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Drawing Road Networks with Focus Regions
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Fig. 1. A road map of Boston (left). A user selects a focus region (black circle) and sets a zoom factor Z, here Z = 3. Then, an output
map (right) is generated. The focus region is scaled up by Z while the map still fits into its original frame. This is achieved by scaling
some parts of the road network down that are not in the focus region. Distortions at road segments of the network are minimized.

Abstract—Mobile users of maps typically need detailed information about their surroundings plus some context information about
remote places. In order to avoid that the map partly gets too dense, cartographers have designed mapping functions that enlarge a
user-defined focus region – such functions are sometimes called fish-eye projections. The extra map space occupied by the enlarged
focus region is compensated by distorting other parts of the map. We argue that, in a map showing a network of roads relevant to
the user, distortion should preferably take place in those areas where the network is sparse. Therefore, we do not apply a predefined
mapping function. Instead, we consider the road network as a graph whose edges are the road segments. We compute a new spatial
mapping with a graph-based optimization approach, minimizing the square sum of distortions at edges. Our optimization method is
based on a convex quadratic program (CQP); CQPs can be solved in polynomial time. Important requirements on the output map
are expressed as linear inequalities. In particular, we show how to forbid edge crossings. We have implemented our method in a
prototype tool. For instances of different sizes, our method generated output maps that were far less distorted than those generated
with a predefined fish-eye projection. Future work is needed to automate the selection of roads relevant to the user. Furthermore, we
aim at fast heuristics for application in real-time systems.

Index Terms—cartography, schematic maps, fish-eye view, graph drawing, optimization, quadratic programming.

1 INTRODUCTION

Variable-scale map projections have been frequently proposed for In-
ternet cartography and mobile cartography. They yield a large-scale
representation of a focus region (often the user’s surrounding) and,
thereby, allow many relevant details to be displayed. To avoid that
the user looses context, also more remote regions are displayed on
the same map. For two reasons, however, such regions are shown at
small scale. First, by scaling remote regions down they become de-
emphasized. Second, as map space is limited, not all information can
be shown at large scale.

Using different scales on the same map implies distortions – if a
user wants to measure distances, such a distorted map is useless. Many
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tasks, however, do not require the exact knowledge of distances. For
example, in order to visualize driving instructions to a user, sketch-
like maps with highly distorted distances, so-called route maps, are
useful [1]. Other examples for maps with highly distorted distances
aremetro maps [24] and destination maps [17], which visualize how to
reach a certain destination. More generally, we use the term schematic
map for any map whose distortions result from some design principle
applied and exceed those distortions commonly found in geographic
maps – here distortions are mainly due to the projection of a sphere
(the globe) onto the map plane and due to cartographic displacement.

Variable-scale maps are often designed with a function that maps
each point of the plane (an object’s position in a geographic map) to a
second point (the object’s position in the variable-scale map). Usually,
some type of fish-eye view is chosen. It is difficult to decide, however,
whether a predefined mapping function is appropriate for a particular
task and input. The existing functions ensure some basic properties
of the output map, for example, they keep the focus region undis-
torted. They do not, however, optimize a well-defined function that
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measures the quality of the map. In contrast, in this paper we present
an optimization-based method for the visualization of road networks.

For many way-finding and navigation tasks, the network connec-
tivity is the most important feature, whereas Euclidean distances in
the plane are rather meaningless. Therefore, we model the problem of
generating a variable-scale map of a road network as a graph drawing
problem – the graph that we aim to draw contains an edge for each
road segment. We impose constraints on the graph layout to ensure,
for example, that a user-selected focus region is displayed in a way
similar to a large-scale geographic map and that the output map fits
into a given map frame. Our objective is to minimize distortions that
we measure at the edges of the input graph. As a result, distortions
happen in regions where the graph is sparse, ideally in empty regions.

Our paper is structured as follows. We first give an overview on re-
lated work and the optimization technique we apply (Sect. 2). Then we
present our new method for drawing road networks with focus regions
in detail (Sect. 3) and we discuss our experiments (Sect. 4). Finally,
we conclude the paper and give an outlook on future research (Sect. 5).

