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Boundary-labeling algorithms for panorama images. In Proc. 19th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems (ACM-
GIS’11), pages 289–298, 2011.

[4] J.-H. Haunert.
A symmetry detector for map generalization and urban-space analysis. ISPRS
Journal of Photogrammetry and Remote Sensing, 74:66–77, 2012.

[5] J.-H. Haunert and C. Brenner.
Vehicle localization by matching triangulated point patterns. In Proc. 17th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems
(ACM-GIS’09), pages 344–351, 2009.

[6] J.-H. Haunert and B. Budig.
An algorithm for map matching given incomplete road data. In Proc. 20th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems
(ACM-GIS’12), pages 510–513, 2012.

[7] J.-H. Haunert, A. Dilo, and P. van Oosterom.
Constrained set-up of the tGAP structure for progressive vector data transfer.
Computers & Geosciences, 35(11):2191–2203, 2009.

[8] J.-H. Haunert and L. Sering.
Drawing road networks with focus regions. IEEE Transactions on Visualization and
Computer Graphics (Proc. Information Visualization 2011), 17(12):2555–2562, 2011.

[9] J.-H. Haunert and A. Wolff.
Optimal and topologically safe simplification of building footprints. In Proc. 18th
ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems (ACM-GIS’10), pages 192–201, 2010.

iv



1 Introduction

Geographic information (GI) science has become a well-established discipline with a growing
number of peer-reviewed journals, about a dozen international conferences, and Bachelor’s
as well as Master’s courses in many countries. While GI science is often considered as the dis-
cipline of working with geographic information systems (GIS), it is more accurately described
as the science behind GIS. As such, it aims at methods for the acquisition, administration,
analysis, and visualization of spatial information.

Basic tasks that users solve with GIS are the computation of a map overlay, a polygon
buffer, or a shortest route in a road network. Most of the algorithms for these basic tasks
have been developed by computer scientists with a focus on computational geometry or graph
theory—and not by GI scientists. These tasks are simply of such general relevance (also
in disciplines other than GI science, for example, in robotics, logistics, and computer-aided
design) that sophisticated solutions have been found by evolution over time. Since appropriate
mathematical models (e.g., graphs) for real-world phenomena (e.g., road networks) have been
established, engineering a shortest-path algorithm for a transport application requires little
knowledge of GI science.

Given that, which role do GI scientists actually play? To answer this question, it is im-
portant to understand that most of the open problems in GI science are very different from
the above-mentioned basic problems, each of which can be unambiguously defined with a
single sentence—polygon buffering, for example, can be defined as follows: Given a polygon
P and a number d ≥ 0, compute the union of all points whose distance to P is at most d.
In contrast, GI scientists usually work on problems that involve multiple, sometimes vaguely
defined constraints. Often, mathematical models are missing or there are multiple models
that seem to be appropriate for a task. Consequently, GI scientists do not start with a given
problem statement that is rigorously defined in mathematical terms. Instead, they first need
to build a good model that describes all important aspects of their task. Typically, this
requires knowledge in surveying, cartography, or geography. Thus, GI science can be seen
as the link between several application-driven research disciplines and (a more theoretically
oriented) computer science.

This paper summarizes nine publications [1–9] that present methods for a rather broad
range of problems in GI science, including map generalization, information visualization, and
map matching. Despite the diversity of the problems, all these methods share, on an abstract
level, the same approach, which is shown in Fig. 1. We term this approach our research cycle.

(3) evaluation

(2) optimization

(1) modeling

Figure 1: Our research cycle that refines a model that formalizes a task.
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Our research cycle combines three stages, namely, (1) modeling, (2) optimization, and
(3) evaluation, which can be repeatedly applied to incrementally refine a model that describes
a given task and to adjust the algorithm for solving it.

We first exemplify the research cycle by discussing its application to map generalization
(Sect. 2). Next, we discuss new methods for information visualization, in particular, focus-
and-context visualization (Sect. 3) and label placement (Sect. 4). Then, we summarize
results on the problem of matching data (e.g., a GPS trajectory) recorded by a mobile user
with a reference map (Sect. 5). Finally, we draw general conclusions and discuss possible
directions of future research (Sect. 6).

