
Generalization of Land Cover Maps by
Mixed Integer Programming∗

Jan-Henrik Haunert
Institute of Cartography and Geoinformation

Leibniz Universität Hannover
Appelstraße 9a

30167 Hannover, Germany

jan.haunert@ikg.uni-hannover.de

Alexander Wolff
Fakultät für Informatik
Universität Karlsruhe

P.O. Box 6980
D-76128 Karlsruhe, Germany

http://i11www.iti.uka.de/people/awolff

ABSTRACT
We present a novel method for the automatic generalization
of land cover maps. A land cover map is composed of areas
that collectively form a tessellation of the plane and each
area is assigned to a land cover class such as lake, forest,
or settlement. Our method aggregates areas into contiguous
regions of equal class and of size greater than a user-defined
threshold. To achieve this goal, some areas need to be enlar-
ged at the expense of others. Given a function that defines
costs for the transformation between pairs of classes, our me-
thod guarantees to return a solution of minimal total cost.
The method is based on a mixed integer program (MIP).
To process maps with more than 50 areas, heuristics are in-
troduced that lead to an alternative MIP formulation. The
effects of the heuristics on the obtained solution and the
computation time are discussed. The methods were tested
using real data from the official German topographic data
set (ATKIS) at scales 1:50.000 and 1:250.000.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial Databases and GIS

General Terms
Algorithms

Keywords
Generalization, Aggregation, Mixed Integer Programming

∗This work was started at the seminar “Spatial Da-
ta: Mining, Processing and Communicating” organized by
J.-R. Sack, M. Sester, M. Worboys and P. van Ooste-
rom; Schloss Dagstuhl, Germany, February 2006. The au-
thors acknowledge support from grants SE 645/2-1 and
WO 758/4-2 of the German Research Foundation (DFG).

Manuscript submitted to ACM GIS 2006.

1. GENERALIZATION
In most countries national mapping agencies provide to-

pographic data sets, which form the basis for different map
products. To support maps of different scales, data sets of
different detail have been built up. Collecting these data sets
independently, as it is often done up to now, has two dis-
advantages. First, multiple acquisition of data is expensive
and not efficient. Second, it may result in inconsistencies
since different cartographers can come to different results
when mapping the real world. To improve efficiency and
consistency, automatic generalization techniques have been
applied. Usually two problems are distinguished: Model ge-
neralization, which aims at a reduction of detail for digital
representation, and cartographic generalization, which crea-
tes visually pleasant maps. In this paper, we address model
generalization.

Generally, the aim of model generalization is to create
an output that satisfies the requirements of the target data
set, while preserving characteristic features. While formali-
zed requirements like minimal dimensions are often defined
in the specifications of the data set, the formal description
of the statement’s second part is a rather difficult task. Ho-
wever, if the changes applied to the source data set can be
expressed by quantitative measures, the generalization task
can be formalized as a constrained optimization problem.

1.1 Aggregation problem
Within topographic databases, the information about land

cover is usually represented by polygons that belong to dif-
ferent classes such as deciduous forest, grassland or settle-
ment. To avoid conflicts, overlaps of polygons are explicitly
prohibited. Also gaps are forbidden to ensure integrity. Ge-
neralizing this kind of map normally involves the generali-
zation of classes and the aggregation of features.

An example for class generalization is that the classes de-
ciduous forest and coniferous forest are replaced by the class
forest. Here we assume, that these class inheritance relati-
onships are unambiguous and known. According to these
relationships the source data set can be reclassified, and the
aggregation task can be performed independently. A com-
prehensive discussion on the class abstraction task is given
by van Smaalen [13].

The aggregation problem is due to area thresholds that
are defined differently for the source and the target data set.
Simply omitting features from the source data set that are
too small for the target scale would violate the prohibition of

Settlement

Wood

Legend
Grassland

Farmland

Grove

Water

Figure 1: Source data set ATKIS DLM 50 (1:50.000).

gaps. Therefore, features need to be merged with neighbors,
which results in changes of their classes.