2 RELATED WORK

In this section we discuss related work. We review fish-eye views
in Sect. 2.1 and give an overview on approaches to map schemati-
zation in Sect. 2.2. In Sect. 2.3 we review optimization techniques
for focus+context visualization, graph drawing, and cartographic dis-
placement that, from an algorithmic point of view, are related to our
method. Finally, in Sect. 2.4, we give a quick introduction into convex
quadratic programming.

2.1 Fish-eye views
Fish-eye views have been frequently applied to city maps. Since
streets and buildings are dense in the city center, the city center is
mapped at a larger scale than suburbs. In Germany, such maps have
been commercially produced at least since 1945, when Falk-Verlag
published its first city map of Hamburg [20]. In recent years, fish-eye
views have been frequently proposed for small-display cartography.
Their application in dynamic applications, for example, car naviga-
tion [19], is promising. Normally, a large scale factor is defined for
a focus point or focus region. The displacement of points outside the
focus depends on the mapping function applied. The existing func-
tions can be classified into two types: Mapping functions of the fist
type distort the whole map outside the focus [5, 9], see Fig. 2 (left). In
contrast, mapping functions of the second type only distort a certain
region around the focus [8, 32], see Fig. 2 (right).

Yamamoto et al. [32] use the term glue for the distorted region. The
points in this glue region are displaced away from the focus region by
a certain distance, which results from a Bézier interpolation function.
The part of the map that does not belong to the focus region or glue
region is termed context. In this region the map is kept unchanged.

Polyfocal mapping functions allow a user to define multiple focus
regions [13]. Leung and Apperley [18] compare geometric properties
of different mapping fuctions. The application of fish-eye views for
graph visualization is discussed by Sarkar and Brown [26]. Gansner
et. al [6] have introduced a method that not only distorts an input graph
geometrically but also collapses nodes in some parts of the graph to
obtain a coarser representation.

A general problem with the existing mapping functions is that they
introduce large distortions, especially when a large zoom factor is ap-
plied to the focus region. This motivates us to develop an optimization
approach that allows constraints and objectives to be modeled. Our
objective is to keep distortions small where they can be misleading,
that is, at edges of the road network.

2.2 Map schematization
Map schematization does not necessarily need a mapping function.
Instead, the positions of map objects on the plane can be determined
with some method of map manipulation, for example, by optimization.

The term schematization is sometimes used synonymously with an-
gular schematization, which means that each edge of a graph is drawn
in a direction from a limited set of slopes. Angular schematization

focus

glue

context

Fig. 2. Different mapping functions applied to the vertices of a regular
grid; left: with the function by Harrie et al. [9] the scale decreases with in-
creasing distance from the center; right: with the function by Yamamoto
et al. [32] the input map is kept unchanged in the context region, i.e.,
outside an influence area (the glue region) of the enlarged focus region.

is frequently applied to metro maps, which allow users, for example,
to efficiently decide where to change trains. Some algorithms exist
for generating metro maps [11, 24, 30]. Research has been done to
continuously transform a metro map into a geographic map [2] and to
visualize its distortions [12].

According to Klippel et al. [16], schematization means more gener-
ally to “intentionally emphasize certain aspects of knowledge beyond
technical necessity”. Often schematization implies that the reference
to geographic coordinates is lost. In a route map, for example, those
parts of an input route that do not require navigation activities can be
drastically scaled down. Route maps have been automatically gener-
ated by simulated annealing [1], which is a heuristic optimization tech-
nique. When deciding which parts of a route to scale down, a user’s
prior knowledge should be taken into account [27]. While route maps
are in essence one-dimensional (they visualize a single line string plus
some context information), destination maps visualize multiple roads
yielding to a certain destination – such maps can also be produced with
heuristic optimization methods [17].

Using a good geometric layout, certain parts of a network can be
emphasized. Additionally, map generalization and coloring of certain
map objects can be applied to put emphasis on a focus region [25, 33].

2.3 Related optimization approaches

Wang et al. [31] have presented a distortion minimization method for
focus+context visualization of surface models. This method, however,
has not been designed for network data and so the problem of edge
crossings has not been addressed.

