
Optimal and Topologically Safe Simplification
of Building Footprints

Jan-Henrik Haunert
Institut für Informatik, Lehrstuhl I

Universität Würzburg
Am Hubland, 97074 Würzburg

jan.haunert@uni-wuerzburg.de

Alexander Wolff
Institut für Informatik, Lehrstuhl I

Universität Würzburg
Am Hubland, 97074 Würzburg

www1.informatik.uni-wuerzburg.de

ABSTRACT
We present an optimization approach to simplify sets of
building footprints represented as polygons. We simplify
each polygonal ring by selecting a subsequence of its origi-
nal edges; the vertices of the simplified ring are defined by
intersections of consecutive (and possibly extended) edges
in the selected sequence. Our aim is to minimize the num-
ber of all output edges subject to a user-defined error toler-
ance. Since we earlier showed that the problem is NP-hard
when requiring non-intersecting simple polygons as output,
we cannot hope for an efficient, exact algorithm. Therefore,
we present an efficient algorithm for a relaxed problem and
an integer program (IP) that allows us to solve the original
problem with existing software. Our IP is large, since it has
O(m6) constraints, where m is the number of input edges. In
order to keep the running time small, we first consider a sub-
set of only O(m) constraints. The choice of the constraints
ensures some basic properties of the solution. Constraints
that were neglected are added during optimization whenever
they become violated by a new solution encountered. Us-
ing this approach we simplified a set of 144 buildings with
a total of 2056 edges in 4.1 seconds on a standard desktop
PC; the simplified building set contained 762 edges. During
optimization, the number of constraints increased by a mere
13%. We also show how to apply cartographic quality mea-
sures in our method and discuss their effects on examples.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial Databases and GIS ; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling

General Terms
Algorithms

Keywords
GIS, Cartography, Map Generalization, Building Simplifica-
tion, Optimization, Integer Programming

Manuscript submitted to ACM GIS 2010.

1. INTRODUCTION
Map generalization is the problem of deriving a less detailed
and more abstract representation from a given geographic
data set. A typical map generalization problem is the sim-
plification of building footprints. The problem is similar to
the classical line simplification problem, but, as buildings are
highly regular man-made structures, special characteristics
need to be considered. Therefore, solutions to both prob-
lems have been developed, on the whole, independently.

In this paper, we present an optimization approach to build-
ing simplification that is inspired by an existing approach to
line simplification. Our motivation to approach the prob-
lem by optimization is, of course, to obtain generalization
results of higher quality compared to other methods. There
is, however, a second reason for our approach. With our
method it is possible to apply various optimization objec-
tives and constraints. We assume that comparing the re-
sults will help to better understand the criteria that make
up well-generalized buildings. This will be useful for quality
assessment – a problem that is considered highly relevant in
the generalization literature [1, 9].

e

f

(a) original building (b) result of selecting shortcut (e, f)

Figure 1: Building simplification based on shortcuts.

Our paper builds up on work presented earlier [13]: we de-
fine the simplified outline of a building by selecting a subse-
quence of the original edges. New vertices are introduced at
intersections of consecutive (and possibly extended) edges
in the selected sequence. With this approach we keep the
edge slopes fixed and so give consideration to shape regular-
ities. For example, if the original building is rectilinear, the
simplified building will automatically be rectilinear, too. An
alternative view of the same problem is to define the solu-
tion with a set of shortcuts; each shortcut omits some input
edges, see Fig. 1. The basic optimization problem is to mini-
mize the number of output edges subject to a given distance
tolerance. Additionally, self-intersections and intersections
with other polygons must be avoided. We have shown that
the problem becomes NP-hard if we forbid intersecting poly-

�
10m

Figure 2: Two disjoint input polygons (left) and
a result of the ArcGIS building simplification tool
(right). The simplified polygons intersect. The sim-
plification tolerance was set to 10m.

gons in the output [13]. Since we cannot hope for an efficient
exact algorithm we turned to integer programming. We pre-
sented experiments for single polygons without holes.

In this paper we present three innovations that render our
approach applicable and our experimental results more con-
clusive. First, our new implementation allows us to treat
sets of multiple buildings (with holes) as one optimization
instance. In this setting, forbidding unwanted edge inter-
sections becomes much more relevant. Figure 2 shows two
polygons whose simplifications (which were obtained with
the commercial software ArcGIS) intersect – we are now
able to avoid such cases. With this extension we early en-
countered the limitations of our existing approach: the set-
up time for the IP and the number of constraints increased
drastically with the number m of input edges. Therefore, as
a second innovation, we fundamentally changed the way con-
straints are set up and handled during optimization. Instead
of explicitly modeling all constraints of the problem in terms
of linear inequalities and applying the optimizer as a black
box, we set up the IP only with a subset of the constraints
that ensures some basic properties of the solution. If we
choose this approach, we need to check whether a solution
encountered by the optimizer is feasible and, if the solution
is infeasible, we need to tell the optimizer how to continue.
For this purpose, we insert so-called lazy constraints to the
IP at runtime. The initial size of the IP reduces from O(m6)
to O(m). In our experiments, we needed to introduce only
a few of the initially neglected constraints. We set up the
initial IP and find the lazy constraints using a plane-sweep
algorithm. As a third innovation, we show how to apply
more advanced objective functions in order to improve the
cartographic quality of the generalized buildings.

Our paper is structured as follows. We first review re-
lated work on line simplification and building simplification
(Sect. 2). Then we give a formal definition of the problem
(Sect. 3). We present our general approach using short-
cuts, which yields an efficient solution to a relaxed problem
(Sect. 4), our integer-programming solution (Sect. 5), and
our experimental results (Sect. 6). Finally, we discuss open
problems and conclude the paper (Sect. 7).