1.2 An iterative algorithm
A popular approach to the aggregation problem is to se-

lect features in increasing order of their importance and to
merge them with one of their neighbors, until all features sa-
tisfy the area threshold [12]. Choosing the neighbor for this
merge is done by taking semantic similarities of classes as
well as geometric measures into account. In a previous study
[7] this linear time algorithm was tested using data and spe-
cifications from the German ATKIS project. Figure 1 shows
a sample with 50 areas from the ATKIS DLM 50, which is
used as basis for topographic maps at the scale 1:50.000.
All the presented examples were taken from a data set that
covers a rural area close to the city of Hamburg, Germany.
The ATKIS specifications also define area thresholds for a
data set with less details, namely the ATKIS DLM 250 cor-
responding to the scale 1:250.000. Thresholds differ among
different classes, since some classes like lakes are considered
to be more important than others.

According to a priority definition for merges of adjacent
features, the iterative algorithm leads to the result shown in
Figure 2. Though the area thresholds are met, the result does
not satisfy, since classes were changed for a major part of the
data set. Features that do not satisfy the area threshold and
do not have neighbors of the same class are very likely to
change classes in this procedure. A cartographer would try
to avoid changes of relatively large features. In many cases
this can be done by altering smaller neighbors that bridge
gaps to features of the same class. These solutions will most
likely not be found by an algorithm that greedily merges
features with the best neighbor. Therefore, we formulate the
aggregation task as a global optimization problem.

Figure 2: Result after iteratively merging areas with
neighbors. Obtained regions bounded by bold lines.

2. DEFINITION AND RELATED WORK
In this section we give an exact definition of the aggrega-

tion problem. We then show that the problem is NP-hard,
i.e., one cannot expect to find an exact polynomial-time so-
lution. Finally we summarize related problems and possible
approaches.

2.1 Definition of the basic problem
We consider the aggregation task as a coloring problem

of the adjacency graph G(V,E), where each node v ∈ V
corresponds to an area feature of the source data set. An
edge e = (u, v) ∈ E expresses, that u and v share a common
boundary. Note that G is planar. We first give a basic pro-
blem definition, which later can be modified to solve more
involved tasks.

Given

• a planar graph G(V,E) with node weights w : V → R
+

and node colors γ : V → Γ, where Γ is the set of all
map colors,

• a threshold value θ ∈ R
+ and

• a distance function d : Γ2 → R
+
0 ,

find a new coloring γ′ : V → Γ, so that

• each connected component induced by one color has
weight at least θ,

• ∑
v∈V w(v) · d(γ(v), γ′(v)) is minimized.

Weights of nodes correspond to area sizes and colors to
land cover classes. The threshold, which is the same for all
classes in this basic problem definition, is a lower bound for
the area of the regions in the output. The contribution of
a node to the total cost is the product of its weight and
the distance between its original and its new color. We re-
fer to this problem as Land cover map generalization with
minimum color change.

The definition of an appropriate distance function is a
non-trivial task that needs expertise. Semantic similarities
of classes as well as preferences for keeping certain classes
unchanged need to be considered. Alternatively, machine-
learning techniques can be applied to derive preferences for
the aggregation automatically if a sample data set for the
target scale exists [10]. However, this problem will not be
discussed here. We have defined reasonable distance values
for classes of the examples shown here, but our algorithms
do not make any restricting assumptions concerning the di-
stance function.

2.2 NP-hardness
We now investigate the computational complexity of land

cover map generalization. We show that the problem is NP-
hard, i.e., one cannot expect to find an exact polynomial-
time solution. This justifies that we will later turn to mixed-
integer programming and to heuristic methods.

Theorem 1. Land cover map generalization with mini-
mum color change is NP-hard, even if the number of colors
is restricted to two.

Proof. Let us first introduce the problem PlanarVer-
texCover. Given a graph G = (V,E), a vertex cover of G is
a subset of V that contains at least one of the two endpoints
of each edge in E. It is known that the problem of finding
vertex covers of minimum cardinality is NP-hard even if the
input graphs are restricted to be planar [5].

Our proof is by reduction from PlanarVertexCover.
Given a planar graph G we define a corresponding instance
G′ of our map generalization problem such that an optimal
solution of G′ yields a minimum vertex cover of G. Since
this reduction can be done in polynomial time, our problem
is NP-hard.

Figure 3 illustrates the reduction. To obtain the input
graph G′ for the generalization problem we split each edge
of G into two edges by inserting a new vertex. We define
the inserted vertices to be white and the other vertices to
be black. We set the threshold θ to 1, and the weights of
the white and black vertices to 0.1 and 1, respectively. We
charge one unit for changing the color of a vertex of G′ from
black to white and n for the opposite color change, where n
is the number of vertices in G.

