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Topographic databases normally contain areas of different land cover classes, commonly defin-
ing a planar partition, that is, gaps and overlaps are not allowed. When reducing the scale of
such a database, some areas become too small for representation and need to be aggregated.
This unintentionally but unavoidably results in changes of classes. In this article we present
an optimisation method for the aggregation problem. This method aims to minimise changes
of classes and to create compact shapes, subject to hard constraints ensuring aggregates of
sufficient size for the target scale. To quantify class changes we apply a semantic distance mea-
sure. We give a graph theoretical problem formulation and prove that the problem is NP-hard,
meaning that we cannot hope to find an efficient algorithm. Instead, we present a solution by
mixed-integer programming that can be used to optimally solve small instances with existing
optimisation software. In order to process large datasets, we introduce specialised heuristics
that allow certain variables to be eliminated in advance and a problem instance to be de-
composed into independent sub-instances. We tested our method for a dataset of the official
German topographic database ATKIS with input scale 1:50,000 and output scale 1:250,000.
For small instances, we compare results of this approach with optimal solutions that were
obtained without heuristics. We compare results for large instances with those of an existing
iterative algorithm and an alternative optimisation approach by simulated annealing. These
tests allow us to conclude that, with the defined heuristics, our optimisation method yields
high-quality results for large datasets in modest time.

Keywords: map generalisation, aggregation, combinatorial optimisation, mixed-integer
programming, NP-hardness

1. Introduction

In recent years, researchers have made considerable advances in quantifying the
quality of map generalisation (Bard 2004, Cheng and Li 2006, Frank and Ester
2006). Usually, measures have been proposed for assessing the outcome of given
generalisation procedures. For example, Cheng and Li (2006) discuss quality mea-
sures for polygon maps, that is, partitions of the plane into polygonal regions of
different classes. The authors performed experiments with different settings of a
simple generalisation method: areas that are too small for the target scale are
merged with neighbours, which potentially have different classes. They compared
the results with respect to the area that changes its class in generalisation, which
they define as a global measure of “semantic consistency”. In this article, we define
a similar quality measure based on class changes. We, however, do not only apply
this measure to assess generalisation algorithms, but also present an aggregation
method that yields results of maximum quality under given hard constraints. This
method is based on mixed-integer programming, which is a technique for com-
binatorial optimisation. Though we need to introduce heuristics to process large
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datasets (the problem is NP-hard as we prove in Section 4), our method yields the
exact optimum for small samples. This offers new possibilities to assess the result
of heuristic generalisation methods.
Usually, two different generalisation problems are distinguished (Brassel and

Weibel 1988): the derivation of a less detailed database from a given one (database
generalisation or model generalisation) and the derivation of a graphical map, ei-
ther from a database or another map (cartographic generalisation). In this article
we address database generalisation, which aims at data abstraction rather than
at graphical effectiveness. As a prerequisite for automatic database generalisation,
national mapping agencies in several countries have developed database specifica-
tions, often defining minimal dimensions that need to be satisfied in a particular
scale (Afflerbach et al. 2004). In order to ensure logical consistency, we consider
such requirements as hard constraints that define the set of feasible generalisation
solutions. We focus on the generalisation of planar partitions since these are com-
monly used to represent land cover information. This implies that we do not allow
gaps or overlapping areas. A common approach to satisfy size constraints for such
a database is to aggregate areas, that is, to merge several areas into one. Most
often this task is solved by iteratively merging pairs of areas, see Section 1.1. The
problem has not been approached by optimisation yet.
Clearly, the given hard constraints allow for different feasible solutions. Opti-

misation means to search for the solution of highest quality among them. In map
generalisation, the quality is often expressed by a set of soft constraints, that is, con-
straints that allow different degrees of satisfaction. Typically, the soft constraints
are conflicting and compromises need to be found (Weibel and Dutton 1998). In our
approach, we optimise compactness of shapes and semantic accuracy. Our measure
for the latter is based on class changes, see Section 1.2.
Existing approaches to combinatorial optimisation problems in map generalisa-

tion are mainly based on meta-heuristics that iteratively improve the map, such
as hill climbing (Regnauld 2001, Galanda 2003), simulated annealing (Ware et al.
2003), or neural networks, which are applied in self-organising maps (Sester 2005).
Some approaches are able to organise multiple generalisation operators. For ex-
ample, the system of Galanda (2003), which is based on a multi-agent paradigm,
integrates algorithms for reclassification, aggregation, typification, displacement,
exaggeration, collapse, elimination, enlargement, simplification, and smoothing.
Though we focus on the aggregation of areas, such an overall strategy is needed. A
global strategy, however, can only be successful if the underlying algorithms pro-
vide solutions of high quality. Therefore, we also see our work as a contribution
to a better solution of the whole generalisation task. To produce well-generalised
results, we have also developed a method for area collapse (Haunert and Sester
2008) and implemented a line simplification algorithm similar to that of de Berg
et al. (1998). We propose to apply these procedures in succession: collapse of nar-
row polygons (for example, rivers), area aggregation, and line simplification. From
now on, we refer to the result of the collapse procedure as input; this is what our
aggregation method processes.
Mixed-integer programming has often been applied to spatial allocation prob-

lems, for example, sales territory alignment (Zoltners and Sinha 1983) and school
redestricting (Caro et al. 2004). In many of these problems, size, compactness, and
contiguity of the output regions are important criteria. Since these criteria are also
important for map generalisation, we can reuse some of the existing mixed-integer
programming formulations. On the other hand, some of the innovations that we
introduce may be interesting not only in the map generalisation context but also in
the general context of spatial allocation problems. In particular, we present a flow-
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based MIP that allows us to group a set of minimal mapping units into contiguous
and optimally compact districts that satisfy size constraints (see Appendix B). This
MIP gets by with a linear number of variables and constraints without requiring a
set of predefined district centres. Furthermore, the heuristics that we present may
be successful for many spatial allocation problems.
The outline of the article is as follows. We first review existing approaches to

aggregation in map generalisation (Section 1.1) and sketch our notion of rele-
vant quality elements (Section 1.2). We then give a quick introduction into the
basics of the optimisation technique we apply and the fundamental differences be-
tween this technique and the prevailing iterative methods (Section 2). We present
a formal problem definition (Section 3), a proof of NP-hardness (Section 4), our
mixed-integer programming formulations (Section 5), and heuristics that success-
fully tackle the high complexity of the problem (Section 6). We present our exper-
imental results in Section 7 and conclude the article in Section 8.
We provide three appendices as supplementary on-line material. Appendix A

sketches the basics of mixed-integer programming. Appendix B presents our flow-
based MIP that allowed us to solve small problem instances with proof of optimal-
ity. Appendix C presents a large sample processed with our heuristics.

1.1. Aggregation in map generalisation

According to Timpf (1998) aggregation is the most common hierarchy that exists
among objects of different scales: as a part of data abstraction, a group of ob-
jects, for example small forest areas, is replaced by a single object (an aggregate
of forests) in a smaller scale. Defining such groups is a key task of map generalisa-
tion that has been investigated for different types of objects, for example buildings
(Boffet and Serra 2001) and islands (Steiniger and Weibel 2007). Grouping is often
done according to principles of human perception, which, in early works of psy-
chology, were subsumed by laws of so-called Gestalt theory (Wertheimer 1938). For
example, grouping of objects is done according to their proximity. In our approach
we consider this criterion by measuring the compactness of shapes, that is, parts
of the same aggregate should be close to a common centre.
Several researchers have proposed simple iterative algorithms for the aggrega-

tion of areas in a planar partition. A common approach is to iteratively select an
area from the dataset and to merge it to one of its neighbours. This neighbour
is selected according to a local compatibility measure, for example, a function of
class similarities and common boundary lengths (van Oosterom 1995). Algorithm 1
formalises the iterative approach in a rather general way. The algorithm terminates
when all areas have sufficient size for the target scale.

Algorithm 1 Iterative aggregation of areas (region growing)

1: S ← set of areas below threshold for target scale
2: while S �= ∅ do
3: a← smallest area in S
4: Merge a to most compatible neighbour.
5: Update S.
6: end while

For similar algorithms, Podrenek (2002) and van Smaalen (2003) define criteria
that are evaluated in each step, in order to select areas that are to be aggregated.
Jaakkola (1997) applies a similar iterative aggregation algorithm within a system
for the generalisation of raster-based land cover maps. Also Cheng and Li (2006)
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(a) input (b) result of Algorithm 1, applying specifi-
cations for scale 1:250,000
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Figure 1.: A sample from the German topographic database ATKIS.

merge areas that are too small with neighbours. They compare two different settings
of this method. In the first setting, the neighbour is selected according to its size; in
the second setting, it is selected according to the common boundary length. With
the first setting, Cheng and Li observe for one dataset that 12.3% of the total map
area changes its class (8.3% with the second setting). They refer to this measure
as “semantic consistency”. Of course, these values depend on the characteristics
of the dataset and the defined thresholds for the target scale. In any case, the
experiments show that the amount of class change can be considerable.
We processed a dataset from the official German topographic database ATKIS

at scale 1:50,000 (DLM 50) with Algorithm 1 to meet the area thresholds from ex-
isting specifications for the target scale 1:250,000 (DLM 250). Figure 1 shows the
input for the aggregation algorithm and the result that we obtained by selecting
the neighbour according to class similarity values. Though the algorithm produces
a clearly less cluttered dataset, we observe a certain shortcoming: each of the red
settlement areas in the sample is too small for the target scale 1:250,000. However,
a human cartographer would probably create a settlement of sufficient size as their
aggregate. Since Algorithm 1 is greedy and takes only direct neighbours into ac-
count, it is unlikely that it yields such high-quality solutions. As a consequence,
the settlement is lost and relatively large parts of the sample change their classes.
Examples like this motivate to approach the problem by global optimisation.

