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Abstract. In order to ease the propagation of updates between geographic datasets 

of different scales and to support multi-scale analyses, different datasets need to 

be matched, that is, objects that represent the same entity in the physical world 

need to be identified. We propose a method for matching datasets of river systems 

that were acquired at different scales. This task is related to the problem of match-

ing networks of lines, for example road networks. However, we also take into ac-

count that rivers may be represented by polygons. The geometric dimension of a 

river object may depend, for example, on the width of the river and the scale.  

Our method comprises three steps. First, in order to cope with geometries of 

different dimensions, we collapse river polygons to centerlines by applying a skel-

etonization algorithm. We show how to preserve the topology of the river system 

in this step, which is an important requirement for the subsequent matching steps. 

Secondly, we perform a pre-matching of the arcs and nodes of the line network 

generated in the first step, that is, we detect candidate matches and define their 

quality. Thirdly, we perform the final matching by selecting a consistent set of 

good candidate matches. 

We tested our method for two Chinese river datasets of the same areal extent, 

which were acquired at scales 1:50 000 and 1:250 000. The evaluation of our re-

sults allows us to conclude that our method seldom yields incorrect matches. The 

number of correct matches that are missed by our method is quite small. 

Keywords: data matching, network, multi-scale representation, generalization, 

skeletonization 
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1  Introduction 

In former times, the cartographer’s job was to map the unexplored land. 

Today, however, we are rather faced with an excess than with a lack of da-

ta: for most parts of the Earth, digital geographic databases have been ac-

quired multiple times, for multiple applications, and in multiple scales. 

This leads to two primary questions addressed by current cartographic re-

search. First, how can we minimize the effort for keeping the databases up-

to-date? Secondly, how can we combine the information given with differ-

ent databases? An important prerequisite for answering these questions is 

to develop methods for database integration (Devogele et al. 1998). Sub-

problems of database integration are schema matching and data matching. 

Schema matching deals with the identification of corresponding concepts 

in data models (Volz 2005). Data matching aims to find corresponding ob-

jects in different datasets. In our paper we deal with data matching and fo-

cus on the matching of river datasets.  

Data matching is useful for updating, since we can trigger an update 

from one object to a corresponding object in another dataset, once both da-

tasets have been matched; for this purpose correspondences found by 

matching are stored as links in a database (Harrie and Hellström 1999; 

Dunkars 2004). Furthermore, we can combine the attribute sets given for 

both objects into a single detailed set, which, for example, allows users to 

perform complex analysis tasks. In this paper we assume that the schemas 

of both datasets were matched prior to the data matching process, for ex-

ample, we can identify objects of river classes in both datasets and know 

that these classes represent similar concepts. Obviously, this knowledge is 

useful for data matching. Note, however, that data matching can also be 

applied to detect unknown correspondences between schemas (Kieler et al. 

2007) and, when dealing with different scales, unknown generalization 

rules (Sester et al. 1998). 

The identification of corresponding objects is often manually done or 

performed with semi-automatic procedures, which is expensive or even in-

feasible for large datasets. However, in recent years researchers have de-

veloped fully automatic methods for certain matching problems. Diez et al. 

(2008) consider the problem of matching road networks in datasets with 

different map projections; the transformation between the coordinate sys-

tems of both datasets is unknown. We, however, assume that the datasets 

are in the same coordinate system. The difficulty in our problem is not to 

find a global geometric map transformation but to deal with differences 

that are due to map generalization. Walter and Fritsch (1999) as well as 

Zhang and Meng (2007) developed methods for matching road datasets 
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that have similar scales but were captured for different thematic domains, 

that is, a topographic dataset and a dataset for car navigation. The problem 

becomes more involved if the difference in scale increases, since small-

scale datasets contain geometrically simplified shapes. Moreover, objects 

may be eliminated or aggregated through generalization (Timpf 1998). 