The distance function is defined so that it is always more
expensive to change a white vertex to black than to change
both adjacent black vertices to white. Because of this at least
one neighbor of each white vertex will change its color. In
an optimal solution of the map generalization problem the
set of vertices in G′ that have changed color from black to
white corresponds to a minimum vertex cover of G.

The same reduction also shows that land cover map gene-
ralization cannot be approximated arbitrarily well. This is
known for minimum vertex cover [6].

−→

Figure 3: Reduction from PLANARVERTEXCOVER.

2.3 Existing models for spatial contiguity
The main difficulty of the map aggregation problem is to

model the spatial contiguity of regions. Different adapta-
ble approaches exist that have been motivated by problems
from operations research. Typical problems that have been
addressed are the alignment of sales territories [14] or the
definition of electoral districts [9]. Most approaches have in
common that for each region one node is defined to be the
center. All other nodes are assigned to one of the centers to
express the membership to a region. To express that a node
v belongs to the region with center i binary variables xiv can
be introduced. If we assume that all nodes are potential cen-
ters, this leads to O(|V |2) variables. However, the variables
xiv do not suffice to express constraints that ensure spatial
contiguity without excluding feasible solutions.

A simple possibility for a general contiguity model is to
consider paths of arcs in the set A = {uv, vu | {u, v} ∈ E}.
If v belongs to center i, then there must exist a path from v
to i, such that all nodes on the path belong to the center i.
For this we would need additional binary variables paiv with
paiv = 1 iff arc a belongs to the path from v to i. This results
in O(|E||V |2) variables. Since G is planar we end up with a
MIP of cubic size.

Another popular model for spatial contiguity is to define
a precedence relationship for nodes relative to a center [14].
In other words, for each center a direction is defined for the
edges of the adjacency graph, such that all arcs direct to
the center (i.e., no cycles exist). According to this model
a node v can be part of a component with center i if and
only if one of its direct predecessors relative to i is part of
this component. If we assume that all nodes are potential
centers, the model can be expressed by the equation

xiv ≤
∑

u∈Predi(v)

xiu ∀i ∈ V, v ∈ V − {i}, (1)

with Predi(v) being the set of direct predecessors of v, relati-
ve to the center i. With this model the number of variables is
quadratic, which is an advantage compared to the first mo-
del. However, not all connected regions are feasible, which
can be seen as a disadvantage of this method. The prece-
dence relationship is often used to exclude regions that are
not compact, which is important for many applications. Yet,
there is no guarantee for compactness.

An alternative general contiguity model was introduced
by Shirabe [11]. The model is applied to the problem of
selecting a contiguous set of nodes and an included center
from a graph, such that certain constraints are satisfied and
an objective is optimized. The basic idea is to define a flow
fa on the arcs in A. To ensure spatial contiguity, different
constraints for the inflow and outflow of a node need to be
formulated. First, the center is the only sink of the flow net-
work, i.e., the incoming flow exceeds the outflow. Second, a
node that belongs to the selected region is a source of the
center’s network, i.e., the outflow exceeds the inflow by a
certain amount. Third, the outflow from a node that does
not belong to the region is zero. The problem is different
to ours, since we want to aggregate all nodes into multiple
contiguous sets. However, the method can be easily adap-
ted by introducing variables fia that express the flow for
center i. Additionally the variables xiv are needed. This ap-
proach would lead to a quadratic number of variables and
constraints. We utilize a similar model for our problem which
has only a linear number of variables and constraints. We

present our formulation in Section 3 and compare it to the
model of Shirabe.

Another technique for spatial allocation is to reduce the
adjacency graph first to a tree, and then to find an optimal
partition of the tree. This method has computational ad-
vantages, since the tree partitioning can be solved for many
special cases in polynomial time by dynamic programming.
However, the definition of an appropriate tree is a difficult
task. The tree partitioning can be used for an optimal roun-
ding of fractional variables that result from LP relaxations
of integer programs for certain aggregation problems [9].

Also heuristic methods such as simulated annealing and
genetic algorithms have been applied to problems that de-
mand contiguous districts [1]. However, the definition of ap-
propriate neighborhood structures and incremental opera-
tors that are needed for these approaches is a difficult task.

3. A MIP OF LINEAR SIZE
In this section we present our new linear-size MIP for the

map aggregation problem that we defined in Section 2.1. We
also give a simple extension that allows the user to specify
different thresholds for different classes.