2. RELATED WORK
A classical method for building simplification [20] uses rules
that are successively applied to the polygonal outline of a
building. It is difficult, however, to find a good rule set and
to decide for an order in which the rules are to be applied.
A more generic approach [15] is to define a cell decomposi-
tion of the plane by lines approximating parts of the original

building outline; some of the cells are selected to form the
output polygon. Furthermore, morphological operators have
been proposed for building simplification [5, 16]. Optimiza-
tion (that is, least-squares adjustment) has been applied to
adjust a previously simplified building ground plan [19]. The
decision about which details to select, however, has not been
approached by optimization yet.

In contrast to building simplification, line simplification has
been frequently approached by optimization. A basic idea to
simplify a line is to select a minimum subsequence of its orig-
inal vertices [8]. A simplified line is often considered feasible
if it satisfies the bandwidth criterion, that is, if the original
line is within an ε-buffer of the simplified line. In order to
find an optimal simplification, shortest-path algorithms can
be applied to an appropriately defined graph of shortcuts.
This approach allows different optimization objectives to be
applied [3]. The problem becomes more involved with differ-
ent objectives and constraints, but solutions have been found
for the preservation of angles [4], distances [10], areas [2], and
topological relations [7]. Though the optimization approach
to line simplification is very powerful, a method selecting a
subsequence of the original line vertices should not be ap-
plied to building simplification. For example, in order to
represent the building in Fig. 1(a) as a rectangle, we need to
introduce a new vertex – this is not possible with the clas-
sical vertex-based line simplification approach. With our
edge-based approach, however, we can define the rectangle
by selecting and extending four of the original edges.

Obviously, the generalization of building sets cannot be solved
entirely by outline simplification. For example, we would
also need to aggregate buildings, remove buildings, or fill
holes representing small inner yards. These problems are
not solved with our method but could be handled by pre-
processing the data with a morphological operator [5]. After
simplifying the outline, we may also apply a (least-squares)
adjustment [19], for example, to make an almost rectilinear
building (whose angles are close to 90 degrees) rectilinear.
Instead of using our algorithm in a fixed process chain, we
could use it as one basic component in a higher-level sys-
tem that automatically decides which algorithm to apply in
a given situation – multi-agent systems have been proposed
for that purpose and indeed they have been used for building
generalization [21]. We intend to consider more than a sin-
gle building during simplification in order to avoid unwanted
intersections. We think, however, that the instances we have
to solve in practice will not become arbitrarily large but will
contain about 100 buildings. This is realistic, for example,
since buildings within one mesh of the road network may be
generalized independently of others [18].

In an earlier work [12] we have applied integer programming
to another map generalization problem, namely the aggre-
gation of areas in land cover maps. Our success motivated
us to develop a similar approach for building simplification.

3. PROBLEM DEFINITION
We now give a formal problem definition of the simplification
problem. We first define a problem with the basic objective
of minimizing the number of output edges (Sect. 3.1) and
then introduce more advanced objective functions (Sect. 3.2).

3.1 Basic problem definition
We define the problem BuildingSetSimplification as fol-
lows:

We require a set of disjoint simple polygons with holes and
the error tolerance ε > 0 as input. Each input polygon con-
sists of one exterior ring (that is, a closed sequence of edges)
and any number of interior rings. For an edge sequence r
we denote the i-th edge by e(r, i) and the number of edges
by |r|. The edges of an exterior ring are in counterclockwise
order and the edges of an interior ring are in clockwise order.

The problem is to find for each input ring r a new ring r′

that satisfies the following requirements:

(R1) Each edge in r′ corresponds to an original edge in r,
which means that both edges intersect and have the
same (directed) supporting line. For an edge e in r′

we denote the corresponding edge by corr(e).
(R2) The sequence(

corr(e(r′ , 1)) , corr(e(r′ , 2)) , . . . , corr(e(r′ , |r′|)))
is a subsequence of r.

(R3) Each pair (a, b) of consecutive edges in r′, that is, each
of the pairs

(
e(r′, i) , e(r′, (i + 1) mod |r′|)) with i =

1 , 2 , . . . , |r′|, defines two polygonal chains p′(a, b) and
p(a, b), see Fig. 3. Both p′(a, b) and p(a, b) begin at
the last point of a that lies on corr(a) and end at the
first point of b that lies on corr(b); p′(a, b) is the piece
of r′ between these two points and p(a, b) is the piece
of r between these two points. We require that the
Hausdorff distance between p′(a, b) and p(a, b) does
not exceed ε.

Additionally, we require for each pair (a, b) of different and
non-consecutive output edges (that may lie on the same or
on different output rings):

(R4) a and b do not intersect.

We call a set of rings that satisfies requirements R1–R4 a
feasible solution. The problem is to find a feasible solution
with the minimum number of edges.

a

b

p(a, b)

p′(a, b)
dH(p

′(a, b), p(a, b))

Figure 3: The polygonal chains p′(a, b) and p(a, b) for
the edges a and b in Fig. 1. Requirement R3 says
that the Hausdorff distance dH between p′(a, b) and
p(a, b) must not exceed ε.

Requirement R1 restricts us in how we can create new edges.
We may only extend or shorten an old edge (at both ends)
and we must not turn its direction. Requirement R2 means
that we must not change the order of the edges. Intuitively,
requirement R3 is similar to the bandwidth criterion that
is often applied to line simplification. The original piece of
a line must lie in the ε-buffer of its simplified version and
vice versa. The Hausdorff distance between two point sets

X and Y in R
2 is defined as

dH(X,Y) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
, (1)

where sup is shorthand for supremum and inf for infimum.
The function d : R2 → R

+
0 is the Euclidean distance. Re-

quirement R4 ensures the simplicity of the output rings. We
call the problem that remains when removing this require-
ment RelaxedBuildingSetSimplification.