1.2. Logical consistency, completeness, and semantic accuracy

We consider three different elements of spatial data quality in our approach, namely
logical consistency, completeness, and semantic accuracy. An introduction to qual-
ity aspects is given by Morrison (1995).
Logical consistency means compliance with database specifications, that is, we

need to ensure structural characteristics of the data model and satisfy constraints
on features. In our case the generalised dataset must be a planar partition. Speci-
fications usually define selection criteria for areas based on their size, for example,
a forest in the ATKIS DLM 250 must not be smaller than 400,000 m2 (AdV 2003).
We see such criteria as hard constraints, which must be satisfied in any case.
Additionally, we can take a selection criterion as an instruction to ensure com-

pleteness: if there is a forest of at least 400,000 m2 in the source map, it must
be present in the DLM 250. We basically assume that all areas can change their
classes. However, our method allows us to fix the classes of some areas, for example,
to ensure that a forest area of more than 400,000 m2 will not be lost. Though this
restriction can be intended, we refer to this technique as a heuristic.
To measure the semantic accuracy we introduce a semantic distance between
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Figure 2.: Class hierarchy defined in the specifications of
the German database ATKIS (AdV 2003).

Table 1.: Semantic distance matrix.
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Industry 20 0 100 100 100
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Grassland 100 100 10 0 30
Forest 100 100 30 30 0

the classes of corresponding areas in the generalised dataset and the input. We
formally define the semantic distance as a function d : Γ× Γ → +

0 , with Γ being
the set of classes. Small values of d correspond to semantically similar classes. As
a global measure we use the average semantic distance (weighted by area)

d̄ =

∑
v∈V w(v) · d(γ(v), γ′(v))∑

v∈V w(v)
, (1)

with V being the set of areas in the input, w : V → + being their sizes, γ : V → Γ
their original classes, and γ′ : V → Γ their classes after generalisation. We do
not present a new method to set up the class distances d, but refer to Schwering
(2008), who reviews existing approaches. In the map generalisation context, Yaolin
et al. (2002) propose a method to derive semantic distances and similarity values
from given data models. Attribute definitions and class hierarchies as shown in Fig-
ure 2 are exploited. For example, since farmland and grassland are both classes of
vegetation, they are semantically similar. A reasonable semantic distance measure
between two classes a and b, which is used by Yaolin et al. (2002), is the minimal
number of links from a to a common superclass of a and b. Since this distance is
not symmetric, we do not assume that it satisfies the definition of a metric.
Table 1 shows a part of a semantic distance matrix that we generated at our own

discretion for classes of the ATKIS database. Our intention was to define a simple
setting for experiments. We processed all presented samples with this setting. The
distances were mainly set up in a subjective way, but we also considered given class
hierarchies. As we aim to minimise the average class distance, the values of d can
be seen as costs. For example, changing a unit area from grassland to forest is three
times more expensive than changing the same area to farmland.

2. Applied optimisation techniques

Since we apply mathematical programming and heuristics for solving the area ag-
gregation problem, we briefly discuss these combinatorial optimisation approaches.
Mathematical programming is a general approach to formalise and solve a com-

binatorial optimisation problem. A prominent special case of mathematical pro-
gramming is linear programming. A linear program (LP) consists of two parts: a
linear objective (or cost) function and a set of linear constraints, each in the same
variables. Each constraint corresponds to a half space; the intersection of the half
spaces—a (possibly unbounded) convex polytope—represents the set S of feasi-
ble solutions. Among the points in S we are interested in one that minimises the
objective function. Linear programs can be solved efficiently, for example, using
the interior point method of Karmarkar (1984). The simplex algorithm of Dantzig
(1963) is efficient in practice but requires exponential time in theory.
In an integer linear program (IP) all variables are restricted to integer values.
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Usually, the optimal solution of the IP is far from the optimal solution of the
corresponding LP. The general integer programming problem is NP-hard. A mixed-
integer linear program or simply mixed-integer program (MIP) is the generalisation
of both an LP and an IP; it can contain both unrestricted (continuous) and integer
variables. All our formulations fall into this category.
There are powerful techniques for solving MIPs, and intensive research is being

carried out to further improve these techniques. Therefore, formalising an optimi-
sation problem as a MIP is valuable if no efficient, specialised algorithm for the
problem is known. With this approach, one will directly benefit from improve-
ments of the general solution techniques. Usually, there are several alternatives to
express the same problem as a MIP; choosing among them can result in significant
differences in terms of performance. We therefore tested several different formula-
tions of the area aggregation problem. We solved our MIPs with a method called
branch-and-cut, which we sketch in Appendix A. We refer to Mitchell (2002) for
a more detailed discussion. Branch-and-cut techniques are implemented in several
commercial software packages. We used the software ILOG CPLEX

TM

11.2.
Heuristics do not offer a globally optimal solution, but often yield relatively

good solutions in reasonable time. We distinguish heuristics that are designed for a
specific problem and those that offer solutions for a very general class of problems
(meta-heuristics). We will introduce heuristics of the first type in Sections 6.1–6.2 to
eliminate some variables in our mixed-integer programs and to decompose a prob-
lem instance into smaller instances. Prominent meta-heuristics are hill climbing
and simulated annealing. Both have been applied to map generalisation problems
(Ware and Jones 1998). Starting from an initial solution, a hill-climbing algorithm
iteratively moves to a better solution in a defined neighbourhood until no such
solution can be found. Especially due to its efficiency and capability of handling
multiple operators, hill climbing has been applied to map generalisation (Galanda
2003, Regnauld 2001). However, the hill-climbing approach only leads to local op-
tima. Simulated annealing is based on an algorithm similar to hill climbing, but, in
order to escape local optima, solutions of lower quality are occasionally accepted
(Kirkpatrick et al. 1983). At each iteration, a neighbour of the current solution is
randomly selected and accepted with a certain probability, depending on its cost
and a predefined annealing schedule. This approach has been used by Ware et al.
(2003) to comprehensively perform displacement, size exaggeration, deletion and
size reduction for multiple map objects. A general problem of simulated annealing
is the tuning of parameters that are not inherent to the problem. For example,
a cartographer is usually able to specify parameters expressing his preferences for
generalisation, but setting up an annealing schedule requires a considerable amount
of experimenting. Nevertheless, we use simulated annealing as benchmark to mea-
sure the quality of our specialised heuristics. We sketch our simulated annealing
set-up in Section 6.3.
In contrast to heuristics, the use of mathematical programming gives us access to

exact solution methods, such as branch-and-cut. Though we cannot directly apply
the exact methods under time constraints (we will need to introduce heuristics to
break down the complexity of the NP-hard problem), we see several advantages
compared to iterative meta-heuristics:

+ Optimally solving small problem instances allows the defined constraints and
optimisation objectives to be verified independently from heuristics and tuning
parameters of algorithms.

+ Iterative meta-heuristics often require hard constraints to be relaxed, in order
to produce solutions sufficiently close to the optimum (Michalewicz and Fogel
2004). In Section 6.3 we discuss this problem with respect to area aggregation.
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+ The approach by mathematical programming is deterministic, randomised al-
gorithms like simulated annealing are not. Using a pseudo-random number gen-
erator, every time with the same initialisation, eases this problem. For other
researchers, however, a reproduction of experimental results is still difficult.

On the other hand, mathematical programming has two severe limitations:

− The possibility to express hard and soft constraints is limited, often restricted
to linear expressions.

− The time required for finding a (close-to-) optimal solution is difficult to predict.

We will see in Section 3.2 that the first limitation especially affects the possibility
to express the compactness of a shape.

3. Modelling area aggregation as optimisation problem

In this section we first give a basic definition of the aggregation problem (Sec-
tion 3.1) and then discuss possibilities to measure the compactness of shapes. Re-
searchers have proposed many different compactness measures for the analysis of
shapes. MacEachren (1985) gives a detailed discussion. We investigate one of these
classical measures in Section 3.2 and then explain an alternative approach, which
is often applied in mixed-integer programs for districting problems (Section 3.3).

3.1. Problem statement

Figure 3 shows an instance of the aggregation problem and a solution. We adopt
the definition of the semantic distance d from Section 1.2, as well as the definitions
of V , w, Γ, γ, and γ′. However, we use the terminology of graph theory in this
section, that is, we refer to nodes instead of areas, weights instead of area sizes,
and colours instead of land cover classes.