Geographic networks are sometimes drawn such that edge lengths
represent travel times. This can be done by multidimensional scal-
ing [29, 14], which, similar to our method, minimizes a quadratic ob-
jective function [4]. Using the method of Shimizu and Inoue [29],
which was designed for travel-time visualization, Merrick and Gud-
mundsson [21] have developed an optimization-based visualization
method that enlarges dense areas in a geographic network. Given the
layout of a graph as input, the algorithm first computes a measure of
centrality for the vertices of the graph. From this measure, the algo-
rithm derives edge lengths that are desired for the output map. Then,
the graph is deformed such that the edge lengths get close to the de-
sired lengths and the edge slopes get close to their original values.

In contrast to the method ofMerrick and Gudmundsson, our method
is not driven by desired edge lengths. Instead, we require a user-
defined scale factor for the focus region – this, of course, implies that
the lengths of edges in the focus region become fixed. For all other
edges, however, lengths are a priori unconstrained. Nevertheless, if
we apply a scale factor to an edge e, it makes sense to apply the same
scale factor to all edges that share a vertex with e since otherwise the
output map will not be similar to the input. Our measure of distortion
expresses the degree to which the output map violates this rule.

Cartographic displacement is the problem of translating map ob-
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jects such as to satisfy a proximity constraint, that is, in the output map
two objects should not be closer to each other than a certain distance.
A relaxed version of the problem where violations of the proximity
constraint are allowed but penalized in the objective function can be
solved by least-squares adjustment [10, 28]. Similarly, our method al-
lows for distortions in the output map but minimizes their square sum.
Least-squares adjustment is a special case of convex quadratic pro-
gramming. In the more general model that we apply, hard constraints
can be expressed in terms of inequalities. This allows us, for example,
to ensure that the output map fits into a given map frame. The existing
methods for cartographic displacement in road networks often avoid
edge crossings by triangulating the vertices of the input network; the
triangle edges are treated in the same way as the edges of the input net-
work (yet they are not displayed on the map). A triangulation-based
approach, however, does not work in our case since we want to take
advantage of empty map space. If we filled the empty space with tri-
angle edges, the network would become too rigid.

2.4 Convex quadratic programming

Mathematical programming is a common approach to optimization.
Generally, a solution to the given problem is encoded in terms of vari-
ables. The optimization objective is expressed as a function in the vari-
ables; constraints in terms of equalities or inequalities are imposed on
them. A lot of research has been done to solve certain classes of math-
ematical programs and there are sophisticated commercial solvers. If
we choose a mathematical-programming approach, we directly profit
by innovations that improve the general solvers.

Some classes of mathematical programs can be solved efficiently.
For example, linear programs (LPs) can be efficiently solved, e.g., with
Karmarkar’s interior-point method [15]. An LP is a mathematical pro-
gram with continuous (that is, real-valued) variables whose objective
function and constraints contain linear terms only.

Quadratic programs (QPs) constitute a more general class of math-
ematical programs – their objective function can contain quadratic
terms. Generally, a QP is given by an m× n matrix A, an n× n sym-
metric matrix D, an m-element vector b, and an n-element vector c.
The problem is to find an n-element vector x of real numbers such that
cx+ xTDx is minimized and Ax≥ b as well as x ≥ 0 hold. In contrast
to linear programming, the problem of solving quadratic programs is
generally NP-hard [7], which means that we cannot hope to find an
efficient solution for this class of problems. If the objective function
is convex, however, the problem can be solved efficiently [23]. This
is the case if the matrix D is positive semidefinite, that is, if xTDx≥ 0
for every x ∈ R

n. Such a QP is called a convex quadratic program
(CQP). In a quadratically constrained quadratic program (QCQP) the
constraints also contain quadratic terms. A QCQP can be solved effi-
ciently if its objective function and constraints are convex [3]. Figure 3
visualizes a convex and two non-convex constraints.

Informally speaking, if we ensure that the objective function and the
constraints are convex, we stay in the world of good-natured problems.
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Fig. 3. A convex set (a) and two non-convex sets ((b) and (c)) defined
by quadratic inequalities. The points in the gray regions satisfy the in-
equalities.

3 METHODOLOGY

In this section we present our new method for drawing road networks
with focus regions. We discuss the general idea behind our method in
Sect. 3.1 and present a basic quadratic program in Sect. 3.2. Our ex-
periments with the basic QP, which we present in Sect. 3.3, reveal that
our method sometimes generates unwanted edge crossings. Therefore,
we extend our QP in Sect. 3.4 to avoid edge crossings.