Therefore, matching algorithms that rely on comparisons of geometric fea-

tures may fail. In order to match datasets of different scales, additional cri-

teria need to be considered. Most existing methods for matching networks 

of lines exploit topological relations between map objects (Lüscher et al. 

2007; Mustière and Devogele 2008; Zhang and Meng 2007). These rela-

tions do not so much depend on the scale. For example, the geometry of 

lines representing roads may be simplified to a high degree, but the topol-

ogy of the road network is mainly preserved during generalization. Uiter-

mark et al. (1999) developed a method for matching road datasets of dif-

ferent scales, where all roads are represented by area objects; in order to 

derive a network of lines, a skeletonization method is applied. To con-

clude, the matching problem is most explored for objects of the same geo-

metric dimension, also considering different scales. However, there are 

still open problems, especially when of objects with different geometric 

dimensions are to be matched. For that reason we did not use a standard 

matching tool, like RoadMatcher (Vivid Solutions 2005). This open source 

software only handles line networks and only finds one to one matches.  

Generalization often reduces the geometric dimension of objects, for 

example, a river may be represented by a polygon in a large-scale map or 

by a line in a small-scale map (Haunert and Sester 2008). Furthermore, 

there may be river objects of different geometric dimensions in a single da-

taset, for example, wide rivers are represented by polygons and narrow 

rivers are represented by lines. In this paper we address the matching of 

river datasets of different scales, also allowing for different geometric di-

mensions. However, our approach is not restricted to rivers. Roads in da-

tasets of very large scale, for example, in cadastral maps, are represented 

by polygons. Our method may also be applied to match such a dataset with 

a topographic dataset of smaller scale, where roads are represented by 

lines. 

The matching method that we propose comprises three steps. First, river 

polygons are collapsed to centerlines by applying a skeletonization algo-

rithm. We show how to preserve the topology of the river system in this 

step, which is an important requirement for the subsequent matching steps. 

Secondly, a pre-matching of arcs and nodes is performed. In this step we 

detect candidate matches and define their quality. Thirdly, the final match-

ing is performed by selecting a consistent set of good candidate matches. 
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The paper is structured as follows. We briefly sketch the context of our 

work, that is, we present the data we are dealing with and how they are 

captured and used in applications (Section 2). Then we present our match-

ing method of three steps in Section 3, which is the main part of our paper. 

We evaluate and discuss the results of our experimental tests in Section 4 

and conclude the paper in Section 5. 

2  The Use Case: Chinese River Datasets  

The national mapping agency of China manages topographic databases of 

four different scales, namely 1:50 000, 1:250 000, 1:1 000 000, and 

1:4 000 000. Until now, these databases are collected and maintained inde-

pendently, but for the future it is aimed to apply automated generalization 

and matching methods in order to ease the updating process. The databases 

are used to derive analog maps but also to directly support offices in their 

planning activities and decision-making procedures. Each database con-

tains information on river systems; the geometric detail and the number of 

attributes reflect the particular scale. The lines representing rivers consti-

tute so-called digital line graphs (DLGs). We use this term for the datasets 

we are dealing with, but we explicitly include polygons representing riv-

ers. From now on, we refer to the river datasets of scales 1:50 000 and 

1:250 000 as DLG 50 and DLG 250, respectively. We exclude the two da-

tasets of smallest scales from our investigations. Figure 1 shows our test 

area, which has an extent of approximately 54 km² and is located in a rural 

area close to Shanghai. The Chinese datasets have attributes that allow for 

a distinction of natural and man-made waterways. There is also an attribute 

reflecting the name of the river. However, we do not consider these attrib-

utes in our approach, since this information has not been captured com-

pletely.  

When we started to develop the matching strategy for rivers, we ex-

pected that the river network would have a structure similar to a tree, that 

is, we expected many confluences of rivers but only a few bifurcations. 

Our idea was to exploit this pattern for the matching procedure. However, 

we did not follow this idea, because the actual structure of the river net-

work is not similar to a tree, see Fig. 1. The encountered structure with 

many bifurcations results from the extensive canal and dam system.  