Problem (AreaAggregation): Given

(i) a planar graph G(V,E) with node weights w : V → + and a node colouring
γ : V → Γ, where Γ is the set of all colours,

(ii) a function θ : Γ→ + (a minimally allowed weight for each colour),
(iii) a function d : Γ× Γ→ +

0 (the semantic distance),
(iv) a function c : 2V × Γ→ +

0 (the non-compactness of an aggregate), and
(v) a scalar weight factor s ∈ [0, 1],

define a new colouring γ′ : V → Γ of nodes and find a partition P = {V1, V2, . . . , Vp}
of V such that

(vi) for each node set Vi ∈ P

• all nodes in Vi get the same new colour γ′i ∈ Γ, i.e., γ′(v) = γ′i for all v ∈ Vi,

• Vi has total weight at least θ(γ
′
i),

• the graph induced by Vi is connected, and

• at least one node v ∈ Vi keeps its old colour, that is, γ′(v) = γ(v), and
(vii) the cost f = s · frecolour + (1− s) · fnon-compact is minimised, where

• frecolour =
∑

v∈V w(v) · d(γ(v), γ′(v)) and
• fnon-compact =

∑
Vi∈P c(Vi, γ

′
i).

The graph G(V,E) in (i) is the adjacency graph of the areas in the input dataset.
The node set V contains an element for each area. The set E contains an edge
between two nodes if the boundaries of the corresponding areas share at least one
line segment that is not degenerated to a point.
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(a) map representation

v1 v2 v3

v4 v5 v6

v7 v9v8

(b) graph representation

Figure 3.: An instance of the aggregation problem and a solution, both displayed in map and graph repre-
sentation. The solution corresponds to the partition P = {{v1, v2, v4}, {v3, v5, v6}, {v7, v8, v9}}. Assuming
that all areas in the input have unit size, all aggregates satisfy the weight threshold θ = 3.

Together, the expressions in (iii)–(v) define the ingredients of the cost function
(vii), that is, the generalisation objective. The objective is subject to a number of
hard constraints, that is, constraints that any feasible solution must fulfil. We now
motivate the hard constraints, which are listed in (vi).
Each element Vi in the partition P defines an aggregate, that is, an area in the

target scale. Its shape is the union of the shapes that correspond to the nodes in Vi

and its class is defined by γ′i. Each aggregate must be unicoloured, weight-feasible,
and contiguous. An aggregate is unicoloured if all nodes that belong to it receive
the same colour γ′i. To be weight feasible, the size of the aggregate must be at
least θ(γ′i). This allows us to define different size thresholds for different classes,
which, for example, the ATKIS specifications (AdV 2003) do. The requirement
for contiguity means that we forbid multi-part features. In this context, the terms
connectivity and contiguity refer to the same concept. We use the term connectivity
when referring to the graph representation. Additionally, we require that each
aggregate contains a node of unchanged colour to avoid that new classes appear in
the generalised map. Throughout this article such a node, which defines the colour
of an aggregate, will be referred to as centre. Note that according to this definition
each node is a potential centre.
The cost function (vii) expresses the cartographer’s preferences for different fea-

sible solutions. Two different sub-objectives can be identified. The first aim is to
change the original classes as little as possible. The second aim is to make shapes
as compact as possible. To model these two aims, the functions d and c, which are
introduced in (iii) and (iv), are combined in a weighted sum defined by the factor
s (see (vii)). The class distance function d is defined according to Section 1.2. It is
explicitly given by a quadratic matrix with |Γ| × |Γ| elements. Minimising frecolour
implies to minimise d̄, as the denominator in equation (1) is constant for a given
dataset. The function c defines a penalty for the non-compactness of an aggregate,
that is, an area in the target scale that is defined by a subset of nodes and their
new colour. We assume that c attains high values for complex shapes, but we will
simply use the term compactness measure in the following.

3.2. Compactness based on the perimeter

The first compactness measure investigated by MacEachren (1985) is c1 =
perimeter/(2 · √π · area). This results in c1 = 1 for circles and in higher values
for less compact shapes. Another important feature of this measure is its size in-
variance, that is, the value of c1 does not change if a shape is scaled.
We now discuss the setting c := c1 for our global optimisation problem, that is,

for each aggregate, we charge an individual cost equal to c1. Assume that we have
two different solutions for the same instance, both containing aggregates that only
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differ in size, for example, one solution contains four square-shaped aggregates of
size 2 m×2 m, and the other solution contains 16 squares of size 1 m×1 m. If we now
charge the same cost for the non-compactness of each aggregate, the first solution
with few large aggregates will be preferred, simply because a smaller number of
equal penalties is charged. To define a measure that results in equal costs for the
discussed partitions, we can charge an individual cost proportional to the size of an
aggregate, that is, c2 = area · c1 =

√
area ·perimeter/(2

√
π). Indeed, setting c := c2

seems to be a good choice, as the shapes in both solutions do not differ in terms
of compactness. The formula for c2, however, contains a square root of a variable
measure, that is, the area of an aggregate in the output. Unfortunately, we cannot
express this using linear terms only.
At this point, our problem clearly exceeds the possibilities of mixed-integer linear

programming. Note, however, that modelling a problem always requires a trade-off
to be found between the adequacy of the optimisation objective and the possibility
to solve the problem. With this in mind, let’s assume that the resulting aggregates
in the output have a reasonable and constant size. In this case we can simply define

cperimeter = perimeter, (2)

and set c := cperimeter, which indeed can be expressed in a MIP (Wright et al. 1983).
Certainly, our assumption is not very realistic, that is, by minimising the perimeter
of aggregates, our method will again prefer results with few large aggregates. To
cope with this, we could introduce additional requirements, for example, we could
define an upper bound for the size of aggregates or a lower bound for the number
of elements in P . In Section 6.1 we will introduce a heuristic approach that is based
on a set of nodes that are predefined as centres. With this, we can also avoid too
large aggregates, if we define that an aggregate must not contain more than one
centre. Our assumption becomes much more realistic with this requirement, since
an aggregate cannot become too small due to the hard threshold constraints and
not too large if we appropriately define the centres. Results of this approach are
presented in Section 7. In the following, we will formally refer to cperimeter as a
function of a set V ′ ⊆ V .

3.3. Compactness based on distances to a reference point

Let’s now discuss another approach to measuring the compactness of an aggregate,
which, in similar versions, has often been applied in mixed-integer programs for
districting problems (Hess and Samuels (1971); Cloonan (1972); Zoltners and Sinha
(1983)). For many applications, these measures have a very concrete meaning: often
it is aimed to minimise travel distances of customers to central facilities like stores.
This is done by the discussed measures.
Let δ : V × V → +

0 be the Euclidean distance between the centroids of two
areas. For V ′ ⊆ V and γ′ ∈ Γ we define

cdistance(V
′, γ′) = min

{∑
v∈V ′

w(v) · δ(v, u)
∣∣∣ u ∈ V ′ ∧ γ(u) = γ′

}
, (3)

that is, we select one node u ∈ V ′ of colour γ′ as a reference point and, for each
node v ∈ V ′, charge a cost equal to the product of the weight of v and its distance
to u. The reference point is selected such that the total cost for an aggregate
is minimal. Figure 4 illustrates this approach. Restricting the potential reference
points to nodes of a certain colour, we can enforce that the reference point and the
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centre of an aggregate are the same. This certainly is a reasonable simplification:
it is preferred that nodes ‘gather around’ a centre of unchanged colour.
It is important to note that just as cperimeter this measure is not size-invariant:

as distances to centres are shorter for small areas, setting c := cdistance will tend to
result in solutions with many small aggregates. This bias, however, is limited since
the thresholds θ guarantee that the aggregates do not become too small.
As shapes are approximated by centroids, the measure cdistance is a rather coarse

indicator for the geometrical characteristics of an aggregate. We therefore suggest
to combine cdistance with the measure cperimeter by defining an additional weight
factor s′ ∈ [0, 1], that is,

c := s′ · cdistance + (1− s′) · cperimeter. (4)

Finally, we introduce the measure cshortest-path that is slightly different from
cdistance. Let δ

′
V ′(u, v) be the length of the shortest path π from u ∈ V ′ to v ∈ V ′ on

G using edge length δ, such that π does not leave V ′ ⊆ V . We define cshortest-path
by equation (3), but replace δ by δ′V ′ . This measure is illustrated in Figure 5. For
certain problems cshortest-path is certainly more adequate than cdistance, for exam-
ple, if a traveller is not allowed to cross territory boundaries. However, for map
generalisation we consider cdistance and cshortest-path similarly relevant: both can be
seen as rather abstract driving forces toward more compact shapes.

u

Figure 4.: The compactness measures cdistance uses
direct distances to a reference point.

u

Figure 5.: The compactness measures cshortest-path
uses shortest path lengths to a reference point.

4. NP-hardness

We now investigate the computational complexity of the aggregation problem. We
show that the problem is NP-hard, that is, one cannot expect to find an exact
polynomial-time solution.

Theorem 4.1 : Given an instance of AreaAggregation defined in Section 3.1
and an integer C > 0, it is NP-hard to decide whether a solution with cost less
than C exists, even if the number of colours is restricted to two, all nodes have unit
weight, the distance d between each two colours is the same, the threshold θ is the
same for all classes, and the compactness of shapes is neglected, that is, s = 1.