3.1 General ideas and preconditions
Given an input network, a user needs to select a focus region and to
specify a zoom factor that she wishes to apply to this region.

• The input network is a graph G = (V,E) where each node u ∈
V has two coordinates Xu and Yu in R. Each edge {u ,v} in E
corresponds to a road segment connecting u and v.

• The focus region is specified as a set F ⊆V of nodes. The aim is
to scale this region up by a user-defined zoom factor Z ≥ 1.

The problem is to enlarge the focus region while keeping the map
within its original extent. Obviously, we can only satisfy this con-
straint by scaling down other parts of the map.

Our idea is to introduce locally valid scale factors that become de-
termined through optimization. More precisely, for each node u in V ,
we introduce a scale factor su that is valid for the star with center u,
that is, for the subgraph of G whose node set contains u plus all its
neighbors and whose edge set contains an edge from u to each of its
neighbors. In the output map, the star with center u should ideally be
an exact copy of the original star with center u, scaled by factor su. It
is impossible, however, to fulfill this rule for all stars. Therefore, we
minimize a measure that expresses by how much this rule is violated.

In the following, we assume that the input graph G is connected –
otherwise our method will draw the different connected components
of G at arbitrary relative positions to each other. The restriction to
connected graphs is tolerable when dealing with road networks. For
example, if our map contains islands with roads, we may add ferry
connections to the input graph in order to make the graph connected.

If two edges of the input graph cross each other (for example, via a
bridge), we introduce the intersection point of both edges as a dummy
node. At this node, we split each of the two edges involved into two
new edges. When we compute the optimal layout of the network we
treat the additional nodes in the same way as any other node. Thereby
we account for the fact that bridges are important landmarks – they
should not be lost when redrawing the network, and their position
along a road should not change much.

3.2 Basic QP
We model a solution to our problem with three variables for each node
u ∈ V , that is, the unknown coordinates xu,yu ∈ R and an unknown
scale factor su ∈ R

+. We now impose constraints on these variables.
First, we define a constraint to ensure that the map stays within its

original extent, that is, within the smallest axis-parallel rectangle that
contains the input map:

min
v∈V {Xv} ≤ xu ≤max

v∈V
{Xv}

min
v∈V {Yv} ≤ yu ≤max

v∈V
{Yv}

for each u ∈V (1)

Second, we fix the scale factor for each node in the focus region:

su = Z for each u ∈ F (2)

For a node u not contained in the focus region, the scale factor is un-
known to us – it will become determined through optimization, to-
gether with the coordinates of u in the output map. It remains to ensure
that the scale factor su is valid for the neighborhood of u.

Suppose that we would express the idea of a locally valid scale fac-
tor with the constraint

su(Xv−Xu) = (xv−xu)
su(Yv−Yu) = (yv−yu)

for each u ∈V ,v ∈ Adj(u) , (3)
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where Adj(u) is the set of neighbors of u in G. With constraint (3), the
star-shaped subgraph of G that contains u and its neighbors becomes
scaled by the factor su. For two adjacent nodes i , j, however, we can
only satisfy this constraint if we set si = s j . Therefore, if G is con-
nected, we have to select the same scale factor for all nodes inV . With
constraint (3), it is thus impossible to design a variable-scale map.

In order to allow for different scale factors in different parts of the
map, we introduce a relaxed version of constraint (3). We do not
require that the neighborhood of node u is exactly mapped to scale.
Instead, we allow for small distortions, which we measure based on
residuals xuv and yuv. For this purpose, we introduce xuv and yuv
as auxiliary variables into our model. The relaxed version of con-
straint (3) becomes

xuv = su(Xv−Xu)− (xv−xu)
yuv = su(Yv−Yu)− (yv−yu)

for each u ∈V ,v ∈ Adj(u) . (4)

If both u and v lie in the focus region F , we require

xuv = yuv = 0 for each u ,v ∈ F ,v ∈ Adj(u) . (5)

Thereby, we ensure that edges in the focus region indeed become en-
larged by the zoom factor Z.

Our objective is to minimize the weighted square sum of residuals:

Minimize 
u∈V


v∈Adj(u)

((
w(u,v) ·xuv

)2
+
(
w(u,v) ·yuv

)2) (6)

with w(u,v) = 1/
√

(Xv−Xu)2+(Yv−Yu)2. With this weight setting
we express that the validity of the scale factor su decreases with in-
creasing distance from node u.