3.1 Formulation of the basic problem
Our mixed integer program for the map aggregation pro-

blem is based on a similar contiguity model as that of Shira-
be. The main difference is that we do not introduce variables
that express the membership of nodes to regions. We only
need variables to express the colors of the nodes and varia-
bles for the flow on the graph. For this it suffices to define
one flow variable fa per arc, and so the number of variables
is O(|V ||Γ|). If |Γ|, the number of colors, is constant, the
number of variables is linear. All equations are linear, and
so the problem can be solved with standard procedures that
use solutions of LP relaxations as bounds for the objective
function.

We build upon the idea that each connected component
has a center, i.e., a sink that consumes a certain amount of
flow from the network. Each edge of the graph is represented
by two directed arcs in this network. Each node that is not
a sink is defined to be a source that contributes a positive
amount of flow to the network, so that a connection to a
sink is ensured.

In our approach, the network flow is utilized not only to
ensure the contiguity of the components, but also to gua-
rantee the threshold constraint. The amount of flow contri-
buted by a source is defined to be the same as the node’s
weight. Therefore, the sum of the sink’s own weight and its
consumption of flow corresponds to the total weight of the
component. This must exceed the threshold. An additional
constraint is needed to ensure that adjacent nodes have iden-
tical colors if the flow on the connecting arcs is not zero. The
MIP for the problem from Section 2.1 is defined as follows:

Variables

sv ∈ {0, 1} sv = 1 iff node v is a sink.
fa ∈ R

+
0 flow on arc a ∈ A = {uv, vu | {u, v} ∈ E}.

Fa ∈ {0, 1} Fa = 1 if arc a carries positive flow.
yvc ∈ {0, 1} yvc = 1 iff node v receives color c

(i.e., γ′(v) = c).

Objective function

Minimize
∑

v∈V

∑

c∈Γ

w(v) · yvc · d(γ(v), c) (2)

Constraints

If flow fa > 0, then Fa = 1:

M · Fa ≥ fa ∀a ∈ A (3)

The constant M can be any number greater than the maxi-
mal possible weight of a component. To be on the safe side,
we define M to be the weight of the whole data set:

M =
∑

v∈V

w(v) (4)

Each source v (sv = 0) contributes a flow that equals its
weight. For each sink v (sv = 1), the incoming flow exceeds
the difference of the threshold and the weight of v:

∑

a=vu∈A

fa −
∑

a=uv∈A

fa ≥ w(v)− sv ·M ∀v ∈ V (5)

∑

a=vu∈A

fa −
∑

a=uv∈A

fa ≤ w(v)− sv · θ ∀v ∈ V (6)

Each node has exactly one color:
∑

c∈Γ

yvc = 1 ∀v ∈ V (7)

If there is flow on an arc, then both incident nodes have the
same color:

yuc ≥ yvc + (xuv − 1) ∀uv ∈ A, c ∈ Γ (8)

Constraints (3)–(8) suffice to model our problem. However,
the set of feasible solutions for the variables xa and sv can be
reduced by adding an additional constraint which expresses
that a source has only one outgoing arc with flow and a sink
has none.

∑

a=vu∈A

xa = 1− sv ∀v ∈ V (9)

By this, we enforce that the network of arcs with flow is a
set of trees, where each tree has exactly one sink. Note that
the set of feasible map colorings is not affected and so the
optimality is still guaranteed. Yet, we observed a reduction
of computation time.

3.2 Different thresholds for different classes
To cope with different thresholds for different classes, the

model needs to be extended. The function θ : Γ → R
+ is de-

fined to assign a threshold to each color. If we claim that the
sink keeps its original color, the threshold for the component
can be fixed. For this, we add the following requirements to
the problem definition in Section 2.1:

• Each component must contain at least one node v with
γ(v) = γ′(v).

From a cartographic point of view, this limitation is reaso-
nable, since classes should not appear out of nothing in the
target dataset. Adding the new requirement to our MIP re-
quires two changes. First, we replace Constraint (6) by the
following very similar constraint:

∑

a=vu∈A

fa−
∑

a=uv∈A

fa ≤ w(v)−sv ·θ(γ(v)) ∀v ∈ V (10)

Second, we need an additional constraint to ensure that a
sink keeps its original color:

yv,γ(v) ≥ sv ∀v ∈ V (11)

We refer to this MIP, i.e., to the objective function (2) and
constraints (3)–(5) and (7)–(11), as the basic MIP.