Note that in this decision version of the aggregation problem, we only look for an
answer like ‘yes’ (there exists a solution better than C) or ‘no’. Of course we could
easily answer this question by optimally solving the aggregation problem. So, the
decision version is not harder than the optimisation version.
Our proof relies on the following concepts.

• Given a graph G(V,E), a vertex cover of G is a subset of V that contains at
least one of the two endpoints of each edge in E.
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• Given a graph G and an integer C > 0, the problem VertexCover is to decide
whether G has a vertex cover of cardinality at most C.

• The problem PlanarVertexCover is the special version of VertexCover
where the given graph G is planar. Even this restriction is known to be NP-hard
(Garey et al. 1974).

As usual we prove NP-hardness by reduction from a problem that is known to be
NP-hard. In our proof we reduce from PlanarVertexCover, that is, we show
that, for each instance of PlanarVertexCover, we can construct an instance of
the decision version of AreaAggregation such that the second instance is a ‘yes’-
instance if and only if the first instance is a ‘yes’-instance. This means that, if there
was an efficient algorithm for the area aggregation problem, we could efficiently
solve the problem PlanarVertexCover as well. In other words, solving the
area aggregation problem is at least as hard as solving PlanarVertexCover.
As PlanarVertexCover is NP-hard, AreaAggregation is NP-hard, too.

G G∗

Figure 6.: Reduction from PlanarVertexCover.

Proof : Given an instance of PlanarVertexCover, that is, a planar graph
G(V,E) and an integer C > 0, we construct the input graph G∗(V ∗, E∗) for the
aggregation problem as in Figure 6. We define the set of colours Γ = {black,white}.
For each node v ∈ V , we add three black nodes to V ∗. We refer to an arbitrary one
of them as the node corresponding to v. The three nodes are connected by edges
forming a triangle. For each edge {u, v} ∈ E, we add |V | white nodes to V ∗. We
connect each of these nodes by edges with the nodes corresponding to u and v. We
define a unit weight w = 1 for each node and the threshold θ = 2 for each colour.
For changing the colour of a node, we charge one unit of cost, that is, we define
d(white,black) = d(black,white) = 1 and d(white,white) = d(black,black) = 0.
The maximally allowed cost is defined by C∗ = C.
We now prove that there is a solution of the instance of AreaAggregation

with cost C∗ if and only if there is a vertex cover of G with cardinality C.
For each vertex cover of G with cardinality C̄, there is a corresponding solution

of the aggregation problem with cost C̄: in G∗, we simply need to change the black
nodes that correspond to the nodes in the vertex cover of G into white nodes. As
the vertex cover includes an endpoint for each edge in E, all white nodes will get a
white neighbour. For each triangle of black nodes, at least two adjacent nodes will
remain black. Thus the subgraphs induced by the white and by the black nodes
are all weight-feasible.
It remains to show that, for any solution of the aggregation problem with cost C̄,

there is a vertex cover of G with cardinality C̄. Let’s assume that no such vertex
cover exists, that is, the cardinality of a minimum vertex cover of G is larger than
C̄. This implies that there is at least one edge {u, v} in E such that the black nodes
in V ∗ corresponding to u and v keep their colours. In this case, we can only satisfy
the weight thresholds by changing the colour of all white nodes in V ∗ that were
added for the edge {u, v}. This, however, is very expensive, that is, we need to
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spend a cost of |V |. As |V | is the cardinality of a trivial vertex cover of G, that is,
the one including all nodes in V , we have found a contradiction to our assumption.
Note that our reduction can be done in polynomial time. Therefore, we can say

that PlanarVertexCover polynomially reduces to AreaAggregation. �

Since there is no hope of finding an exact polynomial time algorithm for
AreaAggregation, we focus on heuristics and mixed-integer programming.

5. MIP formulation

According to the problem definition from Section 3.1, only contiguous aggregates
are allowed. To express this requirement by means of linear constraints is a non-
trivial task. Williams (2002) and Shirabe (2005) have found different solutions for
this in the context of spatial allocation problems. Their models allow constraints
to be defined that forbid non-contiguous aggregates but do not exclude any con-
tiguous aggregate. Both authors discuss problems where the aim is to compute a
single contiguous aggregate. In this case, their formulations require a linear num-
ber of variables and constraints. The MIPs of both authors can be adopted in
order to model the aggregation problem. However, as this problem asks for several
contiguous aggregates, the number of variables and constraints becomes quadratic.
We tested both methods for the area aggregation problem; it turned out that

only very small problem instances can be solved optimally. The largest instance
that we could solve optimally contained 15 nodes with the approach of Williams
(2002) and 30 nodes with the approach of Shirabe (2005). However, for the special
cases that compactness is either neglected or expressed by cshortest-path, we found
a MIP of linear size. With this model we solved instances of up to 50 nodes. For
the MIP formulation we refer to Appendix B. We refer to this MIP as flow MIP.
In order to obtain an appropriate performance we introduce heuristics. In par-

ticular, we introduce a stricter requirement for the contiguity of aggregates. This
approach has been used before for spatial allocation problems (Zoltners and Sinha
1983) and districting problems (Caro et al. 2004). Both works deal with problems
where a set of region centres is given in advance. In contrast, we need to solve
the aggregation problem for an unknown set of centres. We first specify the ap-
proach and introduce a basic MIP that allows for the compactness measure cdistance
(Section 5.1). We then extend this MIP to also consider cperimeter (Section 5.2).

5.1. A basic MIP based on a precedence relationship

In order to present our MIP formulation we first define the set of variables:

xuv ∈ {0, 1}, with xuv = 1 if and only if node v ∈ V belongs to centre u ∈ V.

These binary variables define the solution of the problem: all nodes u with xuu = 1
constitute the set of centres that define the colours of aggregates and the reference
points for the compactness measure cdistance. To assign a node v to a centre u, xuv
needs to be set to 1. We minimise the cost frecolour by the objective function

minimise
∑
u∈V

∑
v∈V

w(v) · d(γ(v), γ(u)) · xuv. (5)
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Similarly, we minimise the cost for the non-compactness according to cdistance:

minimise
∑
u∈V

∑
v∈V

w(v) · δ(u, v) · xuv (6)

We now explain our set of constraints. The first constraint expresses that each
node must be assigned to exactly one centre:

∑
u∈V

xuv=1 for all v ∈ V (7)

The second constraint ensures that the aggregate with centre u is weight-feasible,
that is, the threshold for the target scale is satisfied. It is only effective if xuu = 1.

∑
v∈V

w(v) · xuv≥θ
(
γ(u)

) · xuu for all u ∈ V (8)

It remains to ensure the contiguity of aggregates. For this we first define the set
of predecessors of a node v with respect to the centre u by

Predu(v) := {w ∈ V | D(u,w) < D(u, v) ∧ {v,w} ∈ E}, (9)

where D : V × V → +
0 denotes a distance between nodes. According to this

definition, the set Predu(v) contains the neighbours of v that are closer to u.
We define the distance D to be the shortest-path length in the directed graph

G′(A,V ) with A = {uv | {u, v} ∈ E} and arc lengths α : A → +
0 . Furthermore,

we define α(uv) = w(v), which implies that we consider two nodes to be far from
each other if the smallest aggregate that contains both is large.
Figure 7(a) illustrates the defined precedence relationship assuming unit node

weights. Arcs are drawn from each node v ∈ V to its predecessors Predu(v). The
resulting directed graph is acyclic and the centre u is the only sink. For some edges
(dashed lines), both incident nodes have the same distance to the centre. With
non-uniform node weights, however, these cases are very rare.
We now ensure contiguity by claiming that node v can only be assigned to centre

u if there is also a predecessor w that is assigned to u:

∑
w∈Predu(v)

xuw≥xuv for all u, v ∈ V with u �= v. (10)

This constraint clearly forbids non-contiguous aggregates since the centre can al-
ways be reached from an assigned node via predecessors, that is, without leaving
the aggregate. Figure 7(b) shows an example that satisfies the constraint. Clearly,
when applying this constraint, some contiguous aggregates are excluded, for exam-
ple, the aggregate in Figure 7(c). The aggregate does not contain any predecessor of
the node located in the bottom left corner. This strict definition of contiguity is jus-
tifiable, since the non-feasible contiguous aggregates are likely to be non-compact.
Therefore, we can probably exclude them without loosing good solutions. Since the
optimal solution might be missed, we refer to this approach as a heuristic.

5.2. Expressing the cost for perimeters

To express the cost for perimeters of shapes, we need additional auxiliary variables:
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u

(a) the precedence relationship
Predu

(b) aggregate feasible according
to Predu

(c) aggregate non-feasible according
to Predu

Figure 7.: Precedence relationship with respect to centre u (displayed as square) and feasibility of aggregates
in the presented MIP.

yue ∈ [0, 1], with yue = 0 if at least one endpoint of e ∈ E
does not belong to centre u ∈ V .