Our basic QP comprises constraints (1), (2), (4), and (5) plus the
objective function (6). All constraints are linear and the objective func-
tion is convex since it doesn’t contain mixed terms and all the weights
are positive. Therefore, our basic QP can be solved efficiently.

3.3 Experiments with the basic QP
Figure 4 shows the solutions of our basic QP for three instances. In
the first instance (Fig. 4(a)), the graph G is a grid of 12× 12 nodes.
Defining the four nodes in the center as the focus region and setting
the zoom factor Z = 2, we obtain a deformed grid. The edge lengths of
the square in the focus region increase by a factor of 2. When applied
to a grid, the effect of our method is similar to that of the mapping
function of Yamamoto et al. [32], which we reviewed in Sect. 2.1.

The second and third instances in Fig. 4 are similar to the first one,
except that we removed some edges from the grid. In the second in-
stance (Fig. 4(b)), the graph contains a bottleneck: It is possible to
disconnect the lower left part (displayed in blue) from the rest of the
graph by removing only two edges. If we scale the lower left part
by a constant factor, residuals will appear only at the two connecting
edges. Therefore, a solution that follows this strategy is optimal. The
obtained map is very different from a map generated with a predefined
map projection. In our graph-based optimization approach, the relative
distances between two nodes of the graph are only relevant if the two
nodes are connected by an edge. Since this conforms to the concept of
a schematic road map, we consider the basic QP promising. The third
instance (Fig. 4(c)), however, reveals a severe drawback of the basic
QP: In the output map, different parts of the graph overlap each other.
Therefore, we discuss how to forbid edge crossings in the next section.

3.4 Forbidding edge crossings
Our first attempt to avoid edge crossings was based on a constrained
Delaunay triangulation of the map extent. More precisely, we parti-
tioned the map extent into a set of non-overlapping triangles. We de-
fined each vertex ofG and each of the four corners of the map extent to
be a vertex of the triangulation; each edge of G was constrained to be-
come an edge of the triangulation. If we add all the triangle edges toG,
edge crossings become unlikely. There are, however, two drawbacks
of this approach. First, we cannot strictly guarantee a map without

(a)

(b)

(c)

Fig. 4. Three instances processed with the basic QP. The figures dis-
play the input graph G before (left) and after transformation (right). The
four nodes defining the focus region are displayed as dots. Subgraphs
displayed in the same color correspond to each other.

edge crossings and, second, our method does not make use of sparse
and empty map regions, simply because the graph becomes (almost)
evenly dense. The network becomes very inflexible.

Therefore, we tried a second triangulation-based approach. Instead
of adding the triangle edges to the graph G, we introduced constraints
to the basic QP that guarantee that each triangle of the triangulation
keeps its orientation. Thereby, edge crossings were strictly avoided.
Still, however, we lost significant flexibility. Furthermore, solving the
QP with the additional constraints required much more time.

Our third and most successful approach to avoid edge crossings is
not based on a triangulation. We now present this approach in detail.

Let e = {s, t} and f = {u,v} be two edges of G. We want to add
a constraint to the basic QP that forbids both edges to cross. For this
purpose, we define a directed line � with the properties that, in the
output map, both s and t lie to the left of or on � and both u and v lie
to the right of or on �. The two edges e and f do not cross if and only
if a line with these properties exists.

We can model the line � with an unknown point (x ,y) and an un-
known direction vector whose components we denote by x and y,
see Fig. 5. Introducing x ,y ,x and y as variables, we can express the

4



Manuscript submitted to IEEE Transactions on Visualization and Computer Graphics

�

Δx

Δy

(xu , yu)

(xv , yv)

(xs , ys)

(xt , yt)

(x , y)

e

f

Fig. 5. By constraining the vertices
of e to the left of line � and the ver-
tices of f to the right of �, a cross-
ing of e and f becomes impossi-
ble.