The definition of different thresholds would also be possi-
ble without the limitation of one unchanged node per com-
ponent. Especially for the case, that no unique correspon-
dences between the classes of both datasets exist, this ver-
sion of the problem becomes relevant. Additional variables
svc ∈ {0, 1} would need to be defined for this, with svc = 1
iff sv = 1 and yvc = 1. The term sv · θ in (6) would need
to be replaced by

∑
c∈Γ svc · θ(c). However, this formulation

will not be discussed in more detail.

3.3 Results
We implemented and tested the basic MIP described in

the previous subsection on the ATKIS data set that was in-
troduced in Section 1.2. In particular, we applied it to the
50-area instance depicted in Figure 1. The result is shown
in Figure 4. Note that small areas that separate areas of
same classes were modified, so that expensive modifications
of larger areas could be avoided. This clearly fulfills the ex-
pectation and resembles the result that perhaps would have
been created by a cartographer. However, a shortcoming of
the model is that geometric measures are not taken into ac-
count and compact geometries are not preferred compared
to others. A possible extension of the model will be discussed
in Section 5.1.

The time needed for computation and the difficulty of its
prediction is a severe disadvantage of the basic MIP. An
instance with 30 nodes was solved within 90s, but for the
instance with 50 nodes in Figure 4 a gap of 10% between
the best found solution and the lower bound for the objec-
tive function remained even after 20 hours. For the objecti-
ve function the value 2.15 was obtained. A solution that is
guaranteed to be within 10% of optimal is certainly satisfac-
tory for our application, but the time consumption and its
rapid increase are not. Since no approximation algorithm
with performance guarantee is known for the map aggre-
gation problem, heuristics need to be defined, which find
reasonable good solutions reasonably fast. The performance
of the discussed methods is summarized in Table 1.

4. HEURISTICS

4.1 Defining sinks and sources
To reduce the computation time for our method, we need

heuristics to eliminate variables. In our basic MIP a sink
keeps its color and defines the threshold for its component.
Thus, a sink can be regarded as dominant area or center of a
region. A possibility to reduce the number of variables is to
find dominant features in advance and to make them sinks.
The guarantee to obtain the optimal solution is lost with
this heuristic approach, but it is very likely that the result
is not much worse than the optimum. Similarly, defining very
small areas a priori as sources will most likely not affect the
result of the MIP.

Probably it is possible to constrain all nodes to be sinks
or sources if a good start solution exists. For each region
of the start solution we could define the largest area with

Figure 4: Result obtained by our MIP.

unchanged color as sink. All other nodes could be defined to
be sources. Note that we do not run the risk of constricting
the problem so much that it becomes insolvable, since we
know that a feasible solution exists. However, the solution
that was obtained with the iterative algorithm presented
in Section 1.2 does not suffice to do this. Some areas like
the grassland feature in the upper left corner of Figure 1
are eliminated by the iterative algorithm and will not be
recovered when being fixed as source.

A more careful modification can be done by defining that
each node v with weight greater than the threshold is a sink.
Obviously, one can construct special cases for which the op-
timal solution violates this constraint. Yet it is questionable
whether this restriction is an unwanted deficit or a favora-
ble feature, since it could be intended that an area must not
change its color if it fulfills the requirements of the target
scale. About 7% of all areas in our data set at scale 1:50.000
fulfill the requirements of the target scale 1:250.000, which is
a considerable ratio. However, it turned out that this heuri-
stic does not suffice to obtain a reasonable fast performance.
We make a compromise and define the heuristic as follows.

Sink & Source Heuristic:

• For each region obtained with the iterative algorithm,
the largest area with unchanged color is a sink and

• each other area of size less than 10% of the threshold
is a source.

The first statement includes all areas with size greater
than their thresholds and other dominant areas. In addition
to the second statement, we constrain a node as source if
a neighbor of the same color is defined to be a sink. This
does not affect the set of feasible map colorings. Also, we can
eliminate many variables yvc, since we know that the new
color of a region must exist in the set of colors of potential
sinks. With this heuristic we obtained the same results as
before. For the instance with 50 nodes the result with proof
of optimality was achieved within 2.7 hours.