We add the following constraint to ensure the above semantic of the variables yue,
that is, yue with e = {v,w} is set to 0 if xuv = 0 or xuw = 0:

yue
yue

≤
≤

xuw
xuv

}
for all u ∈ V, e = {v,w} ∈ E (11)

Charging a cost for the perimeters of aggregates can also be regarded as giving a
benefit for edges contained in aggregates. With the variables yue we can choose this
approach. Let’s first express this alternative view for the total cost for perimeters.
The sum of perimeters in the result is equal to the sum of perimeters in the input
minus twice the length of boundaries that are eliminated by the aggregation:

∑
Vi∈P

cperimeter(Vi) =
∑
v∈V

cperimeter({v}) − 2 ·
∑
e∈E′

λ(e), (12)

with E′ ⊆ E being the set of edges that are contained in an aggregate and λ : E →
+
0 being the length of the common boundary between two areas. As the first term

on the right-hand side of equation (12) is constant, we only need to minimise the
second term. This can be expressed by

minimise − 2 ·
∑
u∈V

∑
e∈E

λ(e) · yue. (13)

As a negative cost, that is, a benefit is given proportional to yue, the variable yue
always attains the value of its upper bound. Hence yue = 1 for each edge e ∈ E
included in the aggregate with centre u. We keep the factor 2 in objective (13).
Thus, we can express the cost f = s · frecolour + (1 − s) · fnon-compact (see (vii))
with the compactness function c = s′ · cdistance + (1− s′) · cperimeter (equation (4))
simply by applying the same factors s and s′ to objectives (5), (6), and (13).

6. Heuristic approaches

In Section 5.1 we already introduced a heuristic by excluding certain contiguous
aggregates in advance. However, this does not suffice to obtain an adequate per-
formance. In this section we suggest additional specialised heuristics (Sections 6.1
and 6.2) and an alternative approach by simulated annealing (Section 6.3).
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In our earlier publication (Haunert and Wolff 2006) we defined a heuristic, which
we termed distance heuristic. This heuristic is based on the fact that it is very
unlikely that two nodes u and v are merged in the same aggregate if their distance
is large. More precisely, we set xuv = xvu = 0 if a certain, easily accessible predicate
allows us to conclude that each contiguous aggregate containing u and v can be
split into two feasible aggregates. In this article, we skip the formal definition of this
predicate since the distance heuristic only led to a small reduction of the processing
time. Nevertheless, we present experimental results with this heuristic in Section 7.

6.1. Centre heuristic

A very common approach to speed up the solution of districting problems is to
predefine the set of centres (Hess and Samuels (1971), Hojati (1999)). Shirabe
(2005) shows that his MIP for selecting an optimal contiguous set of areas can be
simplified if a centre is known. We fix the set of centres to reduce the number of
variables in our problem instances. Our idea is to define heavy nodes as centres, as
the weight of a node is a multiplier for costs that are charged for its colour change
and its distance to the centre. So, it is likely that solutions with large centres are
good according to the objective function. Consequently, we exclude nodes with low
weights from the set of potential centres.
When defining a set of nodes as centres we need to ensure that the problem does

not become over-constrained. We can guarantee the feasibility of the problem if
we maximally fix one node with unchanged colour for each aggregate in a feasible
start solution. To find a start solution we apply Algorithm 1. As the quality of this
solution is relatively low, we choose a rather conservative approach, that is, the
majority of nodes will not be constrained. We define the centre heuristic as follows.

Centre Heuristic: (a) For each aggregate obtained with Algorithm 1, the largest
area with unchanged colour is a centre and (b) each other area of size less than
10% of the threshold is excluded from the set of potential centres.

With this definition, all areas in the original scale that are sufficiently large for
the target scale will be included in the set of predefined centres. About 7% of
all areas in our dataset at scale 1:50,000 fall into this category when applying the
specifications for the target scale 1:250,000. Predefining these nodes as centres does
not necessarily need to be regarded as deficit. Recall our notion of completeness
from Section 1.2: an area that is large enough for the target scale must not be lost,
that is, its class must not change. This is ensured by fixing such nodes as centres.
However, also other nodes will be constrained with the defined heuristic, which is
necessary to obtain an acceptable performance.
It is clear that certain variables can immediately be eliminated with this heuristic.

Additionally, the heuristic allows a problem instance to be decomposed into smaller
instances as follows.

Proposition 6.1: Let Vθ = {v ∈ V | w(v) ≥ θ(γ(v))}. Under the condition that
each node in Vθ is fixed as a centre and the subgraph of G induced by V \ Vθ is not
connected, the AreaAggregation instance with any of the compactness measures
cdistance, cshortest-path, and cperimeter decomposes into several (that is, two or more)
independent problem instances. Each such problem instance comprises a connected
component of the subgraph of G that is induced by nodes V \ Vθ and the centres
surrounding this component.

In the example in Figure 8, the problem can be decomposed into two instances.
The proposition directly follows from the definition of the problem: suppose that
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Figure 8.: An instance of the aggregation problem (left), which can be decomposed into two independent
problem instances (right). Node weights are displayed as numbers, centres with w(v) = θ(γ(v)) as squares.
The threshold is defined by θ(γ) = 1 for all γ ∈ Γ.

(a) applying thresholds for target scale 1:250,000 (b) applying half thresholds

Figure 9.: Independent problem instances resulting from the centre heuristic (different grey shades). The
largest problem instance is displayed with the darkest shade. White areas have sufficient size.

two nodes i and j belong to different connected components. Then each potential
aggregate containing both also contains a fixed centre v with w(v) ≥ θ(γ(v)). The
assignment of i to v does not have any influence on the cost of the assignment of
j to v. Further, as v has already sufficient weight, these merges do not have any
influence on the feasibility of the aggregate containing v.

6.2. Introducing intermediate scales

Figure 9 shows the independent problem instances resulting from the centre heuris-
tic for our dataset at scale 1:50,000, which contains 5537 areas. In Figure 9(a) we
applied the thresholds from the existing specifications for the target scale 1:250,000.
Though the problem decomposes into 145 instances, one huge connected compo-
nent remains that contains 4226 areas; this is far too much to be processed at
once. We therefore suggest to define intermediate scales, that is, to satisfy smaller
thresholds first. In Figure 9(b) we applied thresholds of half value, yielding much
smaller independent problem instances. If we know that we can solve instances
with at most K nodes, we can further decrease the thresholds until no instance is
larger than this. Hence, the capability to solve problem instances of limited size
can be translated into the capability to handle limited differences in scale.
Certainly, the number of scale steps that are needed to reach the target scale is

different for different parts of the dataset: our dataset contains large forest areas
that have a separating effect. In the surroundings of towns, however, we find many
small areas. We therefore suggest Algorithm 2 that locally introduces intermediate
thresholds whenever they are needed to restrict the size of the resulting instances.
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Figure 10 illustrates the algorithm using a one-dimensional example.
The algorithm requires the parameter K as input, that is, the maximal number

of areas that are to be processed in one iteration. Setting K := 1 the algorithm
iteratively selects the smallest area and assigns it to one of its neighbours, which
is just the same as what is done by the original iterative algorithm in Section 1.1.
Our assumption is that we obtain better results if we choose K as high as possible,
in a way allowing the optimisation process to think more merges ahead. If we set
K := |V |, we solve the problem in a single step without intermediate thresholds.
Thus, the algorithm generalises both: the original iterative approach as well as the
optimisation approach with the centre heuristic.
Throughout the algorithm, we maintain a set of connected components (defined

in line 2), which we let grow by iteratively adding the smallest area that falls
below the required threshold (lines 4–21). If we obtain a connected component
containing K areas, we define and solve a problem instance as shown in Figure 8.
This means that we allow the algorithm to aggregate the contained areas with each
other or to assign them to one of the adjacent areas (line 12). Then we update the
map by replacing the areas with the aggregates we found. We need to define the
intermediate thresholds θ′ for this step such that all areas in the neighbourhood
of the component have sufficient weight; thus we define θ′(γ) = min{θ(γ), wmin},
with wmin being the smallest area in the neighbourhood.
If different components merge when adding a single area (lines 17–18), instances

of more than K areas may come into existence. To avoid this, we solve the largest
involved component. Finally, we solve the remaining instances applying the thresh-
olds for the target scale (line 22).

6.3. Area aggregation by simulated annealing

In order to specify our alternative heuristic optimisation approach by simulated
annealing, we adhere to the common definition of the algorithm. For pseudo code
and a list of required design decisions we refer to Johnson et al. (1989) who applied
simulated annealing to graph partitioning. We choose the following setting:

• We apply Algorithm 1, that is, region growing, to find an initial solution.

• We define the neighbourhood of a solution as the set of solutions that can be
obtained by applying a single node swap.

A node swap comprises the removal of a node from its aggregate and the assign-
ment of this node to another aggregate. Figure 11 shows different cases. In any
case, we recolour the involved aggregates such that the resulting cost is minimal.
A node swap can result in an aggregate whose size falls below the required

threshold θ. We could reject such solutions, but as a consequence we would lose
the possibility of reaching any solution from a given start, for example, a solution
that only contains aggregates of size θ would be an isolated point in the solution
space. Hence, we relax the hard threshold constraint and charge an additional cost
for an aggregate V ′ ∈ P with colour γ′, if its size is smaller than θ(γ′). We define
this cost by s′′ · (θ(γ′) −∑

v∈V ′ w(v)
)
with a new weight factor s′′ ∈ +

0 . If the
final result of the algorithm does not satisfy the size constraints, we can apply
Algorithm 1 to repair the solution.
We define the annealing schedule by the initial temperature T0, the final tem-

perature TE , and the number of iterations I. The cooling ratio that defines the

temperature decrease in one iteration is r = (TE/T0)
1/I . For our experiments we set

T0 = 109, TE = 104, and s′′ = 104 (areas were measured in m2 and distances in
m). We set I = 1000 · |V | if we do not explicitly define another setting.
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Algorithm 2 Iterative aggregation of areas in big scale steps

1: Input: an instance of AreaAggregation, an integer K > 0
2: Π← a set of connected components, initially empty
3: S ← set of areas below threshold for target scale
4: while S �= ∅ do
5: a← smallest area in S
6: Π′ ← the set of components in Π containing a neighbour of a
7: S′ ← the set of areas that lie in one of the components in Π′
8: if |S′| < K then
9: Remove all components in Π′ from Π.