Finally it is remarkable that dataset DLG 250 is more up-to-date and con-

tains a lot of new canals, which are not reflected in dataset DLG 50. 
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Fig. 1. Two river datasets of different scales in the test area: DLG 50 (large-scale 

dataset) and DLG 250 (small-scale dataset); lines are displayed in grey and 

polygons in black 

3  Matching Procedure 

Our matching method, which is illustrated as a process chart in Figure 2, is 

a three-steps procedure. First, in order to cope with geometries of different 

dimensions, we construct a network of lines, which is described in detail in 

Section 3.1. For this purpose, we collapse river polygons to centerlines by 

applying a skeletonization algorithm. The used basic method is presented 

in Section 3.1.1. Afterwards, in Section 3.1.2, we show how to preserve 

the topology of the river system in this step, which is an important re-

quirement for the subsequent matching steps. The second step (Section 

3.2) includes the pre-matching process, where we separately detect match-

ing candidates from the arcs and nodes of the line network which we gen-

erate in the first step. Therefore we use distance criteria and angle differ-

ence criteria, in order to assess the quality of the matching candidates. In 

Section 3.3, we present the last step of our method. Based on the results of 

the pre-matching step of Section 3.2, we perform the final matching by se-

lecting a consistent set of good candidate matches. 

 

DLG 50 DLG 250 



6      Birgit Kieler1, Wei Huang2, Jan-Henrik Haunert1, Jie Jiang2 

 

Fig.2. The process chart of our matching method deals with geometries of differ-

ent dimensions and datasets of different scales. 

3.1 Constructing a Network of Lines 

In this section we present our method for automatically constructing a 

network of lines from the input data, which includes lines and polygons 

representing rivers. We first present a basic method for deriving center-

lines for single polygons (Section 3.1.1) and then discuss how to preserve 

the topology of the river system (Section 3.1.2). 

3.1.1  Creating Centerlines for a Single River Polygon  

Haunert and Sester (2008) compare different types of skeletons that are 

commonly used in geographic information systems for deriving polygon 

centerlines. This includes the medial axis, which comprises straight lines 

and second-order lines. We do not select the medial axis, since handling 

second-order lines would cause computational overhead. An alternative 

skeleton is the straight skeleton, which only comprises straight lines. 

However, the existing algorithms for constructing the straight skeleton are 

too slow to handle large datasets. Therefore, we select a simple skeleton 

that is based on a constrained Delaunay triangulation of the polygon, see 

Figure 3. Penninga et al. (2005) discuss this method in detail. We give an 

outline of this method. 
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Fig. 3. Skeletonization of a river polygon. The constructed skeleton is bold black. 

There are two 0-triangles (dark shaded) and one 2-triangle (white); all other trian-

gles are 1-triangles (light shaded). 

 

The constrained Delaunay triangulation of a polygon is an exhaustive 

partition of the polygon into non-overlapping triangles. Most existing tri-

angulation algorithms yield additional triangles in the exterior of the poly-

gon; however, only the triangles in the interior of the polygon are used for 

constructing the skeleton. After constructing the triangulation, the triangles 

are handled independently. For each triangle, a piece of the skeleton is 

added. This procedure differs for different types of triangles: 

 For each triangle that shares two edges with the polygon (that is, 

a 2-triangle), no skeleton edge is added. 

 For each triangle that shares one edge with the polygon (that is, 

a 1-triangle), one skeleton edge is added. This edge is defined 

by connecting the midpoints of both other triangle edges. 

 For each triangle that shares no edge with the polygon (that is, a 

0-triangle), three skeleton edges are added. Each such edge is 

defined by connecting the midpoint of a triangle edge with the 

triangle’s centroid, that is, the point ((x1+x2+x3)/3, (y1+y2+y3)/3), 

where (x1, y1), (x2, y2), and (x3, y3) are the triangle vertices. 