2 Map Generalization

Map generalization is the problem of generating a map of a smaller scale from a given map. To
ensure that the generated map is legible, some of the features in the map need to be simplified,
aggregated, displaced, or eliminated through selection. Though many algorithms have been
developed to solve special problems in map generalization, it is difficult to decide which
algorithm to choose in a given situation and how to sequence algorithms for different subtasks.
To model the overall problem of map generalization, researchers have formalized constraints
that the output map has to satisfy [WD98, HW07]. This corresponds to the modeling stage
in our research cycle. Usually, constraints for map generalization can be classified into
constraints that aim at preserving characteristics of the input map and constraints that aim
at increasing the readability of the map. Some of the constraints in map generalization are
conflicting and can only be satisfied to a certain degree. We term such constraints soft and
thereby distinguish them from hard constraints, which have to be satisfied in any case.

Once we have established a set of constraints, we can ask for an optimization algorithm
that yields a solution fulfilling all hard constraints while satisfying the soft constraints as
much as possible. Since even basic map generalization problems have been shown to be
NP-hard [EM01], most often general-purpose heuristics, for example, simulated annealing
[WJT03], have been applied. Generally, developing and applying an optimization algorithm
is subsumed under the optimization stage in our research cycle.

In the evaluation stage in our research cycle we assess the quality of our results. For
example, we can compare the maps generated by an optimization method with maps gen-
erated manually by cartographers, or study how users perform on certain tasks when given
our automatically generalized maps. Ideally, this evaluation allows us to conclude whether
our model is appropriate or whether it has to be refined, for example, because important
constraints are missing. In the latter case, we simply reiterate the research cycle in Fig. 1.
This process allows us to incrementally improve our algorithm. Moreover, with each cycle,
we increase the accuracy of our model and, thereby, obtain valuable knowledge of the criteria
that make good maps. This knowledge can be used for measuring the quality of maps, which
is a problem of general interest—not only in the context of automated map generalization.

If we apply heuristic algorithms in the optimization stage, we have to be careful, however,
about what to infer from our evaluation. Deficits in the quality of our generated map can
be due to two reasons, that is, (1) either the model that we established in the modeling
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10 m

Figure 2: A set of buildings (left) that are used as input for our simplification algorithm [9],
using an error tolerance of 10 m. Minimizing the number of vertices (middle), we sometimes
obtain undesirable results, for example, the sizes of the polygons increase (indicated with
“+”) or decrease, which results in narrow polygon parts (indicated with “−”). With a more
advanced cost function we can avoid such deficits (right).

stage does not adequately reflect cartographic quality or (2) the heuristic algorithm applied
in the optimization stage tends to yield solutions far from optimum. Often, it is difficult
to distinguish the influences of model parameters (for example, the weights of different soft
constraints) from the influences of tuning parameters of a heuristic algorithm (for example,
the cooling rate in simulated annealing). This limits the conclusiveness of our evaluation. A
possibility to overcome this drawback is to apply exact algorithms, which guarantee a globally
optimal solution. Such algorithms may be too slow to solve large real-world instances in
adequate time. Still, they can be useful to compute optimal solutions for small instances.
Since the quality of these solutions is independent of the algorithm used, they can be used
to verify a model and, later, can serve as quality benchmarks for heuristic algorithms.

We have successfully implemented the described three-stage approach for the simplification
of polygons that represent building footprints [9]. Building simplification is in fact a classical
map generalization problem, for which several algorithms have been proposed earlier [May98,
KL06]. Our algorithm is the first, however, that yields an optimum solution with respect to a
well-defined problem statement. Initially, our objective was to simplify a given polygon such
that, among all simplifications satisfying a set of hard constraints, the output polygon has the
minimum number of vertices. We showed that finding an optimum solution is NP-hard if we
require a basic set of hard constraints and that the output polygon is simple. Still, we were
able to solve the problem exactly by integer linear programming. Figure 2 visualizes some
of our results. Though the results of minimizing the number of vertices were promising, we
identified additional soft constraints that are needed to keep the output polygons sufficiently
similar to the input polygons, in particular, to preserve the sizes of the polygons and right
angles, which are typical for buildings. We defined a cost function that penalizes violations of
these constraints and adjusted our method to find a solution of minimum total cost. When
testing our method for a set of buildings of Boston, the minimum-cost solution contained
only a few (2%) more vertices than the solution with the minimum number of vertices. The
overall cost was reduced, however, by 39%. After a visual inspection, we concluded that the
results of our new method are much better.