10: Create a new component p comprising a and all areas in S′.
11: if p contains K areas then
12: Solve p: merge areas in p with each other or with surrounding centres.
13: else
14: Insert p into Π.
15: end if
16: else
17: Solve the component in Π′ having most areas as in line 12.
18: Remove this component from Π.
19: end if
20: S ← set of areas below threshold for target scale, not contained in any

component in Π
21: end while
22: Solve the remaining components in Π as in line 12.

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Step 13

Step 14

Step 15

Line 17

Line 12

Line 12

Figure 10.: Several steps of Algorithm 2 with K = 4 (from bottom to top). The optimisation method was
applied three times; both cases that are defined in lines 12 and 17 of the algorithm occurred. The meaning
of the small disks and squares is as in Fig. 8. Areas that were added to components in Π are displayed as
dark grey rectangles. Among the other areas (light grey rectangles), the smallest area is selected in each
iteration (marked with ×). The connected components in Π are updated by adding this area, if this does
not imply a connected component of more than four areas. If a connected component of exactly four areas
is created, the corresponding problem instance is solved. In the example, this happens in steps 9 and 14.
If adding an area would imply a connected component with more than four areas, the problem instance
corresponding to the largest adjacent component is solved. In the example, this happens in step 11: adding
the smallest area in step 10 to Π would imply a connected component of six areas.
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(a) the normal case,
before (top) and af-
ter application of the
node swap

(b) removing a node,
an aggregate resolves
into multiple contigu-
ous aggregates

(c) we also allow a
new aggregate to be
created with a single
node

(d) an aggregate with
a single node com-
pletely merges into
another one

Figure 11.: Different types of node swap that define a neighbourhood for simulated annealing.

7. Experimental tests

We tested our methods for a dataset from the ATKIS database at scale 1:50,000,
applying size thresholds from existing specifications for the scale 1:250,000. The
class distances d were defined according to Table 1. All remaining parameters of
our model were found by experiments. We first present some samples and then
discuss the observed performance. We present a large sample in Appendix C.

7.1. Obtained results

Applying the method from Section 6.2 with intermediate scales, we are able to
process large datasets. We used this approach to produce the presented results,
that is, we applied Algorithm 2 with K = 200 and solved the occurring problem
instances with the MIP based on the precedence relationship. Both the centre and
the distance heuristic were applied. For three sample of our dataset we show:

• the input dataset after preprocessing with the collapse procedure (Figures 1(a),
13(a), and 14(a)),

• the result of Algorithm 1, i.e., region-growing (Figures 1(b), 13(b), and 14(b)),

• the result of the optimisation method when minimising class change (Figures
12(a), 13(c), and 14(c)),

• the result of the optimisation method when minimising the combined cost with
s = 0.000715 and s′ = 0.000015 (Figures 12(b), 13(d), and 14(d)), and

• the latter aggregation result after line simplification, shown at the target scale
1:250,000 (Figures 12(c), 13(e), and 14(e)).

Figure 12 shows the results we obtained for the input in Figure 1(a). In Fig-
ure 12(a) we minimised the cost for class change. In contrast to Algorithm 1, this
optimisation approach allows small settlements to be saved by changing the classes
of some connecting areas. Though this leads to an aggregate of sufficient size for
the target scale, the example clearly shows that minimising changes of classes does
not suffice to produce good generalisation results: the small rectangular settlement
in the right part of Figure 1(a) was included in the aggregate by creating a long,
narrow corridor that is needed to satisfy the constraint for connectivity; obviously
such complex shapes are not intended. Minimising a combined cost for class change
and compactness, we obtained the result in Figure 12(b). Including the rectangu-
lar settlement in the aggregate would be too expensive, as the resulting boundary
would be relatively long. As a consequence, we obtain a more compact aggregate
that better reflects the aim of a cartographer.
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(a) result with minimal class change (b) considering class change and compact-
ness
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(c) at scale
1:250000
(lines simpli-
fied)

Figure 12.: Two results for the sample in Figure 1(a) obtained with our optimisation approach.

A similar example is presented in Figure 13. The forest areas in the right part
of Figure 13(a) are lost when applying the simple iterative method (Figure 13(b)),
but can be saved using our optimisation approach. The results without and with
consideration of compactness (Figure 13(c) and 13(d), respectively) mainly differ in
the left part of the sample. However, also the forest in the right part appears slightly
different in both results. In Figure 13(d) two small forest areas were ‘sacrificed’,
that is, changed to other classes, in order to create a short and simple outline.

(a) input (b) output of Alg. 1 (c) as Fig. 12(a) (d) as Fig. 12(b) (e) as
Fig. 12(c)

Figure 13.: A second sample from the ATKIS DLM 50.

(a) input (b) output of Alg. 1 (c) as Fig. 12(a) (d) as Fig. 12(b) (e) as
Fig. 12(c)

Figure 14.: A settlement that can be saved by ‘stealing’ smaller forest areas.

The sample in Figure 14 shows another interesting case. The settlement in the
centre is too small for the target scale, but can be saved either by creating a con-
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Table 2.: Experimental results with our MIPs, neglecting compactness. Computation times are in seconds
CPU time unless marked with h, which stands for hours. All instances were solved to optimality except ∗.
The average class distance d̄ is equal to the cost for class change per area as defined in equation (1). Class
distances are defined according to Table 1.

Alg. 1 flow MIP P-R MIP
pure centre pure distance centre centre + dist.

heuristic heuristic heuristic heuristic

nodes d̄ time d̄ time d̄ time d̄ time d̄ time d̄ time d̄
30 29.30 223.2 9.20 8.8 9.20 2.8 9.20 3.0 9.20 0.04 12.81 0.01 12.81
40 22.31 3.9h 6.97 41.6 6.97 31.1 7.34 16.8 7.34 0.04 7.59 0.03 7.59
50 15.30 ∗20.0h 5.18 432.1 5.18 60.9 5.18 62.5 5.18 0.34 5.64 0.15 5.64
60 15.49 253.0 5.85 236.0 5.85 0.45 6.66 0.72 6.66

100 12.48 33.1 5.93 12.5 5.93
200 9.85 84.3 4.68 87.0 4.68
300 6.92 267.2 4.50 363.3 4.50
400 7.04 397.7 4.64 346.1 4.64

nection to another settlement (Figure 14(c)) or by including small adjacent forest
areas (Figure 14(d)). This latter result reflects the idea of exaggerating important
map features, which is a common approach in map generalisation.

7.2. Performance tests

In this section we present the numerical results of our tests, that is, the running
time of our methods and the quality of the obtained solutions according to the
applied cost functions. For all our tests we used a Linux server with 4 GB RAM
and a 2.2 GHz AMD-CPU. For the solution of our MIPs we used the Interactive
Optimizer and the Java interfaces of the software ILOG CPLEX

TM

11.2.
We tested both the flow MIP and the MIP from Sections 5.1 and 5.2 based on

the precedence relationship (referred to as P-R MIP) on instances of different sizes
and with different combinations of the presented heuristics. The flow MIP offers
optimal solutions for small instances, but does not allow us to apply the same
measures of compactness as the P-R MIP (in the flow MIP, the assignment of an
area to its centre is encoded only implicitly via the flow). Hence, to compare the
performance, we only consider the objective for class change in this test.
Table 2 summarises our results. All instances were solved with proof of opti-

mality, except the one marked with a star. The first column of Table 2 shows the
results that were obtained with the iterative Algorithm 1. With this method, all
computations took less than a second. The time needed for the solution of our
flow MIP is very high, but the results allow us to assess the results of the other
methods. The computation time can be reduced with the centre heuristic from
Section 6.1. On our examples the heuristic yielded the optimum. By definition of
the precedence relationship the computation time is reduced while the solution is
only marginally affected. When we applied the centre heuristic to the P-R MIP, the
running time was decreased drastically, whereas the quality of the results was not
affected much. We also processed the same instances with an older version of the
optimisation software, that is, ILOG CPLEX

TM

9.1. We listed the results in our
earlier publication (Haunert and Wolff 2006). Applying the more recent version to
our largest problem instances reduced the processing time by more than 60%.
With the same setting for the objective function we tested the performance of

simulated annealing (Table 3). Our tests show that the quality of the results is
similar to those obtained with the P-R MIP in combination with the centre and
distance heuristic. For small instances, we observed a clearly better performance
with our approach by mixed-integer programming. For the instance with 400 nodes,
our simulated annealing method resulted in a solution of 15.3% more costs, but
required much less time than needed to solve the MIP.
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Table 3.: Experimental results with our approach by simulated annealing. Computation times are in seconds
CPU time unless marked with min, which stands for minutes. Except for the instance of 5537 nodes, the
problem instances are the same as in Table 2. The instance of 5537 nodes corresponds to our whole dataset.
For this instance we defined the number of iterations such that we expected a running time similar to that
of Algorithm 2 with K = 200, see column 3 of Table 4.