The main disadvantage of this skeleton compared to the medial axis is 

that it is not smooth. Often the centerline is zigzagging. However, we will 

define a matching method that is quite robust against these geometric dis-

tortions. We are mainly concerned with keeping the topology of the river 

network correct. We accept the disadvantage of a less smooth shape, since 

the described skeleton can be applied to construct a topologically correct 

river network, which we show in the next section. 
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3.1.2 Preserving the Topology of the River System 

In the previous section we presented a method for constructing a skeleton 

of a single polygon. We now discuss how to preserve the topology of a 

river system that is represented by multiple lines and polygons. In order to 

accomplish this task, we perform a pre-processing prior to the skeleton 

construction and a post-processing after the skeleton construction. Both the 

pre-processing and the post-processing comprise two steps. 

In the first pre-processing step, we amalgamate all mutually adjacent 

river polygons. Without this step we would obtain incorrect results at river 

junctions. Figure 4 shows the skeletonization result when calculating the 

triangulation for each polygon independently (Figure 4(a)) and when 

amalgamating the adjacent polygons before calculating the triangulation 

(Figure 4(b)). In the left figure there is a node on the  boundary shared by 

both  polygons; this causes the artifact during the skeleton construction. 

The latter result is better, since it represents the topology of the river net-

work correctly. 

 

 
(a) without amalgamation of polygons 

 
(b) with amalgamation of polygons 

Fig. 4. The skeleton for two adjacent river polygons (different shades). 

 

In the second pre-processing step, we deal with the case that the end-

point of a line lies on the polygon boundary, for example, a narrow river 

(the line l) flows into a wide river (the polygon p). In this case we need to 

ensure that the shapes of the two rivers remain connected. We could try to 

solve this problem after the skeleton construction without any pre-

processing, for example, by extending the line l in its original direction, 

until it touches the constructed skeleton. This approach, however, is too 

naive, since we would possibly create intersecting lines (see Figure 5). In 

order to avoid new intersections, we propose to define the connection of l 

and the skeleton of p based on the triangulation of p. Our approach re-

quires that, if an endpoint v of l lies on the polygon boundary, the same 

point is a vertex of the triangulation. We can ensure this requirement simp-
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ly by introducing v as an additional polygon vertex. This is done in the pre-

processing, that is, before constructing the skeleton. 

 

   
(a) original situation (b) after collapse (c) lines extended 

Fig. 5. When collapsing a river polygon, the connectivity of the river system can 

be affected ((a) and (b)). Extending lines to meet the skeleton line can result in 

unwanted intersections (c). Therefore, we suggest another approach, see Figure 6. 

 

In the first post-processing step, that is, after applying the skeletoniza-

tion method from Section 3.1.1, we construct the connections between the 

endpoints of the original river lines and the derived skeleton. Let v be a 

polygon vertex that is equal to the endpoint of a line. Since v is a vertex of 

the polygon, it is also a vertex of at least one triangle of the triangulation. 

We define T as the counter-clockwise ordered sequence of triangles that 

share the vertex v. We select a subsequence  T’ =(t1, t2, ..., tn) of T such that 

T’ has the maximum number of elements among all subsequences of T that 

have the following property: each two subsequent triangles share a com-

mon edge. Note that the sequence T’ is usually equal to T. However, the 

definition of T’ is needed, since we can also construct special cases where 

two subsequent triangles in T do not share a common boundary. We now 

handle two different cases separately: 

 If the number n of triangles in T’ is even, we select the triangle 

edge e that separates tn/2 and tn/2+1. We insert a skeleton edge by 

connecting the vertex v and the midpoint of e, see Figure 6(a). 