L

Δx

Δy (Xu , Yu)

(Xv , Yv)
(Xs , Ys)

(Xt , Yt)

m
m

Fig. 6. The line L that max-
imizes the margin m for the
edges ((Xs ,Ys) ,(Xt ,Yt)) and
((Xu ,Yu) ,(Xv ,Yv)) defines the
slope of line �.

properties required for � in terms of the following inequalities.

s lies left of or on �: (ys−y)x− (xs−x)y ≥ 0 (7)

t lies left of or on �: (yt −y)x− (xt −x)y ≥ 0 (8)

u lies right of or on �: (yu−y)x− (xu−x)y ≤ 0 (9)

v lies right of or on �: (yv−y)x− (xv−x)y ≤ 0 (10)

Additionally, we need to forbid the trivial solutions x= y= 0. This
could be done, for example, by setting x= 1.

Unfortunately, the feasible region defined by constraints (7)–(10)
is not convex. To see why, we analyze constraint (7). We substitute
(xs− x) with a, y with b, and (ys− y)x with c. We obtain ab ≤ c
and, for c = 1, we obtain ab ≤ 1. This is a non-convex constraint, as
we have seen in Fig. 3(c). Therefore, we cannot apply constraints (7)–
(10) in a convex optimization framework. Nevertheless, we can add
constraints to the QP that are even stricter. Thereby, we can avoid
unwanted edge crossings.

We keep the solution set convex by fixing the slope of line �, that
is, we fix the unknowns x and y. Actually, with this change con-
straints (7)–(10) become linear.

When fixing x and y we need to be careful not to constrain the
problem too much, that is, the road network should still have enough
flexibility. In order to choose x and y, we construct the line L that,
in the input map, separates the edges e and f with a maximum margin.
In other words, we maximize the minimum distance between L and the
edges e and f while requiring that the two edges lie on different sides
of L. Then, we set the slope of � to that of L. Figure 6 illustrates this
idea. By maximizing the margin we remain relatively free in moving
the four edge vertices: If we move a vertex, it is relatively unlikely that
we will hit the line � since the distance of the vertex to � is relatively
large. Note that finding a maximum-margin line is a standard problem
that is well known in the context of support vector machines [22].

When setting up the QP, we could simply add constraints (7)–(10)
for each pair of edges in G. Thereby, we would forbid all edge cross-
ings in advance. This approach, however, has two drawbacks. First,
solving the QP would take a long time since the size of the QP would
become large: Both the number of variables and the number of con-
straints would become quadratic in the number of edges of G. Sec-
ond, since with a fixed slope for � constraints (7)–(10) are stricter than
needed to avoid edge crossings, we would lose more flexibility than
needed. Due to both reasons, we apply an optimistic strategy to han-
dle the constraints: We first solve the basic QP without constraints (7)–
(10). If we obtain a solution without edge crossings, we are done. Oth-
erwise, we establish constraints (7)–(10) for each crossing. Then, we
resolve the QP with the additional constraints. We iterate this process
until we terminate with a solution without any edge crossing.

Figure 7(a) shows the result for the instance in Fig. 4(c) using our
method to avoid edge crossings. In the example, a feasible solution
was found after four iterations; constraints were added to forbid 25
crossings. Though the result does not contain edge crossings, we ob-
serve that some edges get extremely close to each other – sometimes
a vertex of an edge even moves onto another edge. In order to avoid
such cases, we introduce a minimal allowed distance  . We change the

(a)  = 0.0 (b)  = 0.4 units

Fig. 7. Results of our method for the instance in Fig. 4(c). Edge cross-
ings are avoided with constraints (7)–(10). The minimal allowed dis-
tance  was set as specified – one unit equals the spacing of the grid.

right-hand sides of constraints (7)–(8) to /2 and the the right-hand
sides of constraints (9)–(10) to −/2. Furthermore, we normalize the
direction vector defined by x and y. With this modification, we
avoid that the two edges handled by our constraints get closer than  .

4 EXPERIMENTAL RESULTS

We implemented our method in Java using the Java library of the com-
mercial optimizer ILOG CPLEX 12.1 to solve our quadratic program.
In this section, we present results obtained with this implementation.
In Sect. 4.1 we compare our method with the method of Yamamoto et
al. [32], which is based on a predefined mapping function. In Sect. 4.2
we present statistics on the running time of our method.

4.1 A comparison with a predefined mapping function

We used the road network of central Boston in Fig. 1 (left) for our
experiments. This data is freely provided online1 by Massachusetts’
Office of Geographic Information (MassGIS). We set the focus onto a
highway interchange where multiple lanes occlude each other. In the
output map, these lanes become visible, see Fig. 1 (right).