A shortcoming of our algorithm for building simplification that we sometimes observed
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Figure 3: A set of building footprints with automatically detected mirror axes. Black lines rep-
resent basic symmetry relations between pairs of polylines that are contained in the boundaries
of the building footprints. Every fat gray line represents a group of basic symmetry relations
with approximately collinear mirror axes.

(even with our improved cost function) was that characteristic symmetries of the input
polygons were not present in the output [4]. In order to find out whether symmetries should
be considered in map generalization, we conducted a user study, in which we asked 30
participants to manually solve three tasks, namely, to simplify a set of building footprints,
to identify characteristic symmetries in a set of building footprints, and to identify groups of
buildings in a map. To conclude, the participants preserved most of the symmetry relations
in the simplification task. We therefore developed an algorithm that detects symmetries in
building footprints and compared its results with the symmetries the users had detected in the
second task. Figure 3 visualizes mirror symmetries that were detected with this algorithm.
Currently, we are about to integrate the preservation of symmetries as a soft constraint into
our model for building simplification. This means that, after our attempt with the objective
of minimizing the number of edges and our approach with the improved cost function, we
will complete our research cycle for the third time.

A major research direction in map generalization is the development of methods that enable
continuous zooming. We have discussed this problem in the context of land cover maps [7],
where areas of different land cover classes are merged when the scale decreases. Our method
is based on a model that defines constraints for a small-scale map. Given a large-scale map,
we first search for a corresponding small-scale map that satisfies the constraints best. Then,
to support zoom interactions, we apply an algorithm that yields intermediate representations
between both maps. An interesting idea for future research is to model constraints not only
for a small-scale map but for a whole sequence of maps that is traversed when a user zooms
from one scale to another scale. Probably, this approach can reduce abrupt changes in the
map, which frequently occur with current software for map viewing.

3 Focus-and-Context Visualization

Information visualization studies the visual display of abstract data to help people extract
useful information. Though cartography can be subsumed under this definition, it focuses on
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(a) input map (b) result of fish-eye projection (c) our result

Figure 4: The road network of Boston (a) with a focus region (black circle) and two maps in
which the focus region is enlarged by a factor of three. The map in (b) was generated with
the fish-eye projection by Yamamoto et al. [YOT09] and the map in (c) with our method [8]
that minimizes distortions.

the visualization of spatial data with maps. In contrast, researchers in information visualiza-
tion often consider non-spatial data and other types of visualization than maps, for example,
diagrams or drawings of graphs. Interesting problems in the intersection of information visu-
alization and cartography are the schematization and distortion of geographic networks. In
metro maps, geographical correctness is often sacrificed for the sake of a clearer, diagram-like
network layout that allows users to quickly decide where to change trains [NW11]. Simi-
larly, when visualizing a route a driver has to follow, long sections of the route that do not
require crucial driving maneuvers (e.g., highway sections) can be drastically scaled down
to save space for more critical sections (e.g., inner-city sections with many turns) [AS01].
Generally, the approach of attracting the user’s attention to certain parts of a data set while
de-emphasizing other parts is termed focus-and-context visualization.

A classical approach to focus-and-context visualization in cartography is to use a fish-eye
projection [HSL02, YOT09]. This allows certain areas of a map to be displayed at a larger
scale than other parts of the map, which is particularly helpful for users of small mobile
devices. A tourist walking through an unknown city, for example, often needs a large-scale
representation of his vicinity, but also more global context information to build a mental
map of the city. Technically, fish-eye projections are often defined with a mapping function
f :R2 → R2 that maps each point p in a map to a point f(p) in a distorted output map.
Usually, f displaces p away from a focus center c.