 If the number n of triangles is odd, we select the triangle 

t = t(n+1)/2. Again, we consider different cases: 
o if t is a 2-triangle we insert a skeleton edge by connect-

ing the vertex v and the midpoint of its opposite triangle 

edge as shown in Figure 6(b). 

o if t is a 1-triangle we insert a skeleton edge by connect-

ing the vertex v and the midpoint of the skeleton edge 

that we added for t as shown in Figure 6(c). 

o if t is a 0-triangle we insert a skeleton edge by connect-

ing the vertex v and the triangle’s centroid as shown in 

Figure 6(d). 
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This approach indeed ensures that the topology of the river system is 

preserved. Intersecting connections as shown in Figure 5(c) are not possi-

ble. This is because, for each triangle, there is only a finite set of potential 

connections. These potential connections do not intersect. 

In the second and final post-processing step we remove some ‘dangling’ 

arcs. More precisely, we discard any arc that terminates at a vertex of de-

gree one and is shorter than the river width. 
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(a) (b) (c) (d) 

Fig. 6. A narrow river (line l) enters a wider river (dark and light shaded regions). 

To preserve the connectivity, we add a connection (bold black) between l and the 

constructed skeleton (dashed lines). The triangles in T’ are shaded dark grey. 

3.2   Pre-Matching Process 

In this section we present our method for the selection of matching candi-

dates, separately for nodes (Section 3.2.1) and arcs (Section 3.2.2) in order 

to reduce the input data for the final matching step. Furthermore, we define 

the quality of matching candidates. 

3.2.1   Pre-Matching of Nodes 

In the final matching step we will search, for each node n of the small-scale 

dataset, a corresponding node n’ of the large-scale dataset. In this paper, 

we use the small-scale dataset as the reference dataset and the large-scale 

dataset as the target dataset. It is likely that a node corresponding to n ex-

ists, because the less detailed dataset usually does not contain more infor-

mation than the detailed one. In the pre-matching step we search a set N’n 

of nodes that possibly correspond to n. We should keep N’n as small as 

possible while ensuring n’  N’n. The set N’n may contain more than one 

node or could also be empty. 

We perform the pre-matching of nodes based on a distance threshold . 

First, we calculate a buffer for each node n of the small-scale dataset, that 

is, a circle of radius  with centre n. We define the candidate set N’n as the 
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set of nodes in the large-scale dataset that are contained in this buffer. In 

order to define an appropriate buffer size, we need to discuss two cases. 

First, if the chosen buffer size is too small, correct matches may be lost. 

Secondly, if the buffer size is too large, we need to resolve many ambigu-

ous cases in the further process. Since lost matches cannot be recovered in 

the final matching step, an over-selection of candidates is better than an 

under-selection. 

We store the results of the pre-matching of nodes in a table. Each row 

contains the identifiers of two nodes that form a potential match. The table 

also has a column that represents the distance of both nodes. This distance 

can be seen as a quality measure. Candidates with a small distance to the 

reference node have a high quality and candidates with a large distance 

have a low quality. All node candidates are analyzed concerning their suit-

ability further in the node matching process of Section 3.3.1. 

3.2.2   Pre-Matching of Arcs 

Beside the detection of node candidates, we also perform a pre-matching 

of arcs based on another distance threshold . The pre-matching of arcs is 

similar to the pre-matching of nodes. We also store the results in a table. 

For each arc a of the small-scale dataset, the pre-matching yields a set A’a 

of arcs of the large-scale dataset. Again, we need to ensure that A’ a is 

small and contains the actual match a’. To select an appropriate set of can-

didates for a, we calculate a buffer polygon a, which contains all points at 

distance  from a or closer. We define the candidate set A’a as the set of 

arcs of the large-scale dataset that are completely contained in this buffer 

polygon or cross its boundary. 