4.2 P-R MIP
To improve the performance we define and test an alter-

native mixed integer program based on precedence relation-
ship, to which we refer as the P-R MIP. For this we only
need the variables xiv that were introduced in Section 2.3.
Equation (1) ensures the contiguity of the components. Ad-
ditionally we need to introduce the following constraints.

Each node belongs to one center.
∑

i∈V

xiv = 1 ∀v ∈ V (12)

For each center the threshold is fulfilled.
∑

v∈V

w(v) · xiv ≥ θ(γ(i)) · xii ∀i ∈ V (13)

The objective can be expressed by

minimize
∑

i∈V

∑

v∈V

w(v) · xiv · d(γ(v), γ(i)). (14)

Here, too, we insist that centers (i.e., nodes with xii = 1)
keep their color. Although the formulation of the problem
becomes very simple with this model, it seems to be a disad-
vantage that the number of variables is quadratic. We later
introduce a heuristic which reduces the number of variables
so that it is again of linear order. First, however, we discuss
how to define an appropriate precedence relationship.

Given a node i, we can calculate for each node v the area
aiv of the smallest contiguous region that contains i and v.
This is a variation of the well-known single-source shortest-
path problem which can be solved with Dijkstra’s famous
algorithm [4]. This area measure can be interpreted as di-
stance between i and v which can be used to define the
precedence relationship. We define the set Predi(v) to con-
tain all neighbors of v that are closer to i according to this
distance:

Predi(v) = {u ∈ V | aiu < aiv ∧ {u, v} ∈ E} (15)

With this approach we obtain exactly the same solution as
in Figure 4 in only 62 seconds with proof of optimality.

4.3 Heuristics for the P-R MIP
To eliminate variables we can use the fact that two nodes

are very unlikely to be merged if their distance is large. For
this we use the distance that was introduced in the previous
section for the definition of the precedence relationship. For
each node i, we define the set of nodes whose distance from
i is less than the threshold.

Si = {v ∈ V | aiv < θ(γ(i))} (16)

In other words, if a node u is not contained in Si, then
each contiguous region that contains i and u satisfies the
threshold of i. We define S′

i to be the set of nodes in Si and
their neighbors. If Si = ∅ we define S′

i = {i}. We can make
the following observation:

If the sets S′
i and S′

v do not intersect, then each contiguous
region that contains the nodes i and v can be separated into
two regions with centers i and v, such that both parts satisfy
their thresholds.

Without the constraint that the new color of a region is
defined by the original color of its center and with equal
thresholds, we would be able to do this separation with the

guarantee of no additional cost. In this case we could elimi-
nate the variables xiv and xvi without restricting the feasi-
ble map colorings. This would greatly reduce the size of the
problem. If we assume that for a given center i the number
of nodes v with S′

i ∪ S′
v
= ∅ is constant, then the number

of variables would be linear. We could continue with these
considerations to eliminate variables of our MIP for different
thresholds and one unchanged node per component. Howe-
ver, we apply the discussed reduction, knowing that it is
a heuristic which can theoretically affect our solution. The
confinement made by using the precedence relationship is
probably much larger than this elimination of variables.

Distance Heuristic:

• Two nodes belong to different regions, if all regions
that contain both nodes can be split into two parts of
size greater than their thresholds.

Additionally we tested the effect of our sink & source heu-
ristic from Section 4.1. For the P-R MIP this means that the
variable xiv can be eliminated if node i is a source or node v
is a sink. Also here we applied the result that was obtained
with the iterative algorithm. The effect of this intervention
is more drastic here, since the precedence relationships are
defined for the centers. By fixing nodes as sources, the set
of feasible contiguous regions is confined.

4.4 Discussion of performance
Both, the basic MIP from Section 3 and the P-R MIP from

Section 4.2 based on precedence relationship, were tested for
instances of different sizes and with different combinations
of the presented heuristics. For these tests we used the Inter-
active Optimizer of the software ILOG CPLEX 9.100 on a
Linux server with 4 GB RAM and a 2.2 GHz AMD-CPU. Ta-
ble 1 summarizes our results. All instances were solved with
proof of optimality, except the one marked with a star. The
first column of Table 1 shows the results that were obtained
with the iterative algorithm from Section 1.2. All computati-
ons took less than a second on a standard desktop PC. The
distance between land cover classes defined in Section 2.1
guided the choice of the neighbor to be merged. Whenever
neighbors with equal costs occurred, we chose the neighbor
with the largest area.