A common problem with fish-eye projections is that they introduce large distortions, see
Fig. 4(a) and (b). This motivated us to develop a new method [8] that keeps the distortions
small but still allows the scale in a focus region to be enlarged, see Fig. 4(c). More precisely,
we designed a method for focus-and-context visualization of a geometric graph that represents
a geographic network. Other than existing fish-eye techniques, our method is not based on
a predefined mapping function. Instead, we applied our research cycle that strictly separates
the modeling stage from the algorithmic solution. Since our work was motivated by the high
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distortion of fish-eye projections, we started off with formalizing a model of distortion. This
model can be summarized as follows:
• We measure distortion locally, that is, for each node u of the given graph, we consider

the star S(u) of all edges incident to u.
• We compare S(u) with its version S ′(u) in the output map. To this end, we scale and

translate S(u) such that it fits S ′(u) best. Now, the distortion is the square sum of
the differences between the coordinates of the vertices of S(u) and the corresponding
vertices of S ′(u).
• To measure distortion globally, we sum the local measure over all nodes.

Our objective is to minimize the global distortion measure subject to a set of hard constraints.
As a basic set of constraints, we require that a user-selected focus region is scaled up with
a user-set factor and that the output map fits into the bounding box of the input map.
Additionally, we forbid edge crossings in the output map.

In order to solve the problem, we have chosen an approach based on convex quadratic
programming. This approach allows us to solve our problem (with the basic set of constraints)
with an algorithm that is both efficient and exact. The constraint that forbids edge crossings
had to be implemented such that some feasible solutions became excluded.

To evaluate our method, we have compared its results with those generated with the fish-
eye technique proposed by Yamamoto et al. [YOT09]. On average, our method reduces the
distortion (as defined in our model) by 75%. Also, our results visually appear to be far less
distorted than those of the fish-eye technique. For example, in Fig. 4(b), we observe large
distortions in the region north east of the focus region, which do not occur in Fig. 4(c).

An obvious idea to extend our method is to combine it with map generalization, that is,
to adjust the level of detail of the map (locally) to the scale. To this end, we have developed
a method that ranks roads according to their relevance for a user, where relevance is defined
based on a probabilistic model of user movement [1]. Based on the ranks that we obtain,
we decide which roads to display. Generally, our aim is to maximize the total rank of all
displayed roads, but again we have to satisfy a set of hard constraints that, for example,
restrict the number of selected edges. Algorithmically, we compute the ranks of the roads
with the famous PageRank algorithm [PBMW99] that Google uses to rank web pages.

4 Map Labeling

Labeling geographic maps is a central problem in cartography. Labeling maps manually is
a tedious task that, in the 1980’s, was estimated to consume 50% of a map’s production
time [Mor80]. Until today, labeling static topographic maps has been automated to a high
degree. New solutions are needed, however, to label maps that support continuous zooming
or focus-and-context maps, in which a certain region is of particular importance.

Motivated by the fact that the focus and the context region of a focus-and-context map
serve different purposes, we have developed a special labeling technique for such maps [2].
We regard map space as a resource that is more expensive in the focus region, thus text
annotations and iconic labels for points of interest (POIs) or sites in the focus region should
preferably be moved to the context region. The difficulty herein is that correspondences
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Figure 5: A labeling in the radial-leader model (left)
and a labeling in the free-leader model (right).

Figure 6: A labeling that uses our label-
ing model for panorama images.

between labels and sites have to remain clear. One possibility to achieve this is to display
such correspondences as linear connections, which in the literature on map labeling are
commonly termed leaders. Placing labels at the boundary of a map and connecting them
via leaders with the map objects is commonly termed boundary labeling [BKSW07]. We
do not place the labels at the boundary of the map but at the boundary B of a circular
focus region. We have implemented this general idea with two labeling models, namely the
radial-leader model and the free-leader model, see Fig. 5. In the radial-leader model, every
leader is a straight-line segment that starts at some point on B and is oriented towards
the focus center. In the free-leader model, a leader can be any straight-line segment that
connects a point on B with a site. Though the free-leader model offers more flexibility, it
can result in more visual clutter. For both labeling models, we have developed optimization
algorithms that select a set of sites to become labeled and determine the label positions. Our
algorithms allow us to optimize various objectives and to handle a set of hard constraints.
In particular, we aim at labeling many sites while avoiding crossing leaders or overlapping
labels. Moreover, we aim at short leaders and we consider the case that different sites have
different priorities, which we model with weights—in this case, we maximize the total weight
of all labeled sites rather than their bare number. An interesting extension of our model is
that we also consider leaders that are Bézier curves.