We measure the quality of a potential arc match by comparing the direc-

tion of both arcs. The direction of an arc can be defined as the orientation 

angle of the straight line connecting both endpoints of the arc. However, 

an arc in the detailed dataset may correspond only to a part of an arc in the 

less detailed dataset. Therefore, the directions of a and a’ can be very dis-

similar when measured for the whole arcs. To define an appropriate quality 

measure, we perform a local comparison. For each arc b of the large-scale 

dataset, we define a buffer polygon b, which we also define based on the 

threshold . In order to assess the quality of the match (a,b), we calculate 

the intersection of both buffers, that is, we define 

baab , see Fig. 7. The part of a that lies in ab may correspond to the 

part of b that lies in ab.. For both parts we can construct a straight line by 

connecting the start and endpoint. Comparing the orientation angles of the-

se lines we can infer about the quality of the match (a,b). 
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 If the difference of the angles is small, then the arcs have almost the 

same orientation. In this way the quality of the possible correspondence is 

high. However, if the angle difference is high, then the likelihood that the 

arcs have the similar orientation is quite low. Figure 8 displays all match-

ing candidates that reach a certain quality; from left (Fig. 8 (1)) to right 

(Fig. 8 (3)) the quality increases. In Fig. 8 (1) all segments of the large-

scale dataset are displayed in bold grey; these are possible matching candi-

dates, because they are located in the buffer polygon of the investigated 

reference arc. In Fig. 8 (2) the segments with an angle difference of Δα ≤  

45 degrees are displayed in bold grey. Obviously the angle difference is 

sufficient, since all orthogonal river parts of the investigated reference 

part, which are apparent improper matching candidates, will get a low 

quality. In Fig. 8 (3) we show the matching candidates which fulfill the 

angle difference of Δα ≤  25 degrees. In this case some correct matching 

candidates are missing, because the orientation of the arcs are too different. 

However, the remaining arcs get a high quality. 

 
 

Fig. 7. Method for identification of arc segments for the comparison of orientation 

angles. (1) Arc a (black) of small-scale dataset and arc b (grey) of large-scale da-

taset; (2) Buffer polygons a and b; (3) Intersection area ab (light grey poly-

gon); (4) Comparable parts of an arc: reference (bold black) and target (bold grey) 

dataset. 

 

 

βab 

βa 

βb 
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Fig. 8. (1) All matching candidates (bold grey) for an arc a (bold black) of the 

small-scale dataset; (2) all matching candidates whose orientation angle α is simi-

lar to the orientation angle of a (Δα ≤  45 degrees); (3) all matching candidates 

whose orientation angle α is very similar to the orientation angle of a (Δα ≤  25 

degrees). 

3.3   Final-Matching Process 

The pre-matching results of the previous section are used as input for the 

final matching process, which comprises the matching process of nodes 

(Section 3.3.1) and, thereafter, the matching of arcs (Section 3.3.2).  

3.3.1   Matching of Nodes 

In this section we identify, for the nodes of the small-scale dataset, the 

nodes of the large-scale dataset that correspond best. For this we exploit 

the pre-matching results from Section 3.2.1 and analyze the node-arc to-

pology. Therefore we have to extend the analysis to the arcs that are con-

nected to the nodes. 

First, we detect a set of node matches that are quite obvious – we call 

them certain matches. For this, we determine the node degree deg(n) for 

each node of the small-scale dataset and for all its node matching candi-

dates. Normally, the less detailed dataset does not contain additional arcs. 

Therefore, we define that a node match (n,m) cannot be certain if the de-

gree of the reference node n is greater than the degree of the candidate 

node m, that is, if (deg(n) > deg(m)). For example, the match in Fig. 9 (1) 

cannot be certain, but the matches in Fig. 9 (2) can be certain. 

To decide whether a node match (n,m) with deg(n) ≤  deg(m) is certain, 

we analyze the set Sn of arcs that are incident to n and the set Sm of arcs 

that are incident to m. By querying the table that contains the pre-matching 

results for arcs, we select the set P containing all potential arc matches 

where one arc is in Sn and the other one is in Sm. Our approach is to define 
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the node match (n,m) as certain only if there is a sufficiently good subset Q 

of P that has the following properties: 

 Each arc in Sn belongs to exactly one match in Q.  