3.2 A more advanced objective function
In addition to the basic optimization objective of minimizing
the number of edges we define three cost measures carea,
cregular, and csimilar. For each pair (a, b) of consecutive edges
in a solution S we add a term to each of the three measures.

The idea behind the first measure carea is that a local simpli-
fication should have little impact on the area of a building.

carea =
∑

(a,b)∈S
area(p(a, b), p′(a, b)) , (2)

where area(p(a, b), p′(a, b)) is the amount of change in area
when replacing the piece p(a, b) of a ring by p′(a, b).

The idea behind the second measure cregular is that regular
shapes and thus angles close to 90 degrees are preferred.

cregular =
∑

(a,b)∈S
cos2 ∠ab , (3)

where ∠ab is the angle between the two edges a and b. This
implies that no cost is charged for angles of 90 degrees.

The idea behind the third measure csimilar is that the edge
directions of the simplified building outline should be sim-
ilar to the edge directions of the original building outline.
For a polygonal line p we define hist(p) as the histogram
of the edge directions in p; for all histograms we discretize
the directions using the same intervals. Suppose p contains
a horizontal edge of 2m length and a vertical edge of 1m
length, then hist(p) contains two peaks. We define that the
height of the peaks reflects the edge lengths, that is, the first
peak (at 0 degree) is twice as high as the second peak (at
90 degrees), since the horizontal edge is twice as long as the
vertical line. We now define

csimilar =
∑

(a,b)∈S
δ
(
hist(p(a, b)),hist(p′(a, b))

)
, (4)

where δ is a distance between two histograms. We use a
distance that is easy to compute. For two histograms A
and B with values (a1 , a2 , . . . , ak) and (b1 , b2 , . . . , bk), we
define

δ(A,B) =
k∑

i=1

|ai − bi| . (5)

It remains to combine the three different measures into one
objective function that is to be minimized. We combine the
measures as a weighted sum, that is, we aim to minimize

m′ + warea · carea +wregular · cregular +wsimilar · csimilar , (6)

where m′ is the number of output edges and warea, wregular,
wsimilar ∈ R

+
0 are weight factors that allow users to express

their preferences.

4. AN APPROACH USING SHORTCUTS
In order to solve BuildingSetSimplification we select a
set of shortcuts. A shortcut is a pair of edges in the same
original ring. Selecting shortcut (e, f) means that in the
solution there will be an edge a that corresponds to e, an
edge b that corresponds to f , and no edge that corresponds
to an edge between e and f ; because of requirement R2, a
and b will be consecutive edges in the new ring. If we want to
select two consecutive input edges e and f for the simplified
ring, we need to select the (trivial) shortcut (e, f).

4.1 Feasible shortcuts
Not all sets of shortcuts define feasible solutions to the prob-
lem. Moreover, selecting a single shortcut may forbid all
feasible solutions. Often we can easily decide whether a
shortcut (e, f) is of this type. We cannot select (e, f) if

(1) it is not possible to construct a pair (a, b) of consecu-
tive edges that satisfy requirement R1 with corr(a) = e
and corr(b) = f or

(2) each such pair violates requirement R3.

Case (1) applies if the ray end′(e) that starts at the first ver-
tex of e and runs in the direction of e and the ray origin′(f)
that starts at the second vertex of f and runs in the direc-
tion opposite to f do not intersect, see Fig. 4. To see why,
we observe that the end point of an edge that corresponds
to e lies on end′(e); the origin of an edge that corresponds
to f lies on origin′(f). Selecting shortcut (e, f) means that
both points are the same, which is not possible if end′(e)
and origin′(f) do not intersect.

If case (1) does not apply, we can check whether case (2) ap-
plies by constructing the polygonal chains p′(a, b) and p(a, b)
(with corr(a) = e and corr(b) = e) and comparing their
Hausdorff distance with ε. Notice that with the shortcut
(e, f) we are given enough information to unambiguously
determine these chains though we can neither determine the
origin of the edge a corresponding to e nor the end point of
the edge b corresponding to f . Figure 5 shows a shortcut
that can be excluded by case (2). We call a shortcut that
cannot be excluded by case (1) or (2) feasible.

The Hausdorff distance between two polygonal chains with
m1 and m2 vertices can be computed in O(m1m2) time by
computing each distance between an edge of one chain and
a vertex of the other chain. For each pair of consecutive
edges (a, b), the polygonal chain p′(a, b) contains at most two
edges. Therefore, we can compute the Hausdorff distance
between p′(a, b) and p(a, b) in O(mr) time, where mr is the
number of edges in the ring r of corr(a) and corr(b). This
implies that we can decide in O(mr) time whether a shortcut
is feasible. Since there are O(m2

r) pairs of edges in r, the set
of feasible shortcuts Sr of r contains O(m2

r) elements and
we can compute Sr in O(m3

r) time.

In order to reduce the set-up time for Sr, we can avoid test-
ing all pairs of edges of r for feasible shortcuts. Our idea is
to use the ε-buffer βr of r, that is, the union of all radius-ε
disks centered on the edges of r. Because of requirement
R3, each feasible simplification r′ of r lies in βr. Therefore,
we can maximally extend the edges of r until they touch the
boundary of βr. We only need to test, for each intersection

e

f

end′(e)

origin′(f)

Figure 4: Shortcut (e, f)
is infeasible, since end′(e)
and origin′(f) do not in-
tersect.

e

fε
dH

end′(e)
origin′(f)

Figure 5: Selecting
shortcut (e, f) violates
requirement R3; there-
fore, (e, f) is infeasible.

e
g

f

ϕ′(e, f)

ϕ′(f, g)

b

Figure 6: Shortcuts (e, f)
and (f, g) are feasible but
cannot be selected simul-
taneously, since edge b
from ϕ′(e, f) to ϕ′(f, g)
doesn’t have the same di-
rection as f .

e

f

g

i

j

h

k

�

Figure 7: Selecting
shortcut (e, f) alone vi-
olates requirement R4
(see �), but (e, f) can
be selected together
with (h, j) or with (g, i)
and (j, k).

of two maximally extended edges, whether the two involved
input edges form a feasible shortcut. A piecewise linear ap-
proximation of the ε-buffer βr (which suffices our purpose) is
found in O(mr) time with a Minkowski-sum algorithm; the
maximal extensions of the edges and their intersections are
found in O(mr logmr + k logmr) time with a plane-sweep
algorithm, where k is the number of intersections [6]. This
approach is favorable since ε is usually small; in this case,
one can assume that k is linear in mr.