The time needed for the solution of our original MIP is
very high and increases rapidly. For cartographic applicati-
ons this is not appropriate, but the obtained results allow
to assess the results from other methods. The computation
time can be reduced with the sink & source heuristic from
Section 4.1. For our examples no differences to the general
solution arise. Also by definition of precedence relationship
in Section 4.2 the computation time is reduced while the
solution is only marginally affected. The computation time
is greatly reduced by the application of the sink & source
heuristic to the P-R MIP. Still the effects on the obtained
results are acceptable. The distance heuristic is effective on-
ly for relatively large instances. This is plausible, since long
distances that allow to eliminate variables hardly exist in
small data sets. With applicability on data sets of 400 featu-
res the presented methods become relevant for cartographic
production. An example for an instance with 400 areas is
shown in Figure 5 and Figure 6. However, the processing of
a whole map sheet is not possible so far. A map sheet of the

Iter. basic MIP P-R MIP
alg. pure sink & source pure distance sink & source s. & s. + dist.

nodes obj. time obj. time obj. time obj. time obj. time obj. time obj.
30 5.51 90.2 1.73 10.3 1.73 4.6 1.73 8.5 1.73 0.01 2.41 0.01 2.41
40 5.35 12.7h 1.67 620.0 1.67 26.6 1.76 32.7 1.76 0.03 1.82 0.03 1.82
50 6.35 ∗20.0h 2.15 2.7h 2.15 62.2 2.15 95.2 2.15 0.45 2.34 0.24 2.34
60 6.88 570 2.60 416.5 2.60 0.79 2.96 0.76 2.96

100 8.84 21.6 4.20 21.5 4.20
200 13.37 100.4 6.35 202.9 6.35
300 22.56 714.7 14.68 444.8 14.68
400 29.04 1366.9 19.15 1032.2 19.15

Table 1: Experimental results. Computation times are in seconds CPU time unless marked with h, which
stands for hours. All instances were solved to optimality except ∗. “Obj.” refers to the value of the objective
function.

Figure 5: Source data set ATKIS DLM 50 (1:50.000)
with 400 areas.

Figure 6: Result obtained for input from Figure 5 by
P-R MIP with sink & source and distance heuristic.

German topographic map at scale 1:50.000 covers an area
of 22km×22km. The presented examples were taken from
a data set of the same size. This contains more than 5000
polygons.

5. FUTUREWORK
In order to enhance the visual appearance of the output of

our method, the boundaries of the regions can be simplified.
For this existing methods can be applied [3]. A problem
that is more inherent to our method is that the obtained
regions are not compact. We discuss some ideas to improve
our method in this respect. We also propose an approach for
processing large instances.

5.1 Creating more compact shapes
For the cartographic application not only the similarity

of classes but also the geometric characteristics of shapes
need to be considered. A new objective function is needed
to express that regions with compact shapes are preferred. A
compactness measures can be added to the existing objective
function if a factor for the trade-off between both objectives
is defined. A reasonable approach to obtain compact areas is

to minimize the total boundary length of the regions. A first
attempt with this objective showed that regions not only
become more compact but also tend to become larger, which
is undesirable. Different compactness measures have been
discussed that use Euclidean distances or squared Euclidean
distances between nodes and their corresponding centers [2,
8]. We define δ : V 2 → R

+
0 to be the Euclidean distance

between the centroids of two areas. For the P-R MIP, we
can define a compactness measure C which manages with
existing variables:

C =
∑

i∈V

∑

v∈V

w(v) · δ(i, v) · xiv (17)

Generally penalties are given for long distances. Although
the variables xiv do not exist in our basic MIP we can define
a reasonable compactness measure C′ with existing varia-
bles, namely

C′ =
∑

a=uv∈A

δ(u, v) · fa. (18)

The idea is that, for a compact region, the flow that is con-
tributed by a source needs a short distance to reach the
sink. Therefore, penalties are given for long flow distances.

Figure 7: Measures for compactness: Based on direct
distance (left) and based on adjacency graph (right).

Figure 7 illustrates the difference of both measures. While
measure C takes distances on direct lines into account (left),
measure C′ utilizes the length of the shortest path included
in the region (right).

Tests are needed to approve these considerations. A possi-
ble shortcoming of both measures is that distances between
centroids are applied. If the shapes are complex, these are
not necessarily meaningful.