 Each arc in Sm belongs to maximally one match in Q. 

 The quality of each arc match (a,b) in Q is not worse than a cer-

tain threshold . As defined in Section 3.2.2, the quality is 

measured according to the angle difference of the arcs a and b. 

In order to find such a subset, we propose a simple iterative approach. 

Initially, we set Q empty. We order the potential arc matches in P accord-

ing to their quality, into a list. We iterate through this list. First, we select 

the arc match of highest quality and then we proceed with the next arc 

match. Let (a,b) be the arc match selected in a certain iteration. We add the 

match (a,b) to Q if its quality is high enough and if Q does not contain an-

other match with a or b. After we reach the end of the list, we test whether 

each arc in Sn belongs to exactly one match in Q. In this case we define the 

node match (n,m) as certain. 

After selecting the certain matches, we select additional node matches. 

We iteratively assess the potential node matches, ordered by decreasing 

quality. We call a node free if it has not yet been matched to another node. 

In each iteration we apply the following rule: 

 we accept a potential node match (n,m) if both n and m are free 

and if there is no other potential match (n,o) such that o is free.  

After assessing this first rule for all potential node matches, we apply a se-

cond rule: 

 we accept a potential node match (n,m) if both n and m are free 

and if m is the free node closest to n.  

Note that there may still be reference nodes that are unmatched. 

 

 
 

Fig. 9. (1) Exclusion of such candidate nodes m of the large-scale dataset, because 

deg(n)>deg(m); (2) Further investigation of such kind of matches, because the de-

fined conditions deg(n)=deg(m) or deg(n)<deg(m) are fulfilled. 
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3.3.2   Matching of Arcs 

We perform the final matching of arcs based on the pre-matching of arcs 

and the matching of nodes. We select the arcs one by one from the small-

scale dataset and search for the corresponding set of arcs in the large-scale 

dataset. In doing so, three cases need to be considered: (1) both endpoints 

of the arc of the small-scale dataset are matched with nodes in the large-

scale dataset, as shown in Fig. 12a; (2) only one endpoint is matched with 

a node in the large-scale dataset; (3) none of the endpoints is matched with 

a node in the large-scale dataset, as shown in Fig. 12b. Different methods 

will be applied to the three cases. 

Case (1): In this case we search a path that comprises pre-matched arcs 

of the large-scale dataset and connects the nodes that are matched to the 

endpoints of the selected small-scale arc. In order to find a good path, we 

minimise a cost function. This approach for matching arcs has been pro-

posed by Mustière & Devogele (2008). For each arc a included in the path 

we charge a cost equal to the product of its length and the angle difference 

to the small-scale arc as defined in Sect. 3.2.2. This minimisation problem 

can be solved with a shortest-path algorithm, for example, the algorithm of 

Dijkstra (1959). 

Case (2): In this case we first select all pre-matched arcs that have an 

endpoint that is matched with an endpoint of the small-scale arc and whose 

angle difference with the small-scale arc is smaller than a certain threshold 

. We match the small-scale arc with one arc of this selection, more pre-

cisely, with the arc that is closest to the unmatched endpoint of the small-

scale arc. 

Case (3): The small-scale arc remains unmatched. 

4  Experimental Results 

Our proposed matching process was tested in the test area (see Fig. 1) for 

the DLG 250 as the small-scale dataset and the DLG 50 as the large-scale 

dataset. In the first step we constructed a network of lines and ensured that 

the topology of the river network is complete. The result is shown in 

Fig. 10. For the distance criterion in the pre-matching of nodes we applied 

a threshold of  = 440 m, which was empirically determined. For the fol-

lowing pre-matching of arcs we applied the buffer size of  = 330 m in or-

der to get, for each arc a of the small-scale dataset, the set A’a of arcs of the 

large-scale dataset. 
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Fig. 10. The original datasets (grey) overlaid by the result of the construction of 

the topological correct line networks (black): (top) large-scale dataset DLG 50 and 

(bottom) small-scale dataset DLG 250. 