4.2 Feasible combinations of shortcuts
Next we treat combinations of feasible shortcuts that yield
feasible solutions to BuildingSetSimplification. This di-
rectly leads to an efficient algorithm for RelaxedBuild-
ingSetSimplification and will later allow us to express
the more constrained problem as an IP.

For each input ring r we introduce a directed graph Gr =
(Sr, Ar) whose node set is the set of feasible shortcuts. The
arc set Ar contains an arc between two (consecutive) short-
cuts (e, f) and (f, g) in Sr if and only if the edge b that be-
gins at the intersection point ϕ′(e, f) = end′(e) ∩ origin′(f)
and ends at the point ϕ′(f, g) = end′(f)∩ origin′(g) has the
same direction as f . Figure 6 shows that there may be pairs
of consecutive and feasible shortcuts that do not satisfy this
condition. Since each arc in Ar is defined by three edges
in r, Ar has O(m3

r) elements. The set Ar can be found in
O(m3

r) time since testing each potential element for the right
direction takes constant time.

Selecting a pair of consecutive shortcuts (e, f) and (f, g)
determines whether the edge b = (ϕ′(e, f), ϕ′(f, g)) with
corr(b) = f becomes an edge of the output ring. The whole
output ring is thus determined by a closed sequence of con-
secutive shortcuts, that is, a cycle in Gr. Our idea is to
search for a shortest cycle Cr in Gr. Selecting the shortcuts
of such a cycle yields an optimally simplified ring.

Theorem. The shortcuts corresponding to the set {Cr |
r input ring} form an optimal solution for RelaxedBuild-
ingSetSimplification. The set {Cr} can be computed in
O(m5) time.

Proof. Each simplification r′ of a ring r that satisfies
requirements R1–R3 corresponds to a cycle in Gr: for each
triplet of consecutive edges (a, b, c) in r′, the node set Sr con-
tains the two shortcuts (corr(a), corr(b)) and (corr(b), corr(c)),
and the arc set Ar contains an arc connecting the two. Con-
versely, for each cycle in Gr, there is a simplification r′ sat-
isfying requirements R1–R3: for each arc ((e, f), (f, g)) of
the cycle, the ring r′ contains the edge (ϕ′(e, f), ϕ′(f, g)).
The number of edges of an output ring r′ is equal to the
number of shortcuts in the corresponding cycle since for
each shortcut (e, f) there is a vertex in r′ (that is, the
point ϕ′(e, f)). Therefore, a cycle with the minimum num-
ber of nodes yields a solution with the minimum number of
edges. Finding a shortest cycle in an unweighted digraph
G = (V,E) takes O(|V | · |E|) time [14]. Since |Sr| ∈ O(m2)
and |Ar| ∈ O(m3), we can solve RelaxedBuildingSetSim-
plification in O(m5) time.

We can solve the relaxed problem with the advanced ob-
jective (6) by associating each graph node s (that is, each
shortcut) with a weight ω(s). For the shortcut (e, f) and the
edges a and b corresponding to e and f we define the weight
to be 1 plus the weighted sum of the three terms charged for
(a, b) in equations (2)–(4). We can now solve the problem
by finding a minimum-weight cycle in Gr, since the weights
of the selected shortcuts sum up to objective (6). Since the
nodes in Gr are topologically sorted, we can find the cycle
of minimum weight through a given node in O(|Sr| + |Ar|)
time by dynamic programming. Doing this for all nodes,
the overall running time becomes O(|Sr | · |Ar|), that is, we
obtain the same bound as in the unweighted case.

We now have a polynomial-time solution to the relaxed prob-
lem, but it is far too slow and we still don’t have a solution
to the more constrained original problem. Indeed, the sim-
plifications that we find may be infeasible according to re-
quirement R4. For example, selecting the shortcut (e, f) in
Figure 7 yields two self-intersections. It seems that we could
fix this simply by excluding shortcuts such as (e, f) from the
set Sr. This conclusion, however, is false. In the example,
we would obtain a feasible solution by selecting (e, f) to-
gether with the shortcut (h, j). Alternatively, we could very
well select (e, f) together with the shortcuts (g, i) and (j, k).

In our earlier work [13] we have shown that simplifying build-
ings with a minimum number of output edges is NP-hard
if we forbid self-intersecting polygons as output. This was
our justification for turning to integer programming. In the
next section we apply the same technique but we handle
constraints in a fundamentally different way.

5. INTEGER PROGRAMMING
Integer programming is a method for combinatorial opti-
mization, which we have earlier reviewed [11]. It generally
means to model a problem as an integer program (Sect. 5.1)
and to solve it with an optimizer (Sect. 5.2).

5.1 IP formulation
Our integer program (IP) for BuildingSetSimplification
has the binary variables

xs ∈ {0, 1} for each s ∈ Sr and each r ∈ R

with xs = 1 if and only if shortcut s is selected for the
simplified building set.

Since the sum of the weights associated with the selected
shortcuts equals objective (6), our aim is to

minimize
∑
r∈R

∑
s∈Sr

ω(s) · xs , (7)

where R is the input set of polygonal rings.

We enforce with two constraints that the union of the short-
cuts s ∈ Sr with xs = 1 define a cycle in the graph Gr.