In a second paper on boundary labeling [3], we have presented algorithms for labeling
panorama images, which, since the start of the Google Street View project, have become
a popular source of geographic information. Our algorithms use the fact that most of the
interesting objects in panorama images lie below a horizontal line (e.g., the horizon) or a
line that is monotone in the horizontal direction (e.g., the skyline of a city). Usually, the
space above this line (the sky) is empty and can accommodate labels. We decided to use
horizontal labels, to place them in the sky, and to connect them with their corresponding
sites via vertical leaders, see Fig. 6. We forbid leaders and labels to intersect and labels
to overlap each other and, as in our work on labeling focus regions, consider the case that
we cannot label all sites. Again, we designed our algorithms to make a selection, either by
maximizing the number of labeled sites or their total weight.

The question of which labeling model to use for a given application is still open. We
are currently extending our algorithms for labeling panorama images to also consider tilted
labels. We plan to evaluate the appropriateness of our models in a user study.
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5 Map Matching

Map matching is the problem of finding a path in a given road data set that corresponds
to a given trajectory. The trajectory is a sequence of positions with time stamps, which
usually has been recorded with GPS. Several map matching algorithms have been developed
that work well, even if the GPS measurements are noisy and the sampling rate of the GPS
measurements is low [QON07,NK09]. A problem that has not been solved satisfactorily yet,
however, is map matching with incomplete road data. This problem is particularly relevant as
user-generated road data, for example, data from the Open Street Map project, is becoming
increasingly popular. Though user-generated data is often more detailed than official or
commercial data, its quality varies with the number of contributing users in a particular
region, the time they spend on the project, and their skills. While some regions are mapped
with large amounts of detail, other regions are sparsely mapped.

The existing map matching algorithms usually search for a path in a graph representing
the road network. Among all paths in the graph, some algorithms find a path of minimum
distance to the trajectory (according to some distance measure). If, for example, an important
bridge is missing in the road data, such algorithms will generate long detours. In order to
overcome this drawback, we have developed a map matching algorithm that introduces new
edges if they are needed to generate an output path sufficiently similar to the trajectory [6].
Figure 7 shows a result of our method. Underlying our algorithm is a hidden Markov model
(HMM). Generally, given a sequence of observations of a system, this allows the likelihood
of a sequence of system states to be inferred. In our case, each observation is a GPS point
and each system state is a possible position of the user, which for each time step (that is,
each GPS measurement) we restrict to a discrete set of candidate positions. In contrast to
the method of Newson and Krumm [NK09], which is also based on a HMM, we include, in
each candidate set, a point that does not lie on an edge of the road network. This allows
us to cope with roads missing in the data. To complete the HMM, we have modeled a set
of conditional probabilities, namely, the probability density of observing a GPS point p if
the user is at a candidate position a and the probability that a user moves to a candidate
position b if he was in a candidate position a before. After having completed the HMM,
we find a state sequence of maximum likelihood with the Viterbi algorithm [RJ86]. In order
to evaluate our map matching algorithm, we tested it with OSM data and GPS trajectories
that we recorded during four hikes. Since we knew the actual routes we had taken, a visual
inspection of our data allowed us to determine that in 23 cases we had used paths not
contained in the OSM data. To summarize, our map matching algorithm found the same 23
sections of our trajectory. A general problem with HMM-based map matching is, however,
that the conditional probabilities depend on the user and the transportation mode applied.
We therefore aim to extend our method to train the probabilities with reference data.

Since GPS sometimes fails in street canyons of dense urban areas, we have also considered
to match data of sensors other than GPS with a map. In particular, we have developed an
algorithm that localizes vehicles equipped with laser scanners or cameras [5]. These sensors
allow salient features in the vicinity of a vehicle to be detected, for example, vertical pole-
like objects such as traffic signs. Our algorithm, which is similar to the Viterbi algorithm,
matches such features with point features in a reference map. An interesting direction for
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Figure 7: A trajectory (left, black) and a road data set (gray) with the output path of our
map matching algorithm (right, black). The output path contains sections that are part of
the road network (fat), but also sections that were not matched (thin).

future research is to integrate measurements of different sensors, for example, cameras and
GPS, into a common probabilistic model.