 

Based on the results of the pre-matching step, we perform the final 

matching step. First, in the node matching step, we define the threshold 

 = 60 degrees in order to decide whether a node match is certain. Second-

ly, we define  = 12 degrees in the arc matching step in order to compare 

the direction of arcs. Figures 11 and 12 show our matching results. 



Matching River Datasets of Different Scales 17 

 

Fig. 11. Matches found by our method for the sample in Figure 10; line networks 

of the small-scale dataset are displayed dashed in grey and of the large-scale da-

taset dashed in black; matched arcs are displayed bold. 

 

 

Fig. 12. Two magnified parts of figure 11; a) Relation one to many: the small-

scale arc (grey) that was matched to four arcs of the large-scale dataset (black) 

marked by dotted black lines; b) the small-scale arc displayed in dashed grey is 

not matched, because none of the endpoints is matched. 
 

We evaluated our matching results by comparing them with results that 

were obtained manually. In order to decide whether two objects should be 

manually matched, we compared their location, shape and orientation. Fur-

thermore we took the network topology into account. Table 1 summarizes 

our results. For each arc match found by our method we assessed whether 

it is correct or not. We compare the total length of all correctly matched 

arcs and the total length of all arcs that were incorrectly matched (first line 

a) 

b) 

a) b) 
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of Table 1). We see that only a small part of the found matches is wrong 

(2.3%). Furthermore, for each small-scale arc that was not matched by our 

method, we assess, whether there is indeed no corresponding large-scale 

object or whether an existing correspondence was missed. Again, we ag-

gregate our results by summing up the lengths of the involved arcs (second 

line of Table 3). The human expert was able to match arcs of a total length 

of 85057.13 m + 8983.76 m = 94040.89 m. Compared to this value, our 

method failed to find 9.5% of the matches. 

 
Table 1. Statistics of our matching results 

 Total Length (m) Correct (m) Wrong (m) Precision 

Matched 87020.19 85057.13 963.06 97.7% 

Not-matched 33573.85 24590.09 8983.76 73.2% 

Sum 120594.04 109647.22 9946.82 90.9% 

 

When both endpoints of an arc were matched, also the arc match is 

usually correct. However, if there is only one or even no matched end-

point, our method usually matches the arc only with some corresponding 

parts, but not with all. 

We also compared our test results for parts of the river system that were 

originally represented by lines and parts that were originally represented 

by polygons. In this case the matching was done based on the derived 

skeleton lines. In conclusion, we did not observe a difference in the per-

formance for both parts of the river system. Therefore, we assume that our 

skeletonization method is suited to support the matching method. 

5  Conclusion and Outlook to Future Work 

We have presented a new method for matching river datasets of different 

scales. In particular, we have shown how to cope with different geometric 

dimensions. For this purpose we have proposed a skeletonization method 

that constructs a topologically correct network of lines. The actual match-

ing of the networks is based on a pre-matching of arcs and nodes and the  

final matching step. Our method was tested for different Chinese datasets. 

The results were compared with those obtained by a human expert.  

We conclude that our method finds 90.5% of the actual correspondenc-

es. Only 2.3% of the matches found are wrong. These numbers are satis-

factory, in particular, since large parts of the river system were represented 

by polygons in the large-scale dataset and by lines in the small-scale da-

taset. For these parts of the river system, we observe, on the whole, a simi-
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lar performance compared to parts that are represented by lines in both 

scales. Therefore, we assume that our skeletonization method is suitable 

for matching tasks. 

A possibility to improve our method is to also consider semantic attrib-

utes that are given for the rivers objects, for example, attributes that reflect 

the name or expressing whether a river is natural or man-made. Future re-

search should also consider that generalization operators like aggregation 

and typification influence how objects are represented in different scales. 

For example, two rivers running parallel to each other may be represented 

by a single river line. 
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