Constraint (8) ensures that for each edge e(r, j) in ring r
there is exactly one shortcut omitting e(r, j) or starting at
e(r, j). ∑

s∈S
j
r

xs = 1 for each e(r, j) and r ∈ R , (8)

with Sj
r =

{
(e(r, i), e(r, k)) ∈ Sr | j ∈ {i , i+1 , . . . , k− 1}}.

Note that in the definition of Sj
r the range for j is cyclic,

that is, if k < i, then j ∈ {i , i+ 1 , . . . , n , 1 , . . . , k − 1}.

Constraint (9) forbids that two consecutive shortcuts (e, f)
and (f, g) are selected together if this implies a change of
direction for the edge corresponding to f (recall Fig. 6).

xs + xt ≤ 1 for each s = (e, f), t = (f, g) ∈ r and r ∈ R
where edges (ϕ′(s), ϕ′(t)) and f have different directions.

(9)

It remains to forbid intersecting edges. Recall that each
potential output edge is determined with a pair of consecu-
tive shortcuts. We can avoid a potential intersection in the
output by forbidding the corresponding pair of intersecting
output edges, which is determined with four shortcuts (two
pairs of consecutive shortcuts). We must not select all four
of them. This is expressed with the following constraint.

xs + xt + xu + xv ≤ 3
for each s = (e, f), t = (f, g) ∈ r1 and r1 ∈ R
and each u = (h, i), v = (i, j) ∈ r2 and r2 ∈ R
where edges (ϕ′(s), ϕ′(t)) and (ϕ′(u), ϕ′(v)) intersect
but edges f and i do not intersect.

(10)

5.2 IP solution
The number of instances of constraint (10) is O(m6) but may
be small in practice. For example, if ε is smaller than half
the distance between two buildings, intersections between
the two buildings will not occur. Nevertheless, setting up

this constraint requires substantial time for analyses; test-
ing each two of the O(m3) potential output edges for in-
tersection is not practicable. Similarly, constructing each
potential output edge and testing it for the right direction is
time-consuming. Therefore, we neglect constraints (9) and
(10) when setting up the IP, that is, we start the optimiza-
tion only with constraint (8), which has O(m) instances. The
time for the IP set up becomes dominated by the search for
feasible shortcuts. Obviously, if we solved the reduced IP
with a standard algorithm, we would possibly obtain infea-
sible solutions. We need to tailor the algorithm in order to
take care of the neglected constraints.

We solve the problem with the optimization software IBM
ILOG CPLEX 12.1.0, which uses a branch-and-cut algo-
rithm (refer to Mitchell [17] for the basic principles). This
software offers programming interfaces that allow users to
implement so-called callbacks. Callbacks are invoked at cer-
tain states of the branch-and-cut algorithm; by implement-
ing a callback, a user can take control over the optimization
process. We use an IncumbentCallback, which is invoked
whenever the branch-and-cut algorithm encounters a new
incumbent solution (that is, a solution to the IP that is
better than any other solution so far). We test whether the
incumbent solution contains edges of wrong direction and in-
tersecting edges (again, we use the plane-sweep algorithm [6]
for this task). This allows us to check whether the incumbent
solution is feasible according to the neglected constraints (9)
and (10) without explicitly formulating them. If the incum-
bent solution is infeasible, we reject it and set up the violated
constraints, which we temporarily store in a list. In addition
to the IncumbentCallback we use a LazyConstraintCallback.
Whenever this is invoked, the constraints are removed from
the list and inserted to the IP as lazy constraints. The idea
behind lazy constraints is that the LPs that are solved when
solving the IP can be kept smaller when these constraints
are not included. CPLEX will, however, include a lazy con-
straint in the LP as soon as it becomes violated. In other
words, the solution computed by CPLEX makes sure that
all the lazy constraints that have been added are satisfied.
Additionally, we need a BranchCallback in order to ensure
that there is always a node where the algorithm can con-
tinue branching. For more technical details on callbacks we
refer to the CPLEX1 user’s manual for .

6. EXPERIMENTAL RESULTS
We implemented our method in Java using the ILOG CPLEX
callable library for integer programming. Additionally, we
used the plane-sweep algorithm of the Java Topology Suite2

(JTS) to find segment intersections.

We tested our method for building footprints of the metropoli-
tan Boston area, using the computer specified in Table 1.
The data set is freely available as part of the Massachusetts
Geographic Information System, MassGIS3. According to
the data specifications, the building footprints were manu-
ally extracted from LiDAR data. Table 1 summarizes our
experimental results for a sample of this data set, see Fig. 8.

1http://public.dhe.ibm.com/software/websphere/
ilog/docs/optimization/cplex/ps_usrmancplex.pdf
2http://www.vividsolutions.com/jts/jtshome.htm
3http://www.mass.gov/mgis/lidarbuildingfp2d.htm

weight setting W1 W2
ε 10m 20m 10m 20m

variables 7040 8422 7040 8422
initial constraints 2056 2056 2056 2056
lazy constraints 245 690 91 272

output edges 923 708 939 762

0.01 · carea[m2] 168.52 358.51 78.52 103.71
1.00 · cregular 49.25 45.27 43.46 37.16
0.01 · csimilar 81.42 156.46 61.32 92.49
overall cost 923.00 708.00 1122.30 995.37

IP set-up time 0.86 s 1.13 s 0.89 s 1.14 s
IP solution time 2.47 s 6.59 s 1.17 s 3.00 s

overall time 3.33 s 7.72 s 2.06 s 4.14 s

Table 1: Results of our experiments with the test
data set in Fig. 8, which contains 2056 edges. Com-
putation times are in seconds CPU time. All experi-
ments were performed on a Windows PC with 3 GB
RAM and a 3.00 GHz Intel dual-core CPU.