We tested the mapping function of Yamamoto et al. [32] on the same
instance. In order to generate the fish-eye view, we have to define the
glue region, that is, the region containing all distortions. We define the
outer boundary of this region as a circle having the same center as the
focus region. A large value for the radius r of this circle implies that
there is relatively much space for distributing the distortions. On the
other hand, the glue region has to lie within the original map frame,
since otherwise the output map will exceed the bounds of that frame.
For our experiment, we set r = 640m, meaning that the glue region
nearly touches the right boundary of the map frame.

The result that we obtained with the predefined mapping function
is shown in Fig. 8. In the focus region, this map does not differ from
our result in Fig. 1 (right). Outside the focus region, however, the two
maps are very different. Compared to our optimization method, the
predefined mapping function highly distorts the map.

To measure the difference between the two output maps, we ap-
plied our optimization method a second time. This time, however, we
fixed the nodes at their positions in the fish-eye view. In other words,
we set, for each node u, the variables xu and yu in our QP to those
coordinates that node u has in the map produced with the predefined
mapping function. Consequently, we obtained the same output map as
in Fig. 8. Still, the solver yielded a scale factor for each node and the
residuals that are optimal under the fixed coordinates. The cost of this
solution, that is, the value of objective (6) was 317.58. In comparison,
our method yielded a cost of 80.65, that is, a reduction by 75 percent.

To find out where the two different methods distort the map, we vi-
sualize the residuals in Fig. 9. In the fish-eye view (Fig. 9(b)), all dis-
tortions happen between the focus region and the context region, that
is, in the glue region. In radial direction from the center of the map,

1http://www.mass.gov/mgis/eotroads.htm

5



Fig. 8. The mapping function by Yamamoto et al. [32] applied to the
map in Fig. 1. See Fig. 9(b) for the radius r defining the context region.

Fig. 10. Our result for the instance in Fig. 1 when fixing the positions
of all vertices whose distance from the focus center exceeds 640m.

BH

DT

NE

F

0.0 to 2.5
2.5 to 5.0
5.0 to 7.5
>7.5

(a) residuals for the result in Fig. 1

r = 640 m

(b) residuals for the result in Fig. 8

Fig. 9. Residuals at edges of the road network. For each edge e =
{u,v} ∈ E we show two line segments, one between u and the midpoint
m of e and one between v and m. The color of the first segment reflects
the weighted square sum of the residuals xuv and yuv; the color of the
second segment reflects the weighted square sum of the residuals xvu
and yvu. Note that these numbers are dimensionless.

the distortions first increase until they reach their maximum approxi-
mately at half distance between the focus and the context region. From
there on, the distortions decrease. In the optimal layout (Fig. 9(a)), the
distortions happen between certain areas. Basically, the road network
of Boston contains three dense neighborhoods, namely Boston’s North
End (NE), Beacon Hill (BH), and Downtown (DT). Within Beacon
Hill and Downtown the distortions are very small. Even in North End,
which lies very close to the focus region, the distortions are relatively
small. Most distortion takes place at the boundary of the focus region
(F). Furthermore, some distortion takes place at links connecting the
three neighborhoods and at the edge of the map. This result shows that
our graph-based approach indeed avoids distortions in dense regions.
Thereby, the characteristic shapes of Boston’s neighborhoods are pre-
served. We repeated this experiments ten times with different focus
regions spread over the whole map. On average, our method reduced
costs by 81 percent compared to the predefined mapping function.

The mapping function by Yamamoto et al. [32] ensures that vertices
in the context region keep their position. This makes the method very
efficient since only the focus region and the glue region need to be
redrawn on a user request. Generally, our method allows all vertices to
move, but we can use the same idea to speed up the processing, that is,
we keep the positions of vertices in the context region fixed. Figure 10
shows the result of this approach applied to our Boston instance, using
the same focus region and context region as in Fig. 8. Compared to our
result in Fig. 1 the additional constraint caused an increase in cost by
38 percent. Still, the cost is 65 percent lower than with the predefined
mapping function.

For a second test of our method we used road data for Würzburg,
Germany from the OpenStreetMap2 project. Figure 11 shows some
results of these tests. The results support the statement that our method
avoids distortions in dense regions. The figure also shows that our
method allows us to define multiple disjoint focus regions.