nodes iterations time d̄
30 30000 3.6 15.27
40 40000 3.8 7.08
50 50000 4.1 6.63
60 60000 4.7 6.39

100 100000 9.1 9.05
200 200000 18.9 6.42
300 300000 25.2 4.85
400 400000 32.9 5.35

5537 12500000 23.35min 4.33

Table 4.: Experimental results with Algorithm 2. The processed dataset covers an area of 22 km × 22 km
and contains 5537 polygons (nodes). The parameter K defines the maximal number of nodes v with
w(v) < θ(γ(v)) that are processed in one iteration of Algorithm 2 by applying the P-R MIP with heuristics.
Objective values (costs) are normalised with respect to the results for K = 1. Results are shown for tests
without consideration of compactness (columns 2–3) and with it (columns 4–8).

optimisation criteria class change class change and compactness
K 1 200 1 50 100 150 200

time (minutes CPU time) 1.12 23.47 1.21 1.99 9.44 24.43 58.57

d̄ 6.09 4.54 6.54 5.90 5.58 5.58 5.24
cost for class change 100 74.5 100 90.2 85.3 85.3 80.1

cost for non-compactness − − 100 99.3 98.1 97.8 98.8
total cost 100 74.5 100 96.3 93.9 93.7 92.6

As the method by mixed-integer programming with the distance and the centre
heuristic is too slow to process large datasets, that is, thousands of polygons, we also
tested our method with intermediate scale steps. Our basic assumption was that we
obtain results of higher quality if we apply the iterative method, considering more
than one area with its direct neighbours in each step. To verify this assumption,
we applied Algorithm 2 with different settings of the parameter K, see Table 4.
In a first test we solved our instance of 5537 nodes with the objective of minimal

class change. Setting K = 1 we obtained a solution with d̄ = 6.09. With this set-
ting our method produces the same result as the iterative algorithm that selects
the most compatible neighbour according to the defined cost function. The average
class distance was reduced to d̄ = 4.54 when setting K = 200, which is a reduc-
tion by 25.5%. In this case the processing took 23.47 minutes. We processed the
same instance with our simulated annealing approach, defining to terminate after
12,500,000 iterations, since we expected a similar running time with this setting
(last row of Table 3). The actual running time was 23.35 minutes; the average class
distance of the solution was d̄ = 4.33. This test shows that both methods perform
similarly for large datasets, however, simulated annealing reduces the costs by 4.6%
compared to the deterministic method.
In a second test we considered both objectives: class change and compactness.

The results in Figures 12(b), 13(d), and 14(d) were created with this setting. We
list the average class distance d̄ as well as the costs for class change, non-compact
shapes, and their sum (normalised to 100). The resulting costs for non-compactness
are very similar for different values of K. It seems that, concerning this objective,
the iterative algorithm does quite well by greedily choosing a neighbour. However,
the decrease of costs for class change is still considerable (19.9% for K = 200).
Combining both objectives, we obtain an improvement by 7.4%. These tests clearly
confirm the assumption that we obtain results of higher quality if we consider more
areas in one step. Consequently, we suggest to set the parameter K as high as
possible under the given time constraints.
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Comparing the average class distance for both experiments with K = 200 we
see that, in order to produce reasonably compact shapes, we need to accept an
increase of d̄ by 15.4%.

8. Conclusion

We have proposed new exact and heuristic methods for automated area aggregation
in planar partitions. Our methods produce logically consistent results with respect
to given database specifications. Subject to these constraints our methods optimise
semantic accuracy and compactness of shapes.
Our tests have revealed that our exact method, the flow MIP, can be used to

process small datasets only, that is, instances of up to 50 areas. Still, our MIP
formulations, the flow MIP and the P-R MIP, yield the following. First, they can
be used to measure the quality of heuristics. Second, they can be combined with
heuristics. For example, combining the P-R MIP with other heuristic approaches
(such as the very effective centre heuristic) we can solve instances of 400 areas in
reasonable time. At least on small instances, costs remained close to optimal. Third,
using our method of intermediate scale steps, we could solve large instances of more
than 5000 areas. With respect to region growing, our method decreased costs by
25.5% when minimising class change, and by 7.4% when taking compactness into
account.
We have shown that, for small instances, mixed-integer programming outper-

forms simulated annealing both in terms of costs and computation time. On the
other hand, when generalising a large dataset from scale 1:50,000 to 1:250,000 with
the aim of minimising class change, simulated annealing yielded, within roughly
the same time, a solution that was 4.5% cheaper than that of the intermediate-scale
method. Still, simulated annealing has a number of disadvantages, which we have
discussed. For example, it is unclear whether the annealing parameters we have
specified are of any use for generalising maps between two other scales.
It would be very interesting to find ways to integrate our collapse, aggregation

and line simplification methods into an overall strategy for the map generalisation
problem, also comprising other operators like typification and enlargement.
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Appendix A. Approaches for solving mixed-integer programs

In this appendix we sketch the method that we used to solve our mixed-integer pro-
grams. This method is called branch-and-cut, which combines two different meth-
ods, namely branch-and-bound and cutting plane algorithms. We give an outline of
these two methods and then briefly explain their combination.
Consider the objective function

minimise x1 + 2x2 (A1)

subject to the constraints 16x1 + 12x2 ≥ 35 (A2)

16x1 − 12x2≤ 17. (A3)

In this two-dimensional LP, each constraint corresponds to a half plane; the in-
tersection of the half planes is the set S of feasible solutions (shaded region in
Figure A1(a)). Among the points in S we are interested in one that minimises the
objective function. The coefficients of the variables in the objective function yield
a vector c, here c =

(1
2

)
. If we sweep the plane in direction c with a line � orthogo-

nal to c, then the first points of S swept by � minimise (A1). The dashed lines in
Figure A1(a) depict the traces of �. We obtain the optimal solution s∗ =

(1.625
0.75

)
.

In an integer linear program (IP) all variables are restricted to integer values:

x1, x2 ∈ , (A4)

thus the point s∗ becomes infeasible. The new optimal solution becomes s̄ =
(1
2

)
.

An IP can be solved with branch-and-bound and cutting plane algorithms; both
start by solving the LP relaxation of the MIP, that is, the constraints x1, x2 ∈ are
relaxed to x1, x2 ∈ . The LP relaxation can be solved, for example, by applying
the simplex algorithm. To ‘branch’ in branch-and-bound means to select an integer
variable xi with fractional value x0i in the solution of the LP relaxation and to split
the original problem into two subproblems. Each subproblem inherits all constraints
of the original problem plus one of the constraints xi ≤ �x0i � and xi ≥ �x0i �, that
is, the value x0i is rounded down and up, respectively. In our example we select
variable x1 (which has a fractional value of 1.625) for branching and create two
subproblems, each by adding one of the constraints

x1 ≤ 1 (A5)

x1 ≥ 2, (A6)

as shown in Figure A1(b). The branching procedure can be applied to the sub-
problems, resulting in a tree where each node corresponds to a MIP. The proce-
dure terminates if for each leaf node the solution of the LP relaxation satisfies the
integrality constraints or the LP relaxation is infeasible. The best found integral
solution is the optimal solution of the MIP.
In order to avoid that the tree becomes too large, we can use the fact that the

LP relaxation offers a lower bound for the objective function, that is, the solution
of the MIP cannot be better than this. Suppose that at a certain node of the
branching tree an integral solution with objective value z is found, all nodes with
lower bound greater or equal z can be killed, that is, do not need to be further
investigated. The success of this method clearly depends on whether the bounds
are tight or not, where tight means that the solution of the LP relaxation is a good
approximation for the solution of the MIP. Unfortunately, the MIP formulations

2
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s̄

c

x1

x2

s∗

S

(A1)

(A2)

(a) The optimal solution s∗ of the
LP (A1)–(A3) and the optimal solu-
tion s̄ of the IP (A1)–(A4).

x1

x2 (A5)

x0
1

(A6)

s̄

c
s∗

(b) branching at variable x1

yields two subproblems

s̄

c

x1

x2

s∗

(A7)

(c) the IP after addition of a cut

Figure A1.: An IP can be solved by first solving its LP relaxation (a) and then proceeding with branching (b)
and cutting (c).

that appear in practise are often weak, that is, the best fractional solution is much
better than the best solution of the MIP. Because of this, other methods such as
cutting plane algorithms are often applied.
A cutting plane or simply cut is an additional constraint, that is, an inequality

that removes the solution of the LP relaxation from the feasible region of the MIP,
but does not exclude any integer solution. A cut for our example is the constraint

x1 + 2x2 ≥ 4, (A7)

which is shown in Figure A1(c). The general approach of cutting plane algorithms
is to iteratively solve the LP relaxation and to add a cut, until the solution of the
LP relaxation satisfies the integrality constraints. In this case, the optimal solution
of the MIP is found. Different methods exist to find cuts; one of the most prominent
is the algorithm of Gomory (1958). We found constraint (A7) using this approach.
Cutting plane algorithms are normally not efficient when being applied alone.