This sample covers Boston’s North End and contains 144
buildings and 2056 edges. We processed this sample with
four different parameter settings. The second and third col-
umn of Table 1 summarize the results of minimizing the
number of output edges, that is, we applied objective (6)
and the weight setting

(W1) warea = wregular = wsimilar = 0 .

The fourth and fifth column of Table 1 summarize the results
with objective (6) using the weight setting

(W2) warea = 0.01 1
m2 , wregular = 1 , and wsimilar = 0.01 .

With both settings we tested the effect of different error tol-
erances, that is, we set ε = 10m and ε = 20m. Figure 9
shows the output with the setting W1 and ε = 10m. Fig-
ures 10 and 11 show the outputs with the setting W2 using
the error tolerances ε = 10m and ε = 20m, respectively.

According to Table 1, the number of variables increases by
20% with the higher error tolerance. This is because more
shortcuts become feasible. The number of variables, how-
ever, stays within the same magnitude as the number of
edges. By allowing for more variation, violations of the ne-
glected constraints become more likely, thus more of the lazy
constraints need to be added during optimization. Both
the increase in the number of variables and the increase
in the number of lazy constraints result in a longer IP so-
lution time. It is interesting, however, that the IP solu-
tion time (though theoretically exponential in the number
of variables) stays within the same magnitude as the time
for setting up the IP. The longest running time, which we
encountered with W1 and ε = 20m, was 8 seconds. For this
instance, our simplification algorithm reduced the number
of edges by 63%.

Comparing the results for both weight settings, we observe
that the number of lazy constraints decreases if we use our
combined objective, that is, the setting W2. With W1, the
size of the set of constraints increases by at most 690 (34%
of the original size); with W2, however, only 272 constraints

http://public.dhe.ibm.com/software/websphere/ilog/docs/optimization/cplex/ps_usrmancplex.pdf
http://public.dhe.ibm.com/software/websphere/ilog/docs/optimization/cplex/ps_usrmancplex.pdf
http://www.vividsolutions.com/jts/jtshome.htm
http://www.mass.gov/mgis/lidarbuildingfp2d.htm

100m

see Fig. 2
see Fig. 14

Figure 8: Input dataset of North End, Boston with
144 polygons and 2056 vertices.

ε = 10m

area decreases

area increases

acute angles

Figure 9: Result of our algorithm minimizing the
number of vertices subject to the error tolerance ε =
10m.

ε = 10m

Figure 10: Result of our algorithm minimizing the
combined cost function with the weight setting W2
subject to the error tolerance ε = 10m.

ε = 20m

Figure 11: Result of our algorithm minimizing the
combined cost function with the weight setting W2
subject to the error tolerance ε = 20m.

(a) input

ε = 1m

(b) output (regular)

ε = 1m

(c) output (similar)

Figure 12: An input building (a) with two simpli-
fications. The output building becomes rectilinear
when considering cregular (b) but more similar to the
input when considering csimilar (c).

are added (13%). Possibly, this is because many solutions
violating the neglected constraints are expensive according
to the combined objective and thus become pruned during
optimization. As a consequence, the IP solution time de-
creases (−53% for ε = 10m and −54% for ε = 20m).

Obviously, with the setting W2, the three measures carea,
cregular, and csimilar (which, with W1, do not contribute to
the overall cost) decrease at the expense of additional output
edges. It is interesting, however, that a few additional edges
suffice to greatly decrease carea and csimilar. With ε = 10m,
the number of edges increases by a mere 2% but the sum of
our three additional cost measures decreases by 39%. Fig-
ures 9 and 10 reveal that these changes indeed reflect quality
improvements. In Fig. 9 we labeled some simplified buildings
with “+” and “−”, which reflects increases and decreases in
area. Comparing these results with the results for the same
buildings in Fig. 10 that were obtained with the setting W2
we observe that, by considering the measure carea, the dif-
ferences to the original footprints become visibly less.

By applying the measure cregular right angles become pre-
ferred and by applying the measure csimilar the dominating
edge directions become preserved. For our data set, both
measures have similar effects, since most of the input build-
ings are almost rectilinear. Without considering both mea-
sures we obtain many acute angles that were not dominant
in the input (black filled slices in Fig. 9) but with the weight
setting W2 we obtain buildings that better reflect our objec-
tives (Fig. 10). The measures cregular and csimilar, however,
may be opposed to each other. For example, Fig. 12(a)
shows a building that, for ε = 1m, has two feasible sim-
plifications with six edges, see Figures 12(b) and 12(c). We
obtained the simplification in Fig. 12(b) with the weight set-
ting warea = wsimilar = 0 and wregular = 1, that is, we only
considered one of our three quality measurs: the objective of
generating right angles. Indeed, all six output vertices have
right angles. In contrast, the simplification in Fig. 12(b)
was obtained with the weight setting warea = wregular = 0
and wsimilar = 0.01, that is, we only considered the sim-
ilarity of the edge directions. Indeed, the relatively long
diagonal input edge becomes selected for the output. The
difference between cregular and csimilar is thus that cregular
is in a way progressive (it pushes the building towards be-
ing more regular) while csimilar is conservative (it avoids the
building becoming dissimilar to the input).

Our experiments show that our method avoids unwanted
edge intersections, also in difficult situations. Figure 13
shows a building footprint of a church ruin whose roof has

been destroyed. The polygon thus contains one exterior
ring and one interior ring – only one wall thickness sepa-
rates both. If we neglect constraint (10), both rings inter-
sect after simplification (Fig. 13(b)). By considering con-
straint (10), however, we obtain two disjoint output rings
(Figures 13(c)–(h)). Due to the difficulty of avoiding edge
intersections when simplifying the polygon, we needed to
add maximally 96 lazy constraints during optimization; the
size of the set of constraints increased by 93%. This re-
sult was attained for the output in Fig. 13(f). However, the
running time was still low: the processing took 0.17 sec-
onds (on the machine used for the experiments in Table 1).
Again, our experiments show that applying the setting W1
does not yield well-generalized buildings (Figures 13(c)–(d)).
The main directions of the building edges are not preserved
and, for ε = 8m, both rings change drastically in size. With
our combination of different objectives, however, we obtain
better generalization results (Figures 13(e)–(h)). Perhaps, a
human cartographer could improve on the result in Fig. 13(f)
by preserving the symmetry of the building.