4.2 Running time

We tested the running time of our method for instances of different
sizes. Table 1 summarizes our results: Boston refers to the instance of
Boston displayed in Fig. 1 (left); Würzburg2 refers to the network in
Fig. 11(a); Würzburg1 refers to a subset of Würzburg2;Würzburg3
refers to a superset of Würzburg2. We solved all Würzburg instances
with Z = 3 and focus region B in Fig. 11(a). For each instance, we
list the number of nodes and the number of edges of the input graph,
the number of iterations that we needed to find a solution without edge
crossings, the total number of edge crossings that we needed to avoid
by adding constraints (7)–(10), and the overall solution time measured
in seconds CPU time. All experiments were performed on a Windows
PC with 3 GB RAM and a 3.00 GHz Intel dual-core CPU.

The statistics in Table 1 show that our method is fast enough to
process instances of considerable size within a few seconds. For ex-
ample, the solution of the instance Würzburg2, that is, the solution
in Fig. 11(c) was found in about seven seconds – we think that in-
stances of this size are typical for cartographic visualization on small
displays. Even for the much larger instance Würzburg3, an optimal
solution was found in modest time, that is, in about one minute.

2http://www.openstreetmap.org
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A

B

400m

(a) input network with two focus regions A and B (b) result of applying Z = 3 to focus region A

(c) result of applying Z = 3 to focus region B (d) result of applying Z = 3 to both focus regions A and B

Fig. 11. Results of our method for the road network of the center of Würzburg. The zoom factor Z = 3 was applied to two disjoint focus regions.
Both focus regions contain complex traffic junctions, which our method enlarges. This can be used for navigation tasks where junctions are
crucial decision points. The historical center of Würzburg has a dense network of pedestrian streets (gray-shaded lines). In this dense region, the
distortions resulting from our method are very small.
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instance Boston Würzburg1 Würzburg2 Würzburg3
# nodes 2852 465 2511 15941
# edges 3379 513 2965 18158

# iterations 3 4 4 5
# crossings 66 26 35 119

running time 6.70s 1.48s 7.08s 61.70s

Table 1. Results of our experiments on a Windows PC with 3 GB RAM
and a 3.00 GHz Intel dual-core CPU; s stands for seconds CPU time.

For all instances, the solution obtained after the first iteration con-
tained multiple edge crossings. Our idea was to forbid edge crossings
only when they are encountered in a solution – this approach was suc-
cessful since we needed to compute only a few (up to five) iterations
and to forbid only a few (up to 119) edge crossings.

The result in Fig. 10, where all vertices in the context region were
forced to keep their position, was obtained after 3.09 seconds. This is
a reduction by 54 percent compared to the setting where all vertices
were allowed to move. Keeping the context region unchanged is a
good strategy if we have to deal with very large datasets, since it allows
us to assume that our problem instances have constant size. Still, our
method is much slower than the method of Yamamoto et al. [32],
which solved the instance Würzburg3 in 0.02 seconds.

5 CONCLUSION AND FUTURE WORK

We have presented a new method for enlarging a user-defined focus
region in a road network, which is relevant for cartographic visual-
ization. Our method ensures that with the enlarged focus region the
map still fits into its original frame. To accomplish this task, some
parts of the network are scaled down, which leads to map distortions.
Our method minimizes a measure that quantifies distortions at road
segments. This approach has considerable advantages compared to
classical fish-eye views, which typically introduce large distortions to
the network. We compared the result of our method with an existing
fish-eye view technique. With our method, distortions at road seg-
ments are visibly smaller and, according to our measure of distortion,
distortions are reduced by 75 percent. We also tested a variant of our
method that deforms only a certain area around the focus region. This
reduced the running time by 54 percent. Still, the distortions were 65
percent lower than in the classical fish-eye view.

Our method solves instances of about 3000 road segments in a few
seconds. This may be fast enough to provide users with static maps.
For real-time applications, however, we aim at speed-up techniques,
which we will test in realistic settings. We also plan to look at a sce-
nario where the focus region continuously moves over the map plane
as the user drives on the road network. Furthermore, we plan to auto-
matically select the roads relevant to a user and to integrate the prob-
lem of selecting roads and computing the layout of the network.
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