Usually, the algorithms first converge to the optimal integer solution relatively
fast, that is, relatively big parts of the feasible region are cut away, but later this
process drastically slows down. However, by adding cuts to a MIP, its LP relaxation
becomes stronger. Therefore, after adding a limited number of cuts to a MIP,
the above-mentioned branch-and-bound method gets more efficient. Generally, this
combination of both methods is called branch-and-cut. Different versions exist,
for example, cuts are added to the original MIP only, or to subproblems as well
(Mitchell 2002). Branch-and-cut techniques are implemented in several commercial
software packages. For our experiments, we used the software ILOG CPLEX

TM

11.2.
We conclude that finding a MIP formulation with a strong LP relaxation is

essential for the success of most solution techniques. Of course, another factor is
the size of the MIP, that is, the number of variables and constraints that are needed
to encode a problem. This, however, is often considered less important.
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Appendix B. A MIP for area aggregation based on network flow

In this appendix we give the complete formulation of our flow MIP, which we
briefly discussed in Section 5 of our article. Recall that the flow MIP guarantees
globally optimal solutions for instances of the aggregation problem. However, since
we observed a very high computation time with the flow MIP, we focussed our
discussion on a heuristic approach: we introduced the P-R MIP that is based on a
precedence relationship. With this approach the computation time was reduced. In
theory the P-R MIP does not guarantee the globally optimal solution, but in our
experiments, which we documented in Section 7, it yielded near-optimal solutions.
The flow MIP uses the definition of flow on the graph G. After a brief explanation
of the idea, we present the formulation in detail. Figure B1 illustrates the flow
model.

1

4

2

3

1

1 3

2

1

142 2

3 2 2 1

1
1 1

1

Figure B1.: Connectivity based on our flow model. Arcs with positive flow (fa > 0 and Fa = 1) are
displayed in bold black. Node weights are displayed by bold numbers, values of the flow variables fa by
italic numbers. Sinks (sv = 1) are displayed by squares, sources (sv = 0) by circles. All aggregates exactly
satisfy the weight threshold θ = 7.

Flow variables fa ∈ + define the amount of a commodity being transported on
arcs a ∈ A, with A = {uv | {u, v} ∈ E}. The arcs with positive flow define a di-
rected graph. The weakly connected components of this graph yield the aggregates
in our model. To indicate whether an arc carries a positive flow, a binary variable
Fa is introduced for each arc a ∈ A. The variable Fa is set to 1, if fa > 0. Introduc-
ing binary variables bvk, we express whether a node v ∈ V receives colour k ∈ Γ. To
ensure that all nodes in an aggregate receive the same colour, we enforce that two
adjacent nodes should receive the same colour, if a connecting arc carries positive
flow. For each node v ∈ V , a binary variable sv is introduced, to express whether
it is a sink or a source of the network. Sources contribute a positive amount of
flow to the network that is equal to their weight. Thus, it is not possible to create
a connected component that only contains sources, and so, fixing the colour of a
sink, we are sure to have at least one node of unchanged colour in each aggregate.
Aggregates of sufficient size are obtained by claiming that a sink receives a certain
amount of flow: the sum of this flow and the sink’s own weight must not fall below
the weight threshold defined for the colour of the sink.
Let’s investigate the defined requirements for the flow in the example of Fig-

ure B1: the node in the upper left corner is a sink, whose own weight is two. In
order to satisfy the weight threshold of seven, the incoming flow needs to exceed
the outgoing flow by at least five units. In this example, the requirement is exactly
fulfilled. The node in the second row and third column of the grid-like graph is
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a source. It receives a flow of two and emits a flow of three, thus its net outflow
is one, which equals its weight. Since these constraints are fulfilled for all nodes,
the resulting partition is feasible. The following list summarises the introduced
variables:

fa ∈ [0,M ] flow on arc a ∈ A, with M =
∑

v∈V w(v) being
the total weight of the graph.

Fa ∈ {0, 1} Fa = 1 if arc a ∈ A carries positive flow.

bvk ∈ {0, 1} bvk = 1 if and only if node v ∈ V receives colour k ∈ Γ.

sv ∈ {0, 1} sv = 1 if and only if node v ∈ V is a sink.

With the variables bvk, the objective for minimum colour change is defined as
follows:

minimise
∑
v∈V

∑
k∈Γ

w(v) · d(γ(v), k) · bvk (B1)

To link the variables Fa and fa, such that Fa = 1 if fa > 0 we add the following
constraint:

M · Fa ≥ fa for all a ∈ A (B2)

The next constraint ensures that each node is assigned to one colour:

∑
k∈Γ

bvk = 1 for all v ∈ V (B3)

Constraint (B4) ensures that two adjacent nodes receive the same colour if a
connecting arc carries positive flow.

buk ≥ bvk + (Fuv − 1) for all uv ∈ A, k ∈ Γ (B4)

To ensure that a sink keeps its original colour, the following constraint is added:

bv,γ(v) ≥ sv for all v ∈ V (B5)

The next two constraints ensure the connectivity and weight-feasibility of aggre-
gates. We will discuss their effect in detail.

∑
a=vu∈A

fa −
∑

a=uv∈A
fa ≥ w(v)− sv ·M for all v ∈ V (B6)

∑
a=vu∈A

fa −
∑

a=uv∈A
fa ≤ w(v)− sv · θ(γ(v)) for all v ∈ V (B7)

We consider first the case that node v is a source, meaning sv = 0. Then, the two
inequalities can be summarised by one equation:

∑
a=vu∈A

fa −
∑

a=uv∈A
fa = w(v) for all v ∈ V

This means just that the net outflow from a source equals the node’s weight. In
the case that sv = 1, meaning that v is a sink, constraint (B6) is relaxed and
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constraint (B7) becomes:

∑
a=uv∈A

fa −
∑

a=vu∈A
fa + w(v) ≥ θ(γ(v)) for all v ∈ V,

meaning that the sum of the net inflow to a sink and its own weight, is not smaller
than the threshold. So, the requirement for the weight of a contiguous aggregate
with equal colour is fulfilled.
Finally, we show how to optimise the compactness of aggregates according to the

measure cshortest-path, which we introduced in Section 3.3. We first add a constraint
that ensures that an aggregate contains only one sink. We achieve this by insisting
that, for each source (a node u with su = 0), there is at most one outgoing arc
with positive flow and, for each sink (a node u with su = 1), there is no outgoing
arc with positive flow::

∑
a=uv∈A

Fa ≤ 1− su for all u ∈ V. (B8)

Consequently, the arcs with Fa = 1 form trees, each having a single sink. Now the
flow variables fa can be used to express the compactness measure cshortest-path. To
explain this, let’s observe a flow from its source v to the sink: for each arc a of the
taken path, the variable fa increases by w(v). Because of this, we can express the
aim for compactness as follows:

minimise
∑

a=uv∈A
δ(u, v) · fa. (B9)

Optimally solving the MIP with this objective, the selected tree of arcs with pos-
itive flow will automatically become equal to the aggregate’s shortest path tree –
otherwise the solution will not be optimal. The resulting cost for an aggregate is
just the same as cshortest-path.
Note that the objectives (B1) and (B9) can be combined in a weighted sum in

order to define a trade-off.

Appendix C. A sample processed with the proposed generalisation method

In this appendix we show a larger sample that we processed with the developed
generalisation method to give an impression on the effectiveness of the proposed
work flow. For the same sample we show

• the original dataset of scale 1:50,000 (Figure C1),

• the preprocessed dataset, that is, the dataset after collapsing narrow polygons
and polygon parts to lines (Figure C2),

• the result of applying our aggregation method to the preprocessed dataset (Fig-
ure C3), and

• the result of applying the line simplification method to the aggregated dataset
(Figure C4).

The final result meets the specifications for the target scale 1:250,000. We would
need to apply a smoothing and displacement of lines in order to create a visually
pleasing map. This, however, is not the objective of database generalisation.
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Figure C1.: A part of the dataset “Buchholz in der Nordheide” of the German topographic database ATKIS
DLM 50. The whole dataset has an extent of 22 km × 22 km and contains 5461 areas. It corresponds to
a map sheet of the topographic map at scale 1:50,000.
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Figure C2.: The result of applying the collapse method to the sample in Figure C1. Narrow polygons and
polygon parts are collapsed to lines. The two small figures show this effect for a clipping of the large figure
(marked by a box).
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Figure C3.: The result of applying our aggregation method to the preprocessed dataset in Figure C2. The
aggregation was achieved using Algorithm 2, applying K = 200. The P-R MIP was used in conjunction
with the centre heuristic and the distance heuristic to solve the occurring problem instances. The minimal
sizes were defined according to existing specifications of the German topographic database ATKIS DLM
250, which corresponds to a topographic map at scale 1:250,000. The class distances were defined according
to Table 1 in our article. Both the class changes and the compactness of aggregates were considered.
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Figure C4.: The result of applying the line simplification method to the aggregated dataset in Figure C3.
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