7. FUTURE WORK AND CONCLUSION
In this section we discuss two possibilities to further improve
on our method. First, our current method does not preserve
containment relationships between different polygonal rings
(Sect. 7.1). Second, we would like to preserve symmetries
(Sect. 7.2). We conclude our paper in Sect. 7.3.

7.1 Preserving containment relationships
Requirement R4 forbids unwanted edge intersections. The
containment relationships of different polygonal rings, how-
ever, may change. We may add the following requirement:

(R5) In the output, a polygonal ring is completely contained
in a second polygonal ring if and only if the same re-
lationships holds for the corresponding input rings.

Figure 14 shows an example from our Boston dataset that
violates this requirement but satisfies requirements R1–R4.
Two interior rings become exterior. Similarly, if we apply
our algorithm to two disjoint polygons, we may obtain two
polygons of which one completely contains the second one.
In the example in Fig. 14 we could simply forbid the short-
cut (e, f) in order to preserve the containment relationships.
In general, however, it does not suffice to consider single
shortcuts or even quadruples of shortcuts (which allowed us
to express requirement R4 as constraint (10)). Figure 15
shows an example that is more involved. Whether applying
the shortcut (e, f) removes the hole from the polygon’s inte-
rior depends on how the hole is simplified: requirement R5
may be violated (Fig. 15(b)) or satisfied (Fig. 15(c)).

Nevertheless, we could apply our approach of using call-
backs: if we detect two rings that violate requirement R5,
we need to add a lazy constraint. Let A and B be the sets of
shortcuts that are selected to form the two rings. We may
add the constraint∑

a∈A

xa +
∑
b∈B

xb ≤ |A|+ |B| − 1 (11)

which simply rules out the solution. Unfortunately, the num-
ber of such constraints may become exponential in the num-
ber of variables. In order to find out whether this approach

(a) input (103 edges)

ε = 2m
�

(b) without constraint (10)

ε = 4m

(c) setting W1

ε = 8m

(d) setting W1

ε = 1m

(e) setting W2

ε = 2m

(f) setting W2

ε = 4m

(g) setting W2

ε = 8m

(h) setting W2

Figure 13: A footprint of a church ruin (a), a result of our algorithm with the weight setting W2 but without
constraint (10) that forbids intersecting edges (b), two results with the setting W1 (c)–(d), and four results
with the setting W2 (e)–(h). The results (c)–(d) as well as (e)–(h) differ because of different error tolerances.

e

f

(a) input

ε = 30m

(b) output (setting W1)

Figure 14: Selecting the shortcut (e, f) implies that
two interior rings become exterior.

f

e

(a) input (b) requirement
R5 violated

(c) requirement
R5 satisfied

Figure 15: When selecting the shortcut (e, f) the
interior ring may become exterior (b) or not (c) – it
depends on how the interior ring is simplified.

(a) input

ε = 8m

(b) output (setting W2)

Figure 16: A set of buildings (a) with manually de-
tected axes of symmetry (dashed lines) and a result
of our algorithm (b). The symmetries are lost.

is successful in practice, we need to conduct additional ex-
periments. We think, however, that requirement R5 will
seldom become violated. For example, if we preprocess our
data with a morphological closing operator [5], small holes
will become eliminated. The error tolerance ε will usually
be much smaller than the diameters of the remaining rings.
In our experiments we observed violations of requirement
R5 only when setting ε ≥ 20m while using the setting W1.

7.2 Preserving symmetries
Many buildings are symmetric. Since generalization aims
at preserving shape characteristics, the simplified buildings
should have the same axes of symmetry as the input build-
ings. This criterion, however, is currently not considered
in our method. Symmetries may become lost, see Fig. 16.
Symmetry preservation may be a hard constraint or an op-
timization objective. We think that it should be modeled
as an optimization objective since we may want to destroy
a symmetry in order to better satisfy other objectives. For
example, in order to satisfy the objective of generating right
angles and the objective of minimizing the number of edges,
we may want to simplify a regular octagon (which has eight
axes of symmetry) into a square (which has only four axes of
symmetry). For symmetry preservation we first need an al-
gorithm that detects axes of symmetry. Then, for each pair
(u = (e, f), v = (g, h)) of shortcuts, we could decide whether
the edges e and h as well as the edges f and g are mutually
mirror images. In this case, we would like to select either
both shortcuts u and v or none of them – selecting only one
of them would destroy the symmetry. In our IP, we could
take symmetry into account by charging a cost proportional
to the absolute difference of the variables xu and xv.

7.3 Conclusion
We have presented a new optimization approach to building
footprint simplification. Our basic idea is to select a sub-
sequence of the original edges of an input polygon; the in-
tersections of the selected and possibly extended edges form
the vertices of the simplified polygon. Our method guaran-
tees a solution within a geometric error tolerance ε speci-
fied by the user and allows us to generate optimal solutions
with respect to different objectives. As a basic optimiza-

tion objective we minimize the number of output edges. We
have shown, however, that we need to consider additional
objectives in order to produce good generalization results.
By considering measures based on size, edge directions, and
angles, we were able to improve the results. This improve-
ment requires just a few additional edges: in an experiment
with ε = 10m, the number of output edges increased by
a mere 2% but the sum of our three additional cost mea-
sures decreased by 39%. Furthermore, we have discussed the
constraint of avoiding unwanted edge intersections in detail
and we have presented an IP-based method that handles this
constraint. In our integer-programming approach we start
the optimization with a small set of constraints that ensures
some basic properties of a solution. Some constraints are ne-
glected in the beginning – these are inserted to the IP as soon
as they become violated. The initial size of the IP reduces
from O(m6) to O(m). Our approach guarantees a globally
optimal feasible solution and allows us to solve relatively
large problem instances fast. For example, we simplified a
set of 144 buildings with a total of 2056 edges in 4.1 seconds
on a standard desktop PC; the simplified building set con-
tained 762 edges. During optimization, the size of the set of
constraints increased by a mere 13%.