5.2 Processing large instances
The iterative algorithm is fast, but it produces solutions of

relatively high cost. However, more sophisticated heuristic
algorithms are thinkable. In combination with our presented
optimization methods, heuristic methods can be envisioned
that consider not only single areas but groups of features.

A simple possibility to process a bigger data set is to par-
tition the complete map into disjoint patches and to process
these patches independently. A serious problem of this ap-
proach is that areas on the edges of patches might be forced
to perform relatively expensive color changes, since neigh-
bors of more similar colors belong to other patches.

To reduce these fringe effects we propose to divide the
whole data set into overlapping patches that are processed
successively, e.g., by starting with the patch in the upper
left corner and proceeding line by line. Regions at the ed-
ge of processed patches define the overlap and should be
broken up into their constituting areas when appending a
new patch. These areas need to be aggregated anew with
the new patch. This time, however, we can avoid the fringe
effects by allowing that these areas are assigned to the pre-
viously generated adjacent regions. This can easily be done
by introducing additional nodes with fixed colors. The pro-
posed procedure has not been implemented and tested so
far, but we expect that it is a practicable approach that will
satisfy the demands of our application.

6. CONCLUSION
Our method for the aggregation of areas produces maps

that satisfy the criteria of the target scale such that changes
of land cover classes are minimal. Our measure of minima-
lity is based on a distance function that expresses semantic
similarities between classes.

Our tests show that the basic MIP is too slow for data
sets of more than 30 areas. However, the obtained soluti-
ons are useful for comparison with heuristics. Combining a
MIP based on precedence relationship with other heuristics
we could solve instances of 400 areas in reasonable time.

Especially the sink & source heuristic that defines certain
nodes as region centers led to an impressive acceleration.
We conclude that (a) it is possible to solve the map aggre-
gation problem for significant problem sizes near-optimally,
and (b) using global optimization for high-quality mapping,
where computation time is not the prime concern, yields
results that are clearly superior to ad-hoc solutions.

On the other hand our tests show that the resulting areas
are not compact. Since generalization aims at simplifying
geometry, different extensions are proposed that will lead
to more compact shapes. Further research is necessary to
address this issue.

7. REFERENCES
[1] P. K. Bergey, C. T. Ragsdale, and M. Hoskote. A

simulated annealing genetic algorithm for the
electrical power districting problem. Annals of
Operations Research, 121:33–55, 2003.

[2] J. B. Cloonan. A note on the compactness of sales
territories. Management Science, 19(4, Part
1):469–470, December 1972.

[3] M. de Berg, M. van Kreveld, and S. Schirra. A new
approach to subdivision simplification. In Twelfth
International Symposium on Computer-Assisted
Cartography, volume 4, pages 79–88, Charlotte, North
Carolina, 1995.

[4] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271,
1959.

[5] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some
simplified np-complete problems. In Proceedings of the
sixth annual ACM symposium on Theory of
computing, pages 47–63, 1974.

[6] J. H̊astad. Some optimal inapproximability results.
Journal of the ACM, 48(4):798–859, 2001.

[7] J.-H. Haunert and M. Sester. Propagating updates
between linked data sets of different scale. In
Proceedings of XXII International Cartographic
Conference, 11–16 July 2005, A Coruña, Spain, 2005.

[8] S. W. Hess and S. A. Samuels. Experiences with a
sales districting model: Criteria and implementation.
Management Science, 18(4, Part II):41–54, December
1971.

[9] M. Schröder. Gebiete optimal aufteilen. PhD thesis,
University of Karlsruhe, 2001.

[10] M. Sester, K.-H. Anders, and V. Walter. Linking
objects of different spatial data sets by integration and
aggregation. GeoInformatica, 2(4):335–358, 1998.

[11] T. Shirabe. A model of contiguity for spatial unit
allocation. Geographical Analysis, 37:2–16, 2005.

[12] P. van Oosterom. The GAP-tree, an approach to
‘on-the-fly’ map generalization of an area partitioning.
In J.-C. Müller, J.-P. Lagrange, and R. Weibel,
editors, GIS and Generalization – Methodology and
Practice, number 1 in GISDATA. Taylor & Francis,
London, 1995.

[13] J. van Smaalen. Automated Aggregation of Geographic
Objects. PhD thesis, Wageningen University, 2003.

[14] A. A. Zoltners and P. Sinha. Sales territory alignment:
A review and model. Management Science,
29(11):1237–1256, November 1983.