6 Conclusion and Future Research

Modeling the criteria that make a good solution is the key to success in solving a problem.
This may seem trivial. Many algorithms in GI science, however, are not motivated with a good
model. Often, they have been designed to simulate procedures that humans might choose
to reach a rather vaguely defined goal. In practice, such algorithms often yield satisfactory
results. If they fail, however, diagnosing the reason of the failure is difficult. In contrast, we
have argued—and exemplified on multiple problems—that a clear separation of the modeling
stage, a solution by optimization, and the evaluation allows us to incrementally refine our
models and to improve our methods. For each of these three stages of our approach, we
now discuss our conclusions.

Modeling. Most of the models that we have used are based on constraints. While some
of the constraints are hard (that is, they must be satisfied in any case) other constraints are
soft (that is, we quantitatively measure their degree of violation). Generally, this requires
appropriate measures and weights that model the importance of constraints. Most of our
labeling algorithms [2, 3] as well as our algorithms for the selection of roads [1] allow us to
select a set of features of maximum total weight (subject to a set of hard constraints). A
user can set these weights arbitrarily, thus our algorithms are rather generally applicable. On
the other hand, it is interesting to consider concrete weight settings that, for example, allow
for a probabilistic interpretation. In our method for road selection [1], this was achieved with
a probabilistic model of user movement. Similarly, our map matching algorithm [6] is based
on a probabilistic model of observations and transitions in the road network. We conclude
that we should avoid restrictive assumptions about the input of our algorithms, but also need
better models to specify their parameters.

Our research cycle in Fig. 1 may suggest that finding a perfect model requires an infinite
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number of cycles of modeling, optimization, and evaluation. We should not aim, however,
at exhaustive models, which subsume every criterion that possibly might be of relevance.
Instead, it is important to identify the core of a problem and to grasp the criteria that
matter.

Optimization. Most of the algorithms that we have discussed are both efficient and exact,
have been implemented, and shown to be applicable on real-world instances of sizes that
are relevant in practice. In multiple cases, this was achieved by dynamic programming
[2, 3, 5], but also other approaches, for example, a greedy strategy [1] or convex quadratic
programming [8], allowed us to solve some of our problems efficiently and exactly.

Algorithms engineering is a growing field of research, which aims at algorithms of a good
performance in practice rather than at algorithms of a low asymptotic worst-case running
time. For example, though integer programming is NP-hard (and thus the existing solvers
for integer programs have an exponential asymptotic worst-case running time) it often al-
lows moderately-sized problem instances to be solved within reasonable time. In fact, we
successfully implemented this approach to simplify building footprints without introducing
unwanted intersections [9].

To conclude, to tackle the diversity of problems in GI science successfully, we need to be
aware of the large diversity of optimization algorithms. For GI scientists, techniques from
algorithms engineering are particularly relevant.

Evaluation. We have evaluated all our methods through informal discussions with experts,
colleagues, or potential users. Often, such discussions are valuable sources of ideas for
possible improvements and future research directions. At some point it becomes important,
however, to evaluate in a more formal, quantitative way. For each of our automatic methods,
we have followed at least one of the following approaches of assessing a result:
(A1) We have assessed the differences between the result and a reference solution.
(A2) We have assessed the quality of the result with a quantitative measure of quality.
(A3) We have conducted user tests.
For example, we used approach A1 to assess the results of our map matching algorithm [6] and
approach A2 to assess the focus-and-context maps that we generated with our optimization
algorithm [8] or the fish-eye technique of Yamamoto et al. [YOT09]. In order to assess the
symmetries found by our symmetry detector [4], we conducted user tests (approach A3)
in which we asked the participants to visually detect symmetries; we then considered these
symmetries as reference solutions and compared them with the symmetries found by our
algorithm (approach A1).

Generally, it is important to conduct user tests for problems in which the criteria that make
good solutions are not well understood—this particularly holds for problems of information
visualization, for example, map labeling. Currently, we are preparing a user study to assess
our algorithms for labeling panorama images. In this study, we will ask the participants to
rate the quality of automatically generated labelings and to solve a certain task with a given
labeling, for example, to quickly find the site of a given name.
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