We conclude that we can simplify sets of building footprints
optimally with respect to meaningful measures and that our
method is fast enough to solve real-world instances. We plan
to extend our method in order to preserve containment rela-
tionships and shape characteristics, for example, symmetry.

References
[1] S. Bard. Quality assessment of cartographic generaliza-

tion. Trans. GIS, 8(1):63–81, 2004.

[2] P. Bose, S. Cabello, O. Cheong, J. Gudmundsson,
M. van Krefeld, and B. Speckmann. Area-preserving
approximations of polygonal paths. J. Discrete Algo-
rithms, 4:554–556, 2006.

[3] G. M. Campbell and R. G. Cromley. Optimal simplifi-
cation of cartographic lines using shortest-path formu-
lations. J. Oper. Res. Soc., 42(9):793–802, 1991.

[4] D. Chen, O. Daescu, J. Hershberger, P. Kogge, N. Mi,
and J. Snoeyink. Polygonal path simplification with an-
gle constraints. Comp. Geom. Theor. Appl., 32(3):173–
187, 2005.

[5] J. Damen, M. van Kreveld, and B. Spaan. High quality
building generalization by extending the morphological
operators. In Proc. 11th ICA Workshop Generalisation
and Multiple Representation, 2008.

[6] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications. Springer, Berlin, Germany, 2008.

[7] M. de Berg, M. van Kreveld, and S. Schirra. Topologi-
cally correct subdivision simplification using the band-
width criterion. Cartography & GIS, 25(4):243–257,
1998.

[8] T. Deveau. Reducing the number of points in a plane
curve representation. In Proc. Auto-Carto VII, pages
152–160, 1985.

[9] Y. Filippovska, V. Walter, and D. Fritsch. Quality eval-
uation of generalization algorithms. In Proc. XXIst
ISPRS Congress, volume 37 (part B2) of Internat.
Archives Photogrammetry, Remote Sensing and Spatial
Inform. Sci., pages 799–804, 2008.

[10] J. Gudmundsson, G. Narasimhan, and M. Smid.
Distance-preserving approximations of polygonal paths.
Comp. Geom. Theor. Appl., 36(3):183–196, 2007.

[11] J.-H. Haunert. Aggregation in Map Generalization by
Combinatorial Optimization. Dissertation, Leibniz Uni-
versität Hannover, Germany, 2009.

[12] J.-H. Haunert and A. Wolff. Generalization of land
cover maps by mixed integer programming. In Proc.
14th Annu. ACM Sympos. Advances in Geograph. In-
form. Syst. (ACM GIS’06), pages 75–82, 2006.

[13] J.-H. Haunert and A. Wolff. Optimal simplification of
building ground plans. In Proc. XXIst ISPRS Congress,
volume 37 (part B2) of Internat. Archives Photogram-
metry, Remote Sensing and Spatial Inform. Sci., pages
373–378, 2008.

[14] A. Itai and M. Rodeh. Finding a minimum circuit in a
graph. SIAM J. Comput., 7(4):413–423, 1978.

[15] M. Kada and F. Luo. Generalisation of building ground
plans using half-spaces. In Proc. ISPRS Commission IV
Sympos. Geospatial Databases for Sustainable Develop-
ment, volume 36 (part 4) of Internat. Archives Pho-
togrammetry, Remote Sensing and Spatial Inform. Sci.,
2006.

[16] H. Mayer. Model-generalization of building outlines
based on scale-spaces and scale-space events. In Proc.
ISPRS Commission III Sympos. Object Recognition and
Scene Classification from Multispatial and Multisensor
Pixels, volume 37 (part 3) of Internat. Archives Pho-
togrammetry, Remote Sensing and Spatial Inform. Sci.,
pages 530–536, 1998.

[17] J. E. Mitchell. Branch-and-cut algorithms for combi-
natorial optimization problems. In P. M. Pardalos and
M. G. C. Resende, editors, Handbook of Applied Op-
timization, pages 65–77. Oxford University Press, Ox-
ford, UK, 2002.

[18] N. Regnauld. Contextual building typification in au-
tomated map generalization. Algorithmica, 30(2):312–
333, 2001.

[19] M. Sester. Optimization approaches for generalization
and data abstraction. Int. J. Geogr. Inf. Sci., 19(8–
9):871–897, 2005.

[20] W. Staufenbiel. Zur Automation der Generalisierung
topographischer Karten mit besonderer Berücksichti-
gung großmaßstäbiger Gebäudedarstellungen. Disserta-
tion, Technische Universität Hannover, Germany, 1973.

[21] S. Steiniger, P. Taillandier, and R. Weibel. Utilising
urban context recognition and machine learning to im-
prove the generalisation of buildings. Int. J. Geogr. Inf.
Sci., 24(2):253–282, 2010.

	Introduction
	Related Work
	Problem Definition
	Basic problem definition
	A more advanced objective function

	An approach using shortcuts
	Feasible shortcuts
	Feasible combinations of shortcuts

	Integer Programming
	IP formulation
	IP solution

	Experimental Results
	Future Work and Conclusion
	Preserving containment relationships
	Preserving symmetries
	Conclusion

