost for this class change

e. Increase the cost for this class change lgomstantfactor x. As a
result we obtain a new transitiomatrix T,,, with T,, = T,,_; + x.

f. If max is greater than a certain threshaldpeat the procedure from
step (b) with the modifiettansitionmatrix T,, As resul we obtain a
newintersectiormatrix I, , 4.






